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Abstract

We introduce a learning semantic parser,
Sci1SSOR that maps natural-language sen-
tences to a detailed, formal, meaning-
representation language. It first uses
an integrated statistical parser to pro-
duce a semantically augmented parse tree,
in which each non-terminal node has
both a syntactic and a semantic label.
A compositional-semantics procedure is
then used to map the augmented parse
tree into a final meaning representation.
We evaluate the system in two domains,
a natural-language database interface and
an interpreter for coaching instructions in
robotic soccer. We present experimental
results demonstrating thatc&SsoR pro-
duces more accurate semantic representa-
tions than several previous approaches.

Introduction

robotic soccer developed for the RoboCup Coach
Competition, in which Al researchers compete to
provide effective instructions to a coachable team of
agents in a simulated soccer domain (et al., 2003).

We present an approach based on a statisti-
cal parser that generatessamantically augmented
parse tree(SAPT), in which each internal node in-
cludes both a syntactic and semantic label. We aug-
ment Collins’ head-driven model 2 (Collins, 1997)
to incorporate a semantic label on each internal
node. By integrating syntactic and semantic inter-
pretation into a single statistical model and finding
the globally most likely parse, an accurate combined
syntactic/semantic analysis can be obtained. Once a
SAPT is generated, an additional step is required to
translate it into a final formaeaning representa-
tion (MR).

Our approach is implemented in a system called
SCISSOR (Semantic Composition that Integrates
Syntax and Semantics to get Optimal Representa-
tions). Training the system requires sentences an-
notated with both gold-standard SAPT’s and MR’s.
We present experimental results on corpora for both

Most recent work in learning for semantic parsingde€ography-database querying and Robocup coach-
has focused on “shallow” analysis suchsesnan- ing demonstrating that@3ssorproduces more ac-

tic role labeling(Gildea and Jurafsky, 2002). In this curate semantic representations than several previ-
paper, we address the more ambitious task of lear@uUs approaches based on symbolic learning (Tang
ing to map sentences to a complete formalaning- and Mooney, 2001; Kate et al., 2005).

representation languagéMRL). We consider two

MRL's that can be directly used to perform useful2 Target MRL's

complex tasks. The first is a Prolog-based language

used in a previously-developed corpus of queries /e used two MRLSs in our experimentsLANG and

a database on U.S. geography (Zelle and Moone§GEOQUERY. They capture the meaning of linguistic
1996). The second MRL is a coaching language fantterances in their domain in a formal language.
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S-bowner

2.1 CLANG: theRoboCup Coach Language

RoboCup {ww. r obocup. org) is an interna-

tional Al research initiative using robotic soccer NP-player VP-bowner
as its primary domain. In the Coach Competition,
teams of agents compete on a simulated soccer fiel
and receive advice from a team coach in a formal
language called CANG. In CLANG, tactics and our player 3 has t‘he La”
behaviors are expressed in terms of if-then rulesgigyre 1: An SAPT for a simple CANG sentence.
As described in (et al., 2003), its grammar consis Function: BULOMR(N, K)

of 37 non-terminal symbols and 133 productions.nput: The root nodeV of a SAPT;

PRP$-teamNN-player CD-unum VB-bowner P-null

DT-null NN-null

Below is a sample rule with its English gloss: predicate-argument knowledgk, for the MRL.
Notation: X s is the MR of nodeX.
((bpos (penalty-area our)) Output: Nup ‘
(do (pl ayer-except our {4}) C; :=theith child node ofN,1 < i< n

Cr = GETSEMANTICHEAD(N) // see Section 3
(pos (half our)))) Chyn = BUILDMR(Ch, K)
“ i for each other child’; where: # h
If the ball is in our penalty_area, all our players Cirvrn = BUILDMR(C), K)
except player 4 should stay in our half” COMPOSEMR(Ch,, > Cinsr»> K) /I se€ Section 3
Nur = Chyp

