
CoNLL-2005

Proceedings of the

Ninth Conference on
Computational Natural

Language Learning

29-30 June 2005
University of Michigan

Ann Arbor, Michigan, USA

Production and Manufacturing by
Omnipress Inc.
Post Office Box 7214
Madison, WI 53707-7214

c©2005 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
75 Paterson Street, Suite 9
New Brunswick, NJ 08901
USA
Tel: +1-732-342-9100
Fax: +1-732-342-9339
acl@aclweb.org

ii

PREFACE

The 2005 Conference on Computational Natural Language Learning (CoNLL-2005) is the ninth in a
series of meetings organized by SIGNLL, the ACL special interest group on natural language learning.
This year’s CoNLL will be held in Ann Arbor, Michigan, on June 29 and 30, in conjunction with the
ACL 2005 conference.

This year we encouraged submissions addressing “deeper linguistic phenomena than have typically
been covered in the past”, a theme reflected in the shared task, and one which will be addressed by our
invited speakers, Mark Johnson and Mark Steedman. The latter talk will be part of what should be a
very interesting joint session with the Workshop on Psychocomputational Models of Human Language
Acquisition organized by William Sakas.

A total of 70 papers were submitted to CoNLL’s main session, of which we were able to accept only 19,
making this the most competitive CoNLL meeting to date. We are particularly grateful to our program
committee for their work reviewing this large number of papers on a tight schedule.

In keeping with the unique tradition of CoNLL, we also have a shared task session this year, on semantic
role labeling. This year’s task included use of full syntactic parses, a step beyond the chunk-level
information used in 2004. The shared task was coordinated by Xavier Carreras and Lluı́s Màrquez.
Common training and test data were made available to all participants, who had to build their learning
system and test it on this task. The shared task also achieved a record number of submissions this year,
and these proceedings include system descriptions from each of the 19 participants.

In addition to the program committee and shared task organizers, we are very indebted to the 2005 ACL
conference organizers, in particular Dragomir Radev, Mirella Lapata, Jason Eisner, and Philipp Koehn,
for their help with local arrangements and the publication of the proceedings.

We hope you enjoy this year’s meeting!

Ido Dagan and Dan Gildea
May 2005

iii

Organizers:

Ido Dagan, Bar-Ilan University (Israel)
Daniel Gildea, University of Rochester (USA)

Shared Task Organizers:

Xavier Carreras and Lluı́s Màrquez
Technical University of Catalonia (Spain)

Program Committee:

Steven Abney, University of Michigan (USA)
Eneko Agirre, University of the Basque Country (Spain)
Regina Barzilay, Massachusetts Institute of Technology (USA)
Claire Cardie, Cornell University (USA)
John Carroll, University of Sussex (UK)
Eugene Charniak, Brown University (USA)
James Cussens, University of York (UK)
Walter Daelemans, University of Antwerp (Belgium)
Radu Florian, IBM (USA)
Dayne Freitag, Fair Isaac (USA)
Rebecca Hwa, University of Pittsburgh (USA)
Hang Li, Microsoft (China)
Dekang Lin, University of Alberta (Canada)
Diane Litman, University of Pittsburgh (USA)
Yuji Matsumoto, Nara Institute of Science and Technology (Japan)
Diana McCarthy, University of Sussex (UK)
Rada Mihalcea, University of North Texas (USA)
John Nerbonne, University of Groningen (Netherlands)
Hwee-Tou Ng, National University of Singapore (Singapore)
Grace Ngai, The Hong Kong Polytechnic University (Hong Kong)
Miles Osborne, University of Edinburgh (UK)
Patrick Pantel, Information Sciences Institute (USA)
David Powers, Flinders University (Australia)
Dragomir Radev, University of Michigan (USA)
Ellen Riloff, University of Utah (USA)
Dan Roth, University of Illinois at Urbana-Champaign (USA)
Anoop Sarkar, Simon Fraser University (Canada)
Suzanne Stevenson, University of Toronto (Canada)
Keh Yih Su, Behavior Design Corporation (ROC)
Erik Tjong Kim Sang, University of Antwerp (Belgium)
Antal van den Bosch, Tilburg University (Netherlands)
Janyce Wiebe, University of Pittsburgh (USA)

v

Additional Reviewers:

Iñaki Alegria, Toine Bogers, Sander Canisius, Yunbo Cao, Hal Daume III, Guy De Pauw,
Alex Fraser, V́eronique Hoste, David Martinez, Art Munson, Vivi Năstase, Liang Zhou

Invited Speakers:

Mark Johnson, Brown University
Mark Steedman, University of Edinburgh

vi

Table of Contents

Main Session

Effective use of WordNet Semantics via Kernel-Based Learning
Roberto Basili, Marco Cammisa and Alessandro Moschitti .1

A Statistical Semantic Parser that Integrates Syntax and Semantics
Ruifang Ge and Raymond Mooney .9

Search Engine Statistics Beyond the n-gram: Application to Noun Compound Bracketing
Preslav Nakov and Marti Hearst .17

New Experiments in Distributional Representations of Synonymy
Dayne Freitag, Matthias Blume, John Byrnes, Edmond Chow, Sadik Kapadia,
Richard Rohwer and Zhiqiang Wang .25

Word Independent Context Pair Classification Model for Word Sense Disambiguation
Cheng Niu, Wei Li, Rohini K. Srihari and Huifeng Li .33

Computing Word Similarity and Identifying Cognates with Pair Hidden Markov Models
Wesley Mackay and Grzegorz Kondrak .40

A Bayesian Mixture Model for Term Re-occurrence and Burstiness
Avik Sarkar, Paul H. Garthwaite and Anne De Roeck. .48

Domain Kernels for Text Categorization
Alfio Gliozzo and Carlo Strapparava. .56

Discriminative Training of Clustering Functions: Theory and Experiments with Entity Identification
Xin Li and Dan Roth .64

Using Uneven Margins SVM and Perceptron for Information Extraction
Yaoyong Li, Kalina Bontcheva and Hamish Cunningham .72

Improving Sequence Segmentation Learning by Predicting Trigrams
Antal van den Bosch and Walter Daelemans .80

An Expectation Maximization Approach to Pronoun Resolution
Colin Cherry and Shane Bergsma .88

Probabilistic Head-Driven Parsing for Discourse Structure
Jason Baldridge and Alex Lascarides .96

Intentional Context in Situated Natural Language Learning
Michael Fleischman and Deb Roy .104

Representational Bias in Unsupervised Learning of Syllable Structure
Sharon Goldwater and Mark Johnson .112

vii

An Analogical Learner for Morphological Analysis
Nicolas Stroppa and François Yvon .120

Morphology Induction from Term Clusters
Dayne Freitag .128

Beyond the Pipeline: Discrete Optimization in NLP
Tomasz Marciniak and Michael Strube .136

Investigating the Effects of Selective Sampling on the Annotation Task
Ben Hachey, Beatrice Alex and Markus Becker .144

Shared Task

Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling
Xavier Carreras and Lluı́s Màrquez. .152

Inferring Semantic Roles Using Sub-categorization Frames and Maximum Entropy Model
Akshar Bharati, Sriram Venkatapathy and Prashanth Reddy .165

Semantic Role Labelling with Tree Conditional Random Fields
Trevor Cohn and Philip Blunsom. .169

A Joint Model for Semantic Role Labeling
Aria Haghighi, Kristina Toutanova and Christopher Manning .173

Sparse Bayesian Classification of Predicate Arguments
Richard Johansson and Pierre Nugues .177

Generalized Inference with Multiple Semantic Role Labeling Systems
Peter Koomen, Vasin Punyakanok, Dan Roth and Wen-tau Yih .181

Semantic Role Labeling via Consensus in Pattern-Matching
Chi-San Lin and Tony C. Smith .185

Semantic Role Labeling System Using Maximum Entropy Classifier
Ting Liu, Wanxiang Che, Sheng Li, Yuxuan Hu and Huaijun Liu .189

Semantic Role Labeling as Sequential Tagging
Lluı́s Màrquez, Pere Comas, Jesús Giḿenez and Neus Català .193

Semantic Role Labeling Using Support Vector Machines
Tomohiro Mitsumori, Masaki Murata, Yasushi Fukuda, Kouichi Doi and Hirohumi Doi197

Hierarchical Semantic Role Labeling
Alessandro Moschitti, Ana-Maria Giuglea, Bonaventura Coppola and Roberto Basili201

Semantic Role Labeling Using libSVM
Necati Ercan Ozgencil and Nancy McCracken .205

viii

Maximum Entropy based Semantic Role Labeling
Kyung-Mi Park and Hae-Chang Rim .209

Semantic Role Labeling Using Lexical Statistical Information
Simone Paolo Ponzetto and Michael Strube .213

Semantic Role Chunking Combining Complementary Syntactic Views
Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H. Martin and Daniel Jurafsky217

Semantic Role Labeling Using Complete Syntactic Analysis
Mihai Surdeanu and Jordi Turmo .221

Joint Parsing and Semantic Role Labeling
Charles Sutton and Andrew McCallum .225

Applying Spelling Error Correction Techniques for Improving Semantic Role Labelling
Erik Tjong Kim Sang, Sander Canisius, Antal van den Bosch and Toine Bogers229

Exploiting Full Parsing Information to Label Semantic Roles Using an Ensemble of ME and SVM via
Integer Linear Programming

Tzong-Han Tsai, Chia-Wei Wu, Yu-Chun Lin and Wen-Lian Hsu. .233

The Integration of Syntactic Parsing and Semantic Role Labeling
Szu-ting Yi and Martha Palmer .237

ix

Conference Program

Wednesday, June 29, 2005

8:45 Welcome

Session 1: Syntax and Semantics

8:50 Effective use of WordNet Semantics via Kernel-Based Learning
Roberto Basili, Marco Cammisa and Alessandro Moschitti

9:15 A Statistical Semantic Parser that Integrates Syntax and Semantics
Ruifang Ge and Raymond Mooney

9:40 Search Engine Statistics Beyond the n-gram: Application to Noun Compound
Bracketing
Preslav Nakov and Marti Hearst

10:05 New Experiments in Distributional Representations of Synonymy
Dayne Freitag, Matthias Blume, John Byrnes, Edmond Chow, Sadik Kapadia,
Richard Rohwer and Zhiqiang Wang

10:30 coffee break

Session 2: Semantics and Text Classification

11:00 Word Independent Context Pair Classification Model for Word Sense Disambigua-
tion
Cheng Niu, Wei Li, Rohini K. Srihari and Huifeng Li

11:25 Computing Word Similarity and Identifying Cognates with Pair Hidden Markov
Models
Wesley Mackay and Grzegorz Kondrak

11:50 A Bayesian Mixture Model for Term Re-occurrence and Burstiness
Avik Sarkar, Paul H. Garthwaite and Anne De Roeck

12:15 Domain Kernels for Text Categorization
Alfio Gliozzo and Carlo Strapparava

12:40 lunch

xi

Wednesday, June 29, 2005 (continued)

Session 3: Information Extraction and Learning Methods

14:00 Discriminative Training of Clustering Functions: Theory and Experiments with Entity
Identification
Xin Li and Dan Roth

14:25 Using Uneven Margins SVM and Perceptron for Information Extraction
Yaoyong Li, Kalina Bontcheva and Hamish Cunningham

14:50 Improving Sequence Segmentation Learning by Predicting Trigrams
Antal van den Bosch and Walter Daelemans

15:15 SIGNLL business meeting

15:40 coffee break

16:10 Invited Speaker: Mark Johnson

Session 4: Discourse and Anaphora

17:10 An Expectation Maximization Approach to Pronoun Resolution
Colin Cherry and Shane Bergsma

17:35 Probabilistic Head-Driven Parsing for Discourse Structure
Jason Baldridge and Alex Lascarides

xii

Thursday June 30, 2005

Session 5: Joint Session with Workshop on Psychocomputational Models of Human
Language Acquisition

9:00 Invited Speaker: Mark Steedman

9:50 Steps Toward Deep Lexical Acquisition
Sourabh Niyogi (Workshop on Psychocomputational Models)

10:15 Intentional Context in Situated Natural Language Learning
Michael Fleischman and Deb Roy

10:40 coffee break

Session 6: Morphology

11:10 Representational Bias in Unsupervised Learning of Syllable Structure
Sharon Goldwater and Mark Johnson

11:35 An Analogical Learner for Morphological Analysis
Nicolas Stroppa and François Yvon

12:00 Morphology Induction from Term Clusters
Dayne Freitag

12:25 lunch

Session 7: Learning Methods and Architectures

14:00 Beyond the Pipeline: Discrete Optimization in NLP
Tomasz Marciniak and Michael Strube

14:25 Investigating the Effects of Selective Sampling on the Annotation Task
Ben Hachey, Beatrice Alex and Markus Becker

14:50 Shared Task: Introduction and System Descriptions

15:30 coffee break

16:00 Shared Task: System Descriptions
17:00 Shared Task: Discussion
18:00 Closing

xiii

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 1–8, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Effective use of WordNet semantics via kernel-based learning

Roberto Basili and Marco Cammisa and Alessandro Moschitti

Department of Computer Science
University of Rome ”Tor Vergata”, Rome, Italy
{basili,cammisa,moschitti }@info.uniroma2.it

Abstract

Research on document similarity has
shown that complex representations are
not more accurate than the simplebag-of-
words. Term clustering, e.g. using latent
semantic indexing, word co-occurrences
or synonym relations using a word ontol-
ogy have been shown not very effective.
In particular, when to extend the similar-
ity function external prior knowledge is
used, e.g. WordNet, the retrieval system
decreases its performance. The critical is-
sues here are methods and conditions to
integrate such knowledge.

In this paper we propose kernel func-
tions to add prior knowledge to learn-
ing algorithms for document classifica-
tion. Such kernels use a term similarity
measure based on the WordNet hierarchy.
The kernel trick is used to implement such
space in a balanced and statistically co-
herent way. Cross-validation results show
the benefit of the approach for the Support
Vector Machines when few training data is
available.

1 Introduction
The large literature on term clustering, term sim-
ilarity and weighting schemes shows that docu-
ment similarity is a central topic in Information Re-
trieval (IR). The research efforts have mostly been
directed in enriching the document representation
by using clustering (term generalization) or adding
compounds (term specifications). These studies are
based on the assumption that the similarity between
two documents can be expressed as the similarity be-
tween pairs of matching terms. Following this idea,

term clustering methods based on corpus term dis-
tributions or on external prior knowledge (e.g. pro-
vided by WordNet) were used to improve the basic
term matching.

An example of statistical clustering is given in
(Bekkerman et al., 2001). A feature selection tech-
nique, which clusters similar features/words, called
the Information Bottleneck (IB), was applied to Text
Categorization (TC). Such cluster based representa-
tion outperformed the simplebag-of-wordson only
one out of the three experimented collections. The
effective use of external prior knowledge is even
more difficult since no attempt has ever been suc-
cessful to improve document retrieval or text classi-
fication accuracy, (e.g. see (Smeaton, 1999; Sussna,
1993; Voorhees, 1993; Voorhees, 1994; Moschitti
and Basili, 2004)).

The main problem of term cluster based represen-
tations seems the unclear nature of the relationship
between the word and the cluster information lev-
els. Even if (semantic) clusters tend to improve the
system recall, simple terms are, on a large scale,
more accurate (e.g. (Moschitti and Basili, 2004)).
To overcome this problem, hybrid spaces containing
terms and clusters were experimented (e.g. (Scott
and Matwin, 1999)) but the results, again, showed
that the mixed statistical distributions of clusters and
terms impact either marginally or even negatively on
the overall accuracy.

In (Voorhees, 1993; Smeaton, 1999), clusters of
synonymous terms as defined in WordNet (WN)
(Fellbaum, 1998) were used for document retrieval.
The results showed that the misleading information
due to the wrong choice of the local term senses
causes the overall accuracy to decrease. Word sense
disambiguation (WSD) was thus applied beforehand
by indexing the documents by means of disam-
biguated senses, i.e. synset codes (Smeaton, 1999;

1

Sussna, 1993; Voorhees, 1993; Voorhees, 1994;
Moschitti and Basili, 2004). However, even the
state-of-the-art methods for WSD did not improve
the accuracy because of the inherent noise intro-
duced by the disambiguation mistakes. The above
studies suggest that term clusters decrease the pre-
cision of the system as they force weakly related or
unrelated (in case of disambiguation errors) terms to
give a contribution in the similarity function. The
successful introduction of prior external knowledge
relies on the solution of the above problem.

In this paper, a model to introduce the semantic
lexical knowledge contained in the WN hierarchy
in a supervised text classification task has been pro-
posed. Intuitively, the main idea is that the docu-
mentsd are represented through the set of all pairs
in the vocabulary< t, t′ >∈ V × V originating by
the termst ∈ d and all the wordst′ ∈ V , e.g. the
WN nouns. When the similarity between two docu-
ments is evaluated, their matching pairs are used to
account for the final score. The weight given to each
term pair is proportional to the similarity that the two
terms have in WN. Thus, the termt of the first docu-
ment contributes to the document similarity accord-
ing to its relatedness with any of the terms of the
second document and the prior external knowledge,
provided by WN, quantifies the single term to term
relatedness. Such approach has two advantages: (a)
we obtain a well defined space which supports the
similarity between terms of different surface forms
based on external knowledge and (b) we avoid to
explicitly define term or sense clusters which in-
evitably introduce noise.

The class of spaces which embeds the above pair
information may be composed byO(|V |2) dimen-
sions. If we consider only the WN nouns (about
105), our space contains about1010 dimensions
which is not manageable by most of the learning al-
gorithms. Kernel methods, can solve this problem as
they allow us to use an implicit space representation
in the learning algorithms. Among them Support
Vector Machines (SVMs) (Vapnik, 1995) are kernel
based learners which achieve high accuracy in pres-
ence of many irrelevant features. This is another im-
portant property as selection of the informative pairs
is left to the SVM learning.

Moreover, as we believe that the prior knowledge
in TC is not so useful when there is a sufficient

amount of training documents, we experimented our
model in poor training conditions (e.g. less equal
than 20 documents for each category). The improve-
ments in the accuracy, observed on the classification
of the well known Reuters and 20 NewsGroups cor-
pora, show that our document similarity model is
very promising for general IR tasks: unlike previous
attempts, it makes sense of the adoption of semantic
external resources (i.e. WN) in IR.

Section 2 introduces the WordNet-based term
similarity. Section 3 defines the new document simi-
larity measure, the kernel function and its use within
SVMs. Section 4 presents the comparative results
between the traditional linear and the WN-based
kernels within SVMs. In Section 5 comparative dis-
cussion against the related IR literature is carried
out. Finally Section 6 derives the conclusions.

2 Term similarity based on general
knowledge

In IR, any similarity metric in the vector space mod-
els is driven by lexical matching. When small train-
ing material is available, few words can be effec-
tively used and the resulting document similarity
metrics may be inaccurate. Semantic generaliza-
tions overcome data sparseness problems as con-
tributions from different but semantically similar
words are made available.

Methods for the induction of semantically in-
spired word clusters have been widely used in lan-
guage modeling and lexical acquisition tasks (e.g.
(Clark and Weir, 2002)). The resource employed
in most works is WordNet (Fellbaum, 1998) which
contains three subhierarchies: for nouns, verbs and
adjectives. Each hierarchy represents lexicalized
concepts (or senses) organized according to an ”is-
a-kind-of” relation. A concepts is described by
a set of wordssyn(s) called synset. The words
w ∈ syn(s) are synonyms according to the sense
s.

For example, the wordsline, argumentation, logi-
cal argumentandline of reasoningdescribe a synset
which expresses the methodical process of logical
reasoning (e.g. ”I can’t follow your line of reason-
ing”). Each word/term may be lexically related to
more than one synset depending on its senses. The
word line is also a member of the synsetline, divid-
ing line, demarcationandcontrast, as aline denotes

2

also a conceptual separation (e.g. ”there is a nar-
row line between sanity and insanity”). The Wordnet
noun hierarchy is a direct acyclic graph1 in which
the edges establish thedirect isa relations between
two synsets.

2.1 The Conceptual Density

The automatic use of WordNet for NLP and IR tasks
has proved to be very complex. First, how the topo-
logical distance among senses is related to their cor-
responding conceptual distance is unclear. The per-
vasive lexical ambiguity is also problematic as it im-
pacts on the measure of conceptual distances be-
tween word pairs. Second, the approximation of a
set of concepts by means of their generalization in
the hierarchy implies a conceptual loss that affects
the target IR (or NLP) tasks. For example,black
and white are colors but are alsochess piecesand
this impacts on the similarity score that should be
used in IR applications. Methods to solve the above
problems attempt to map a priori the terms to spe-
cific generalizations levels, i.e. tocuts in the hier-
archy (e.g. (Li and Abe, 1998; Resnik, 1997)), and
use corpus statistics for weighting the resulting map-
pings. For several tasks (e.g. in TC) this is unsatis-
factory: different contexts of the same corpus (e.g.
documents) may require different generalizations of
the same word as they independently impact on the
document similarity.

On the contrary, theConceptual Density(CD)
(Agirre and Rigau, 1996) is a flexible semantic simi-
larity which depends on the generalizations of word
senses not referring to any fixed level of the hier-
archy. TheCD defines a metrics according to the
topological structure of WordNet and can be seem-
ingly applied to two or more words. The measure
formalized hereafter adapt to word pairs a more gen-
eral definition given in (Basili et al., 2004).

We denote bȳs the set of nodes of the hierarchy
rooted in the synsets, i.e. {c ∈ S|c isa s}, whereS
is the set of WN synsets. By definition∀s ∈ S, s ∈
s̄. CD makes a guess about the proximity of the
senses,s1 ands2, of two wordsu1 andu2, accord-
ing to the information expressed by the minimal sub-
hierarchy,̄s, that includes them. LetSi be the set of

1As only the 1% of its nodes own more than one parent in
the graph, most of the techniques assume the hierarchy to be a
tree, and treat the few exception heuristically.

generalizations for at least one sensesi of the word
ui, i.e. Si = {s ∈ S|si ∈ s̄, ui ∈ syn(si)}. The
CD of u1 andu2 is:

CD(u1, u2) =





0 iff S1 ∩ S2 = ∅
maxs∈S1∩S2

∑h
i=0(µ(s̄))i

|s̄|
otherwise

(1)

where:
• S1∩S2 is the set of WN shared generalizations

(i.e. the common hypernyms) ofu1 andu2

• µ(s̄) is the average number of children per node
(i.e. the branching factor) in the sub-hierarchy
s̄. µ(s̄) depends on WordNet and in some cases
its value can approach 1.

• h is the depth of theideal, i.e. maximally
dense,tree with enough leaves to cover the
two senses,s1 ands2, according to an average
branching factor ofµ(s̄). This value is actually
estimated by:

h =
{ blogµ(s̄)2c iff µ(s̄) 6= 1

2 otherwise
(2)

Whenµ(s)=1, h ensures a tree with at least 2
nodes to covers1 ands2 (height = 2).

• |s̄| is the number of nodes in the sub-hierarchy
s̄. This value is statically measured on WN and
it is a negative bias for the higher level general-
izations (i.e. larger̄s).

CD models the semantic distance as the density
of the generalizationss ∈ S1 ∩ S2. Suchdensityis
the ratio between the number of nodes of theideal
tree and |s̄|. The ideal tree should (a) link the two
senses/nodess1 and s2 with the minimal number
of edges (isa-relations) and (b) maintain the same
branching factor (bf) observed in̄s. In other words,
this tree provides the minimal number of nodes (and
isa-relations) sufficient to connects1 ands2 accord-
ing to the topological structure of̄s. For example, if
s̄ has abf of 2 the ideal tree connects the two senses
with a single node (their father). If thebf is 1.5, to
replicate it, the ideal tree must contain 4 nodes, i.e.
the grandfather which has abf of 1 and the father
which hasbf of 2 for an average of 1.5. Whenbf is
1 the Eq. 1 degenerates to the inverse of the number
of nodes in the path betweens1 ands2, i.e. the sim-
ple proximity measure used in (Siolas and d’Alch
Buc, 2000).

3

It is worth noting that for each pairCD(u1, u2)
determines the similarity according tothe closest
lexical senses, s1, s2 ∈ s̄: the remaining senses ofu1

andu2 are irrelevant, with a resulting semantic dis-
ambiguation side effect.CD has been successfully
applied to semantic tagging ((Basili et al., 2004)).
As the WN hierarchies for other POS classes (i.e.
verb and adjectives) have topological properties dif-
ferent from the noun hyponimy network, their se-
mantics is not suitably captured by Eq. 1. In this
paper, Eq. 1 has thus been only applied to noun
pairs. As the high number of such pairs increases
the computational complexity of the target learn-
ing algorithm, efficient approaches are needed. The
next section describes how kernel methods can make
practical the use of the Conceptual Density in Text
Categorization.

3 A WordNet Kernel for document
similarity

Term similarities are used to design document simi-
larities which are the core functions of most TC al-
gorithms. The term similarity proposed in Eq. 1
is valid for all term pairs of a target vocabulary and
has two main advantages: (1) the relatedness of each
term occurring in the first document can be com-
puted againstall terms in the second document, i.e.
all different pairs of similar (not just identical) to-
kens can contribute and (2) if we use all term pair
contributions in the document similarity we obtain a
measure consistent with the term probability distri-
butions, i.e. the sum of all term contributions does
not penalize or emphasize arbitrarily any subset of
terms. The next section presents more formally the
above idea.