Figure 2: Computing an MR from a SAPT.
2.2 GEOQUERY. aDB Query Language

GEOQUERY is a logical query language for a smallyf jis children. Syntactic structure provides infor-

database of U.S. geography containing about 8QQation of how the parts should be composed. Am-
facts. This domain was originally chosen to teshiqjities arise in both syntactic structure and the se-
corpus-based semantic parsing due to the avafjantic interpretation of words and phrases. By in-
ability of a hand-built natural-language interfaceteqrating syntax and semantics in a single statistical
GEOBASE, supplied with Turbo Prolog 2.0 (Borland parser that produces an SAPT, we can use both se-
International, 1988). The BOQUERY language mantic information to resolve syntactic ambiguities

consists of Prolog queries augmented with severgj,q syntactic information to resolve semantic ambi-
meta-predicates (Zelle and Mooney, 1996). Belo‘@uities.

is a sample query with its English gloss: In a SAPT, each internal node in the parse tree

answer (A count (B, (city(B),loc(B,C), isannotated with a semantic label. Figure 1 shows
const (C, countryid(usa))),A)) the SAPT for a simple sentence in the ANG do-
“How many cities are there in the US?” main. The semantic labels which are shown after
dashes areonceptsn the domain. Somégype con-
ceptsdo not take arguments, likeeam and unum
(uniform number). Some concepts, which we refer
to aspredicates take an ordered list of arguments,
This section describes our basic framework for sdike playerandbowner(ball owner). The predicate-
mantic parsing, which is based on a fairly stanargument knowledgek, specifies, for each predi-
dard approach to compositional semantics (Juragate, the semantic constraints on its arguments. Con-
sky and Martin, 2000). First, a statistical parseftraints are specified in terms of the concepts that
is used to construct a SAPT that captures the séan fill each argument, such pkayerteam unum)
mantic interpretation of individual words and theandbowne(player). A special semantic labelull
basic predicate-argument structure of the sentendg.used for nodes that do not correspond to any con-
Next, a recursive procedure is used to compositioré€pt in the domain.
ally construct an MR for each node in the SAPT Figure 2 shows the basic algorithm for build-
from the semantic label of the node and the MR’éng an MR from an SAPT. Figure 3 illustrates the

3 Semantic Parsing Framework
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NB-owner(player(our.2)) compositionality exceptions. Due to space limita-

tions, we do not present the straightforward tech-
nigues we used to handle them.

N7-player(our,2) N3-bowner()
N5-team N4-player(_,_) N6-unum N1-bowner( ) N2=null 4 Corpus Annotation
null null . . . L
‘ L This section discusses how sentences for training
our player has the al

Scissor were manually annotated with SAPT's.
Figure 3: MR’s constructed for each SAPT Node. Sentences were parsed by Collins’ head-driven
model 2 (Bikel, 2004) (trained on sections 02-21
construction of the MR for the SAPT in Figure 1.of the WSJ Penn Treebank) to generate an initial
Nodes are numbered in the order in which the corsyntactic parse tree. The trees were then manually

struction of their MR’s are completed. The firstcorrected and each node augmented with a semantic
step, GTSEMANTICHEAD, determines which of a |gpel.

node’s children is itsemantic headbased on hav-  First, semantic labels for individual words, called

ing a matching semantic label. In the example, nodgsmantic tagsare added to the POS nodes in the
N3 is determined to be the semantic head of thgee The tagull is used for words that have no cor-
sentence, since its semantic labd@wner matches responding concept. Some concepts are conveyed
N8's semantic label. Next, the MR of the semanpy phrases, like “has the ball” fawownerin the pre-

tic head is constructed recursively. The semantigioys example. Only one word is labeled with the
head of N3 is clearly N1. Since N1 is a part-of-concept; the syntactic head word (Collins, 1997) is
speech (POS) node, its semantic label directly d@yeferred. During parsing, the other words in the
termines its MR, which becomdsowne(.). Once phrase will provide context for determining the se-
the MR for the head is constructed, the MR of alinantic label of the head word.