3.1 A semanticvector space

Given two documentsd1 andd2 ∈ D (the document-
set) we define their similarity as:

K(d1, d2) =
∑

w1∈d1,w2∈d2

(λ1λ2)× σ(w1, w2) (3)

whereλ1 andλ2 are the weights of the words (fea-
tures)w1 andw2 in the documentsd1 andd2, re-
spectively andσ is a term similarity function, e.g.
the conceptual density defined in Section 2. To
prove that Eq. 3 is a valid kernel is enough to
show that it is a specialization of the general defi-
nition of convolution kernels formalized in (Haus-

sler, 1999). Hereafter, we report such definition. Let
X,X1, .., Xm be separable metric spaces,x ∈ X
a structure and~x = x1, ..., xm its parts, where
xi ∈ Xi ∀i = 1, ..,m. Let R be a relation on
the setX×X1× ..×Xm such thatR(~x, x) is ”true”
if ~x are the parts of x. We indicate withR−1(x) the
set{~x : R(~x, x)}. Given two objectsx andy ∈ X
their similarityK(x, y) is defined as:

K(x, y) =
∑

~x∈R−1(x)

∑

~y∈R−1(y)

m∏

i=1

Ki(xi, yi) (4)

If X defines the document set (i.e.D = X),
andX1 the vocabulary of the target document corpus
(X1 = V), it follows that:x = d (a document),~x =
x1 = w ∈ V (a word which is a part of the document
d) andR−1(d) defines the set of words in the doc-
umentd. As

∏m
i=1 Ki(xi, yi) = K1(x1, y1), then

K1(x1, y1) = K(w1, w2) = (λ1λ2) × σ(w1, w2),
i.e. Eq. 3.

The above equation can be used in support vector
machines as illustrated by the next section.

3.2 Support Vector Machines and Kernel
methods

Given the vector space inRη and a set of positive
and negative points, SVMs classify vectors accord-
ing to a separating hyperplane,H(~x) = ~ω·~x+b = 0,
where~x and~ω ∈ Rη andb ∈ R are learned by apply-
ing theStructural Risk Minimization principle(Vap-
nik, 1995). From the kernel theory we have that:

H(~x) =
(∑

h=1..l

αh ~xh

)
·~x+b =

∑

h=1..l

αh~xh·~x+b =

∑

h=1..l

αhφ(dh) · φ(d) + b =
∑

h=1..l

αhK(dh, d) + b

(5)
where,d is a classifying document anddh are all the
l training instances, projected in~x and~xh respec-
tively. The productK(d, dh) =<φ(d) · φ(dh)> is
theSemantic WN-based Kernel(SK) function asso-
ciated with the mappingφ.

Eq. 5 shows that to evaluate the separating hy-
perplane inRη we do not need to evaluate the entire
vector ~xh or ~x. Actually, we do not know even the
mappingφ and the number of dimensions,η. As
it is sufficient to computeK(d, dh), we can carry
out the learning with Eq. 3 in theRn, avoiding to

4

use the explicit representation in theRη space. The
real advantage is that we can consider only the word
pairs associated with non-zero weight, i.e. we can
use a sparse vector computation. Additionally, to
have a uniform score across different document size,
the kernel function can be normalized as follows:

SK(d1,d2)√
SK(d1,d1)·SK(d2,d2)

4 Experiments

The use of WordNet (WN) in the term similarity
function introduces a prior knowledge whose impact
on the Semantic Kernel (SK) should be experimen-
tally assessed. The main goal is to compare the tradi-
tional Vector Space Model kernel againstSK, both
within the Support Vector learning algorithm.

The high complexity of theSK limits the size
of the experiments that we can carry out in a fea-
sible time. Moreover, we are not interested to large
collections of training documents as in these train-
ing conditions the simplebag-of-wordsmodels are
in general very effective, i.e. they seems to model
well the document similarity needed by the learning
algorithms. Thus, we carried out the experiments
on small subsets of the 20NewsGroups2 (20NG)
and theReuters-215783 corpora to simulate critical
learning conditions.

4.1 Experimental set-up

For the experiments, we used the SVM-
light software (Joachims, 1999) (available at
svmlight.joachims.org) with the default linear
kernel on the token space (adopted as the baseline
evaluations). For theSK evaluation we imple-
mented the Eq. 3 withσ(·, ·) = CD(·, ·) (Eq. 1)
inside SVM-light. As Eq. 1 is only defined for
nouns, a part of speech (POS) tagger has been previ-
ously applied. However, also verbs, adjectives and
numerical features were included in the pair space.
For these tokens aCD = 0 is assigned to pairs
made by different strings. As the POS-tagger could
introduce errors, in a second experiment, any token
with a successful look-up in the WN noun hierarchy
was considered in the kernel. This approximation
has the benefit to retrieve useful information even

2Available at www.ai.mit.edu/people/jrennie/
20Newsgroups/ .

3The Apt́e split available at kdd.ics.uci.edu/
databases/reuters21578/reuters21578.html .

for verbs and capture the similarity between verbs
and some nouns, e.g.to drive (via the noundrive)
has a common synset withparkway.

For the evaluations, we applied a careful SVM
parameterization: a preliminary investigation sug-
gested that the trade-off (between the training-set er-
ror and margin, i.e.c option in SVM-light) parame-
ter optimizes theF1 measure for values in the range
[0.02,0.32]4. We noted also that the cost-factor pa-
rameter (i.e.j option) is not critical, i.e. a value of
10 always optimizes the accuracy. The feature se-
lection techniques and the weighting schemes were
not applied in our experiments as they cannot be ac-
curately estimated from the small available training
data.

The classification performance was evaluated by
means of theF1 measure5 for the single category and
the MicroAverage for the final classifier pool (Yang,
1999). Given the high computational complexity of
SK we selected 8 categories from the 20NG6 and 8
from the Reuters corpus7

To derive statistically significant results with few
training documents, for each corpus, we randomly
selected 10 different samples from the 8 categories.
We trained the classifiers on one sample, parameter-
ized on a second sample and derived the measures
on the other 8. By rotating the training sample we
obtained 80 different measures for each model. The
size of the samples ranges from 24 to 160 documents
depending on the target experiment.

4.2 Cross validation results

TheSK (Eq. 3) was compared with the linear kernel
which obtained the bestF1 measure in (Joachims,
1999). Table 1 reports the first comparative results
for 8 categories of 20NG on 40 training documents.
The results are expressed as theMeanand theStd.
Dev.over 80 runs. TheF1 are reported in Column 2
for the linear kernel, i.e.bow, in Column 3 forSK
without applying POS information and in Column 4

4We used all the values from 0.02 to 0.32 with step 0.02.
5F1 assigns equal importance to PrecisionP and RecallR,

i.e. F1 = 2P ·R
P+R

.
6We selected the 8 most different categories (in terms of

their content) i.e.Atheism, Computer Graphics, Misc Forsale,
Autos, Sport Baseball, Medicine, Talk ReligionsandTalk Poli-
tics.

7We selected the 8 largest categories, i.e.Acquisition, Earn,
Crude, Grain, Interest, Money-fx, TradeandWheat.

5

for SK with the use of POS information (SK-POS).
The last row shows the MicroAverage performance
for the above three models on all 8 categories. We
note thatSK improvesbow of 3%, i.e. 34.3% vs.
31.5% and that the POS information reduces the im-
provement ofSK, i.e. 33.5% vs. 34.3%.

To verify the hypothesis that WN information is
useful in low training data conditions we repeated
the evaluation over the 8 categories of Reuters with
samples of 24 and 160 documents, respectively. The
results reported in Table 2 shows that (1) againSK
improvesbow (41.7% - 37.2% = 4.5%) and (2) as
the number of documents increases the improvement
decreases (77.9% - 75.9% = 2%). It is worth noting
that the standard deviations tend to assume high val-
ues. In general, the use of 10 disjoint training/testing
samples produces a higher variability than then-
fold cross validation which insists on the same docu-
ment set. However, this does not affect thet-student
confidence test over the differences between the Mi-
croAverage ofSK andbow since the former has a
higher accuracy at 99% confidence level.

The above findings confirm thatSK outperforms
the bag-of-wordskernel in critical learning condi-
tions as the semantic contribution of theSK recov-
ers useful information. To complete this study we
carried out experiments with samples of different
size, i.e. 3, 5, 10, 15 and 20 documents for each
category. Figures 1 and 2 show the learning curves
for 20NG and Reuters corpora. Each point refers to
the average on 80 samples.

As expected the improvement provided bySK
decreases when more training data is available.
However, the improvements are not negligible yet.
The SK model (without POS information) pre-
serves about 2-3% of improvement with 160 training
documents. The matching allowed between noun-
verb pairs still captures semantic information which
is useful for topic detection. In particular, during
the similarity estimation, each word activates60.05
pairs on average. This is particularly useful to in-
crease the amount of information available to the
SVMs.

Finally, we carried out some experiments with
160 Reuters documents by discarding the string
matching fromSK. Only words having different
surface forms were allowed to give contributions to
the Eq. 3.

Category bow SK SK-POS
Atheism 29.5±19.8 32.0±16.3 25.2±17.2
Comp.Graph 39.2±20.7 39.3±20.8 29.3±21.8
Misc.Forsale 61.3±17.7 51.3±18.7 49.5±20.4
Autos 26.2±22.7 26.0±20.6 33.5±26.8
Sport.Baseb. 32.7±20.1 36.9±22.5 41.8±19.2
Sci.Med 26.1±17.2 18.5±17.4 16.6±17.2
Talk.Relig. 23.5±11.6 28.4±19.0 27.6±17.0
Talk.Polit. 28.3±17.5 30.7±15.5 30.3±14.3
MicroAvg. F1 31.5±4.8 34.3±5.8 33.5±6.4

Table 1:Performance of the linear and Semantic Kernel with

40 training documents over 8 categories of 20NewsGroups col-

lection.

Category 24 docs 160 docs
bow SK bow SK

Acq. 55.3±18.1 50.8±18.1 86.7±4.6 84.2±4.3
Crude 3.4±5.6 3.5±5.7 64.0±20.6 62.0±16.7
Earn 64.0±10.0 64.7±10.3 91.3±5.5 90.4±5.1
Grain 45.0±33.4 44.4±29.6 69.9±16.3 73.7±14.8
Interest 23.9±29.9 24.9±28.6 67.2±12.9 59.8±12.6
Money-fx 36.1±34.3 39.2±29.5 69.1±11.9 67.4±13.3
Trade 9.8±21.2 10.3±17.9 57.1±23.8 60.1±15.4
Wheat 8.6±19.7 13.3±26.3 23.9±24.8 31.2±23.0
Mic.Avg. 37.2±5.9 41.7±6.0 75.9±11.0 77.9±5.7

Table 2:Performance of the linear and Semantic Kernel with

40 and 160 training documents over 8 categories of the Reuters

corpus.

30.0

33.0

36.0

39.0

42.0

45.0

48.0

51.0

54.0

40 60 80 100 120 140 160

Training Documents

M
ic

ro
-A

ve
ra

g
e

F
1

bow

SK

SK-POS

Figure 1: MicroAverageF1 of SVMs usingbow, SK and
SK-POS kernels over the 8 categories of 20NewsGroups.

The important outcome is thatSK converges to a
MicroAverageF1 measure of 56.4% (compare with
Table 2). This shows that the word similarity pro-
vided by WN is still consistent and, although in the
worst case, slightly effective for TC: the evidence
is that a suitable balancing between lexical ambigu-
ity and topical relatedness is captured by the SVM
learning.

6

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

20 40 60 80 100 120 140 160

Training Documents

M
ic

ro
-A

ve
ra

g
e

F
1

bow
SK

Figure 2:MicroAverageF1 of SVMs usingbow andSK over
the 8 categories of the Reuters corpus.

5 Related Work

The IR studies in this area focus on the term similar-
ity models to embed statistical and external knowl-
edge in document similarity.

In (Kontostathis and Pottenger, 2002) aLatent Se-
mantic Indexinganalysis was used for term cluster-
ing. Such approach assumes that valuesxij in the
transformed term-term matrix represents the simi-
larity (> 0) and anti-similarity between termsi and
j. By extension, a negative value represents an anti-
similarity betweeni andj enabling both positive and
negative clusters of terms. Evaluation of query ex-
pansion techniques showed that positive clusters can
improve Recall of about 18% for theCISIcollection,
2.9% for MED and 3.4% forCRAN. Furthermore,
the negative clusters, when used to prune the result
set, improve the precision.

The use of external semantic knowledge seems
to be more problematic in IR. In (Smeaton, 1999),
the impact of semantic ambiguity on IR is stud-
ied. A WN-based semantic similarity function be-
tween noun pairs is used to improve indexing and
document-query matching. However, the WSD al-
gorithm had a performance ranging between 60-
70%, and this made the overall semantic similarity
not effective.

Other studies using semantic information for im-
proving IR were carried out in (Sussna, 1993) and
(Voorhees, 1993; Voorhees, 1994). Word seman-
tic information was here used for text indexing and
query expansion, respectively. In (Voorhees, 1994)
it is shown that semantic information derived di-
rectly from WN without a priori WSD produces
poor results.

The latter methods are even more problematic in
TC (Moschitti and Basili, 2004). Word senses tend
to systematically correlate with the positive exam-
ples of a category. Different categories are better
characterized by different words rather than differ-
ent senses. Patterns of lexical co-occurrences in the
training data seem to suffice for automatic disam-
biguation. (Scott and Matwin, 1999) use WN senses
to replace simple words without word sense disam-
biguation and small improvements are derived only
for a small corpus. The scale and assessment pro-
vided in (Moschitti and Basili, 2004) (3 corpora us-
ing cross-validation techniques) showed that even
the accurate disambiguation of WN senses (about
80% accuracy on nouns) did not improve TC.

In (Siolas and d’Alch Buc, 2000) was proposed
an approach similar to the one presented in this ar-
ticle. A term proximity function is used to design
a kernel able to semantically smooth the similarity
between two document terms. Such semantic ker-
nel was designed as a combination of the Radial Ba-
sis Function (RBF) kernel with the term proximity
matrix. Entries in this matrix are inversely propor-
tional to the length of the WN hierarchy path link-
ing the two terms. The performance, measured over
the 20NewsGroups corpus, showed an improvement
of 2% over thebag-of-words. Three main differ-
ences exist with respect to our approach. First, the
term proximity does not fully capture the WN topo-
logical information. Equidistant terms receive the
same similarity irrespectively from their generaliza-
tion level. For example,Skyand Location (direct
hyponyms ofEntity) receive a similarity score equal
to knife andgun (hyponyms ofweapon). More ac-
curate measures have been widely discussed in lit-
erature, e.g. (Resnik, 1997). Second, the kernel-
basedCD similarity is an elegant combination of
lexicalized and semantic information. In (Siolas and
d’Alch Buc, 2000) the combination of weighting
schemes, the RBF kernel and the proximitry matrix
has a much less clear interpretation. Finally, (Siolas
and d’Alch Buc, 2000) selected only 200 features
via Mutual Information statistics. In this way rare
or non statistically significant terms are neglected
while being source of often relevant contributions in
theSK space modeled over WN.

Other important work on semantic kernel for re-
trieval has been developed in (Cristianini et al.,

7

2002; Kandola et al., 2002). Two methods for in-
ferring semantic similarity from a corpus were pro-
posed. In the first a system of equations were de-
rived from the dual relation between word-similarity
based on document-similarity and viceversa. The
equilibrium point was used to derive the semantic
similarity measure. The second method models se-
mantic relations by means of a diffusion process on
a graph defined by lexicon and co-occurrence in-
formation. The major difference with our approach
is the use of a different source of prior knowledge.
Similar techniques were also applied in (Hofmann,
2000) to derive a Fisher kernel based on a latent class
decomposition of the term-document matrix.

6 Conclusions

The introduction of semantic prior knowledge in
IR has always been an interesting subject as the
examined literature suggests. In this paper, we
used the conceptual density function on the Word-
Net (WN) hierarchy to define a document similar-
ity metric. Accordingly, we defined a semantic
kernel to train Support Vector Machine classifiers.
Cross-validation experiments over 8 categories of
20NewsGroups and Reuters over multiple samples
have shown that in poor training data conditions, the
WN prior knowledge can be effectively used to im-
prove (up to 4.5 absolute percent points, i.e. 10%)
the TC accuracy.

These promising results enable a number of future
researches: (1) larger scale experiments with differ-
ent measures and semantic similarity models (e.g.
(Resnik, 1997)); (2) improvement of the overall ef-
ficiency by exploring feature selection methods over
theSK, and (3) the extension of the semantic sim-
ilarity by a general (i.e. non binary) application of
the conceptual density model.

References

E. Agirre and G. Rigau. 1996. Word sense disambiguation
using conceptual density. InProceedings of COLING’96,
Copenhagen, Danmark.

R. Basili, M. Cammisa, and F. M. Zanzotto. 2004. A similar-
ity measure for unsupervised semantic disambiguation. In
In Proceedings of Language Resources and Evaluation Con-
ference, Lisbon, Portugal.

Ron Bekkerman, Ran El-Yaniv, Naftali Tishby, and Yoad Win-
ter. 2001. On feature distributional clustering for text cat-
egorization. InProceedings of SIGIR’01, New Orleans,
Louisiana, US.

Stephen Clark and David Weir. 2002. Class-based probability
estimation using a semantic hierarchy.Comput. Linguist.,
28(2):187–206.

Nello Cristianini, John Shawe-Taylor, and Huma Lodhi. 2002.
Latent semantic kernels.J. Intell. Inf. Syst., 18(2-3):127–
152.

Christiane Fellbaum. 1998.WordNet: An Electronic Lexical
Database. MIT Press.

D. Haussler. 1999. Convolution kernels on discrete struc-
tures. Technical report ucs-crl-99-10, University of Califor-
nia Santa Cruz.

Thomas Hofmann. 2000. Learning probabilistic models of
the web. InResearch and Development in Information Re-
trieval.

T. Joachims. 1999. Making large-scale SVM learning practical.
In B. Scḧolkopf, C. Burges, and A. Smola, editors,Advances
in Kernel Methods - Support Vector Learning.

J. Kandola, J. Shawe-Taylor, and N. Cristianini. 2002. Learn-
ing semantic similarity. InNIPS’02) - MIT Press.

A. Kontostathis and W. Pottenger. 2002. Improving retrieval
performance with positive and negative equivalence classes
of terms.

Hang Li and Naoki Abe. 1998. Generalizing case frames using
a thesaurus and the mdl principle.Computational Linguis-
tics, 23(3).

Alessandro Moschitti and Roberto Basili. 2004. Complex
linguistic features for text classification: a comprehensive
study. InProceedings of ECIR’04, Sunderland, UK.

P. Resnik. 1997. Selectional preference and sense disambigua-
tion. In Proceedings of ACL Siglex Workshop on Tagging
Text with Lexical Semantics, Why, What and How?, Wash-
ington, 1997.

Sam Scott and Stan Matwin. 1999. Feature engineering for
text classification. InProceedings of ICML’99, Bled, SL.
Morgan Kaufmann Publishers, San Francisco, US.

Georges Siolas and Florence d’Alch Buc. 2000. Support vector
machines based on a semantic kernel for text categorization.
In Proceedings of IJCNN’00. IEEE Computer Society.

Alan F. Smeaton. 1999. Using NLP or NLP resources for in-
formation retrieval tasks. InNatural language information
retrieval, Kluwer Academic Publishers, Dordrecht, NL.

M. Sussna. 1993. Word sense disambiguation for free-text in-
dexing using a massive semantic network. InCKIM’93,.

V. Vapnik. 1995. The Nature of Statistical Learning Theory.
Springer.

Ellen M. Voorhees. 1993. Using wordnet to disambiguate word
senses for text retrieval. InProceedings SIGIR’93Pitts-
burgh, PA, USA.

Ellen M. Voorhees. 1994. Query expansion using
lexical-semantic relations. InProceedings of SIGIR’94,
ACM/Springer.

Y. Yang. 1999. An evaluation of statistical approaches to text
categorization.Information Retrieval Journal.

8

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 9–16, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A Statistical Semantic Parser that Integrates Syntax and Semantics

Ruifang Ge Raymond J. Mooney
Department of Computer Sciences

University of Texas, Austin
TX 78712, USAfgrf,mooneyg@cs.utexas.edu

Abstract

We introduce a learning semantic parser,
SCISSOR, that maps natural-language sen-
tences to a detailed, formal, meaning-
representation language. It first uses
an integrated statistical parser to pro-
duce a semantically augmented parse tree,
in which each non-terminal node has
both a syntactic and a semantic label.
A compositional-semantics procedure is
then used to map the augmented parse
tree into a final meaning representation.
We evaluate the system in two domains,
a natural-language database interface and
an interpreter for coaching instructions in
robotic soccer. We present experimental
results demonstrating that SCISSOR pro-
duces more accurate semantic representa-
tions than several previous approaches.

1 Introduction

Most recent work in learning for semantic parsing
has focused on “shallow” analysis such asseman-
tic role labeling(Gildea and Jurafsky, 2002). In this
paper, we address the more ambitious task of learn-
ing to map sentences to a complete formalmeaning-
representation language(MRL). We consider two
MRL’s that can be directly used to perform useful,
complex tasks. The first is a Prolog-based language
used in a previously-developed corpus of queries to
a database on U.S. geography (Zelle and Mooney,
1996). The second MRL is a coaching language for

robotic soccer developed for the RoboCup Coach
Competition, in which AI researchers compete to
provide effective instructions to a coachable team of
agents in a simulated soccer domain (et al., 2003).

We present an approach based on a statisti-
cal parser that generates asemantically augmented
parse tree(SAPT), in which each internal node in-
cludes both a syntactic and semantic label. We aug-
ment Collins’ head-driven model 2 (Collins, 1997)
to incorporate a semantic label on each internal
node. By integrating syntactic and semantic inter-
pretation into a single statistical model and finding
the globally most likely parse, an accurate combined
syntactic/semantic analysis can be obtained. Once a
SAPT is generated, an additional step is required to
translate it into a final formalmeaning representa-
tion (MR).

Our approach is implemented in a system called
SCISSOR (Semantic Composition that Integrates
Syntax and Semantics to get Optimal Representa-
tions). Training the system requires sentences an-
notated with both gold-standard SAPT’s and MR’s.
We present experimental results on corpora for both
geography-database querying and Robocup coach-
ing demonstrating that SCISSORproduces more ac-
curate semantic representations than several previ-
ous approaches based on symbolic learning (Tang
and Mooney, 2001; Kate et al., 2005).

2 Target MRL’s

We used two MRLs in our experiments: CLANG and
GEOQUERY. They capture the meaning of linguistic
utterances in their domain in a formal language.

9

2.1 CLANG: the RoboCup Coach Language

RoboCup (www.robocup.org) is an interna-
tional AI research initiative using robotic soccer
as its primary domain. In the Coach Competition,
teams of agents compete on a simulated soccer field
and receive advice from a team coach in a formal
language called CLANG. In CLANG, tactics and
behaviors are expressed in terms of if-then rules.
As described in (et al., 2003), its grammar consists
of 37 non-terminal symbols and 133 productions.
Below is a sample rule with its English gloss:

((bpos (penalty-area our))
(do (player-except our {4})

(pos (half our))))

“If the ball is in our penalty area, all our players
except player 4 should stay in our half.”

2.2 GEOQUERY: a DB Query Language

GEOQUERY is a logical query language for a small
database of U.S. geography containing about 800
facts. This domain was originally chosen to test
corpus-based semantic parsing due to the avail-
ability of a hand-built natural-language interface,
GEOBASE, supplied with Turbo Prolog 2.0 (Borland
International, 1988). The GEOQUERY language
consists of Prolog queries augmented with several
meta-predicates (Zelle and Mooney, 1996). Below
is a sample query with its English gloss:

answer(A,count(B,(city(B),loc(B,C),
const(C,countryid(usa))),A))

“How many cities are there in the US?”

3 Semantic Parsing Framework

This section describes our basic framework for se-
mantic parsing, which is based on a fairly stan-
dard approach to compositional semantics (Juraf-
sky and Martin, 2000). First, a statistical parser
is used to construct a SAPT that captures the se-
mantic interpretation of individual words and the
basic predicate-argument structure of the sentence.
Next, a recursive procedure is used to composition-
ally construct an MR for each node in the SAPT
from the semantic label of the node and the MR’s

has2

VP−bowner

player the ball

NN−player CD−unum NP−null

NN−null

VB−bowner

S−bowner

NP−player

DT−null

PRP$−team

our

Figure 1: An SAPT for a simple CLANG sentence.

Function:BUILD MR(N;K)
Input: The root nodeN of a SAPT;

predicate-argument knowledge,K, for the MRL.
Notation: XMR is the MR of nodeX.
Output: NMRCi := theith child node ofN; 1 � i � nCh = GETSEMANTICHEAD(N) // see Section 3ChMR = BUILD MR(Ch; K)
for each other childCi wherei 6= hCiMR = BUILD MR(Ci; K)

COMPOSEMR(ChMR , CiMR ; K) // see Section 3NMR = ChMR
Figure 2: Computing an MR from a SAPT.

of its children. Syntactic structure provides infor-
mation of how the parts should be composed. Am-
biguities arise in both syntactic structure and the se-
mantic interpretation of words and phrases. By in-
tegrating syntax and semantics in a single statistical
parser that produces an SAPT, we can use both se-
mantic information to resolve syntactic ambiguities
and syntactic information to resolve semantic ambi-
guities.

In a SAPT, each internal node in the parse tree
is annotated with a semantic label. Figure 1 shows
the SAPT for a simple sentence in the CLANG do-
main. The semantic labels which are shown after
dashes areconceptsin the domain. Sometype con-
ceptsdo not take arguments, liketeam and unum
(uniform number). Some concepts, which we refer
to aspredicates, take an ordered list of arguments,
like playerandbowner(ball owner). The predicate-
argument knowledge,K, specifies, for each predi-
cate, the semantic constraints on its arguments. Con-
straints are specified in terms of the concepts that
can fill each argument, such asplayer(team, unum)
andbowner(player). A special semantic labelnull
is used for nodes that do not correspond to any con-
cept in the domain.

Figure 2 shows the basic algorithm for build-
ing an MR from an SAPT. Figure 3 illustrates the

10

player the ball

N3−bowner(_)N7−player(our,2)

N2−null

 null null

N4−player(_,_) N5−team

our

N6−unum

2

N1−bowner(_)

has

N8−bowner(player(our,2))

Figure 3: MR’s constructed for each SAPT Node.

construction of the MR for the SAPT in Figure 1.
Nodes are numbered in the order in which the con-
struction of their MR’s are completed. The first
step, GETSEMANTICHEAD, determines which of a
node’s children is itssemantic headbased on hav-
ing a matching semantic label. In the example, node
N3 is determined to be the semantic head of the
sentence, since its semantic label,bowner, matches
N8’s semantic label. Next, the MR of the seman-
tic head is constructed recursively. The semantic
head of N3 is clearly N1. Since N1 is a part-of-
speech (POS) node, its semantic label directly de-
termines its MR, which becomesbowner(). Once
the MR for the head is constructed, the MR of all
other (non-head) children are computed recursively,
and COMPOSEMR assigns their MR’s to fill the ar-
guments in the head’s MR to construct the com-
plete MR for the node. Argument constraints are
used to determine the appropriate filler for each ar-
gument. Since, N2 has anull label, the MR of N3
also becomesbowner(). When computing the MR
for N7, N4 is determined to be the head with the
MR: player(,). COMPOSEMR then assigns N5’s
MR to fill the teamargument and N6’s MR to fill
theunumargument to construct N7’s complete MR:
player(our, 2). This MR in turn is composed with
the MR for N3 to yield the final MR for the sen-
tence:bowner(player(our,2)).

For MRL’s, such as CLANG, whose syntax does
not strictly follow a nested set of predicates and ar-
guments, some final minor syntactic adjustment of
the final MR may be needed. In the example, the
final MR is (bowner (player ourf2g)). In the fol-
lowing discussion, we ignore the difference between
these two.

There are a few complications left which re-
quire special handling when generating MR’s,
like coordination, anaphora resolution and non-

compositionality exceptions. Due to space limita-
tions, we do not present the straightforward tech-
niques we used to handle them.

4 Corpus Annotation

This section discusses how sentences for training
SCISSOR were manually annotated with SAPT’s.
Sentences were parsed by Collins’ head-driven
model 2 (Bikel, 2004) (trained on sections 02-21
of the WSJ Penn Treebank) to generate an initial
syntactic parse tree. The trees were then manually
corrected and each node augmented with a semantic
label.

First, semantic labels for individual words, called
semantic tags, are added to the POS nodes in the
tree. The tagnull is used for words that have no cor-
responding concept. Some concepts are conveyed
by phrases, like “has the ball” forbownerin the pre-
vious example. Only one word is labeled with the
concept; the syntactic head word (Collins, 1997) is
preferred. During parsing, the other words in the
phrase will provide context for determining the se-
mantic label of the head word.

Labels are added to the remaining nodes in a
bottom-up manner. For each node, one of its chil-
dren is chosen as the semantic head, from which it
will inherit its label. The semantic head is chosen
as the child whose semantic label can take the MR’s
of the other children as arguments. This step was
done mostly automatically, but required some man-
ual corrections to account for unusual cases.

In order for COMPOSEMR to be able to construct
the MR for a node, the argument constraints for
its semantic head must identify a unique concept
to fill each argument. However, some predicates
take multiple arguments of the same type, such as
point.num(num,num), which is a kind of point that
represents a field coordinate in CLANG.

In this case, extra nodes are inserted in the tree
with new type concepts that are unique for each ar-
gument. An example is shown in Figure 4 in which
the additional type conceptsnum1andnum2are in-
troduced. Again, during parsing, context will be
used to determine the correct type for a given word.

Thepoint label of the root node of Figure 4 is the
concept that includes all kinds of points in CLANG.
Once a predicate has all of its arguments filled, we

11

,

0.5 , −RRB−

−RRB−−null

−LRB− 0.1

CD−num CD−num

−LRB−−point.num

PRN−point

CD−num1 CD−num2

Figure 4: Adding new types to disambiguate argu-
ments.
use the most general CLANG label for its concept
(e.g. point instead ofpoint.num). This generality
avoids sparse data problems during training.

5 Integrated Parsing Model

5.1 Collins Head-Driven Model 2

Collins’ head-driven model 2 is a generative, lexi-
calized model of statistical parsing. In the following
section, we follow the notation in (Collins, 1997).
Each non-terminalX in the tree is a syntactic label,
which is lexicalized by annotating it with aword,w, and aPOS tag, tsyn. Thus, we write a non-
terminal asX(x), where X is a syntactic label andx = hw; tsyni. X(x) is then what is generated by
the generative model.

Each productionLHS) RHS in the PCFG is
in the form:P (h)!Ln(ln):::L1(l1)H(h)R1(r1):::Rm(rm)
whereH is the head-child of the phrase, which in-
herits the head-wordh from its parentP . L1:::Ln
andR1:::Rm are left and right modifiers ofH.

Sparse data makes the direct estimation ofP(RHSjLHS) infeasible. Therefore, it is decom-
posed into several steps – first generating the head,
then the right modifiers from the head outward,
then the left modifiers in the same way. Syntactic
subcategorization frames, LC and RC, for the left
and right modifiers respectively, are generated be-
fore the generation of the modifiers. Subcat frames
represent knowledge about subcategorization prefer-
ences. The final probability of a production is com-
posed from the following probabilities:

1. The probability of choosing a head constituent
label H:Ph(HjP; h).

2. The probabilities of choosing the left and right
subcat frames LC and RC:Pl
(LCjP;H; h)
andPr
(RCjP;H; h).

has2our player the

PRP$−team NN−player CD−unum

NN−nullDT−null

NP−player(player) VP−bowner(has)

NP−null(ball)

ball

S−bowner(has)

VB−bowner

Figure 5: A lexicalized SAPT.

3. The probabilities of generat-
ing the left and right modifiers:Qi=1::m+1 Pr(Ri(ri)jH;P; h;�i�1; RC) �Qi=1::n+1Pl(Li(li)jH;P; h;�i�1; LC).
Where� is the measure of the distance from
the head word to the edge of the constituent,
andLn+1(ln+1) andRm+1(rm+1) areSTOP .
The model stops generating more modifiers
whenSTOP is generated.

5.2 Integrating Semantics into the Model

We extend Collins’ model to include the genera-
tion of semantic labels in the derivation tree. Un-
less otherwise stated, notation has the same mean-
ing as in Section 5.1. The subscriptsyn refers to
the syntactic part, andsem refers to the semantic
part. We redefineX and x to include semantics,
each non-terminalX is now a pair of a syntactic la-
bel Xsyn and a semantic labelXsem. Besides be-
ing annotated with the word,w, and the POS tag,tsyn, X is also annotated with the semantic tag,tsem, of the head child. Thus,X(x) now consists ofX = hXsyn;Xsemi, andx = hw; tsyn; tsemi. Fig-
ure 5 shows a lexicalized SAPT (but omittingtsyn
andtsem).

Similar to the syntactic subcat frames, we also
condition the generation of modifiers on semantic
subcat frames. Semantic subcat frames give se-
mantic subcategorization preferences; for example,
player takes ateamand aunum. ThusLC andRC
are now: hLCsyn; LCsemi and hRCsyn; RCsemi.X(x) is generated as in Section 5.1, but using the
new definitions ofX(x), LC andRC. The imple-
mentation of semantic subcat frames is similar to
syntactic subcat frames. They are multisets speci-
fying the semantic labels which the head requires in
its left or right modifiers.

As an example, the probability of generating the
phrase “our player 2” using NP-player!

12

PRP$-[team](our) NN-player CD-[unum](2)
is (omitting only the distance measure):Ph(NN-[player]jNP-[player],player)�Pl
(hfg,fteamgijNP-[player],player)�Pr
(hfg,funumgijNP-[player],player)�Pl(PRP$-[team](our)jNP-[player],player,hfg,fteamgi)�Pr(CD-[unum](2)jNP-[player],player,hfg,funumgi)�Pl(STOPjNP-[player],player,hfg,fgi)�Pr(STOPjNP-[player],player,hfg,fgi)
5.3 Smoothing

Since the left and right modifiers are independently
generated in the same way, we only discuss smooth-
ing for the left side. Each probability estimation in
the above generation steps is called aparameter. To
reduce the risk of sparse data problems, the parame-
ters are decomposed as follows:Ph(HjC) = Phsyn(HsynjC)�Phsem(HsemjC;Hsyn)Pl
(LCjC) = Pl
syn(LCsynjC)�Pl
sem(LCsemjC;LCsyn)Pl(Li(li)jC) = Plsyn(Lisyn(ltisyn ; lwi)jC)�Plsem(Lisem(ltisem ; lwi)jC;Lisyn(ltisyn))

For brevity,C is used to represent the context on
which each parameter is conditioned;lwi, ltisyn , andltisem are the word, POS tag and semantic tag gener-
ated for the non-terminalLi. The word is generated
separately in the syntactic and semantic outputs.

We make the independence assumption that the
syntactic output is only conditioned on syntactic fea-
tures, and semantic output on semantic ones. Note
that the syntactic and semantic parameters are still
integrated in the model to find the globally most
likely parse. The syntactic parameters are the same
as in Section 5.1 and are smoothed as in (Collins,
1997). We’ve also tried different ways of condition-
ing syntactic output on semantic features and vice
versa, but they didn’t help. Our explanation is the
integrated syntactic and semantic parameters have
already captured the benefit of this integrated ap-
proach in our experimental domains.

Since the semantic parameters do not depend on
any syntactic features, we omit thesem subscripts

in the following discussion. As in (Collins, 1997),
the parameterPl(Li(lti; lwi)jP;H;w; t;�; LC) is
further smoothed as follows:Pl1(LijP;H;w; t;�; LC) �Pl2(ltijP;H;w; t;�; LC;Li)�Pl3(lwijP;H;w; t;�; LC;Li(lti))
Note this smoothing is different from the syntactic
counterpart. This is due to the difference between
POS tags and semantic tags; namely, semantic tags
are generally more specific.

Table 1 shows the various levels of back-off for
each semantic parameter. The probabilities from
these back-off levels are interpolated using the tech-
niques in (Collins, 1997). All words occurring less
than 3 times in the training data, and words in test
data that were not seen in training, are unknown
words and are replaced with the ”UNKNOWN” to-
ken. Note this threshold is smaller than the one used
in (Collins, 1997) since the corpora used in our ex-
periments are smaller.

5.4 POS Tagging and Semantic Tagging

For unknown words, the POS tags allowed are lim-
ited to those seen with any unknown words during
training. Otherwise they are generated along with
the words using the same approach as in (Collins,
1997). When parsing, semantic tags for each known
word are limited to those seen with that word dur-
ing training data. The semantic tags allowed for an
unknown word are limited to those seen with its as-
sociated POS tags during training.

6 Experimental Evaluation

6.1 Methodology

Two corpora of NL sentences paired with MR’s
were used to evaluate SCISSOR. For CLANG, 300
pieces of coaching advice were randomly selected
from the log files of the 2003 RoboCup Coach Com-
petition. Each formal instruction was translated
into English by one of four annotators (Kate et al.,
2005). The average length of an NL sentence in
this corpus is 22.52 words. For GEOQUERY, 250
questions were collected by asking undergraduate
students to generate English queries for the given
database. Queries were then manually translated

13

BACK-OFFLEVEL Ph(Hj:::) PLC(LCj:::) PL1(Lij:::) PL2(ltij:::) PL3(lwij:::)
1 P,w,t P,H,w,t P,H,w,t,�,LC P,H,w,t,�,LC, Li P,H,w,t,�,LC, Li, lti
2 P,t P,H,t P,H,t,�,LC P,H,t,�,LC, Li P,H,t,�,LC, Li, lti
3 P P,H P,H,�,LC P,H,�,LC, Li Li, lti
4 – – – Li lti

Table 1: Conditioning variables for each back-off level forsemantic parameters (sem subscripts omitted).

into logical form (Zelle and Mooney, 1996). The
average length of an NL sentence in this corpus is
6.87 words. The queries in this corpus are more
complex than those in the ATIS database-query cor-
pus used in the speech community (Zue and Glass,
2000) which makes the GEOQUERYproblem harder,
as also shown by the results in (Popescu et al., 2004).
The average number of possible semantic tags for
each word which can represent meanings in CLANG

is 1.59 and that in GEOQUERY is 1.46.
SCISSOR was evaluated using standard 10-fold

cross validation. NL test sentences are first parsed
to generate their SAPT’s, then their MR’s were built
from the trees. We measured the number of test sen-
tences that produced complete MR’s, and the num-
ber of these MR’s that were correct. For CLANG,
an MR is correct if it exactly matches the correct
representation, up to reordering of the arguments of
commutative operators likeand. For GEOQUERY,
an MR is correct if the resulting query retrieved
the same answer as the correct representation when
submitted to the database. The performance of the
parser was then measured in terms ofprecision(the
percentage of completed MR’s that were correct)
and recall (the percentage of all sentences whose
MR’s were correctly generated).

We compared SCISSOR’s performance to several
previous systems that learn semantic parsers that can
map sentences into formal MRL’s. CHILL (Zelle and
Mooney, 1996) is a system based on Inductive Logic
Programming (ILP). We compare to the version
of CHILL presented in (Tang and Mooney, 2001),
which uses the improved COCKTAIL ILP system and
produces more accurate parsers than the original ver-
sion presented in (Zelle and Mooney, 1996). SILT is
a system that learns symbolic, pattern-based, trans-
formation rules for mapping NL sentences to formal
languages (Kate et al., 2005). It comes in two ver-
sions, SILT -string, which maps NL strings directly
to an MRL, and SILT -tree, which maps syntactic

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

P
re

ci
si

on
 (

%
)

Training sentences

SCISSOR
SILT-string

SILT-tree
CHILL

GEOBASE

Figure 6: Precision learning curves for GEOQUERY.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

R
ec

al
l (

%
)

Training sentences

SCISSOR
SILT-string

SILT-tree
CHILL

GEOBASE

Figure 7: Recall learning curves for GEOQUERY.

parse trees (generated by the Collins parser) to an
MRL. In the GEOQUERY domain, we also compare
to the original hand-built parser GEOBASE.

6.2 Results

Figures 6 and 7 show the precision and recall learn-
ing curves for GEOQUERY, and Figures 8 and 9 for
CLANG. Since CHILL is very memory intensive,
it could not be run with larger training sets of the
CLANG corpus.

Overall, SCISSORgives the best precision and re-
call results in both domains. The only exception
is with recall for GEOQUERY, for which CHILL is
slightly higher. However, SCISSORhas significantly
higher precision (see discussion in Section 7).

14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

P
re

ci
si

on
 (

%
)

Training sentences

SCISSOR
SILT-string

SILT-tree
CHILL

Figure 8: Precision learning curves for CLANG.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

R
ec

al
l (

%
)

Training sentences

SCISSOR
SILT-string

SILT-tree
CHILL

Figure 9: Recall learning curves for CLANG.

Results on a larger GEOQUERY corpus with 880
queries have been reported for PRECISE(Popescu et
al., 2003): 100% precision and 77.5% recall. On
the same corpus, SCISSORobtains 91.5% precision
and 72.3% recall. However, the figures are not com-
parable. PRECISE can return multiple distinct SQL
queries when it judges a question to be ambigu-
ous and it is considered correct whenany of these
SQL queries is correct. Our measure only considers
the top result. Due to space limitations, we do not
present complete learning curves for this corpus.

7 Related Work

We first discuss the systems introduced in Section
6. CHILL uses computationally-complex ILP meth-
ods, which are slow and memory intensive. The
string-based version of SILT uses no syntactic in-
formation while the tree-based version generates a
syntactic parse first and then transforms it into an
MR. In contrast, SCISSOR integrates syntactic and
semantic processing, allowing each to constrain and
inform the other. It uses a successful approach to sta-

tistical parsing that attempts to find the SAPT with
maximum likelihood, which improves robustness
compared to purely rule-based approaches. How-
ever, SCISSORrequires an extra training input, gold-
standard SAPT’s, not required by these other sys-
tems. Further automating the construction of train-
ing SAPT’s from sentences paired with MR’s is a
subject of on-going research.

PRECISE is designed to work only for the spe-
cific task of NL database interfaces. By comparison,
SCISSOR is more general and can work with other
MRL’s as well (e.g. CLANG). Also, PRECISE is not
a learning system and can fail to parse a query it con-
siders ambiguous, even though it may not be consid-
ered ambiguous by a human and could potentially be
resolved by learning regularities in the training data.

In (Lev et al., 2004), a syntax-driven approach
is used to map logic puzzles described in NL to
an MRL. The syntactic structures are paired with
hand-written rules. A statistical parser is used to
generate syntactic parse trees, and then MR’s are
built using compositional semantics. The meaning
of open-category words (with only a few exceptions)
is considered irrelevant to solving the puzzle and
their meanings are not resolved. Further steps would
be needed to generate MR’s in other domains like
CLANG and GEOQUERY. No empirical results are
reported for their approach.

Several machine translation systems also attempt
to generate MR’s for sentences. In (et al., 2002),
an English-Chinese speech translation system for
limited domains is described. They train a statisti-
cal parser on trees with only semantic labels on the
nodes; however, they do not integrate syntactic and
semantic parsing.

History-based models of parsing were first in-
troduced in (Black et al., 1993). Their original
model also included semantic labels on parse-tree
nodes, but they were not used to generate a formal
MR. Also, their parsing model is impoverished com-
pared to the history included in Collins’ more recent
model. SCISSOR explores incorporating semantic
labels into Collins’ model in order to produce a com-
plete SAPT which is then used to generate a formal
MR.

The systems introduced in (Miller et al., 1996;
Miller et al., 2000) also integrate semantic labels
into parsing; however, their SAPT’s are used to pro-

15

duce a much simpler MR, i.e., a single semantic
frame. A sample frame is AIRTRANSPORTATION

which has three slots – the arrival time, origin and
destination. Only one frame needs to be extracted
from each sentence, which is an easier task than
our problem in which multiple nested frames (pred-
icates) must be extracted. The syntactic model in
(Miller et al., 2000) is similar to Collins’, but does
not use features like subcat frames and distance mea-
sures. Also, the non-terminal labelX is not further
decomposed into separately-generated semantic and
syntactic components. Since it used much more spe-
cific labels (the cross-product of the syntactic and
semantic labels), its parameter estimates are poten-
tially subject to much greater sparse-data problems.

8 Conclusion

SCISSORlearns statistical parsers that integrate syn-
tax and semantics in order to produce a semanti-
cally augmented parse tree that is then used to com-
positionally generate a formal meaning representa-
tion. Experimental results in two domains, a natural-
language database interface and an interpreter for
coaching instructions in robotic soccer, have demon-
strated that SCISSORgenerally produces more accu-
rate semantic representations than several previous
approaches. By augmenting a state-of-the-art statis-
tical parsing model to include semantic information,
it is able to integrate syntactic and semantic clues
to produce a robust interpretation that supports the
generation of complete formal meaning representa-
tions.

9 Acknowledgements

We would like to thank Rohit J. Kate , Yuk Wah
Wong and Gregory Kuhlmann for their help in an-
notating the CLANG corpus and providing the eval-
uation tools. This research was supported by De-
fense Advanced Research Projects Agency under
grant HR0011-04-1-0007.

References

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model.
Computational Linguistics, 30(4):479–511.

Ezra Black, Frederick Jelineck, John Lafferty, David M. Mager-
man, Robert L. Mercer, and Salim Roukos. 1993. Towards

history-based grammars: Using richer models for probabilis-
tic parsing. InProc. of ACL-93, pages 31–37, Columbus,
Ohio.

Borland International. 1988. Turbo Prolog 2.0 Reference
Guide. Borland International, Scotts Valley, CA.

Mao Chen et al. 2003. Users manual: RoboCup
soccer server manual for soccer server version 7.07
and later. Available athttp://sourceforge.net/
projects/sserver/.

Michael J. Collins. 1997. Three generative, lexicalised mod-
els for statistical parsing. InProc. of ACL-97, pages 16–23,
Madrid, Spain.

Yuqing Gao et al. 2002. Mars: A statistical semantic parsing
and generation-based multilingual automatic translationsys-
tem. Machine Translation, 17:185–212.

Daniel Gildea and Daniel Jurafsky. 2002. Automated labeling
of semantic roles.Computational Linguistics, 28(3):245–
288.

Daniel Jurafsky and James H. Martin. 2000.Speech and Lan-
guage Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recog-
nition. Prentice Hall, Upper Saddle River, NJ.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005.
Learning to transform natural to formal languages. To ap-
pear inProc. of AAAI-05, Pittsburgh, PA.

Iddo Lev, Bill MacCartney, Christopher D. Manning, and Roger
Levy. 2004. Solving logic puzzles: From robust process-
ing to precise semantics. InProc. of 2nd Workshop on Text
Meaning and Interpretation, ACL-04, Barcelona, Spain.

Scott Miller, David Stallard, Robert Bobrow, and Richard
Schwartz. 1996. A fully statistical approach to natural lan-
guage interfaces. InACL-96, pages 55–61, Santa Cruz, CA.

Scott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.
Weischedel. 2000. A novel use of statistical parsing to ex-
tract information from text. InProc. of NAACL-00, pages
226–233, Seattle, Washington.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. To-
wards a theory of natural language interfaces to databases.In
Proc. of IUI-2003, pages 149–157, Miami, FL. ACM.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko,
and Alexander Yates. 2004. Modern natural language in-
terfaces to databases: Composing statistical parsing withse-
mantic tractability. InCOLING-04, Geneva, Switzerland.

Lappoon R. Tang and Raymond J. Mooney. 2001. Using multi-
ple clause constructors in inductive logic programming for
semantic parsing. InProc. of ECML-01, pages 466–477,
Freiburg, Germany.

John M. Zelle and Raymond J. Mooney. 1996. Learning to
parse database queries using inductive logic programming.
In Proc. of AAAI-96, pages 1050–1055, Portland, OR.

Victor W. Zue and James R. Glass. 2000. Conversational in-
terfaces: Advances and challenges. InProc. of the IEEE,
volume 88(8), pages 1166–1180.

16

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 17–24, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Search Engine Statistics Beyond the n-gram:
Application to Noun Compound Bracketing

Preslav Nakov
EECS, Computer Science Division
University of California, Berkeley

Berkeley, CA 94720
nakov@cs.berkeley.edu

Marti Hearst
SIMS

University of California, Berkeley
Berkeley, CA 94720

hearst@sims.berkeley.edu

Abstract

In order to achieve the long-range goal
of semantic interpretation of noun com-
pounds, it is often necessary to first de-
termine their syntactic structure. This pa-
per describes an unsupervised method for
noun compound bracketing which extracts
statistics from Web search engines using a
χ2 measure, a new set of surface features,
and paraphrases. On a gold standard, the
system achieves results of 89.34% (base-
line 66.80%), which is a sizable improve-
ment over the state of the art (80.70%).

1 Introduction

An important but understudied language analy-
sis problem is that of noun compound bracketing,
which is generally viewed as a necessary step to-
wards noun compound interpretation. Consider the
following contrastive pair of noun compounds:

(1) liver cell antibody
(2) liver cell line

In example (1) anantibodytargets aliver cell, while
(2) refers to acell line which is derived from the
liver. In order to make these semantic distinctions
accurately, it can be useful to begin with the cor-
rect grouping of terms, since choosing a particular
syntactic structure limits the options left for seman-
tics. Although equivalent at the part of speech (POS)
level, these two noun compounds have different syn-
tactic trees. The distinction can be represented as a
binary tree or, equivalently, as a binary bracketing:

(1b) [[liver cell] antibody] (left bracketing)
(2b) [liver [cell line]] (right bracketing)

In this paper, we describe a highly accurate un-
supervised method for making bracketing decisions
for noun compounds (NCs). We improve on the cur-
rent standard approach of using bigram estimates to
compute adjacency and dependency scores by intro-
ducing the use of theχ2 measure for this problem.
We also introduce a new set of surface features for
querying Web search engines which prove highly ef-
fective. Finally, we experiment with paraphrases for
improving prediction statistics. We have evaluated
the application of combinations of these features to
predict NC bracketing on two distinct collections,
one consisting of terms drawn from encyclopedia
text, and another drawn from bioscience text.

The remainder of this paper describes related
work, the word association models, the surface fea-
tures, the paraphrase features and the results.

2 Related Work

The syntax and semantics of NCs is an active area of
research; theJournal of Computer Speech and Lan-
guagehas an upcoming special issue on Multiword
Expressions.

The best known early work on automated un-
supervised NC bracketing is that of Lauer (1995)
who introduces the probabilistic dependency model
for the syntactic disambiguation of NCs and argues
against the adjacency model, proposed by Marcus
(1980), Pustejovsky et al. (1993) and Resnik (1993).
Lauer collectsn-gram statistics from Grolier’s en-
cyclopedia, containing about 8 million words. To

17

overcome data sparsity problems, he estimates prob-
abilities over conceptual categories in a taxonomy
(Roget’s thesaurus) rather than for individual words.

Lauer evaluated his models on a set of 244 unam-
biguous NCs derived from the same encyclopedia
(inter-annotator agreement 81.50%) and achieved
77.50% for the dependency model above (baseline
66.80%). Adding POS and further tuning allowed
him to achieve the state-of-the-art result of 80.70%.