other (non-head) children are computed recursively, | pels are added to the remaining nodes in a
and @MPOSEMR assigns their MR's to fill the ar- ottom-up manner. For each node, one of its chil-
guments in the head’s MR to construct the COMgren js chosen as the semantic head, from which it
plete MR for the node. Argument constraints argyij| inherit its label. The semantic head is chosen
used to determine the appropriate filler for each as the child whose semantic label can take the MR’s

gument. Since, N2 hasraull label, the MR of N3 ot the other children as arguments. This step was
also becomesowne(.). When computing the MR 4one mostly automatically, but required some man-
for N7, N4 is determined to be the head with thg, 5| corrections to account for unusual cases.

MR: player(_,)). ComPOosSEMR then assigns N5'’s
MR to fill the teamargument and N6’s MR to fill

In order for ®OMPOSEMR to be able to construct
the MR for a node, the argument constraints for
theunumargument to construct N7's complete MR semantic head must identify a unique concept
player(our, 2). This MR in turn is composed With 1, fi| each argument. However, some predicates
the MR for N3 to yield the final MR for the sen- 1e multiple arguments of the same type, such as
tence:bowne(playerour,2)). point.nunnumnun), which is a kind of point that

For MRL's, such as CBNG, whose syntax does represents a field coordinate in GAG.
not strictly follow a nested set of predicates and ar- |n this case, extra nodes are inserted in the tree
guments, some final minor syntactic adjustment afjith new type concepts that are unique for each ar-
the final MR may be needed. In the example, thgument. An example is shown in Figure 4 in which
final MR is (bowner (player ouq2})). In the fol-  the additional type conceptaimlandnum?are in-
lowing discussion, we ignore the difference betweeftoduced. Again, during parsing, context will be
these two. used to determine the correct type for a given word.

There are a few complications left which re- Thepointlabel of the root node of Figure 4 is the
quire special handling when generating MR’sconcept that includes all kinds of points in&NG.
like coordination, anaphora resolution and non©nce a predicate has all of its arguments filled, we
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PRN-point S-bowner(has)

—-LRB-—point.num CD‘—numl ! CD‘—numZ —-RRB--nul NP-player(player) VP-bowner(has)
CD-num CD-num PRP$-team NN-player CD-unumVB-bowner NP=null(ball)
‘ ‘ DT-null NN-null
-LRB- 0.5 ’ 0.1 -RRB- ‘
Figure 4: Adding new types to disambiguate argu- gy player 2 has the ball
ments. Figure 5: A lexicalized SAPT.

use the most general @iNG label for its concept
(e.g. point instead ofpoint.num. This generality
avoids sparse data problems during training.

3. The probabilities of generat-
ing the left and right modifiers:
Hi:l..m+1 PT(Ri(Ti)|Ha thvAiflvRC) X

5 Integrated Parsing Model [Lic1 n1 Pu(Lils)| H, Py Aj—y, LC).

) ) Where A is the measure of the distance from

51 CollinsHead-Driven Model 2 the head word to the edge of the constituent,

Collins’ head-driven model 2 is a generative, lexi- andLy,1(lh+1) and Ry, 41 (rm+1) areSTOP.
calized model of statistical parsing. In the following The model stops generating more modifiers
section, we follow the notation in (Collins, 1997). whenSTOP is generated.