More recently, Keller and Lapata (2003) evalu-
ate the utility of using Web search engines for ob-
taining frequencies for unseen bigrams. They then
later propose using Web counts as a baseline unsu-
pervised method for many NLP tasks (Lapata and
Keller, 2004). They apply this idea to six NLP tasks,
including the syntactic and semantic disambigua-
tion of NCs following Lauer (1995), and show that
variations on bigram counts perform nearly as well
as more elaborate methods. They do not use tax-
onomies and work with the wordn-grams directly,
achieving 78.68% with a much simpler version of
the dependency model.

Girju et al. (2005) propose asupervisedmodel
(decision tree) for NC bracketingin context, based
on five semantic features (requiring the correct
WordNet sense to be given): the top three Word-
Net semantic classes for each noun, derivationally
related forms and whether the noun is a nominaliza-
tion. The algorithm achieves accuracy of 83.10%.

3 Models and Features

3.1 Adjacency and Dependency Models

In related work, a distinction is often made between
what is called thedependency modeland theadja-
cency model. The main idea is as follows. For a
given 3-word NCw1w2w3, there are two reasons it
may take on right bracketing,[w1[w2w3]]. Either (a)
w2w3 is a compound (modified byw1), or (b)w1 and
w2 independently modifyw3. This distinction can
be seen in the exampleshome health care(health
care is a compound modified byhome) versusadult
male rat(adultandmaleindependently modifyrat).

The adjacency model checks (a), whetherw2w3

is a compound (i.e., how stronglyw2 modifiesw3

as opposed tow1w2 being a compound) to decide
whether or not to predict a right bracketing. The
dependency model checks (b), doesw1 modify w3

(as opposed tow1 modifyingw2).
Left bracketing is a bit different since there is only

modificational choice for a 3-word NC. Ifw1 modi-
fiesw2, this implies thatw1w2 is a compound which
in turn modifiesw3, as inlaw enforcement agent.

Thus the usefulness of the adjacency model vs.
the dependency model can depend in part on the mix
of left and right bracketing. Below we show that the
dependency model works better than the adjaceny
model, confirming other results in the literature. The
next subsections describe several different ways to
compute these measures.

3.2 Using Frequencies

The most straightforward way to compute adjacency
and dependency scores is to simply count the cor-
responding frequencies. Lapata and Keller (2004)
achieved their best accuracy (78.68%) with the de-
pendency model and the simple symmetric score
#(wi, wj).1

3.3 Computing Probabilities

Lauer (1995) assumes that adjacency and depen-
dency should be computed via probabilities. Since
they are relatively simple to compute, we investigate
them in our experiments.

Consider the dependency model, as introduced
above, and the NCw1w2w3. Let Pr(wi → wj |wj)
be the probability that the wordwi precedes a
given fixed wordwj . Assuming that the distinct
head-modifier relations are independent, we obtain
Pr(right) = Pr(w1 → w3|w3)Pr(w2 → w3|w3)
andPr(left) = Pr(w1 → w2|w2)Pr(w2 → w3|w3).
To choose the more likely structure, we can drop
the shared factor and comparePr(w1 → w3|w3) to
Pr(w1 → w2|w2).

The alternative adjacency model compares
Pr(w2 → w3|w3) to Pr(w1 → w2|w2), i.e. the
association strength between the last two words vs.
that between the first two. If the first probability is
larger than the second, the model predicts right.

The probabilityPr(w1 → w2|w2) can be esti-
mated as#(w1, w2)/#(w2), where#(w1, w2) and
#(w2) are the corresponding bigram and unigram

1This score worked best on training, when Keller&Lapata
were doing model selection. On testing,Pr (with the depen-
dency model) worked better and achieved accuracy of 80.32%,
but this result was ignored, asPr did worse on training.

18

frequencies. They can be approximated as the num-
ber of pages returned by a search engine in response
to queries for the exact phrase “w1 w2” and for the
wordw2. In our experiments below we smoothed2

each of these frequencies by adding 0.5 to avoid
problems caused by nonexistentn-grams.

Unless some particular probabilistic interpreta-
tion is needed,3 there is no reason why for a given
ordered pair of words(wi, wj), we should use
Pr(wi → wj |wj) rather thanPr(wj → wi|wi),
i < j. This is confirmed by the adjacency model
experiments in (Lapata and Keller, 2004) on Lauer’s
NC set. Their results show that both ways of
computing the probabilities make sense: using Al-
tavista queries, the former achieves a higher accu-
racy (70.49% vs. 68.85%), but the latter is better on
the British National Corpus (65.57% vs. 63.11%).

3.4 Other Measures of Association

In both models, the probabilityPr(wi → wj |wj)
can be replaced by some (possibly symmetric) mea-
sure of association betweenwi andwj , such asChi
squared(χ2). To calculateχ2(wi, wj), we need:

(A) #(wi, wj);
(B) #(wi, wj), the number of bigrams in which the

first word iswi, followed by a word other than
wj ;

(C) #(wi, wj), the number of bigrams, ending in
wj , whose first word is other thanwi;

(D) #(wi, wj), the number of bigrams in which the
first word is notwi and the second is notwj .

They are combined in the following formula:

χ2 =
N(AD −BC)2

(A+ C)(B +D)(A+B)(C +D)
(1)

HereN = A + B + C + D is the total num-
ber of bigrams,B = #(wi) − #(wi, wj) andC =
#(wj) −#(wi, wj). While it is hard to estimateD

2Zero counts sometimes happen for#(w1, w3), but are rare
for unigrams and bigrams on the Web, and there is no need for
a more sophisticated smoothing.

3For example, as used by Lauer to introduce a prior for left-
right bracketing preference. The best Lauer model does not
work with words directly, but uses a taxonomy and further needs
a probabilistic interpretation so that the hidden taxonomy vari-
ables can be summed out. Because of that summation, the term
Pr(w2 → w3|w3) does not cancel in his dependency model.

directly, we can calculate it asD = N−A−B−C.
Finally, we estimateN as the total number of in-
dexed bigrams on the Web. They are estimated as 8
trillion, since Google indexes about 8 billion pages
and each contains about 1,000 words on average.

Other measures of word association are possible,
such asmutual information(MI), which we can use
with the dependency and the adjacency models, sim-
ilarly to #, χ2 or Pr. However, in our experiments,
χ2 worked better than other methods; this is not sur-
prising, asχ2 is known to outperform MI as a mea-
sure of association (Yang and Pedersen, 1997).

3.5 Web-Derived Surface Features

Authors sometimes (consciously or not) disam-
biguate the words they write by using surface-level
markers to suggest the correct meaning. We have
found that exploiting these markers, when they oc-
cur, can prove to be very helpful for making brack-
eting predictions. The enormous size of Web search
engine indexes facilitates finding such markers fre-
quently enough to make them useful.

One very productive feature is thedash(hyphen).
Starting with the termcell cycle analysis, if we can
find a version of it in which a dash occurs between
the first two words:cell-cycle, this suggests a left
bracketing for the full NC. Similarly, the dash in
donor T-cell favors a right bracketing. The right-
hand dashes are less reliable though, as their scope
is ambiguous. Infiber optics-system, the hyphen in-
dicates that the noun compoundfiber opticsmodifies
system. There are also cases with multiple hyphens,
as int-cell-depletion, which preclude their use.

The genitive ending, orpossessivemarker is an-
other useful indicator. The phrasebrain’s stem
cellssuggests a right bracketing forbrain stem cells,
while brain stem’s cellsfavors a left bracketing.4

Another highly reliable source is related to inter-
nal capitalization. For examplePlasmodium vivax
Malaria suggests left bracketing, whilebrain Stem
cellswould favor a right one. (We disable this fea-
ture on Roman digits and single-letter words to pre-
vent problems with terms likevitamin D deficiency,
where the capitalization is just a convention as op-
posed to a special mark to make the reader think that
the last two terms should go together.)

4Features can also occur combined, e.g.brain’s stem-cells.

19

We can also make use of embeddedslashes. For
example inleukemia/lymphoma cell, the slash pre-
dicts a right bracketing since the first word is an al-
ternative and cannot be a modifier of the second one.

In some cases we can find instances of the NC
in which one or more words are enclosed in paren-
theses, e.g.,growth factor (beta)or (growth fac-
tor) beta, both of which indicate a left structure, or
(brain) stem cells, which suggests a right bracketing.

Even a comma, a dot or a colon (or any spe-
cial character) can act as indicators. For example,
“health care, provider” or “ lung cancer: patients”
are weak predictors of a left bracketing, showing
that the author chose to keep two of the words to-
gether, separating out the third one.

We can also exploit dashes to words external to
the target NC, as inmouse-brain stem cells, which
is a weak indicator of right bracketing.

Unfortunately, Web search engines ignore punc-
tuation characters, thus preventing querying directly
for terms containing hyphens, brackets, apostrophes,
etc. We collect them indirectly by issuing queries
with the NC as an exact phrase and then post-
processing the resulting summaries, looking for the
surface features of interest. Search engines typically
allow the user to explore up to 1000 results. We col-
lect all results and summary texts that are available
for the target NC and then search for the surface pat-
terns using regular expressions over the text. Each
match increases the score for left or right bracket-
ing, depending on which the pattern favors.

While some of the above features are clearly
more reliable than others, we do not try to weight
them. For a given NC, we post-process the returned
Web summaries, then we find the number of left-
predicting surface feature instances (regardless of
their type) and compare it to the number of right-
predicting ones to make a bracketing decision.5

3.6 Other Web-Derived Features

Some features can be obtained by using the over-
all counts returned by the search engine. As these
counts are derived from the entire Web, as opposed
to a set of up to 1,000 summaries, they are of differ-
ent magnitude, and we did not want to simply add
them to the surface features above. They appear as

5This appears asSurface features (sum)in Tables 1 and 2.

independent models in Tables 1 and 2.
First, in some cases, we can query forpossessive

markersdirectly: although search engines drop the
apostrophe, they keep thes, so we can query for
“brain’s” (but not for “brains’ ”). We then com-
pare the number of times the possessive marker ap-
peared on the second vs. the first word, to make a
bracketing decision.

Abbreviationsare another important feature. For
example,“tumor necrosis factor (NF)”suggests a
right bracketing, while“tumor necrosis (TN) fac-
tor” would favor left. We would like to issue exact
phrase queries for the two patterns and see which
one is more frequent. Unfortunately, the search en-
gines drop the brackets and ignore the capitalization,
so we issue queries with the parentheses removed, as
in “tumor necrosis factor nf”. This produces highly
accurate results, although errors occur when the ab-
breviation is an existing word (e.g.,me), a Roman
digit (e.g.,IV), a state (e.g.,CA), etc.

Another reliable feature isconcatenation. Con-
sider the NChealth care reform, which is left-
bracketed. Now, consider the bigram“health care”.
At the time of writing, Google estimates 80,900,000
pages for it as an exact term. Now, if we try the
word healthcarewe get 80,500,000 hits. At the
same time,carereformreturns just 109. This sug-
gests that authors sometimes concatenate words that
act as compounds. We find below that comparing
the frequency of the concatenation of the left bigram
to that of the right (adjacency model for concatena-
tions) often yields accurate results. We also tried the
dependency model for concatenations, as well as the
concatenations of two words in the context of the
third one (i.e., compare frequencies of“healthcare
reform” and“health carereform”).

We also used Google’s support for “*”, which al-
lows a single word wildcard, to see how often two of
the words are present but separated from the third by
some other word(s). This implicitly tries to capture
paraphrases involving the two sub-concepts making
up the whole. For example, we compared the fre-
quency of“health care * reform” to that of“health
* care reform”. We also used 2 and 3 stars and
switched the word group order (indicated withrev.
in Tables 1 and 2), e.g.,“care reform * * health” .
We also tried a simplereorder without inserting
stars, i.e., compare the frequency of“reform health

20

care” to that of “care reform health”. For exam-
ple, when analyzingmyosin heavy chainwe see that
heavy chain myosinis very frequent, which provides
evidence against groupingheavyandchain together
as they can commute.

Further, we tried to look inside theinternal inflec-
tion variability. The idea is that if“tyrosine kinase
activation” is left-bracketed, then the first two words
probably make a whole and thus the second word
can be found inflected elsewhere but the first word
cannot, e.g.,“tyrosine kinases activation”. Alterna-
tively, if we find different internal inflections of the
first word, this would favor a right bracketing.

Finally, we tried switching the word order of the
first two words. If they independently modify the
third one (which implies a right bracketing), then we
could expect to see also a form with the first two
words switched, e.g., if we are given“adult male
rat” , we would also expect“male adult rat” .

3.7 Paraphrases

Warren (1978) proposes that the semantics of the re-
lations between words in a noun compound are of-
ten made overt by paraphrase. As an example of
prepositional paraphrase, an author describing the
concept ofbrain stem cellsmay choose to write it
in a more expanded manner, such asstem cells in
the brain. This contrast can be helpful for syntactic
bracketing, suggesting that the full NC takes on right
bracketing, sincestemandcellsare kept together in
the expanded version. However, this NC is ambigu-
ous, and can also be paraphrased ascells from the
brain stem, implying a left bracketing.

Some NCs’ meaning cannot be readily expressed
with a prepositional paraphrase (Warren, 1978). An
alternative is thecopula paraphrase, as in office
building that/which is a skyscraper(right bracket-
ing), or averbal paraphrasesuch aspain associated
with arthritis migraine(left).

Other researchers have used prepositional para-
phrases as a proxy for determining the semantic rela-
tions that hold between nouns in a compound (Lauer,
1995; Keller and Lapata, 2003; Girju et al., 2005).
Since most NCs have a prepositional paraphrase,
Lauer builds a model trying to choose between the
most likely candidate prepositions:of, for, in, at,
on, from, with and about (excluding like which is
mentioned by Warren). This could be problematic

though, since as a study by Downing (1977) shows,
when no context is provided, people often come up
with incompatible interpretations.

In contrast, we use paraphrases in order to make
syntactic bracketing assignments. Instead of trying
to manually decide the correct paraphrases, we can
issue queries using paraphrase patterns and find out
how often each occurs in the corpus. We then add
up the number of hits predicting a left versus a right
bracketing and compare the counts.

Unfortunately, search engines lack linguistic an-
notations, making general verbal paraphrases too ex-
pensive. Instead we used a small set of hand-chosen
paraphrases:associated with, caused by, contained
in, derived from, focusing on, found in, involved in,
located at/in, made of, performed by, preventing,
related toand used by/in/for. It is however feasi-
ble to generate queries predicting left/right brack-
eting with/without a determiner for every preposi-
tion.6 For the copula paraphrases we combine two
verb formsis andwas, and three complementizers
that, whichandwho. These are optionally combined
with a preposition or a verb form, e.g.themes that
are used in science fiction.

4 Evaluation

4.1 Lauer’s Dataset

We experimented with the dataset from (Lauer,
1995), in order to produce results comparable to
those of Lauer and Keller & Lapata. The set consists
of 244 unambiguous 3-noun NCs extracted from
Grolier’s encyclopedia; however, only 216 of these
NCs are unique.

Lauer (1995) derivedn-gram frequencies from
theGrolier’s corpus and tested the dependency and
the adjacency models using this text. To help combat
data sparseness issues he also incorporated a taxon-
omy and some additional information (see Related
Work section above). Lapata and Keller (2004) de-
rived their statistics from the Web and achieved re-
sults close to Lauer’s using simple lexical models.

4.2 Biomedical Dataset

We constructed a new set of noun compounds from
the biomedical literature. Using the Open NLP

6In addition to the articles (a, an, the), we also used quanti-
fiers (e.g.some, every) and pronouns (e.g.this, his).

21

tools,7 we sentence splitted, tokenized, POS tagged
and shallow parsed a set of 1.4 million MEDLINE
abstracts (citations between 1994 and 2003). Then
we extracted all 3-noun sequences falling in the last
three positions of noun phrases (NPs) found in the
shallow parse. If the NP contained other nouns, the
sequence was discarded. This allows for NCs which
are modified by adjectives, determiners, and so on,
but prevents extracting 3-noun NCs that are part of
longer NCs. For details, see (Nakov et al., 2005).

This procedure resulted in 418,678 different NC
types. We manually investigated the most frequent
ones, removing those that had errors in tokeniza-
tion (e.g., containing words liketransplanor tation),
POS tagging (e.g.,acute lung injury, whereacute
was wrongly tagged as a noun) or shallow parsing
(e.g.,situ hybridization, that missesin). We had to
consider the first 843 examples in order to obtain
500 good ones, which suggests an extraction accu-
racy of 59%. This number is low mainly because the
tokenizer handles dash-connected words as a single
token (e.g.factor-alpha) and many tokens contained
other special characters (e.g.cd4+), which cannot
be used in a query against a search engine and had
to be discarded.

The 500 NCs were annotated independently by
two judges, one of which has a biomedical back-
ground; the other one was one of the authors. The
problematic cases were reconsidered by the two
judges and after agreement was reached, the set con-
tained: 361 left bracketed, 69 right bracketed and
70 ambiguous NCs. The latter group was excluded
from the experiments.8

We calculated the inter-annotator agreement on
the 430 cases that were marked as unambiguous
after agreement. Using the original annotator’s
choices, we obtained an agreement of 88% or 82%,
depending on whether we consider the annotations,
that were initially marked as ambiguous by one of
the judges to be correct. The corresponding values
for the kappa statistics were .606 (substantial agree-
ment) and .442 (moderate agreement).

7http://opennlp.sourceforge.net/
8Two NCs can appear more than once but with a different

inflection or with a different word variant, e.g,.colon cancer
cellsandcolon carcinoma cells.

4.3 Experiments

The n-grams, surface features, and paraphrase
counts were collected by issuing exact phrase
queries, limiting the pages to English and request-
ing filtering of similar results.9 For each NC, we
generated all possible word inflections (e.g.,tumor
and tumors) and alternative word variants (e.g.,tu-
mor and tumour). For the biomedical dataset they
were automatically obtained from the UMLS Spe-
cialist lexicon.10 For Lauer’s set we used Carroll’s
morphological tools.11 For bigrams, we inflect only
the second word. Similarly, for a prepositional para-
phrase we generate all possible inflected forms for
the two parts, before and after the preposition.

4.4 Results and Discussion

The results are shown in Tables 1 and 2. As NCs
are left-bracketed at least 2/3rds of the time (Lauer,
1995), a straightforward baseline is to always as-
sign a left bracketing. Tables 1 and 2 suggest that
the surface features perform best. The paraphrases
are equally good on the biomedical dataset, but on
Lauer’s set their performance is lower and is compa-
rable to that of the dependency model.

The dependency model clearly outperforms the
adjacency one (as other researchers have found) on
Lauer’s set, but not on the biomedical set, where it
is equally good.χ2 barely outperforms #, but on the
biomedical setχ2 is a clear winner (by about 1.5%)
on both dependency and adjacency models.

The frequencies (#) outperform or at least rival the
probabilities on both sets and for both models. This
is not surprising, given the previous results by Lap-
ata and Keller (2004). Frequencies also outperform
Pr on the biomedical set. This may be due to the
abundance of single-letter words in that set (because
of terms likeT cell, B cell, vitamin D etc.; similar
problems are caused by Roman digits likeii , iii etc.),
whose Web frequencies are rather unreliable, as they
are used byPr but not by frequencies. Single-letter
words cause potential problems for the paraphrases

9In our experiments we used MSN Search statistics for the
n-grams and the paraphrases (unless the pattern contained a
“*”), and Google for the surface features. MSN always re-
turned exact numbers, while Google and Yahoo rounded their
page hits, which generally leads to lower accuracy (Yahoo was
better than Google for these estimates).

10http://www.nlm.nih.gov/pubs/factsheets/umlslex.html
11http://www.cogs.susx.ac.uk/lab/nlp/carroll/morph.html

22

Model
√

× ∅ P(%) C(%)
adjacency 183 61 0 75.00 100.00
Pr adjacency 180 64 0 73.77 100.00
MI adjacency 182 62 0 74.59 100.00
χ2 adjacency 184 60 0 75.41 100.00
dependency 193 50 1 79.42 99.59
Pr dependency 194 50 0 79.51 100.00
MI dependency 194 50 0 79.51 100.00
χ2 dependency 195 50 0 79.92 100.00
adjacency (*) 152 41 51 78.76 79.10
adjacency (**) 162 43 39 79.02 84.02
adjacency (***) 150 51 43 74.63 82.38
adjacency (*, rev.) 163 48 33 77.25 86.47
adjacency (**, rev.) 165 51 28 76.39 88.52
adjacency (***, rev.) 156 57 31 73.24 87.30
Concatenation adj. 175 48 21 78.48 91.39
Concatenation dep. 167 41 36 80.29 85.25
Concatenation triples 76 3 165 96.20 32.38
Inflection Variability 69 36 139 65.71 43.03
Swap first two words 66 38 140 63.46 42.62
Reorder 112 40 92 73.68 62.30
Abbreviations 21 3 220 87.50 9.84
Possessives 32 4 208 88.89 14.75
Paraphrases 174 38 32 82.08 86.89
Surface features (sum) 183 31 30 85.51 87.70
Majority vote 210 22 12 90.52 95.08
Majority vote→ left 218 26 0 89.34 100.00
Baseline(choose left) 163 81 0 66.80 100.00

Table 1:Lauer Set. Shown are the numbers for cor-
rect (

√
), incorrect (×), and no prediction (∅), fol-

lowed by precision (P, calculated over
√

and× only)
and coverage (C, % examples with prediction). We
use “→” for back-off to another model in case of∅.

as well, by returning too many false positives, but
they work very well with concatenations and dashes:
e.g.,T cell is often written asTcell.

As Table 4 shows, most of the surface features
that we predicted to be right-bracketing actually in-
dicated left. Overall, the surface features were very
good at predicting left bracketing, but unreliable for
right-bracketed examples. This is probably in part
due to the fact that they look for adjacent words, i.e.,
they act as a kind of adjacency model.

We obtained our best overall results by combining
the most reliable models, marked in bold in Tables
1, 2 and 4. As they have independent errors, we used
a majority vote combination.

Table 3 compares our results to those of Lauer
(1995) and of Lapata and Keller (2004). It is impor-
tant to note though, that our results aredirectlycom-
parable to those of Lauer, while the Keller&Lapata’s
are not, since they used half of the Lauer set for de-

Model
√

× ∅ P(%) C(%)
adjacency 374 56 0 86.98 100.00
Pr adjacency 353 77 0 82.09 100.00
MI adjacency 372 58 0 86.51 100.00
χ2 adjacency 379 51 0 88.14 100.00
dependency 374 56 0 86.98 100.00
Pr dependency 369 61 0 85.81 100.00
MI dependency 369 61 0 85.81 100.00
χ2 dependency 380 50 0 88.37 100.00
adjacency (*) 373 57 0 86.74 100.00
adjacency (**) 358 72 0 83.26 100.00
adjacency (***) 334 88 8 79.15 98.14
adjacency (*, rev.) 370 59 1 86.25 99.77
adjacency (**, rev.) 367 62 1 85.55 99.77
adjacency (***, rev.) 351 79 0 81.63 100.00
Concatenation adj. 370 47 13 88.73 96.98
Concatenation dep. 366 43 21 89.49 95.12
Concatenation triple 238 37 155 86.55 63.95
Inflection Variability 198 49 183 80.16 57.44
Swap first two words 90 18 322 83.33 25.12
Reorder 320 78 32 80.40 92.56
Abbreviations 133 23 274 85.25 36.27
Possessives 48 7 375 87.27 12.79
Paraphrases 383 44 3 89.70 99.30
Surface features (sum) 382 48 0 88.84 100.00
Majority vote 403 17 10 95.95 97.67
Majority vote→ right 410 20 0 95.35 100.00
Baseline(choose left) 361 69 0 83.95 100.00

Table 2:Biomedical Set.

velopment and the other half for testing.12 We, fol-
lowing Lauer, used everything for testing. Lapata &
Keller also used the AltaVista search engine, which
no longer exists in its earlier form. The table does
not contain the results of Girju et al. (2005), who
achieved 83.10% accuracy, but used asupervisedal-
gorithm and targeted bracketingin context. They
further “shuffled” the Lauer’s set, mixing it with ad-
ditional data, thus making their results even harder
to compare to these in the table.

Note that using page hits as a proxy forn-gram
frequencies can produce some counter-intuitive re-
sults. Consider the bigramsw1w4, w2w4 andw3w4

and a page that contains each bigram exactly once.
A search engine will contribute a page count of 1 for
w4 instead of a frequency of 3; thus the page hits
for w4 can be smaller than the page hits for the sum
of the individual bigrams. See Keller and Lapata
(2003) for more issues.

12In fact, the differences are negligible; their system achieves
pretty much the same result on the half split as well as on the
whole set (personal communication).

23

Model Acc. %
LEFT (baseline) 66.80
Lauer adjacency 68.90
Lauer dependency 77.50
Our χ2 dependency 79.92
Lauer tuned 80.70
“Upper bound” (humans - Lauer) 81.50
Our majority vote→ left 89.34
Keller&Lapata: LEFT (baseline) 63.93
Keller&Lapata: best BNC 68.03
Keller&Lapata: best AltaVista 78.68

Table 3: Comparison to previous unsupervised
results on Lauer’s set. The results of Keller & La-
pata are on half of Lauer’s set and thus are only in-
directly comparable (note the different baseline).

5 Conclusions and Future Work

We have extended and improved upon the state-of-
the-art approaches to NC bracketing using an un-
supervised method that is more robust than Lauer
(1995) and more accurate than Lapata and Keller
(2004). Future work will include testing on NCs
consisting of more than 3 nouns, recognizing the
ambiguous cases, and bracketing NPs that include
determiners and modifiers. We plan to test this ap-
proach on other important NLP problems.

As mentioned above, NC bracketing should be
helpful for semantic interpretation. Another possi-
ble application is the refinement of parser output.
Currently, NPs in the Penn TreeBank are flat, with-
out internal structure. Absent any other information,
probabilistic parsers typically assume right bracket-
ing, which is incorrect about 2/3rds of the time for
3-noun NCs. It may be useful to augment the Penn
TreeBank with dependencies inside the currently flat
NPs, which may improve their performance overall.

AcknowledgementsWe thank Dan Klein, Frank
Keller and Mirella Lapata for valuable comments,
Janice Hamer for the annotations, and Mark Lauer
for his dataset. This research was supported by NSF
DBI-0317510, and a gift from Genentech.

References
Pamela Downing. 1977. On the creation and use of english

compound nouns.Language, (53):810–842.

R. Girju, D. Moldovan, M. Tatu, and D. Antohe. 2005. On the
semantics of noun compounds.Journal of Computer Speech
and Language - Special Issue on Multiword Expressions.

Example Predicts Accuracy Coverage
brain-stem cells left 88.22 92.79
brain stem’s cells left 91.43 16.28
(brain stem) cells left 96.55 6.74
brain stem (cells) left 100.00 1.63
brain stem, cells left 96.13 42.09
brain stem: cells left 97.53 18.84
brain stem cells-death left 80.69 60.23
brain stem cells/tissues left 83.59 45.35
brain stem Cells left 90.32 36.04
brain stem/cells left 100.00 7.21
brain. stem cells left 97.58 38.37
brain stem-cells right 25.35 50.47
brain’s stem cells right 55.88 7.90
(brain) stem cells right 46.67 3.49
brain (stem cells) right 0.00 0.23
brain, stem cells right 54.84 14.42
brain: stem cells right 44.44 6.28
rat-brain stem cells right 17.97 68.60
neural/brain stem cells right 16.36 51.16
brain Stem cells right 24.69 18.84
brain/stem cells right 53.33 3.49
brain stem. cells right 39.34 14.19

Table 4: Surface features analysis (%s), run over
the biomedical set.

Frank Keller and Mirella Lapata. 2003. Using the Web to
obtain frequencies for unseen bigrams.Computational Lin-
guistics, 29:459–484.

Mirella Lapata and Frank Keller. 2004. The Web as a base-
line: Evaluating the performance of unsupervised Web-
based models for a range of NLP tasks. InProceedings of
HLT-NAACL, pages 121–128, Boston.

Mark Lauer. 1995.Designing Statistical Language Learners:
Experiments on Noun Compounds. Ph.D. thesis, Department
of Computing Macquarie University NSW 2109 Australia.

Mitchell Marcus. 1980.A Theory of Syntactic Recognition for
Natural Language. MIT Press.

Preslav Nakov, Ariel Schwartz, Brian Wolf, and Marti Hearst.
2005. Scaling up BioNLP: Application of a text annotation
architecture to noun compound bracketing. InProceedings
of SIG BioLINK.

James Pustejovsky, Peter Anick, and Sabine Bergler. 1993.
Lexical semantic techniques for corpus analysis.Compu-
tational Linguistics, 19(2):331–358.

Philip Resnik. 1993.Selection and information: a class-based
approach to lexical relationships. Ph.D. thesis, University
of Pennsylvania, UMI Order No. GAX94-13894.

Beatrice Warren. 1978. Semantic patterns of noun-noun com-
pounds. InGothenburg Studies in English 41, Goteburg,
Acta Universtatis Gothoburgensis.

Y. Yang and J. Pedersen. 1997. A comparative study on feature
selection in text categorization. InProceedings of ICML’97),
pages 412–420.

24

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 25–32, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

New Experiments in Distributional Representations of Synonymy

Dayne Freitag, Matthias Blume, John Byrnes, Edmond Chow,
Sadik Kapadia, Richard Rohwer, Zhiqiang Wang

HNC Software, LLC
3661 Valley Centre Drive

San Diego, CA 92130, USA�
DayneFreitag,MatthiasBlume,JohnByrnes,EdChow,

SadikKapadia,RichardRohwer,ZhiqiangWang � @fairisaac.com

Abstract

Recent work on the problem of detect-
ing synonymy through corpus analysis has
used the Test of English as a Foreign Lan-
guage (TOEFL) as a benchmark. How-
ever, this test involves as few as 80 ques-
tions, prompting questions regarding the
statistical significance of reported results.
We overcome this limitation by generating
a TOEFL-like test using WordNet, con-
taining thousands of questions and com-
posed only of words occurring with suf-
ficient corpus frequency to support sound
distributional comparisons. Experiments
with this test lead us to a similarity mea-
sure which significantly outperforms the
best proposed to date. Analysis suggests
that a strength of this measure is its rela-
tive robustness against polysemy.

1 Introduction

Many text applications are predicated on the idea
that shallow lexical semantics can be acquired
through corpus analysis. Harris articulated the ex-
pectation that words with similar meanings would be
used in similar contexts (Harris, 1968), and recent
empirical work involving large corpora has borne
this out. In particular, by associating each word with
a distribution over the words observed in its context,
we can distinguish synonyms from non-synonyms
with fair reliability. This capability may be ex-
ploited to generate corpus-based thesauri automat-
ically (Lin, 1998), or used in any other application

of text that might benefit from a measure of lexi-
cal semantic similarity. And synonymy is a logical
first step in a broader research program that seeks to
account for natural language semantics through dis-
tributional means.

Previous research into corpus-analytic approaches
to synonymy has used the Test of English as a For-
eign Language (TOEFL). The TOEFL consists of
300 multiple-choice question, each question involv-
ing five words: the problem or target word and four
response words, one of which is a synonym of the
target. The objective is to identify the synonym (call
this the answer word, and call the other response
words decoys). In the context of research into lexi-
cal semantics, we seek a distance function which as
reliably as possible orders the answer word in front
of the decoys.

Landauer and Dumais first proposed the TOEFL
as a test of lexical semantic similarity and reported
a score of 64.4% on an 80-question version of the
TOEFL, a score nearly identical to the average score
of human test takers (Landauer and Dumais, 1997).
Subsequently, Sahlgren reported a score of 72.0%
on the same test using “random indexing” and a dif-
ferent training corpus (Sahlgren, 2001). By analyz-
ing a much larger corpus, Ehlert was able to score
82% on a 300-question version of the TOEFL, using
a simple distribution over contextual words (Ehlert,
2003).

While success on the TOEFL does not imme-
diately guarantee success in real-word applications
requiring lexical similarity judgments, the scores
have an intuitive appeal. They are easily inter-
pretable, and the expected performance of a random

25

guesser (25%) and typical human performance are
both known. Nevertheless, the TOEFL is problem-
atic in at least two ways. On the one hand, because it
involves so few questions, conclusions based on the
TOEFL regarding closely competing approaches are
suspect. Even on the 300-question TOEFL, a score
of 82% is accurate only to within plus or minus 4%
at the 95% confidence level. The other shortcoming
is a potential mis-match between the test vocabulary
and the corpus vocabulary. Typically, a substantial
number of questions include words observed too in-
frequently in the training corpus for a semantic judg-
ment to be made with any confidence.

We seek to overcome these difficulties by gener-
ating TOEFL-like tests automatically from Word-
Net (Fellbaum, 1998). While WordNet has been
used before to evaluate corpus-analytic approaches
to lexical similarity (Lin, 1998), the metric proposed
in that study, while useful for comparative purposes,
lacks an intuitive interpretation. In contrast, we
emulate the TOEFL using WordNet and inherit the
TOEFL’s easy interpretability.

Given a corpus, we first derive a list of words oc-
curring with sufficient marginal frequency to sup-
port a distributional comparison. We then use Word-
Net to generate a large set of questions identical in
format to those in the TOEFL. For a vocabulary of
reasonable size, this yields questions numbering in
the thousands. While the resulting questions differ
in some interesting ways from those in the TOEFL
(see below), their sheer number supports more con-
fident conclusions. Beyond this, we can partition
them by part of speech or degree of polysemy, en-
abling some analyses not supported by the original
TOEFL.

2 The Test

To generate a TOEFL-like test from WordNet, we
perform the following procedure once each for
nouns, verbs, adjectives and adverbs. Given a list of
candidate words, we produce one test question for
every ordered pair of words appearing together in
any synset in the respective WordNet part-of-speech
database. Decoy words are chosen at random from
among other words in the database that do not have
a synonymy relation with either word in the pair.
For convenience, we will call the resulting test the

technology:
A. engineering B. difference
C. department D. west

stadium:
A. miss B. hockey
C. wife D. bowl

string:
A. giant B. ballet
C. chain D. hat

trial:
A. run B. one-third
C. drove D. form

Table 1: Four questions chosen at random from the
noun test. Answers are A, D, C, and A.

WordNet-based synonymy test (WBST).
We take a few additional steps in order to in-

crease the resemblance between the WBST and the
TOEFL. First, we remove from consideration any
stop words or inflected forms. Note that whether
a particular wordform is inflected is a function of
its presumed part of speech. The word “indicted”
is either an inflected verb (so would not be used as a
word in a question involving verbs) or an uninflected
adjective. Second, we rule out pairs of words that
are too similar under the string edit distance. Mor-
phological variants often share a synset in WordNet.
For example, “group” and “grouping” share a nom-
inal sense. Questions using such pairs appear trivial
to human test takers and allow stemming shortcuts.

In the experiments reported in this paper, we used
WordNet 1.7.1. Our experimental corpus is the
North American News corpus, which is also used
by Ehlert (2003). We include as a candidate test
word any word occurring at least 1000 times in the
corpus (about 15,000 words when restricted to those
appearing in WordNet). Table 1 shows four sample
questions generated from this list out of the noun
database. In total, this procedure yields 9887 noun,
7398 verb, 5824 adjective, and 461 adverb ques-
tions, a total of 23,570 questions.1

This procedure yields questions that differ in
some interesting ways from those in the TOEFL.
Most notable is a bias in favor of polysemous terms.
The number of times a word appears as either the tar-
get or the answer word is proportional to the number
of synonyms it has in the candidate list. In contrast,

1This test is available as http://www.cs.cmu.edu/
˜dayne/wbst-nanews.tar.gz.

26

decoy words are chosen at random, so are less poly-
semous on average.

3 The Space of Solutions

Given that we have a large number of test ques-
tions composed of words with high corpus frequen-
cies, we now seek to optimize performance on the
WBST. The solutions we consider all start with a
word-conditional context frequency vector, usually
normalized to form a probability distribution. We
answer a question by comparing the target term vec-
tor and each of the response term vectors, choosing
the “closest.”

This problem definition excludes a common class
of solutions to this problem, in which the closeness
of a pair of terms is a statistic of the co-occurrence
patterns of the specific terms in question. It has
been shown that measures based on the pointwise
mutual information (PMI) between question words
yield good results on the TOEFL (Turney, 2001;
Terra and Clarke, 2003). However, Ehlert (2003)
shows convincingly that, for a fixed amount of data,
the distributional model performs better than what
we might call the pointwise co-occurrence model.
Terra and Clark (2003) report a top score of 81.3%
on an 80-word version of the TOEFL, which com-
pares favorably with Ehlert’s best of 82% on a 300-
word version, but their corpus is approximately 200
times as large as Ehlert’s.

Note that these two approaches are complemen-
tary and can be combined in a supervised setting,
along with static resources, to yield truly strong per-
formance (97.5%) on the TOEFL (Turney et al.,
2003). While impressive, this work begs an im-
portant question: Where do we obtain the training
data when moving to a less commonly taught lan-
guage, to say nothing of the comprehensive thesauri
and Web resources? In this paper, we focus on
shallow methods that use only the text corpus. We
are interested less in optimizing performance on the
TOEFL than in investigating the validity and limits
of the distributional hypothesis, and in illuminating
the barriers to automated human-level lexical simi-
larity judgments.

3.1 Definitions of Context

As in previous work, we form our context distribu-
tions by recording word-conditional counts of fea-
ture occurrences within some fixed window of a ref-
erence token. In this study, features are just unnor-
malized tokens, possibly augmented with direction
and distance information. In other words, we do not
investigate the utility of stemming. Similarly, except
where noted, we do not remove stop words.

All context definitions involve a window size,
which specifies the number of tokens to consider on
either side of an occurrence of a reference term. It
is always symmetric. Thus, a window size of one
indicates that only the immediately adjacent tokens
on either side should be considered. By default,
we bracket a token sequence with pseudo-tokens
“<bos>” and “<eos>”.2

Contextual tokens in the window may be either
observed or disregarded, and the policy governing
which to admit is one of the dimensions we ex-
plore here. The decision whether or not to observe
a particular contextual token is made before count-
ing commences, and is not sensitive to the circum-
stances of a particular occurrence (e.g., its partici-
pation in some syntactic relation (Lin, 1997; Lee,
1999)). When a contextual token is observed, it
is always counted as a single occurrence. Thus,
in contrast with earlier approaches (Sahlgren, 2001;
Ehlert, 2003), we do not use a weighting scheme that
is a function of distance from the reference token.

Once we have chosen to observe a contextual to-
ken, additional parameters govern whether counting
should be sensitive to the side of the reference token
on which it occurs and how distant from the refer-
ence token it is. If the strict direction parameter is
true, a left occurrence is distinguished from a right
occurrence. If strict distance is true, occurrences at
distinct removes (in number of tokens) are recorded
as distinct event types.

3.2 Distance Measures

The product of a particular context policy is a co-
occurrence matrix � , where the contents of a cell
����� � is the number of times context � is observed to
occur with word � . A row of this matrix (� �) is

2In this paper, a sequence is a North American News seg-
ment delimited by the <p> tag. Nominally paragraphs, most of
these segments are single sentences.

27

therefore a word-conditional context frequency vec-
tor. In comparing two of these vectors, we typically
normalize counts so that all cells in a row sum to
one, yielding a word-conditional distribution over
contexts ��� ��� ��� (but see the Cosine measure be-
low).

We investigate some of the distance measures
commonly employed in comparing term vectors.
These include:

Manhattan �	�
� ��� � � � ���
������� � � � �������
Euclidean � � ��� ��� � � � ����������� � � � ������� �

Cosine
��� �"!$#&% ' � �(!*)
% ' �+ � !$# +-,.+ � !/) +

Note that whereas we use probabilities in calculating
the Manhattan and Euclidean distances, in order to
avoid magnitude effects, the Cosine, which defines
a different kind of normalization, is applied to raw
number counts.

We also avail ourselves of measures suggested
by probability theory. For 0 1 �32�465�� and
word-conditional context distributions 7 and 8 , we
have the so-called 0 -divergences (Zhu and Rohwer,
1998): 9 : �;7<4=8��?>;@ 5A� � 7 : 8 �&B :0C�-5���0*� (1)

Divergences

9 D and

9
� are defined as limits as 0�E2 and 0�EF5 :9

� �;7<4=8��G@
9 D �38C437H�G@JI 7LKNM/O 7 8

In other words,

9
���;7<4=8�� is the KL-divergence of 7

from 8 . Members of this divergence family are in
some sense preferred by theory to alternative mea-
sures. It can be shown that the 0 -divergences (or
divergences defined by combinations of them, such
as the Jensen-Shannon or “skew” divergences (Lee,
1999)) are the only ones that are robust to redundant
contexts (i.e., only divergences in this family are in-
variant) (Csiszár, 1975).

Several notions of lexical similarity have been
based on the KL-divergence. Note that if any8 � @P2 , then

9
�Q�;7<4=8�� is infinite; in general, the KL-

divergence is very sensitive to small probabilities,
and careful attention must be paid to smoothing if
it is to be used with text co-occurrence data. The

Jensen-Shannon divergence—an average of the di-
vergences of 7 and 8 from their mean distribution—
does not share this sensitivity and has previously
been used in tests of lexical similarity (Lee, 1999).
Furthermore, unlike the KL-divergence, it is sym-
metric, presumably a desirable property in this set-
ting, since synonymy is a symmetric relation, and
our test design exploits this symmetry.

However,

9
�SR-� �;7<4=8�� , the Hellinger distance3 , is

also symmetric and robust to small or zero esti-
mates. To our knowledge, the Hellinger distance
has not previously been assessed as a measure of
lexical similarity. We experimented with both the
Hellinger distance and Jensen-Shannon (JS) diver-
gence, and obtained close scores across a wide range
of parameter settings, with the Hellinger yielding a
slightly better top score. We report results only for
the Hellinger distance below. As will be seen, nei-
ther the Hellinger nor the JS divergence are optimal
for this task.

In pursuit of synonymy, Ehlert (2003) derives a
formula for the probability of the target word given
a response word:��� � � � � � �G@ � ��T�U � #WV ���YX T�U �) V �Z�YX T�U �Z�[XT�U �) X (2)@ ��� ����� ��� T�U �Z� V � # X T�U �Z� V �) XT�U �Z�[X (3)

The second line, which fits more conveniently into
our framework, follows from the first (Ehlert’s ex-
pression) through an application of Bayes Theo-
rem. While this measure falls outside the class of0 -divergences, our experiments confirm its relative
strength on synonymy tests.

It is possible to unify the 0 -divergences with
Ehlert’s expression by defining a broader class of
measures:

9 : � \ �] �;7<4=8��G@^5�� I � � B
]� 7 :�
8 \� (4)

where � � is the marginal probability of a single con-
text, and 7 � and 8 � are its respective word-conditional
probabilities. Since, in the context of a given ques-
tion, ��� ����� does not change, maximizing the ex-
pression in Equation 3 is the same as minimizing

9
� �_� �_� .

9 : � U �&B : X � D recovers the 0 divergences up to
a constant multiple, and

9
� �_� � D provides the comple-

ment of the familiar inner-product measure.
3Actually, ` #[aS)�b_cCd3e f is four times the square of the

Hellinger distance.

28

4 Evaluation

We experimented with various distance measures
and context policies using the full North American
News corpus. We count approximately one billion
words in this corpus, which is roughly four times
the size of the largest corpus considered by Ehlert.

Except where noted, the numbers reported here
are the result of taking the full WBST, a total of
23,570 test questions. Given this number of ques-
tions, scores where most of the results fall are accu-
rate to within plus or minus 0.6% at the 95% confi-
dence level.

4.1 Performance Bounds

In order to provide a point of comparison, the pa-
per’s authors each answered the same random sam-
ple of 100 questions from each part of speech. Aver-
age performance over this sample was 88.4%. The
one non-native speaker scored 80.3%. As will be
seen, this is better than the best automated result.

The expected score, in the absence of any seman-
tic information, is 25%. However, as noted, target
and answer words are more polysemous than decoy
words on average, and this can be exploited to es-
tablish a higher baseline. Since the frequency of
a word is correlated with its polysemy, a strategy
which always selects the most frequent word among
the response words yields 39.2%, 34.5%, 29.1%,
and 38.0% on nouns, verbs, adjectives, and adverbs,
respectively, for an average score of 35.2%.

4.2 An Initial Comparison

Table 2 displays a basic comparison of the distance
measures and context definitions enumerated so far.
For each distance measure (Manhattan, Euclidean,
Cosine, Hellinger, and Ehlert), results are shown for
window sizes 1 to 4 (columns). Results are further
sub-divided according to whether strict direction and
distance are false (None), only strict direction is true
(Dir), or both strict direction and strict distance are
true (Dir+Dist). In bold is the best score, along with
any scores indistinguishable from it at the 95% con-
fidence level.

Notable in Table 2 are the somewhat depressed
scores, compared with those reported for the
TOEFL. Ehlert reports a best score on the TOEFL
of 82%, whereas the best we are able to achieve on

Window Size
1 2 3 4

None 54.2 58.8 60.4 60.6
Manh Dir 54.3 58.5 60.3 60.8

Dir+Dist – 57.3 58.8 58.9

None 42.9 45.3 46.6 47.6
Euc Dir 43.2 45.7 46.8 47.6

Dir+Dist – 44.9 45.3 45.6

None 44.9 46.7 47.6 48.3
Cos Dir 46.2 48.0 48.6 49.2

Dir+Dist – 48.0 48.4 48.5

None 57.9 62.3 62.2 61.0
Hell Dir 57.2 62.6 63.3 61.8

Dir+Dist – 61.2 61.7 61.1

None 64.0 66.2 66.2 65.7
Ehl Dir 63.9 66.9 67.6 67.1

Dir+Dist – 66.4 67.2 67.5

Table 2: Accuracy on the WBST: an initial compar-
ison of distance measures and context definitions.

the WBST is 67.6%. Although there are differences
in some of the experimental details (Ehlert employs
a triangular window weighting and experiments with
stemming), these probably do not account for the
discrepancy. Rather, this appears to be a harder test
than the TOEFL—despite the fact that all words in-
volved are seen with high frequency.

It is hard to escape the conclusion that, in pursuit
of high scores, choice of distance measure is more
critical than the specific definition of context. All
scores returned by the Ehlert metric are significantly
higher than any returned by other distance measures.
Among the Ehlert scores, there is surprising lack of
sensitivity to context policy, given a window of size
2 or larger.

Although the Hellinger distance yields scores
only in the middle of the pack, it might be that other
divergences from the 0 -divergence family, such as
the KL-divergence, would yield better scores. We
experimented with various settings of 0 in Equa-
tion 1. In all cases, we observed bell-shaped curves
with peaks approximately at 0P@ 2 �

�
and locally

worst performance with values at or near 0 or 1. This
held true when we used maximum likelihood esti-
mates, or under a simple smoothing regime in which

29

all cells of the co-occurrence matrix were initialized
with various fixed values. It is possible that numeri-
cal issues are nevertheless partly responsible for the
poor showing of the KL-divergence. However, given
the symmetry of the synonymy relation, it would be
surprising if some value of 0 far from 0.5 was ulti-
mately shown to be best.

4.3 The Importance of Weighting

The Ehlert measure and the cosine are closely
related—both involve an inner product between
vectors—yet they return very different scores in Ta-
ble 2. There are two differences between these meth-
ods, normalization and vector element weighting.
We presume that normalization does not account for
the large score difference, and attribute the discrep-
ancy, and the general strength of the Ehlert measure,
to importance weighting.

In information retrieval, it is common to take the
cosine between vectors where vector elements are
not raw frequency counts, but counts weighted using
some version of the “inverse document frequency”
(IDF). We ran the cosine experiment again, this
time weighting the count of context � by ����� �

9
��� � � ,

where

9
is the number of rows in the count matrix

� and
� � is the number of rows containing a non-

zero count for context � . The results confirmed our
expectation. The performance of “CosineIDF” for a
window size of 3 with strict direction was 64.0%,
which is better than Hellinger but worse than the
Ehlert measure. This was the best result returned
for “CosineIDF.”

4.4 Optimizing Distance Measures

Both the Hellinger distance and the Ehlert measure
are members of the family of measures defined by
Equation 4. Although there are theoretical reasons
to prefer each to neighboring members of the same
family (see the discussion following Equation 1),
we undertook to validate this preference empirically.
We conducted parameter sweeps of 	 , 0 , and
 , first
exploring members of the family 0 @�
 , of which
both Hellinger and Ehlert are members. Specifically,
we explored the space between 0 @�
 @ 2 �

�
and0 @

	@ 5 , first in increments of 0.1, then in incre-

ments of 0.01 around the approximate maximum, in
all cases varying 	 widely.

This experiment clearly favored a region midway

Noun Verb Adj Adv All
Ehlert 71.6 57.2 73.4 72.5 67.6
Optimal 75.8 63.8 76.4 76.6 72.2

Table 3: Comparison between the Ehlert measure
and the “optimal” point in the space of measures de-
fined by Equation 4 (0 @�
 @ 2 ��� �

, 	 @ 5 � 5), by
part of speech. Context policy is window size 3 with
strict direction.

between the Hellinger and Ehlert measures. We
identified 0 @�
P@ 2 ��� �

, with 	 @ 5 � 5 as the ap-
proximate midpoint of this optimal region. We next
varied 0 and
 independently around this point. This
resulted in no improvement to the score, confirming
our expectation that some point along 0 @�
 would
be best. For the sake of brevity, we will refer to this
best point (

9 D�� ��� � D�� ��� �_� � �) as the “Optimal” measure.
As Table 3 indicates, this measure is significantly
better than the Ehlert measure, or any other measure
investigated here.

This clear separation between Ehlert and Opti-
mal does not hold for the original TOEFL. Using
the same context policy, we applied these measures
to 298 of the 300 questions used by Ehlert (all
questions except those involving multi-word terms,
which our framework does not currently support).
Optimal returns 84.2%, while Ehlert’s measure re-
turns 83.6%, which is slightly better than the 82%
reported by Ehlert. The two results are not distin-
guishable with any statistical significance.

Interesting in Table 3 is the range of scores seen
across parts of speech. The variation is even wider
under other measures, the usual ordering among
parts of speech being (from highest to lowest) ad-
verb, adjective, noun, verb. In Section 4.6, we at-
tempt to shed some light on both this ordering and
the close outcome we observe on the TOEFL.

4.5 Optimizing Context Policy

It is certain that not every contextual token seen
within the co-occurrence window is equally impor-
tant to the detection of synonymy, and probable that
some such tokens are useless or even detrimental.
On the one hand, the many low-frequency events in
the tails of the context distributions consume a lot
of space, perhaps without contributing much infor-

30

mation. On the other, very-high-frequency terms are
typically closed-class and stop words, possibly too
common to be useful in making semantic distinc-
tions. We investigated excluding words at both ends
of the frequency spectrum.

We experimented with two kinds of exclusion
policies: one excluding the � most frequent terms,
for � ranging between 10 and 200; and one ex-
cluding terms occurring fewer than � times, for �
ranging from 3 up to 100. Both Ehlert and Opti-
mal were largely invariant across all settings; no sta-
tistically significant improvements or degradations
were observed. Optimal returned scores ranging
from 72.0%, when contexts with marginal frequency
fewer than 100 were ignored, up to 72.6%, when the
200 most frequent terms were excluded.