Each non-terminak in the tree is a syntactic label,
which is lexicalized by annotating it with @ord,
w, and aPOS tag t,,. Thus, we write a non- We extend Collins’ model to include the genera-
terminal asX (z), where X is a syntactic label andtion of semantic labels in the derivation tree. Un-
r = (w,tsyn). X(x)is then what is generated by less otherwise stated, notation has the same mean-

5.2 Integrating Semanticsinto the Model

the generative model. ing as in Section 5.1. The subscriggn refers to
Each productionn HS = RHS in the PCFG is the syntactic part, andem refers to the semantic
in the form: part. We redefineX and z to include semantics,

each non-terminak is now a pair of a syntactic la-
bel X,,, and a semantic labeX,.,,. Besides be-
where H is the head-child of the phrase, which in-ing annotated with the wordy, and the POS tag,
herits the head-word from its parentP. L..L, t.,, X is also annotated with the semantic tag,
andR;...R,, are left and right modifiers off . tsem, Of the head child. ThusX (z) now consists of
Sparse data makes the direct estimation oX = (X,yn, Xsem), andz = (w, tgyn, tsem). FiO-
P(RHS|LHS) infeasible. Therefore, it is decom-ure 5 shows a lexicalized SAPT (but omitting,
posed into several steps — first generating the heaahdi,..,).
then the right modifiers from the head outward, Similar to the syntactic subcat frames, we also
then the left modifiers in the same way. Syntacticondition the generation of modifiers on semantic
subcategorization frames, LC and RC, for the lefsubcat frames. Semantic subcat frames give se-
and right modifiers respectively, are generated benantic subcategorization preferences; for example,
fore the generation of the modifiers. Subcat frameslayertakes aeamand aunum ThusLC and RC
represent knowledge about subcategorization prefare now: (LCsyn, LCsem) and (RCsyn, RCsem)-
ences. The final probability of a production is com-X (z) is generated as in Section 5.1, but using the
posed from the following probabilities: new definitions ofX (z), LC and RC. The imple-
1. The probability of choosing a head constituen&nemmi_on of semantic subcat frames is_ similar tq
label H: Py (H|P, h). syntactlc subcat.frames. They are multisets speci-
fying the semantic labels which the head requires in
2. The probabilities of choosing the left and rightits left or right modifiers.
subcat frames LC and RCP,.(LC|P,H,h) As an example, the probability of generating the
and?P,.(RC|P,H,h). phrase “our player 2" using NP-[player](player}

P(h)— Ly(ly)...L1(I1)H(h)R1(r1)... R (rm)

12



PRP$-[team](our) NN-[player](player) CD-[unum](2h the following discussion. As in (Collins, 1997),
is (omitting only the distance measure): the paramete®;(L;(lt;, lw;)| P, H,w,t, A, LC) is
further smoothed as follows:
Pr, (NN-[player]|NP-[player],playerk

Pic(({}.{teant) INP-[player],playerk P (Lz‘|P, H,w,t,A, LC) X
Pre({({},{unum})|NP-[player],playerk Pl?(lti|Pa H,w,t,A,LC, Li) X
P; (PRP$-[team](outNP-[player],player{},{tean})) x Pi3(lw;| P, H,w,t, A, LC, Li(It;))

(
Pr(CO-unuml(2)NP-{player] player{}. {unum)) < Note this smoothing is different from the syntactic
(

P1(STORNP-[player]player{} {})) x counterpart. This is due to the difference between
P, (STORNP-[player],player{}.{})) POS tags and semantic tags; namely, semantic tags
are generally more specific.
5.3 Smoothing Table 1 shows the various levels of back-off for

Since the left and right modifiers are independentigach semantic parameter. The probabilities from
generated in the same way, we only discuss smootthese back-off levels are interpolated using the tech-
ing for the left side. Each probability estimation inniques in (Collins, 1997). All words occurring less

the above generation steps is callggeaameter To  than 3 times in the training data, and words in test
reduce the risk of sparse data problems, the paran@ata that were not seen in training, are unknown

ters are decomposed as follows: words and are replaced with the "UNKNOWN?” to-
ken. Note this threshold is smaller than the one used
Pu(H|C) = Phyyn(Heyn|C) x in (Collins, 1997) since the corpora used in our ex-
Phoore (Hsem|C, Hoyn) periments are smaller.

m (

'PZC(LC|C) = Plcsy (LCsyn|C) X
Picsem (LCsem|C; LCisyn) For unknown words, the POS tags allowed are lim-