Note there is a large qualitative difference be-
tween the two exclusion procedures. Whereas
we exclude only at most 200 words in the high-
frequency experiment, the number of terms ex-
cluded in the low-frequency experiment ranges
from 939,496 (less than minimum frequency 3) to
1,534,427 (minimum frequency 100), out of a vo-
cabulary containing about 1.6 million terms. Thus, it
is possible to reduce the expense of corpus analysis
substantially without sacrificing semantic fidelity.

4.6 Polysemy

We hypothesized that the variation in scores across
part of speech has to do with the average number of
senses seen in a test set. Common verbs, for exam-
ple, tend to be much more polysemous (and syntac-
tically ambiguous) than common adverbs. WordNet
allows us to test this hypothesis.

We define the polysemy level of a question as the
sum of the number of senses in WordNet of its tar-
get and answer words. Polysemy levels in our ques-
tion set range from 2 up to 116. Calculating the
average polysemy level for questions in the various
parts of speech—5.1, 6.7, 7.5, and 10.4, for adverbs,
adjectives, nouns, and verbs, respectively—provides
support for our hypothesis, inasmuch as this order-
ing aligns with test scores. By contrast, the average
polysemy level in the TOEFL, which spans all four
parts of speech, is 4.6.

Plotting performance against polysemy level
helps explain why Ehlert and Optimal return roughly
equivalent performance on the original TOEFL. Fig-

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

S
co

re

Polysemy

Optimal
Ehlert

Figure 1: Score as a function of polysemy level.

ure 1 plots the Ehlert and Optimal measures as a
function of the polysemy level of the questions. To
produce this plot, we grouped questions according
to polysemy level, creating many smaller tests, and
scored each measure on each test separately.

At low polysemy levels, the Ehlert and Optimal
measures perform equally well. The advantage of
Optimal over Ehlert appears to lie specifically in its
relative strength in handling polysemous terms.

5 Discussion

Specific conclusions regarding the “Optimal” mea-
sure are problematic. We do not know whether
or to what extent this particular parameter setting
is universally best, best only for English, best for
newswire English, or best only for the specific test
we have devised. We have restricted our attention
to a relatively small space of similarity measures,
excluding many previously proposed measures of
lexical affinity (but see Weeds, et al (2004), and
Lee (1999) for some empirical comparisons). Lee
observed that measures from the space of invari-
ant divergences (particularly the JS and skew diver-
gences) perform at least as well as any of a wide
variety of alternatives. As noted, we experimented
with the JS divergence and observed accuracies that
tracked those of the Hellinger closely. This provides
a point of comparison with the measures investi-
gated by Lee, and recommends both Ehlert’s mea-
sure and what we have called “Optimal” as credible,
perhaps superior alternatives. More generally, our
results argue for some form of feature importance

31

weighting.
Empirically, the strength of Optimal on the

WBST is a feature of its robustness in the presence
of polysemy. Both Ehlert and Optimal are expressed
as a sum of ratios, in which the numerator is a prod-
uct of some function of conditional context prob-
abilities, and the denominator is some function of
the marginal probability. The Optimal exponents on
both the numerator and denominator have the effect
of advantaging lower-probability events, relative to
Ehlert. In our test, WordNet senses are sampled uni-
formly at random. Perhaps its emphasis on lower
probability events allows Optimal to sacrifice some
fidelity on high-frequency senses in exchange for in-
creased sensitivity to low-frequency ones.

It is clear, however, that polysemy is a critical
hurdle confronting distributional approaches to lex-
ical semantics. Figure 1 shows that, in the absence
of polysemy, distributional comparisons detect syn-
onymy quite well. Much of the human advantage
over machines on this task may be attributed to an
awareness of polysemy. In order to achieve perfor-
mance comparable to that of humans, therefore, it
is probably not enough to optimize context policies
or to rely on larger collections of text. Instead, we
require strategies for detecting and resolving latent
word senses.

Pantel and Lin (2002) propose one such method,
evaluated by finding the degree of overlap between
sense clusters and synsets in WordNet. The above
considerations suggest that a possibly more perti-
nent test of such approaches is to evaluate their util-
ity in the detection of semantic similarity between
specific polysemous terms. We expect to undertake
such an evaluation in future work.

Acknowledgments. This material is based on
work funded in whole or in part by the U.S. Govern-
ment. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those
of the authors, and do not necessarily reflect the
views of the U.S. Government.

References

I. Csiszár. 1975. I-divergence geometry of probability
distributions and minimization problems. Annals of
Probability, 3:146–158.

B. Ehlert. 2003. Making accurate lexical semantic sim-

ilarity judgments using word-context co-occurrence
statistics. Master’s thesis, University of California,
San Diego.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. The MIT Press.

Z. Harris. 1968. Mathematical Structures of Language.
Interscience Publishers, New York.

T.K. Landauer and S.T. Dumais. 1997. A solution to
Plato’s problem: The latent semantic analysis theory
of acquisition, induction and representation of knowl-
edge. Psychological Review, 104(2):211–240.

L. Lee. 1999. Measures of distributional similarity. In
Proceedings of the 37th ACL.

D. Lin. 1997. Using syntactic dependency as local con-
text to resolve word sense ambiguity. In Proceedings
of ACL-97, Madrid, Spain.

D. Lin. 1998. Automatic retrieval and clustering of sim-
ilar words. In Proceedings of COLING-ACL98, Mon-
treal, Canada.

P. Pantel and D. Lin. 2002. Discovering word senses
from text. In Proceedings of KDD-02, Edmonton,
Canada.

M. Sahlgren. 2001. Vector-based semantic analysis: rep-
resenting word meanings based on random labels. In
Semantic Knowledge Acquisition and Categorisation
Workshop, ESSLLI 2001, Helsinki, Finland.

E. Terra and C.L.A. Clarke. 2003. Frequency estimates
for statistical word similarity measures. In Proceed-
ings of HLT/NAACL 2003, Edmonton, Canada.

P.D. Turney, M.L. Littman, J. Bigham, and V. Schnay-
der. 2003. Combining independent modules to solve
multiple-choice synonym and analogy problems. In
Proceedings of the International Conference on Recent
Advances in Natural Language Processing.

P.D. Turney. 2001. Mining the web for synonyms: PMI-
IR versus LSA on TOEFL. In Proceedings of the 12th
European Conference on Machine Learning (ECML-
01).

J. Weeds, D. Weir, and D. McCarthy. 2004. Character-
ising measures of lexical distributional similarity. In
Proceedings of CoLing 2004, Geneva, Switzerland.

H. Zhu and R. Rohwer. 1998. Information geometry,
Bayesian inference, ideal estimates, and error decom-
position. Technical Report 98-06-045, Santa Fe Insti-
tute.

32

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 33–39, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Abstract

Traditionally, word sense disambiguation
(WSD) involves a different context classifi-
cation model for each individual word. This
paper presents a weakly supervised learning
approach to WSD based on learning a word
independent context pair classification
model. Statistical models are not trained for
classifying the word contexts, but for classi-
fying a pair of contexts, i.e. determining if a
pair of contexts of the same ambiguous word
refers to the same or different senses. Using
this approach, annotated corpus of a target
word A can be explored to disambiguate
senses of a different word B. Hence, only a
limited amount of existing annotated corpus
is required in order to disambiguate the entire
vocabulary. In this research, maximum en-
tropy modeling is used to train the word in-
dependent context pair classification model.
Then based on the context pair classification
results, clustering is performed on word men-
tions extracted from a large raw corpus. The
resulting context clusters are mapped onto
the external thesaurus WordNet. This ap-
proach shows great flexibility to efficiently
integrate heterogeneous knowledge sources,
e.g. trigger words and parsing structures.
Based on Senseval-3 Lexical Sample stan-
dards, this approach achieves state-of-the-art
performance in the unsupervised learning
category, and performs comparably with the
supervised Naïve Bayes system.

1 Introduction

Word Sense Disambiguation (WSD) is one of the
central problems in Natural Language Processing.

The difficulty of this task lies in the fact that con-
text features and the corresponding statistical dis-
tribution are different for each individual word.
Traditionally, WSD involves training the context
classification models for each ambiguous word.
(Gale et al. 1992) uses the Naïve Bayes method for
context classification which requires a manually
annotated corpus for each ambiguous word. This
causes a serious Knowledge Bottleneck. The bot-
tleneck is particularly serious when considering the
domain dependency of word senses. To overcome
the Knowledge Bottleneck, unsupervised or weakly
supervised learning approaches have been pro-
posed. These include the bootstrapping approach
(Yarowsky 1995) and the context clustering ap-
proach (Schütze 1998).

The above unsupervised or weakly supervised
learning approaches are less subject to the Knowl-
edge Bottleneck. For example, (Yarowsky 1995)
only requires sense number and a few seeds for
each sense of an ambiguous word (hereafter called
keyword). (Schütze 1998) may only need minimal
annotation to map the resulting context clusters
onto external thesaurus for benchmarking and ap-
plication-related purposes. Both methods are based
on trigger words only.

This paper presents a novel approach based on
learning word-independent context pair classifica-
tion model. This idea may be traced back to
(Schütze 1998) where context clusters based on
generic Euclidean distance are regarded as distinct
word senses. Different from (Schütze 1998), we
observe that generic context clusters may not al-
ways correspond to distinct word senses. There-
fore, we used supervised machine learning to
model the relationships between the context dis-
tinctness and the sense distinctness.

Although supervised machine learning is used
for the context pair classification model, our over-
all system belongs to the weakly supervised cate-
gory because the learned context pair classification

Word Independent Context Pair Classification Model for Word
Sense Disambiguation

Cheng Niu, Wei Li, Rohini K. Srihari, and Huifeng Li

Cymfony Inc.
600 Essjay Road, Williamsville, NY 14221, USA.

{cniu, wei, rohini,hli}@cymfony.com

33

model is independent of the keyword for disam-
biguation. Our system does not need human-
annotated instances for each target ambiguous
word. The weak supervision is performed by using
a limited amount of existing annotated corpus
which does not need to include the target word set.

The insight is that the correlation regularity be-
tween the sense distinction and the context distinc-
tion can be captured at Part-of-Speech category
level, independent of individual words or word
senses. Since context determines the sense of a
word, a reasonable hypothesis is that there is some
mechanism in the human comprehension process
that will decide when two contexts are similar (or
dissimilar) enough to trigger our interpretation of a
word in the contexts as one meaning (or as two
different meanings). We can model this mecha-
nism by capturing the sense distinction regularity
at category level.

In the light of this, a maximum entropy model is
trained to determine if a pair of contexts of the
same keyword refers to the same or different word
senses. The maximum entropy modeling is based
on heterogeneous context features that involve
both trigger words and parsing structures. To en-
sure the resulting model’s independency of indi-
vidual words, the keywords used in training are
different from the keywords used in benchmarking.
For any target keyword, a collection of contexts is
retrieved from a large raw document pool. Context
clustering is performed to derive the optimal con-
text clusters which globally fit the local context
pair classification results. Here statistical annealing
is used for its optimal performance. In benchmark-
ing, a mapping procedure is required to correlate
the context clusters with external ontology senses.

In what follows, Section 2 formulates the maxi-
mum entropy model for context pair classification.
The context clustering algorithm, including the
object function of the clustering and the statistical
annealing-based optimization, is described in Sec-
tion 3. Section 4 presents and discusses bench-
marks, followed by conclusion in Section 5.

2 Maximum Entropy Modeling for Con-
text Pair Classification

Given n mentions of a keyword, we first introduce
the following symbols. iC refers to the i -th con-
text. iS refers to the sense of the i -th context.

jiCS , refers to the context similarity between the
i -th context and the j -th context, which is a subset
of the predefined context similarity features. αf
refers to the α -th predefined context similarity
feature. So jiCS , takes the form of { }αf .

In this section, we study the context pair classi-
fication task, i.e. given a pair of contexts iC and

jC of the same target word, are they referring to
the same sense? This task is formulated as compar-
ing the following conditional probabilities:

()jiji CSSS ,Pr = and ()jiji CSSS ,Pr ≠ . Unlike
traditional context classification for WSD where
statistical model is trained for each individual
word, our context pair classification model is
trained for each Part-of-speech (POS) category.
The reason for choosing POS as the appropriate
category for learning the context similarity is that
the parsing structures, hence the context represen-
tation, are different for different POS categories.

The training corpora are constructed using the
Senseval-2 English Lexical Sample training cor-
pus. To ensure the resulting model’s independency
of individual words, the target words used for
benchmarking (which will be the ambiguous words
used in Senseval-3 English Lexicon Sample task)
are carefully removed in the corpus construction
process. For each POS category, positive and nega-
tive instances are constructed as follows.

Positive instances are constructed using context
pairs referring to the same sense of a word. Nega-
tive instances are constructed using context pairs
that refer to different senses of a word.

For each POS category, we have constructed
about 36,000 instances, half positive and half nega-
tive. The instances are represented as pairwise con-
text similarities, taking the form of { }αf .

Before presenting the context similarity features
we used, we first introduce the two categories of
the involved context features:

i) Co-occurring trigger words within a prede-

fined window size equal to 50 words to both
sides of the keyword. The trigger words are
learned from a TIPSTER document pool con-
taining ~170 million words of AP and WSJ
news articles. Following (Schütze 1998), χ2 is
used to measure the cohesion between the
keyword and a co-occurring word. In our ex-

34

periment, all the words are first sorted based
on its χ2 with the keyword, and then the top
2,000 words are selected as trigger words.

ii) Parsing relationships associated with the

keyword automatically decoded by a broad-
coverage parser, with F-measure (i.e. the pre-
cision-recall combined score) at about 85%
(reference temporarily omitted for the sake of
blind review). The logical dependency rela-
tionships being utilized are listed below.

Noun: subject-of,

object-of,
complement-of,
has-adjective-modifier,
has-noun-modifier,
modifier-of,
possess,
 possessed-by,
appositive-of

Verb: has-subject,

has-object,
 has-complement,
has-adverb-modifier,
has-prepositional-phrase-modifier

Adjective: modifier-of,

has-adverb-modifier

Based on the above context features, the follow-

ing three categories of context similarity features
are defined:

(1) VSM-based (Vector Space Model based)
trigger word similarity: the trigger words
around the keyword are represented as a vec-
tor, and the word i in context j is weighted as
follows:

)(
log*),(),(

idf
Djitfjiweight =

where),(jitf is the frequency of word i in
the j-th context; D is the number of docu-
ments in the pool; and)(idf is the number of
documents containing the word i. D and

)(idf are estimated using the document pool
introduced above. The cosine of the angle be-
tween two resulting vectors is used as the
context similarity measure.

(2) LSA-based (Latent Semantic Analysis based)

trigger word similarity: LSA (Deerwester et
al. 1990) is a technique used to uncover the
underlying semantics based on co-occurrence
data. The first step of LSA is to construct
word-vs.-document co-occurrence matrix.
Then singular value decomposition (SVD) is
performed on this co-occurring matrix. The
key idea of LSA is to reduce noise or insig-
nificant association patterns by filtering the
insignificant components uncovered by SVD.
This is done by keeping only the top k singu-
lar values. By using the resulting word-vs.-
document co-occurrence matrix after the fil-
tering, each word can be represented as a vec-
tor in the semantic space.

In our experiment, we constructed the original
word-vs.-document co-occurring matrix as
follows: 100,000 documents from the
TIPSTER corpus were used to construct the
co-occurring matrix. We processed these
documents using our POS tagger, and se-
lected the top n most frequently mentioned
words from each POS category as base
words:

top 20,000 common nouns
top 40,000 proper names
top 10,000 verbs
top 10,000 adjectives
top 2,000 adverbs

In performing SVD, we set k (i.e. the number
of nonzero singular values) as 200, following
the practice reported in (Deerwester et al.
1990) and (Landauer & Dumais, 1997).

Using the LSA scheme described above, each
word is represented as a vector in the seman-
tic space. The co-occurring trigger words are
represented as a vector summation. Then the
cosine of the angle between the two resulting
vector summations is computed, and used as
the context similarity measure.

(3) LSA-based parsing relationship similarity:

each relationship is in the form of)(wRα .
Using LSA, each word w is represented as a

35

semantic vector ()wV . The similarity between
)(1wRα and)(2wRα is represented as the co-

sine of the angle between ()1wV and ()2wV .
Two special values are assigned to two excep-
tional cases: (i) when no relationship αR is
decoded in both contexts; (ii) when the rela-
tionship αR is decoded only for one context.

In matching parsing relationships in a context

pair, if only exact node match counts, very few
cases can be covered, hence significantly reducing
the effect of the parser in this task. To solve this
problem, LSA is used as a type of synonym expan-
sion in matching. For example, using LSA, the
following word similarity values are generated:

similarity(good, good) 1.00
similarity(good, pretty) 0.79
similarity(good, great) 0.72
……

Given a context pair of a noun keyword, suppose
the first context involves a relationship has-
adjective-modifier whose value is good, and the
second context involves the same relationship has-
adjective-modifier with the value pretty, then the
system assigns 0.79 as the similarity value for this
relationship pair.

To facilitate the maximum entropy modeling in
the later stage, all the three categories of the result-
ing similarity values are discretized into 10 inte-
gers. Now the pairwise context similarity is
represented as a set of similarity features, e.g.

{VSM-Trigger-Words-Similairty-equal-to-2,
 LSA-Trigger-Words-Similarity-equal-to-1,
 LSA-Subject-Similarity-equal-to-2}.

In addition to the three categories of basic con-

text similarity features defined above, we also de-
fine induced context similarity features by
combining basic context similarity features using
the logical and operator. With induced features, the
context similarity vector in the previous example is
represented as

{VSM-Trigger-Word-Similairty-equal-to-2,
 LSA- Trigger-Word-Similarity-equal-to-1,
 LSA-Subject-Similarity-equal-to-2,
 [VSM-Similairty-equal-to-2 and
 LSA-Trigger-Word-Similarity-equal-to-1],
 [VSM-Similairty-equal-to-2 and
 LSA-Subject-Similarity-equal-to-2],
 ………
 [VSM-Trigger-Word-Similairty-equal-to-2
and LSA-Trigger-Word-Similarity-equal-to-1
and LSA-Subject-Similarity-equal-to-2]
}

The induced features provide direct and fine-

grained information, but suffer from less sampling
space. Combining basic features and induced fea-
tures under a smoothing scheme, maximum en-
tropy modeling may achieve optimal performance.

Using the context similarity features defined
above, the training corpora for the context pair
classification model is in the following format:

Instance_0 tag=”positive” {VSM-Trigger-Word-

Similairty-equal-to-2, …}
Instance_1 tag=”negative” {VSM-Trigger-Word-

Similairty-equal-to-0, …}
……………
where positive tag denotes a context pair associ-

ated with same sense, and negative tag denotes a
context pair associated with different senses.

The maximum entropy modeling is used to com-

pute the conditional probabilities
()jiji CSSS ,Pr = and ()jiji CSSS ,Pr ≠ : once the

context pair jiCS , is represented as }{ αf , the con-
ditional probability is given as

()
{ }

∏
∈

=
α

α
ff

ftw
Z

ft ,
1}{Pr (1)

where { }jiji SSSSt ≠=∈ , , Z is the normaliza-

tion factor, ftw , is the weight associated with tag t
and feature f . Using the training corpora con-
structed above, the weights can be computed based
on Iterative Scaling algorithm (Pietra etc. 1995)
The exponential prior smoothing scheme (Good-
man 2003) is adopted in the training.

36

3 Context Clustering based on Context
Pair Classification Results

Given n mentions { }iC of a keyword, we use the
following context clustering scheme. The discov-
ered context clusters correspond to distinct word
senses.

For any given context pair, the context similarity
features defined in Section 2 are computed. With n

mentions of the same keyword,
2

)1(−nn context

similarities [] [)()ijniCS ji ,1,,1 , ∈∈ are computed.
Using the context pair classification model, each
pair is associated with two scores

()()jijiji CSSSsc ,
0
, Prlog == and

()()jijiji CSSSsc ,
1
, Prlog == which correspond to

the probabilities of two situations: the pair refers to
the same or different word senses.

Now we introduce the symbol { }MK , which re-
fers to the final context cluster configuration,
where K refers to the number of distinct sense, and
M represents the many-to-one mapping (from con-
texts to a sense) such that

() K]. [1,j n],[1,i j,iM ∈∈= Based on the pairwise
scores { } 0

, jisc and { } 1
, jisc , WSD is formulated as

searching for { }MK , which maximizes the follow-
ing global scores:

{ }() ()

[]
[)

 MK,c

,1
,n1,i

,
,�

∈
∈

=

ij

jik
jiscs (2)

where () () ()
�
�
� =

=
otherwise

jMiMif
jik

 ,1
 ,0

,

Similar clustering scheme has been used success-
fully for the task of co-reference in (Luo etc.
2004), (Zelenko, Aone and Tibbetts, 2004a) and
(Zelenko, Aone and Tibbetts, 2004b).

In this paper, statistical annealing-based optimi-
zation (Neal 1993) is used to search for { }MK ,
which maximizes Expression (2).

The optimization process consists of two steps.
First, an intermediate solution { } 0, MK is com-
puted by a greedy algorithm. Then by setting
{ } 0, MK as the initial state, statistical annealing is

applied to search for the global optimal solution.
The optimization algorithm is as follows.

1. Set the initial state { }MK , as nK = , and
[]n1,i ,)(∈= iiM ;

2. Select a cluster pair for merging that
maximally increases

{ }() ()

[]
[)

 MK,c

,1
,n1,i

,
,�

∈
∈

=

ij

jik
jiscs

3. If no cluster pair can be merged to in-
crease { }() ()

[]
[)

 MK,c

,1
,n1,i

,
,�

∈
∈

=

ij

jik
jiscs , output

{ }MK , as the intermediate solution;
otherwise, update { }MK , by the merge
and go to step 2.

Using the intermediate solution { } 0, MK of the

greedy algorithm as the initial state, the statistical
annealing is implemented using the following
pseudo-code:
 Set { } { } 0,, MKMK = ;
 for(1.01β*;ββ ;ββ final0 =<=)

{
 iterate pre-defined number of times
 {

 set { } { }MKMK ,, 1 = ;
 update { } 1, MK by randomly changing

cluster number and cluster contents;

 set
{ }()
{ }()MK,c

MK,c 1

s
s

x =

 if(x>=1)
 {
 set { } { } 1,, MKMK =
 }
 else
 {
 set { } { } 1,, MKMK = with probability
 βx .
 }
 if { }() { }()0MK,cMK,c ss >
 then set { } { }MKMK ,, 0 =
 }
 }
 output { } 0, MK as the optimal state.

37

4 Benchmarking

Corpus-driven context clusters need to map to a
word sense standard to facilitate performance
benchmark. Using Senseval-3 evaluation stan-
dards, we implemented the following procedure to
map the context clusters:

i) Process TIPSTER corpus and the origi-
nal unlabeled Senseval-3 corpora (in-
cluding the training corpus and the
testing corpus) by our parser, and save
all the parsing results into a repository.

ii) For each keyword, all related contexts in

Senseval-3 corpora and up-to-1,000 re-
lated contexts in TIPSTER corpus are
retrieved from the repository.

iii) All the retrieved contexts are clustered

based on the context clustering algo-
rithm presented in Sect. 2 and 3.

iv) For each keyword sense, three annotated

contexts from Senseval-3 training cor-
pus are used for the sense mapping. The
context cluster is mapped onto the most
frequent word sense associated with the
cluster members. By design, the context
clusters correspond to distinct senses,
therefore, we do not allow multiple con-
text clusters to be mapped onto one
sense. In case multiple clusters corre-
spond to one sense, only the largest
cluster is retained.

v) Each context in the testing corpus is

tagged with the sense to which its con-
text cluster corresponds to.

As mentioned above, Sensval-2 English lexical

sample training corpora is used to train the context
pair classification model. And Sensval-3 English
lexical sample testing corpora is used here for
benchmarking. There are several keyword occur-
ring in both Senseval-2 and Senseval-3 corpora.
The sense tags associated with these keywords are
not used in the context pair classification training
process.

In order to gauge the performance of this new
weakly supervised learning algorithm, we have

also implemented a supervised Naïve Bayes sys-
tem following (Gale et al. 1992). This system is
trained based on the Senseval-3 English Lexical
Sample training corpus. In addition, for the pur-
pose of quantifying the contribution from the pars-
ing structures in WSD, we have run our new
system with two configurations: (i) using only
trigger words; (ii) using both trigger words and
parsing relationships. All the benchmarking is per-
formed using the Senseval-3 English Lexical Sam-
ple testing corpus and standards.

The performance benchmarks for the two sys-
tems in three runs are shown in Table 1, Table 2
and Table 3. When using only trigger words, this
algorithm has 8 percentage degradation from the
supervised Naïve Bayes system (see Table 1 vs.
Table 2). When adding parsing structures, per-
formance degradation is reduced, with about 5 per-
centage drop (see Table 3 vs. Table 2). Comparing
Table 1 with Table 3, we observe about 3% en-
hancement due to the contribution from the parsing
support in WSD. The benchmark of our algorithm
using both trigger words and parsing relationships
is one of the best in unsupervised category of the
Senseval-3 Lexical Sample evaluation.

Table 1. New Algorithm Using Only Trigger Words
Accuracy

Category Fine grain (%) Coarse grain (%)
Adjective (5) 46.3 60.8

Noun (20) 54.6 62.8
Verb (32) 54.1 64.2
Overall 54.0 63.4

Table 2. Supervised Naïve Bayes System

Accuracy
Category Fine grain (%) Coarse grain (%)
Adjective (5) 44.7 56.6

Noun (20) 66.3 74.5
Verb (32) 58.6 70.0
Overall 61.6 71.5

Table 3. New Algorithm Using Both Trigger Words and

Parsing
Accuracy

Category Fine grain (%) Coarse grain (%)
Adjective (5) 49.1 64.8

Noun (20) 57.9 66.6
Verb (32) 55.3 66.3
Overall 56.3 66.4

38

It is noted that Naïve Bayes algorithm has many
variation, and its performance has been greatly
enhanced during recent research. Based on Sen-
seval-3 results, the best Naïve Bayse system out-
perform our version (which is implemented based
on Gale et al. 1992) by 8%~10%. So the best su-
pervised WSD systems output-perform our weakly
supervised WSD system by 13%~15% in accuracy.

5 Conclusion

We have presented a weakly supervised learning
approach to WSD. Statistical models are not
trained for the contexts of each individual word,
but for context pair classification. This approach
overcomes the knowledge bottleneck that chal-
lenges supervised WSD systems which need la-
beled data for each individual word. It captures the
correlation regularity between the sense distinction
and the context distinction at Part-of-Speech cate-
gory level, independent of individual words and
senses. Hence, it only requires a limited amount of
existing annotated corpus in order to disambiguate
the full target set of ambiguous words, in particu-
lar, the target words that do not appear in the train-
ing corpus.

The weakly supervised learning scheme can
combine trigger words and parsing structures in
supporting WSD. Using Senseval-3 English Lexi-
cal Sample benchmarking, this new approach
reaches one of the best scores in the unsupervised
category of English Lexical Sample evaluation.
This performance is close to the performance for
the supervised Naïve Bayes system.

In the future, we will implement a new scheme
to map context clusters onto WordNet senses by
exploring WordNet glosses and sample sentences.
Based on the new sense mapping scheme, we will
benchmark our system performance using Senseval
English all-words corpora.

References
Deerwester, S., S. T. Dumais, G. W. Furnas, T. K.

Landauer, and R. Harshman. 1990. Indexing by
Latent Semantic Analysis. In Journal of the
American Society of Information Science

Gale, W., K. Church, and D. Yarowsky. 1992. A
Method for Disambiguating Word Senses in a

Large Corpus. Computers and the Humanities,
26.

Goodman, J. 2003. Exponential Priors for Maxi-
mum Entropy Models. In Proceedings of HLT-
NAACL 2004.

Landauer, T. K., & Dumais, S. T. 1997. A solution
to Plato's problem: The Latent Semantic Analy-
sis theory of the acquisition, induction, and rep-
resentation of knowledge. Psychological
Review, 104, 211-240, 1997.

Luo, X., A. Ittycheriah, H. Jing, N. Kambhatla and
S. Roukos. A Mention-Synchronous Corefer-
ence Resolution Algorithm Based on the Bell
Tree. In The Proceedings of ACL 2004.

Neal, R.M. 1993. Probabilistic Inference Using
Markov Chain Monte Carlo Methods. Technical
Report, Univ. of Toronto.

Pietra, S. D., V. D. Pietra, and J. Lafferty. 1995.
Inducing Features Of Random Fields. In IEEE
Transactions on Pattern Analysis and Machine
Intelligence.

Schütze, H. 1998. Automatic Word Sense Disam-
biguation. Computational Linguistics, 23.

Yarowsky, D. 1995. Unsupervised Word Sense
Disambiguation Rivaling Supervised Methods.
In Proceedings of ACL 1995.

Zelenko, D., C. Aone and J. 2004. Tibbetts.
Coreference Resolution for Information Extrac-
tion. In Proceedings of ACL 2004 Workshop on
Reference Resolution and its Application.

Zelenko, D., C. Aone and J. 2004. Tibbetts. Binary
Integer Programming for Information Extrac-
tion. In Proceedings of ACE 2004 Evaluation
Workshop.

39

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 40–47, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Computing Word Similarity and Identifying Cognates
with Pair Hidden Markov Models

Wesley Mackay and Grzegorz Kondrak
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{wesleym,kondrak }@cs.ualberta.ca

Abstract

We present a system for computing sim-
ilarity between pairs of words. Our sys-
tem is based on Pair Hidden Markov Mod-
els, a variation on Hidden Markov Mod-
els that has been used successfully for the
alignment of biological sequences. The
parameters of the model are automatically
learned from training data that consists
of word pairs known to be similar. Our
tests focus on the identification of cog-
nates — words of common origin in re-
lated languages. The results show that our
system outperforms previously proposed
techniques.

1 Introduction

The computation of surface similarity between pairs
of words is an important task in many areas of nat-
ural language processing. In historical linguistics
phonetic similarity is one of the clues for identi-
fying cognates, that is, words that share a com-
mon origin (Oakes, 2000). In statistical machine
translation, cognates are helpful in inducing transla-
tion lexicons (Koehn and Knight, 2001; Mann and
Yarowsky, 2001), sentence alignment (Melamed,
1999), and word alignment (Tiedemann, 2003). In
dialectology, similarity is used for estimating dis-
tance between dialects (Nerbonne, 2003). Other
applications include cross-lingual information re-
trieval (Pirkola et al., 2003), detection of confusable
drug names (Kondrak and Dorr, 2004), and lexicog-
raphy (Brew and McKelvie, 1996).

Depending on the context, strong word similarity
may indicate either that words share a common ori-
gin (cognates), a common meaning (synonyms), or
are related in some way (e.g.spelling variants). In
this paper, we focus on cognates. Genetic cognates
are well-suited for testing measures of word simi-
larity because they arise by evolving from a single
word in a proto-language. Unlike rather indefinite
concepts like synonymy or confusability, cognation
is a binary notion, which in most cases can be reli-
ably determined.

Methods that are normally used for computing
word similarity can be divided into orthographic
and phonetic. The former includes string edit dis-
tance (Wagner and Fischer, 1974), longest common
subsequence ratio (Melamed, 1999), and measures
based on shared charactern-grams (Brew and Mc-
Kelvie, 1996). These usually employ a binary iden-
tity function on the level of character comparison.
The phonetic approaches, such as Soundex (Hall
and Dowling, 1980) and Editex (Zobel and Dart,
1996), attempt to take advantage of the phonetic
characteristics of individual characters in order to
estimate their similarity. All of the above meth-
ods are static, in the sense of having a fixed defi-
nition that leaves little room for adaptation to a spe-
cific context. In contrast, the methods proposed by
Tiedemann (1999) automatically construct weighted
string similarity measures on the basis of string seg-
mentation and bitext co-occurrence statistics.

We have created a system for determining word
similarity based on a Pair Hidden Markov Model.
The parameters of the model are automatically
learned from training data that consists of word

40

pairs that are known to be similar. The model
is trained using the Baum-Welch algorithm (Baum
et al., 1970). We examine several variants of the
model, which are characterized by different training
techniques, number of parameters, and word length
correction method. The models are tested on a cog-
nate recognition task across word lists representing
several Indo-European languages. The experiments
indicate that our system substantially outperforms
the most commonly used approaches.

The paper is organized as follows. Section 2 gives
a more detailed description of the problem of word
similarity. Section 3 contains an introduction to Pair
Hidden Markov Models, while section 4 describes
their adaptation to our domain. Sections 5 and 6 re-
port experimental set-up and results.

2 Word Similarity

Word similarity is, at its core, an alignment task. In
order to determine similarity between two words, we
look at the various alignments that can exist between
them. Each component of the alignment is assigned
a probability-based score by our trained model. The
scores are then combined to produce the overall sim-
ilarity score for any word pair, which can be used to
rank the word pairs against each other. Alternatively,
a discrete cut-off point can be selected in order to
separate pairs that show the required similarity from
the ones that do not.

Before we can align words, they must be sep-
arated into symbols. Typically, the symbols are
characters in the orthographic representation, and
phonemes in the phonetic representation. We also
need to put some restrictions on the possible align-
ments between these symbols. By adopting the fol-
lowing two assumptions, we are able to fully ex-
ploit the simplicity and efficiency of the Pair Hidden
Markov Model.

First, we assume that the basic ordering of sym-
bols remains the same between languages. This does
not mean that every symbol has a corresponding one
in the other language, but instead that word transfor-
mation comes from three basic operations:substitu-
tion, insertionanddeletion. Exceptions to this rule
certainly exist (e.g.metathesis), but are sufficiently
infrequent to make the benefits of this constraint far
outweigh the costs.

Second, we assume that each symbol is aligned
to at most one symbol in the other word. This as-
sumption is aimed at reducing the number of param-
eters that have to be learned from limited-size train-
ing data. If there is a many-to-one correspondence
that is consistent between languages, it would be
beneficial to change the word representation so that
the many symbols are considered as a single sym-
bol instead. For example, a group of characters in
the orthographic representation may correspond to a
single phoneme if the word is written phonetically.

3 Pair Hidden Markov Models

Hidden Markov Models have been applied success-
fully to a number of problems in natural language
processing, including speech recognition (Jelinek,
1999) and statistical machine translation (Och and
Ney, 2000). One of the more intangible aspects of
a Hidden Markov Model is the choice of the model
itself. While algorithms exist to train the parameters
of the model so that the model better describes its
data, there is no formulaic way to create the model.
We decided to adopt as a starting point a model de-
veloped in a different field of study.

Durbin et al. (1998) created a new type of Hid-
den Markov Model that has been used for the task
of aligning biological sequences (Figure 1). Called
a Pair Hidden Markov Model, it uses two output
streams in parallel, each corresponding to a se-
quence that is being aligned.1 The alignment model
has three states that represent the basic edit opera-
tions: substitution (represented by state “M”), inser-
tion (“Y”), and deletion (“X”). “M”, the match state,
emits an aligned pair of symbols (not necessarily
identical) with one symbol on the top and the other
on the bottom output stream. “X” and “Y”, thegap
states, output a symbol on only one stream against
a gap on the other. Each state has its own emission
probabilities representing the likelihood of produc-
ing a pairwise alignment of the type described by
the state. The model has three transition parame-
ters: δ, ε, andτ. In order to reduce the number of
parameters, there is no explicit start state. Rather,
the probability of starting in a given state is equal to

1Pair Hidden Markov Models have been used in the area of
natural language processing once before: Clark (2001) applied
PHMMs to the task of learning stochastic finite-state transduc-
ers for modeling morphological paradigms.

41

Figure 1: A Pair Hidden Markov Model for aligning
biological sequences.

the probability of going from the match state to the
given state.

Durbin et al. (1998) describe several different al-
gorithms that can be used to score and rank paired
biological sequences. Two of them are based on
common HMM algorithms. The Viterbi algorithm
uses the most probable path through the model to
score the pair. The forward algorithm computes the
total overall probability for a pair by summing up the
probabilities of every possible alignment between
the words. A third algorithm (thelog oddsalgo-
rithm) was designed to take into account how likely
the pair would be to occur randomly within the two
languages by considering a separately trainedran-
dom model(Figure 2) in conjunction with the sim-
ilarity model. In the random model, the sequences
are assumed to have no relationship to each other, so
there is no match state. The log odds algorithm cal-
culates a score for a pair of symbols by dividing the
probability of a genuine correspondence between a
pair of symbols (the similarity model) by the proba-
bility of them co-occurring by chance (the random
model). These individual scores are combined to
produce an overall score for the pair of sequences
in the same way as individual symbol probabilities
are combined in other algorithms.

4 PHMMs for Word Similarity

Because of the differences between biological se-
quence analysis and computing word similarity, the
bioinformatics model has to be adapted to handle the
latter task. In this section, we propose a number of
modifications to the original model and the corre-

Figure 2: The random Pair Hidden Markov Model.

sponding algorithms. The modified model is shown
in Figure 3.

First, the original model’s assumption that an in-
sertion followed by a deletion is the same as a sub-
stitution is problematic in the context of word simi-
larity. Covington (1998) illustrates the problem with
an example of Italian “due” and the Spanish “dos”,
both of which mean “two”. While there is no doubt
that the first two pairs of symbols should be aligned,
there is no historical connection between the Italian
“e” and the Spanish “s”. In this case, a sequence of
an insertion and a deletion is more appropriate than
a substitution. In order to remedy this problem, we
decided to a add a pair of transitions between states
“X” and “Y”, which is denoted byλ in Figure 3.

The second modification involves splitting the pa-
rameterτ into two separate values:τM for the match
state, andτXY for the gap states. The original biolog-
ical model keeps the probability for the transition to
the end state constant for all other states. For cog-
nates, and other word similarity tasks, it may be that
similar words are more or less likely to end in gaps
or matches. The modification preserves the symme-
try of the model while allowing it to capture how
likely a given operation is to occur at the end of an
alignment.

4.1 Algorithm Variations

We have investigated several algorithms for the
alignment and scoring of word pairs. Apart from
the standard Viterbi (abbreviatedVIT) and forward
(FOR) algorithms, we considered two variations of
the log odds algorithm, The original log odds al-
gorithm (LOG) functions much like a Viterbi algo-

42

Figure 3: A Pair Hidden Markov Model for aligning
words.

rithm, looking at only the most probable sequence
of states. We also created another variation, forward
log odds (FLO), which uses a forward approach in-
stead, considering the aggregate probability of all
possible paths through both models.

4.2 Model Variations

Apart from comparing the effectiveness of different
algorithms, we are also interested in establishing the
optimal structure of the underlying model. The sim-
ilarity model can be broken up into three sets of pa-
rameters: the match probabilities, the gap probabil-
ities, and the transition probabilities. Our goal is to
examine the relative contribution of various compo-
nents of the model, and to find out whether simplify-
ing the model affects the overall performance of the
system. Since the match probabilities constitute the
core of the model, we focus on the remaining emis-
sion and transition probabilities. We also investigate
the necessity of including an explicit end state in the
model.

The first variation concerns the issue of gap emis-
sion probabilities. For the log odds algorithm,
Durbin et al. (1998) allow the gap emission prob-
abilities of both the similarity and random models to
be equal. While this greatly simplifies the calcula-
tions and allows for the emphasis to be on matched
symbols, it might be more in spirit with the word
similarity task to keep the emissions of the two mod-
els separate. If we adopt such an approach, the simi-
larity model learns the gap emission probabilities us-
ing the forward-backward algorithm, just as is done
with the match probabilities, but the random model

uses letter frequencies from the training data instead.
A similar test of the effectiveness of trained gap pa-
rameters can be performed for the Viterbi and for-
ward algorithms by proceeding in the opposite direc-
tion. Instead of deriving the gap probabilities from
the training data (as in the original model), we can
set them to uniform values after training, thus mak-
ing the final scores depend primarily on matches.

The second variation removes the effect the tran-
sition parameters have on the final calculation. In the
resulting model, a transition probability from any
state to any state (except the end state) is constant,
effectively merging “X”, “Y”, and “M” into a sin-
gle state. One of the purposes of the separated states
was to allow for affine gap penalties, which is why
there are different transition parameters for going to
a gap state and for staying in that state. By making
the transitions constant, we are also taking away the
affine gap structure. As a third variant, we try both
the first and second variation combined.

The next variation concerns the effect of the end
state on the final score. Unlike in the alignment
of biological sequences, word alignment boundaries
are known beforehand, so an end state is not strictly
necessary. It is simple enough to remove the end
state from our model after the training has been com-
pleted. The remaining transition probability mass is
shifted to the transitions that lead to the match state.

Once the end state is removed, it is possible to
reduce the number of transition parameters to a sin-
gle one, by taking advantage of the symmetry be-
tween the insertion and deletion states. In the result-
ing model, the probability of entering a gap state is
equal to1−x

2 , wherex is the probability of a transi-
tion to the match state. Naturally, the log odds algo-
rithms also have a separate parameter for the random
model.

4.3 Correcting for Length

Another problem that needs to be addressed is the
bias introduced by the length of the words. The prin-
cipal objective of the bioinformatics model is the
optimal alignment of two sequences. In our case,
the alignment is a means to computing word simi-
larity. In fact, some of the algorithms (e.g. the for-
ward algorithm) do not yield an explicit best align-
ment. While the log odds algorithms have a built-in
length correction, the Viterbi and the forward do not.

43

These algorithms continually multiply probabilities
together every time they process a symbol (or a sym-
bol pair), which means that the overall probability of
an alignment strongly depends on word lengths. In
order to rectify this problem, we multiply the final
probability by 1

Cn , wheren is the length of the longer
word in the pair, andC is a constant. The value ofC
can be established on a held-out data set.2

4.4 Levenshtein with Learned Weights

Mann and Yarowsky (2001) investigated the induc-
tion of translation lexicons via bridge languages.
Their approach starts with a dictionary between two
well studied languages (e.g. English-Spanish). They
then use cognate pairs to induce abridge between
two strongly related languages (e.g. Spanish and
Italian), and from this create a smaller translation
dictionary between the remaining two languages
(e.g. English and Italian). They compared the per-
formances of several different cognate similarity (or
distance) measures, including one based on the Lev-
enshtein distance, one based on the stochastic trans-
ducers of Ristad and Yianilos (1998), and a varia-
tion of a Hidden Markov Model. Somewhat surpris-
ingly, the Hidden Markov Model falls well short of
the baseline Levenshtein distance.3

Mann and Yarowsky (2001) developed yet an-
other model, which outperformed all other simi-
larity measures. In the approach, which they call
“Levenshtein with learned weights”, the probabil-
ities of their stochastic transducer are transformed
into substitution weights for computing Levenshtein
distance: 0.5 for highly similar symbols, 0.75 for
weakly similar symbols, etc. We have endeavored to
emulate this approach (abbreviatedLLW) by con-
verting the log odds substitution scores calculated
from the fully trained model into the substitution
weights used by the authors.

2Another common method to correct for length is to take
thenth root of the final calculation, wheren is the length of the
longest word. However, our initial experiments indicated that
this method does not perform well on the word similarity task.

3The HMM model of (Mann and Yarowsky, 2001) is of dis-
tinctly different design than our PHMM model. For example,
the emission probabilities corresponding to the atomic edit op-
erations sum to one foreachalphabet symbol. In our model, the
emission probabilities for different symbols are interdependent.

5 Experimental Setup

We evaluated our word similarity system on the task
of the identification of cognates. The input consists
of pairs of words that have the same meaning in dis-
tinct languages. For each pair, the system produces a
score representing the likelihood that the words are
cognate. Ideally, the scores for true cognate pairs
should always be higher than scores assigned to un-
related pairs. For binary classification, a specific
score threshold could be applied, but we defer the
decision on the precision-recall trade-off to down-
stream applications. Instead, we order the candidate
pairs by their scores, and evaluate the ranking us-
ing 11-point interpolated average precision(Man-
ning and Schutze, 2001).

Word similarity is not always a perfect indicator
of cognation because it can also result from lexical
borrowing and random chance. It is also possible
that two words are cognates and yet exhibit little sur-
face similarity. Therefore, the upper bound for aver-
age precision is likely to be substantially lower than
100%.

5.1 Data

Training data for our cognate recognition model
comes from the Comparative Indoeuropean Data
Corpus (Dyen et al., 1992). The data contains
word lists of 200 basic meanings representing 95
speech varieties from the Indoeuropean family of
languages. Each word is represented in an ortho-
graphic form without diacritics using the 26 letters
of the Roman alphabet. All cognate pairs are also
identified in the data.

The development set4 consisted of two language
pairs: Italian and Serbo-Croatian, as well as Polish
and Russian. We chose these two language pairs
because they represent very different levels of re-
latedness: 25.3% and 73.5% of the word pairs are
cognates, respectively. The percentage of cognates
within the data is important, as it provides a sim-
ple baseline from which to compare the success of
our algorithms. If our cognate identification process

4Several parameters used in our experiments were deter-
mined during the development of the word similarity model.
These include the random model’s parameterη, the constant
transition probabilities in the simplified model, and the constant
C for correcting the length bias in the Viterbi and forward algo-
rithms. See (Mackay, 2004) for complete details.

44

were random, we would expect to get roughly these
percentages for our recognition precision (on aver-
age).

The test set consisted of five 200-word lists repre-
senting English, German, French, Latin, and Alba-
nian, compiled by Kessler (2001). The lists for these
languages were removed from the training data (ex-
cept Latin, which was not part of the training set), in
order to keep the testing and training data as sepa-
rate as possible.5 We converted the test data to have
the same orthographic representation as the training
data.

5.2 Significance tests

We performed pairwise statistical significance tests
for various model and algorithm combinations. Fol-
lowing the method proposed by Evert (2004), we
applied Fisher’s exact test to counts of word pairs
that are accepted by only one of the two tested al-
gorithms. For a given language pair, the cutoff level
was set equal to the actual number of cognate pairs
in the list. For example, since 118 out of 200 word
pairs in the English/German list are cognate, we con-
sidered the true and false positives among the set of
118 top scoring pairs. For the overall average of
a number of different language pairs, we took the
union of the individual sets. For the results in Ta-
bles 1 and 2, the pooled set contained 567 out of
2000 pairs, which corresponds to the proportion of
cognates in the entire test data (28.35%).

6 Experimental Results

In this section, we first report on the effect of model
variations on the overall performance, and then we
compare the best results for each algorithm.

6.1 Model Variations

Table 1 shows the average cognate recognition pre-
cision on the test set for a number of model vari-
ations combined with four basic algorithms,VIT ,
FOR, LOG , and FLO , which were introduced in
Section 4.1. The first row refers to the fully trained

5The complete separation of training and testing data is diffi-
cult to achieve in this case because of the similarity of cognates
across languages in the same family. For each of the removed
languages, there are other closely related languages that are re-
tained in the training set, which may exhibit similar or even
identical correspondences.

Model Algorithm
Variation VIT FOR LOG FLO
full model 0.630 0.621 0.656 0.631
gaps const 0.633 0.631 0.684 0.624
trans const 0.565 0.507 0.700 0.550
both const 0.566 0.531 0.704 0.574
no end state 0.626 0.620 0.637 0.601
single param 0.647 0.650 0.703 0.596

Table 1: Average cognate recognition precision for
each model and algorithm combination.

model without changes. The remaining rows con-
tain the results for the model variations described in
Section 4.2. In all cases, the simplifications are in
effect during testing only, after the full model had
been trained. We also performed experiments with
the model simplified prior to training but their results
were consistently lower than the results presented
here.

With the exception of the forward log odds algo-
rithm, the best results are obtained with simplified
models. The model with only a single transition
parameter performs particularly well. On the other
hand, the removal of the end state invariably causes
a decrease in performance with respect to the full
model. If a non-essential part of the model is made
constant, only the Viterbi-based log odds algorithm
improves significantly; the performance of the other
three algorithms either deteriorates or shows no sig-
nificant difference.

Overall, the top four variations of the Viterbi-
based log odds algorithm (shown in italics in Ta-
ble 1) significantly outperform all other PHMM
variations and algorithms. This is not entirely unex-
pected asLOG is a more complex algorithms than
both VIT andFOR. It appears that the incorpora-
tion of the random model allowsLOG to better dis-
tinguish true similarity from chance similarity. In
addition, the log odds algorithms automatically nor-
malize the results based on the lengths of the words
under examination. However, from the rather dis-
appointing performance ofFLO , we conclude that
considering all possible alignments does not help the
log odds approach.

45

Languages Proportion Method
of Cognates LCSR LLW ALINE VIT FOR LOG FLO

English German 0.590 0.895 0.917 0.916 0.932 0.932 0.930 0.929
French Latin 0.560 0.902 0.893 0.863 0.916 0.914 0.934 0.904
English Latin 0.290 0.634 0.713 0.725 0.789 0.792 0.803 0.755
German Latin 0.290 0.539 0.647 0.706 0.673 0.666 0.730 0.644
English French 0.275 0.673 0.725 0.615 0.751 0.757 0.812 0.725
French German 0.245 0.568 0.591 0.504 0.556 0.559 0.734 0.588
Albanian Latin 0.195 0.541 0.510 0.618 0.546 0.557 0.680 0.541
Albanian French 0.165 0.486 0.444 0.612 0.505 0.530 0.653 0.545
Albanian German 0.125 0.275 0.340 0.323 0.380 0.385 0.379 0.280
Albanian English 0.100 0.245 0.322 0.277 0.416 0.406 0.382 0.403

AVERAGE 0.2835 0.576 0.610 0.616 0.647 0.650 0.704 0.631

Table 2: Average cognate recognition precision for various models and algorithms.

6.2 Comparison

Table 2 contains the results of the best variants,
which are shown in boldface in Table 1, along with
other methods for comparison. The results are sepa-
rated into individual language pairs from the test set.
For the baseline method, we selected the Longest
Common Subsequence Ratio (LCSR), a measure of
orthographic word similarity often used for cognate
identification (Brew and McKelvie, 1996; Melamed,
1999; Koehn and Knight, 2001). The LCSR of
two words is computed by dividing the length of
their longest common subsequence by the length
of the longer word.LLW stands for “Levenshtein
with learned weights”, which is described in Sec-
tion 4.4. We also include the results obtained
by the ALINE word aligner (Kondrak, 2000) on
phonetically-transcribed word lists.

Because of the relatively small size of the lists,
the differences among results for individual lan-
guage pairs are not statistically significant in many
cases. However, when the average over all language
pairs is considered, the Viterbi-based log odds al-
gorithm (LOG) is significantly better than all other
algorithms in Table 2. The differences between
the remaining algorithms are not statistically signifi-
cant, except that they all significantly outperform the
LCSR baseline.

The fact thatLOG is significantly better than
ALINE demonstrates that given a sufficiently large
training set, an HMM-based algorithm can automat-
ically learn the notion of phonetic similarity, which

is incorporated into ALINE. ALINE does not in-
volve extensive supervised training, but it requires
the words to be in a phonetic, rather than ortho-
graphic form. We conjecture that the performance
of LOG would further improve if it could be trained
on phonetically-transcribed multilingual data.

7 Conclusion

We created a system that learns to recognize word
pairs that are similar based on some criteria provided
during training, and separate such word pairs from
those that do not exhibit such similarity or whose
similarity exists solely by chance. The system is
based on Pair Hidden Markov Models, a technique
adapted from the field of bioinformatics. We tested a
number of training algorithms and model variations
on the task of identifying cognates. However, since
it does not rely on domain-specific knowledge, our
system can be applied to any task that requires com-
puting word similarity, as long as there are examples
of words that would be considered similar in a given
context.