PiLi(l)IC) = Py (Ligyn (igyns lwi)[C)Xted to those seen with any unknown words during
Proem (Ligem (Wtige s lwi)|C, Ly, (It5,,,,,)) training. Otherwise they are generated along with
the words using the same approach as in (Collins,
For brevity, (' is used to represent the context o gg7). When parsing, semantic tags for each known
which each parameter is conditionéds, It;,,,,, and  word are limited to those seen with that word dur-
lt;..,, are the word, POS tag and semantic tag gengfyg training data. The semantic tags allowed for an

ated for the non-terminal;. The word is generated \nknown word are limited to those seen with its as-
separately in the syntactic and semantic outputs. ggciated POS tags during training.

We make the independence assumption that the
syntactic output is only conditioned on syntactic fea6 Experimental Evaluation
tures, and semantic output on semantic ones. Note
that the syntactic and semantic parameters are sfil M ethodology
integrated in the model to find the globally mosfTwo corpora of NL sentences paired with MR’s
likely parse. The syntactic parameters are the samere used to evaluateC&SsSoR For CLANG, 300
as in Section 5.1 and are smoothed as in (Collinpjeces of coaching advice were randomly selected
1997). We've also tried different ways of condition-from the log files of the 2003 RoboCup Coach Com-
ing syntactic output on semantic features and vicpetition. Each formal instruction was translated
versa, but they didn't help. Our explanation is thénto English by one of four annotators (Kate et al.,
integrated syntactic and semantic parameters ha2805). The average length of an NL sentence in
already captured the benefit of this integrated apthis corpus is 22.52 words. ForE®QUERY, 250
proach in our experimental domains. guestions were collected by asking undergraduate
Since the semantic parameters do not depend students to generate English queries for the given
any syntactic features, we omit them subscripts database. Queries were then manually translated

n

54 POS Tagging and Semantic Tagging

isyn
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| BACK-OFFLEVEL | Pp(H|..) | Prc(LC|...) | Prai(Lil..) | Pra(lti..) | Prs(lw;]...) |

1 Paw,t P,Hw,t PHwtA,LC | PHwtALC,L; | PHw,tA,LC, L;, It;
2 P P,H{ P,Ht,ALC P,Ht,ALC, L; P,H{,ALC, L;, It;
3 P P,H P,HA,LC PHA,LC, L, L;, It

4 - - - L; lt;

Table 1: Conditioning variables for each back-off level$emantic parametersem subscripts omitted).

into logical form (Zelle and Mooney, 1996). The ** ‘ ‘ E—
average length of an NL sentence in this corpus is *| e ;
6.87 words. The queries in this corpus are more *[ /
complex than those in the ATIS database-query cor- [ *
pus used in the speech community (Zue and Glassg
2000) which makes the @>QUERY problem harder, 7 *[
as also shown by the results in (Popescu et al., 2004)7

60 -

40

The average number of possible semantic tags for [ ¢

each word which can represent meanings inQG °r St o |

is 1.59 and that in BOQUERY is 1.46. ot seoRasE 2 ]
Scissor was evaluated using standard 10-fold  °c a0 10 50 2

Training sentences

cross validation. NL test sentences are first parsgtlgyre 6: preC|S|0n Iearnlng curves fOEGQUERY.
to generate their SAPT’s, then their MR’s were built =

from the trees. We measured the number of test sen- |
tences that produced complete MR’s, and the num-
ber of these MR’s that were correct. For 8\G,
an MR is correct if it exactly matches the correct
representation, up to reordering of the arguments of‘
commutative operators likand. For GEOQUERY, wl
an MR is correct if the resulting query retrieved
the same answer as the correct representation when
submitted to the database. The performance of the *
parser was then measured in termpucision(the % g w00 150 200 20
percentage of completed MR’s that were correct) e
and recall (the percentage of all sentences whose
MR’s were correctly generated). parse trees (generated by the Collins parser) to an
We compared 8issoRs performance to several MRL. In the GEOQUERY domain, we also compare
previous systems that learn semantic parsers that darthe original hand-built parserK&BASE
map sentences into formal MRL's.HILL (Zelle and
Mooney, 1996) is a system based on Inductive Loglg
Programming (ILP). We compare to the versiorFigures 6 and 7 show the precision and recall learn-
of CHILL presented in (Tang and Mooney, 2001)jng curves for GOQUERY, and Figures 8 and 9 for
which uses the improvedd@kTAIL ILP system and CLANG. Since GHILL is very memory intensive,
produces more accurate parsers than the original vétr-could not be run with larger training sets of the
sion presented in (Zelle and Mooney, 1996).TSs CLANG corpus.
a system that learns symbolic, pattern-based, trans-Overall, SISSORgives the best precision and re-
formation rules for mapping NL sentences to formatall results in both domains. The only exception
languages (Kate et al., 2005). It comes in two vers with recall for GEOQUERY, for which CHILL is
sions, SLT-string, which maps NL strings directly slightly higher. However, Sissorhas significantly
to an MRL, and 8T-tree, which maps syntactic higher precision (see discussion in Section 7).

3

am(%)

20 SCISSOR —+— 4
SILT-string ------
SILT-tree ---%---
CHILL --&
GEOBASE ---- 4

Figure 7: Recall learning curves forE® QUERY.

Results
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100 - - - - - tistical parsing that attempts to find the SAPT with
T maximum likelihood, which improves robustness
T compared to purely rule-based approaches. How-
ever, ISSORrequires an extra training input, gold-
standard SAPT’s, not required by these other sys-
tems. Further automating the construction of train-

Precision (%)

a0ty . E

ol e : ing SAPT’s from sentences paired with MR’s is a
wl | T coissoR | subject of on-going research.
wli SSirnes x| PRECISE is designed to work only for the spe-

o CHILL &
0 ! ! ! ! !

cific task of NL database interfaces. By comparison,
° T s ScissoRris more general and can work with other
Figure 8: Precision learning curves for GlG. MRL's as well (6.g. CIANG). Also, PRECISEis not
" , , , , , alearning system and can fail to parse a query it con-
siders ambiguous, even though it may not be consid-
ered ambiguous by a human and could potentially be
resolved by learning regularities in the training data.
In (Lev et al., 2004), a syntax-driven approach
1 is used to map logic puzzles described in NL to
i an MRL. The syntactic structures are paired with

70

60

50

40

Recall (%)

30 |
e X SCISSOR —+—

ol SILT-string >~ | hand-written rules. A statistical parser is used to
ol X* - oL e generate syntactic.parse trees, gnd then MR’s. are
- a built using compositional semantics. The meaning
% 50 100 150 20 20 300 of open-category words (with only a few exceptions)

Training sentences

] X is considered irrelevant to solving the puzzle and
Figure 9: Recall learning curves for GNG.

their meanings are not resolved. Further steps would
Results on a larger 80QUERY corpus with 880 be needed to generate MR’s in other domains like
queries have been reported f®iECISE(Popescu et CLANG and GEOQUERY. No empirical results are
al., 2003): 100% precision and 77.5% recall. Ofeported for their approach.
the same corpus,3SsORobtains 91.5% precision Several machine translation systems also attempt
and 72.3% recall. However, the figures are not conf® generate MR's for sentences. In (et al., 2002),
parable. RECISE can return multiple distinct SQL @ English-Chinese speech translation system for
queries when it judges a question to be ambigdi-mited domains is described. They train a statisti-
ous and it is considered correct whany of these cal parser on trees with only semantic labels on the
SQL queries is correct. Our measure only considef¥°des; however, they do not integrate syntactic and
the top result. Due to space limitations, we do not€mantic parsing.

present complete learning curves for this corpus. ~ History-based models of parsing were first in-
troduced in (Black et al., 1993). Their original

7 Rdated Work model also included semantic labels on parse-tree
nodes, but they were not used to generate a formal
We first discuss the systems introduced in SectioMR. Also, their parsing model is impoverished com-
6. CHILL uses computationally-complex ILP meth-pared to the history included in Collins’ more recent
ods, which are slow and memory intensive. Thenodel. SISSOR explores incorporating semantic
string-based version of IS uses no syntactic in- labels into Collins’ model in order to produce a com-
formation while the tree-based version generatespete SAPT which is then used to generate a formal
syntactic parse first and then transforms it into amR.
MR. In contrast, 81SSORintegrates syntactic and The systems introduced in (Miller et al., 1996;
semantic processing, allowing each to constrain aridiller et al., 2000) also integrate semantic labels
inform the other. It uses a successful approach to stato parsing; however, their SAPT’s are used to pro-
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duce a much simpler MR, i.e., a single semantic history-based grammars: Using richer models for prokmbili

which has three slots — the arrival time, origin and

destination. Only one frame needs to be extractdgpriand International. 1988. Turbo Prolog 2.0 Reference
. . . Guide Borland International, Scotts Valley, CA.

from each sentence, which is an easier task than

our problem in which multiple nested frames (predMao Chen et al. ~ 2003. ~ Users manual: RoboCup
icat tb tracted. Th tacti del | soccer server manual for soccer server version 7.07
icates) must be extracted. € syntactic moael IN g jater.  Available ahttp://sourceforge. net/

(Miller et al., 2000) is similar to Collins’, but does proj ects/ sserver/.

not use features like Schajt frames a_'nd distance M&RAzhael J. Collins. 1997. Three generative, lexicalisedimo
sures. Also, the non-terminal labh#l is not further els for statistical parsing. IRroc. of ACL-97 pages 16-23,
decomposed into separately-generated semantic and/adrid, Spain.

syntactic components. Since it used much more speuqing Gao et al. 2002. Mars: A statistical semantic parsing

cific labels (the cross-product of the syntactic and and gener{ition-based.multilingual automatic translagicn
. . . tem. Machine Translation17:185-212.
semantic labels), its parameter estimates are poten-

tially subject to much greater sparse-data pr0b|em§_aniel Gildea} and Daniel Jurafsky. 2092. Agtomated lalgelin
of semantic roles. Computational Linguistics28(3):245—

) 288.
8 Conclusion . .
Daniel Jurafsky and James H. Martin. 2008peech and Lan-

ScissoRrlearns statistical parsers that integrate syn- 9uage Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recog-

tax and semantics in order to produce a semanti- nition, Prentice Hall, Upper Saddle River, NJ.

cally augmented parse tree that is then used to COrlgc-)hit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005.

positionally generate a formal meaning representa- |earning to transform natural to formal languages. To ap-
tion. Experimental results in two domains, a natural- pear inProc. of AAAI-05Pittsburgh, PA.

language database interface and an interpreter f@o Lev, Bill MacCartney, Christopher D. Manning, and Roge
coaching instructions in robotic soccer, have demon- Levy. 2004. Solving logic puzzles: From robust process-

_ ing to precise semantics. Froc. of 2nd Workshop on Text
strated that 8§1Issorgenerally produces more accu Meaning and Interpretation. AGL-OBarcelona, Spain.

rate semantic representations than several previous

; _Aftha. Scott Miller, David Stallard, Robert Bobrow, and Richard
approaches. By augmenting a state-of-the-art Staté Schwartz. 1996. A fully statistical approach to naturallan

tical parsing model to include semantic information, guage interfaces. IACL-96 pages 55-61, Santa Cruz, CA.
itis able to mtegratg syntactlc_ and semantic CIuegcott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.
to produce a robust interpretation that supports the weischedel. 2000. A novel use of statistical parsing to ex-
generation of complete formal meaning representa- tract information from text. IProc. of NAACL-00 pages
tions 226-233, Seattle, Washington.
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