In the future, we would like to extend our system
by removing the one-to-one constraint that requires
alignments to consist of single symbols. It would
also be interesting to test the system in other ap-
plications, such as the detection of confusable drug
names or word alignment in bitexts.

46

Acknowledgments

This research was funded in part by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), and the Alberta Informatics Circle of Re-
search Excellence (iCORE).

References
Leonard E. Baum, Ted Petrie, George Soules, and Nor-

man Weiss. 1970. A maximization technique occur-
ring in the statistical analysis of probabilistic function
of Markov chains.The Annals of Mathematical Statis-
tics, 41(1):164–171.

Chris Brew and David McKelvie. 1996. Word-pair ex-
traction for lexicography. InProceedings of the 2nd
International Conference on New Methods in Lan-
guage Processing, pages 45–55.

Alexander Clark. 2001. Learning morphology with Pair
Hidden Markov Models. InProceedings of the Student
Workshop at ACL 2001.

Michael A. Covington. 1998. Alignment of multiple lan-
guages for historical comparison. InProceedings of
COLING-ACL’98, pages 275–280.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. 1998.Biological sequence analy-
sis. Cambridge University Press.

Isidore Dyen, Joseph B. Kruskal, and Paul Black. 1992.
An Indoeuropean classification: A lexicostatistical ex-
periment.Transactions of the American Philosophical
Society, 82(5).

Stefan Evert. 2004. Significance tests for the evaluation
of ranking methods. InProceedings of COLING 2004,
pages 945–951.

Patrick A. V. Hall and Geoff R. Dowling. 1980. Approxi-
mate string matching.Computing Surveys, 12(4):381–
402.

Frederick Jelinek. 1999.Statistical Methods for Speech
Recognition. The Massachusetts Institute of Technol-
ogy Press.

Brett Kessler. 2001. The Significance of Word Lists.
Stanford: CSLI Publications.

Philipp Koehn and Kevin Knight. 2001. Knowledge
sources for word-level translation models. InProceed-
ings of the 2001 Conference on Empirical Methods in
Natural Language Processing, pages 27–35.

Grzegorz Kondrak and Bonnie Dorr. 2004. Identification
of confusable drug names: A new approach and evalu-
ation methodology. InProceedings of COLING 2004,
pages 952–958.

Grzegorz Kondrak. 2000. A new algorithm for the
alignment of phonetic sequences. InProceedings of
NAACL 2000, pages 288–295.

Wesley Mackay. 2004. Word similarity using Pair Hid-
den Markov Models. Master’s thesis, University of
Alberta.

Gideon S. Mann and David Yarowsky. 2001. Multipath
translation lexicon induction via bridge languages. In
Proceedings of NAACL 2001, pages 151–158.

Christopher D. Manning and Hinrich Schutze. 2001.
Foundations of Statistical Natural Language Process-
ing. The MIT Press.

I. Dan Melamed. 1999. Bitext maps and alignment
via pattern recognition. Computational Linguistics,
25(1):107–130.

John Nerbonne. 2003. Linguistic variation and compu-
tation. InProceedings of EACL-03, pages 3–10.

Michael P. Oakes. 2000. Computer estimation of vocab-
ulary in protolanguage from word lists in four daugh-
ter languages. Journal of Quantitative Linguistics,
7(3):233–243.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. InProceedings of ACL-
2000, pages 440–447.

Ari Pirkola, Jarmo Toivonen, Heikki Keskustalo, Kari
Visala, and Kalervo Jarvelin. 2003. Fuzzy transla-
tion of cross-lingual spelling variants. InProceedings
of SIGIR’03, pages 345–352.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
ing string edit distance.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(2):522–532.

Jörg Tiedemann. 1999. Automatic construction of
weighted string similarity measures. InProceedings
of the Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large
Corpora, College Park, Maryland.

Jörg Tiedemann. 2003. Combining clues for word align-
ment. InProceedings of the 10th Conference of the
European Chapter of the ACL (EACL03).

Robert A. Wagner and Michael J. Fischer. 1974. The
string-to-string correction problem.Journal of the
ACM, 21(1):168–173.

Justin Zobel and Philip Dart. 1996. Phonetic string
matching: Lessons from information retrieval. InPro-
ceedings of SIGIR’96, pages 166–172.

47

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 48–55, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A Bayesian mixture model for term re-occurrence and burstiness

Avik Sarkar1, Paul H Garthwaite2, Anne De Roeck1

1 Department of Computing, 2 Department of Statistics
The Open University

Milton Keynes, MK7 6AA, UK
{a.sarkar, p.h.garthwaite, a.deroeck}@open.ac.uk

Abstract

This paper proposes a model for term re-
occurrence in a text collection based on
the gaps between successive occurrences
of a term. These gaps are modeled using
a mixture of exponential distributions. Pa-
rameter estimation is based on a Bayesian
framework that allows us to fit a flexi-
ble model. The model provides measures
of a term’s re-occurrence rate and within-
document burstiness. The model works
for all kinds of terms, be it rare content
word, medium frequency term or frequent
function word. A measure is proposed to
account for the term’s importance based
on its distribution pattern in the corpus.

1 Introduction

Traditionally, Information Retrieval (IR) and Statis-
tical Natural Language Processing (NLP) applica-
tions have been based on the “bag of words” model.
This model assumes term independence and homo-
geneity of the text and document under considera-
tion, i.e. the terms in a document are all assumed
to be distributed homogeneously. This immediately
leads to the Vector Space representation of text. The
immense popularity of this model is due to the ease
with which mathematical and statistical techniques
can be applied to it.

The model assumes that once a term occurs in a
document, its overall frequency in the entire doc-
ument is the only useful measure that associates a

term with a document. It does not take into consid-
eration whether the term occurred in the beginning,
middle or end of the document. Neither does it con-
sider whether the term occurs many times in close
succession or whether it occurs uniformly through-
out the document. It also assumes that additional
positional information does not provide any extra
leverage to the performance of the NLP and IR ap-
plications based on it. This assumption has been
shown to be wrong in certain applications (Franz,
1997).

Existing models for term distribution are based on
the above assumption, so they can merely estimate
the term’s frequency in a document or a term’s top-
ical behavior for a content term. The occurrence of
a content word is classified as topical or non-topical
based on whether it occurs once or many times in
the document (Katz, 1996). We are not aware of any
existing model that makes less stringent assumptions
and models the distribution of occurrences of a term.

In this paper we describe a model for term re-
occurrence in text based on the gaps between succes-
sive occurrences of the term and the position of its
first occurrence in a document. The gaps are mod-
eled by a mixture of exponential distributions. Non-
occurrence of a term in a document is modeled by
the statistical concept of censoring, which states that
the event of observing a certain term is censored at
the end of the document, i.e. the document length.
The modeling is done in a Bayesian framework.

The organization of the paper is as follows. In
section 2 we discuss existing term distribution mod-
els, the issue of burstiness and some other work that
demonstrates the failure of the “bag of words” as-

48

sumption. In section 3 we describe our mixture
model, the issue of censoring and the Bayesian for-
mulation of the model. Section 4 describes the
Bayesian estimation theory and methodology. In
section 5 we talk about ways of drawing infer-
ences from our model, present parameter estimates
on some chosen terms and present case studies for a
few selected terms. We discuss our conclusions and
suggest directions for future work in section 6.

2 Existing Work

2.1 Models

Previous attempts to model a term’s distribution pat-
tern have been based on the Poisson distribution. If
the number of occurrences of a term in a document
is denoted by k, then the model assumes:

p(k) = e−λ λk

k!

for k = 0, 1, 2, . . . Estimates based on this model
are good for non-content, non-informative terms, but
not for the more informative content terms (Manning
and Schütze, 1999).

The two-Poisson model is suggested as a variation
of the Poisson distribution (Bookstein and Swanson,
1974; Church and Gale, 1995b). This model as-
sumes that there are two classes of documents as-
sociated with a term, one class with a low average
number of occurrences and the other with a high av-
erage number of occurrences.

p(k) = αe−λ1
λk

1

k!
+ (1− α)e−λ2

λk
2

k!
,

where α and (1 − α) denote the probabilities of a
document in each of these classes. Often this model
under-estimates the probability that a term will oc-
cur exactly twice in a document.

2.2 Burstiness

Burstiness is a phenomenon of content words,
whereby they are likely to occur again in a text af-
ter they have occurred once. Katz (1996) describes
within-document burstiness as the close proximity of
all or some individual instances of a word within a
document exhibiting multiple occurrences.

He proposes a model for within-document bursti-
ness with three parameters as:

• the probability that a term occurs in a document
at all (document frequency)

• the probability that it will occur a second time
in a document given that it has occurred once

• the probability that it will occur another time,
given that it has already occurred k times
(where k > 1).

The drawbacks of this model are: (a) it cannot han-
dle non-occurrence of a term in a document; (b) the
model can handle only content terms, and is not suit-
able for high frequency function words or medium
frequency terms; and (c) the rate of re-occurrence of
the term or the length of gaps cannot be accounted
for. We overcome these drawbacks in our model.

A measure of burstiness was proposed as a binary
value that is based on the magnitude of average-term
frequency of the term in the corpus (Kwok, 1996).
This measure takes the value 1 (bursty term) if the
average-term frequency value is large and 0 other-
wise. The measure is too naive and incomplete to
account for term burstiness.

2.3 Homogeneity Assumption

The popular “bag of words” assumption for text
states that a term’s occurrence is uniform and ho-
mogeneous throughout. A measure of homogeneity
or self-similarity of a corpus can be calculated, by
dividing the corpus into two frequency lists based
on the term frequency and then calculating the χ2

statistic between them (Kilgarriff, 1997). Various
schemes for dividing the corpus were used (De
Roeck et al., 2004a) to detect homogeneity of terms
at document level, within-document level and by
choosing text chunks of various sizes. Their work
revealed that homogeneity increases by nullifying
the within document term distribution pattern and
homogeneity decreases when chunks of larger size
are chosen as it incorporates more document struc-
ture in it. Other work based on the same method-
ology (De Roeck et al., 2004b) reveals that even
very frequent function words do not distribute ho-
mogeneously over a corpus or document. These (De
Roeck et al., 2004a; De Roeck et al., 2004b) provide
evidence of the fact that the ”bag of words” assump-
tion is invalid. Thus it sets the platform for a model

49

that defies the independence assumption and consid-
ers the term distribution pattern in a document and
corpus.

3 Modeling

3.1 Terminology and Notation

We build a single model for a particular term in a
given corpus. Let us suppose the term under consid-
eration is x as shown in Figure 1. We describe the
notation for a particular document, i in the corpus.

Figure 1: The document structure and the gaps be-
tween terms

• di denotes the number of words in document i
(i.e. the document length).

• ni denotes the number of occurrences of term
x in document i.

• wi1 denotes the position of the first occurrence
of term x in document i.

• wi2, . . . , wini denotes the successive gaps be-
tween occurrences of term x in document i.

• wini+1 denotes the gap for the next occurrence
of x, somewhere after the document ends.

• ceni is the value at which observation wini+1

is censored, as explained in section 3.2.2.

3.2 The Model

We suppose we are looking through a document,
noting when the term of interest occurs. Our model
assumes that the term occurs at some low underly-
ing base rate 1/λ1 but, after the term has occurred,
then the probability of it occurring soon afterwards
is increased to some higher rate 1/λ2. Specifically,
the rate of re-occurrence is modeled by a mixture of
two exponential distributions. Each of the exponen-
tial components is described as follows:

• The exponential component with larger mean
(average), 1/λ1, determines the rate with which
the particular term will occur if it has not oc-
curred before or it has not occurred recently.

• The second component with smaller mean
(average), 1/λ2, determines the rate of re-
occurrence in a document or text chunk given
that it has already occurred recently. This com-
ponent captures the bursty nature of the term in
the text (or document) i.e. the within-document
burstiness.

The mixture model is described as follows:

φ(wij) = pλ1e
−λ1wij + (1− p)λ2e

−λ2wij

for j ∈ {2, . . . , ni}. p and (1 − p) denote respec-
tively, the probabilities of membership for the first
and the second exponential distribution.

There are a few boundary conditions that the
model is expected to handle. We take each of these
cases and discuss them briefly:

3.2.1 First occurrence

The model treats the first occurrence of a term dif-
ferently from the other gaps. The second exponen-
tial component measuring burstiness does not fea-
ture in it. Hence the distribution is:

φ1(wi1) = λ1e
−λ1wi1

3.2.2 Censoring

Here we discuss the modeling of two cases that
require special attention, corresponding to gaps that
have a minimum length but whose actual length is
unknown. These cases are:

• The last occurrence of a term in a document.

• The term does not occur in a document at all.

We follow a standard technique from clinical tri-
als, where a patient is observed for a certain amount
of time and the observation of the study is expected
in that time period (the observation might be the
time until death, for example). In some cases it hap-
pens that the observation for a patient does not occur
in that time period. In such a case it is assumed that
the observation would occur at sometime in the fu-
ture. This is called censoring at a certain point.

50

In our case, we assume the particular term would
eventually occur, but the document has ended before
it occurs so we do not observe it. In our notation we
observe the term ni times, so the (ni + 1)th time the
term occurs is after the end of the document. Hence
the distribution of wini+1 is censored at length ceni.
If ceni is small, so that the nth

i occurrence of the
term is near the end of the document, then it is not
surprising that wini+1 is censored. In contrast if ceni

is large, so the nth
i occurrence is far from the end

of the document, then either it is surprising that the
term did not re-occur, or it suggests the term is rare.
The information about the model parameters that is
given by the censored occurrence is,

Pr(wini+1 > ceni) =
∫ ∞

ceni

φ(x)dx

= pe−λ1ceni + (1− p)e−λ2ceni ; where,

ceni = di −
ni∑

j=1

wij

Also when a particular term does not occur in a
document, our model assumes that the term would
eventually occur had the document continued indef-
initely. In this case the first occurrence is censored
and censoring takes place at the document length. If
a term does not occur in a long document, it suggests
the term is rare.

3.3 Bayesian formulation

Our modeling is based on a Bayesian approach (Gel-
man et al., 1995). The Bayesian approach differs
from the traditional frequentist approach. In the fre-
quentist approach it is assumed that the parameters
of a distribution are constant and the data varies.
In the Bayesian approach one can assign distrib-
utions to the parameters in a model. We choose
non-informative priors, as is common practice in
Bayesian applications. So we put,
p ∼ Uniform(0, 1), and
λ1 ∼ Uniform(0, 1)
To tell the model that λ2 is the larger of the two λs,
we put λ2 = λ1 + γ, where γ > 0, and
γ ∼ Uniform(0, 1)
Also ceni depends on the document length di and
the number of occurrences of the term in that doc-
ument, ni. Fitting mixture techniques is tricky and

Figure 2: Bayesian dependencies between the para-
meters

requires special methods. We use data augmenta-
tion to make it feasible to fit the model using Gibbs
Sampling (section 4.2). For details about this, see
Robert (1996) who describes in detail the fitting of
mixture models in MCMC methods (section 4.2).

4 Parameter Estimation

4.1 Bayesian Estimation

In the Bayesian approach of parameter estimation,
the parameters are uncertain, and it is assumed that
they follow some distribution. In our case the para-
meters and the data are defined as:
�Θ = {p, λ1, λ2} denote the parameters of the model.
�W = {wi1, . . . , wini , wini+1} denotes the data.
Hence based on this we may define the following:

• f(�Θ) is the prior distribution of �Θ as assigned
in section 3.3. It summarizes everything we
know about �Θ apart from the data �W .

• f(�W |�Θ) is the likelihood function. It is our
model for the data �W conditional on the para-
meters �Θ. (As well as the observed data, the
likelihood also conveys the information given
by the censored values)

• f(�Θ| �W) is the posterior distribution of �Θ,
given �W . It describes our beliefs about the pa-
rameters given the information we have.

51

Deriving the density function for a parameter set �Θ
after observing data �W , can be achieved by using
Bayes Theorem as:

f(�Θ| �W) =
f(�W |�Θ)f(�Θ)

f(�W)
(1)

where f(�W) is simply a normalizing constant, inde-
pendent of �Θ. It can be computed in terms of the
likelihood and prior as:

f(�W) =
∫

f(�W |�Θ)f(�Θ)d�Θ

Hence equation 1 is reduced to:

f(�Θ| �W) ∝ f(�W |�Θ)f(�Θ)

So, once we have specified the posterior density
function f(�Θ| �W), we can obtain the estimates of the
parameters �Θ by simply averaging the values gener-
ated by f(�Θ| �W).

4.2 Gibbs Sampling

The density function of Θi, f(Θi| �W) can be ob-
tained by integrating f(�Θ| �W) over the remaining
parameters of �Θ. But in many cases, as in ours, it is
impossible to find a closed form solution of f(Θi).

In such cases we may use a simulation process
based on random numbers, Markov Chain Monte
Carlo (MCMC) (Gilks et al., 1996). By generating
a large sample of observations from the joint distri-
bution f(�Θ, �W), the integrals of the complex dis-
tributions can be approximated from the generated
data. The values are generated based on the Markov
chain assumption, which states that the next gener-
ated value only depends on the present value and
does not depend on the values previous to it. Based
on mild regularity conditions, the chain will gradu-
ally forget its initial starting point and will eventu-
ally converge to a unique stationary distribution.

Gibbs Sampling (Gilks et al., 1996) is a popular
method used for MCMC analysis. It provides an ele-
gant way for sampling from the joint distributions of
multiple variables: sample repeatedly from the dis-
tributions of one-dimensional conditionals given the
current observations. Initial random values are as-
signed to each of the parameters. And then these val-
ues are updated iteratively based on the joint distri-
bution, until the values settle down and converge to

a stationary distribution. The values generated from
the start to the point where the chain settles down are
discarded and are called the burn-in values. The pa-
rameter estimates are based on the values generated
thereafter.

5 Results

Parameter estimation was carried out using Gibb’s
Sampling on the WinBUGS software (Spiegelhalter
et al., 2003). Values from the first 1000 iteration
were discarded as burn-in. It had been observed that
in most cases the chain reached the stationary distri-
bution well within 1000 iterations. A further 5000 it-
erations were run to obtain the parameter estimates.

5.1 Interpretation of Parameters

The parameters of the model can be interpreted in
the following manner:

• λ̃1 = 1/λ1 is the mean of an exponential dis-
tribution with parameter λ1. λ̃1 measures the
rate at which this term is expected in a running
text corpus. λ̃1 determines the rarity of a term
in a corpus, as it is the average gap at which
the term occurs if it has not occurred recently.
Thus, a large value of λ̃1 tells us that the term
is very rare in the corpus and vice-versa.

• Similarly, λ̃2 measures the within-document
burstiness, i.e. the rate of occurrence of a term
given that it has occurred recently. It measures
the term re-occurrence rate in a burst within
a document. Small values of λ̃2 indicate the
bursty nature of the term.

• p̃ and 1 − p̃ denote, respectively, the probabil-
ities of the term occurring with rate λ̃1 and λ̃2

in the entire corpus.

Table 1 presents some heuristics for drawing in-
ference based on the values of the parameter esti-
mates.

5.2 Data

We choose for evaluation, terms from the Associ-
ated Press (AP) newswire articles, as this is a stan-
dard corpus for language research. We picked terms
which had been used previously in the literature
(Church and Gale, 1995a; Church, 2000; Manning

52

�λ1 small �λ1 large
�λ2 small frequently occur-

ring and common
function word

topical content
word occurring in
bursts

�λ2 large comparatively
frequent but well-
spaced function
word

infrequent and scat-
tered function word

Table 1: Heuristics for inference, based on the para-
meter estimates.

and Schütze, 1999; Umemura and Church, 2000)
with respect to modeling different distribution, so as
to present a comparative picture. For building the
model we randomly selected 1% of the documents
from the corpus, as the software (Spiegelhalter et al.,
2003) we used is Windows PC based and could not
handle enormous volume of data with our available
hardware resources. As stated earlier, our model can
handle both frequent function terms and rare content
terms. We chose terms suitable for demonstrating
this. We also used some medium frequency terms to
demonstrate their characteristics.

5.3 Parameter estimates

Table 2 shows the parameter estimates for the cho-
sen terms. The table does not show the values of
1− p̃ as they can be obtained from the value of p̃. It
has been observed that the value λ̃1/λ̃2 is a good in-
dicator of the nature of terms, hence the rows in the
table containing terms are sorted on the basis of that
value. The table is divided into three parts. The top
part contains very frequent (function) words. The
second part contains terms in the medium frequency
range. And the bottom part contains rarely occurring
and content terms.

5.4 Discussion

The top part of the table consists of the very fre-
quently occurring function words occurring fre-
quently throughout the corpus. These statements are
supported by the low values of λ̃1 and λ̃2. These
values are quite close, indicating that the occurrence
of these terms shows low burstiness in a running text
chunk. This supports our heuristics about the value
of λ̃1/λ̃2, which is small for such terms. Moder-
ate, not very high values of p̃ also support this state-
ment, as the term is then quite likely to be gener-

Term �p �λ1
�λ2

�λ1/�λ2

the 0.82 16.54 16.08 1.03
and 0.46 46.86 45.19 1.04
of 0.58 38.85 37.22 1.04
except 0.67 21551.72 8496.18 2.54
follows 0.56 80000.00 30330.60 2.64
yet 0.51 10789.81 3846.15 2.81
he 0.51 296.12 48.22 6.14
said 0.03 895.26 69.06 12.96
government 0.60 1975.50 134.34 14.71
somewhat 0.84 75244.54 4349.72 17.30
federal 0.84 2334.27 102.57 22.76
here 0.94 3442.34 110.63 31.12
she 0.73 1696.35 41.41 40.97
george 0.88 17379.21 323.73 53.68
bush 0.71 3844.68 53.48 71.90
soviet 0.71 4496.40 59.74 75.27
kennedy 0.78 14641.29 99.11 147.73
church 0.92 11291.78 70.13 161.02
book 0.92 17143.84 79.68 215.16
vietnam 0.92 32701.11 97.66 334.86
boycott 0.98 105630.08 110.56 955.42
noriega 0.91 86281.28 56.88 1516.82

Table 2: Parameter estimates of the model for some
selected terms, sorted by the λ̃1/λ̃2 value

ated from either of the exponential distributions (the
has high value of p̃, but since the values of λ are
so close, it doesn’t really matter which distribution
generated the observation). We observe compara-
tively larger values of λ̃1 for terms like yet, follows
and except since they have some dependence on the
document topic. One may claim that these are some
outliers having large values of both λ̃1 and λ̃2. The
large value of λ̃1 can be explained, as these terms are
rarely occurring function words in the corpus. They
do not occur in bursts and their occurrences are scat-
tered, so values of λ̃2 are also large (Table 1). Inter-
estingly, based on our heuristics these large values
nullify each other to obtain a small value of λ̃1/λ̃2.
But since these cases are exceptional, they find their
place on the boundary region of the division.

The second part of the table contains mostly non-
topical content terms as defined in the literature
(Katz, 1996). They do not describe the main topic
of the document, but some useful aspects of the doc-
ument or a nearby topical term. Special attention
may be given to the term george, which describes
the topical term bush. In a document about George
Bush, the complete name is mentioned possibly only
once in the beginning and further references to it are
made using the word bush, leading to bush being as-

53

signed as a topical term, but not george. The term
government in the group refers to some newswire
article about some government in any state or any
country, future references to which are made us-
ing this term. Similarly the term federal is used
to make future references to the US Government.
As the words federal and government are used fre-
quently for referencing, they exhibit comparatively
small values of λ̃2. We were surprised by the occur-
rence of terms like said, here and she in the second
group, as they are commonly considered as func-
tion words. Closer examination revealed the details.
Said has some dependence on the document genre,
with respect to the content and reporting style. The
data were based on newswire articles about impor-
tant people and events. It is true, though unfor-
tunate, that the majority of such people are male,
hence there are more articles about men than women
(he occurs 757, 301 times in 163, 884 documents as
the 13th most frequent term in the corpus, whereas
she occurs 164, 030 times in 48, 794 documents as
the 70th frequent term). This explains why he has
a smaller value of λ̃1 than she. But the λ̃2 values
for both of them are quite close, showing that they
have similar usage pattern. Again, newswire articles
are mostly about people and events, and rarely about
some location, referenced by the term here. This ex-
plains the large value of λ̃1 for here. Again, because
of its usage for referencing, it re-occurs frequently
while describing a particular location, leading to a
small value of λ̃2. Possibly, in a collection of “travel
documents”, here will have a smaller value ofλ̃1 and
thus occur higher up in the list, which would allow
the model to be used for characterizing genre.

Terms in the third part, as expected, are topical
content terms. An occurrence of such a term de-
fines the topic or the main content word of the doc-
ument or the text chunk under consideration. These
terms are rare in the entire corpus, and only appear
in documents that are about this term, resulting in
very high values of λ̃1. Also low values of λ̃2 for
these terms mean that repeat occurrences within the
same document are quite frequent; the characteris-
tic expected from a topical content term. Because of
these characteristics, based on our heuristics these
terms have very high values of λ̃1/λ̃2, and hence are
considered the most informative terms in the corpus.

5.5 Case Studies

Here we study selected terms based on our model.
These terms have been studied before by other re-
searchers. We study these terms to compare our
findings with previous work and also demonstrate
the range of inferences that may be derived from our
model.

5.5.1 somewhat vrs boycott

These terms occur an approximately equal num-
ber of times in the AP corpus, and inverse doc-
ument frequency was used to distinguish between
them (Church and Gale, 1995a). Our model also
gives approximately similar rates of occurrence (̃λ1)
for these two terms as shown in Table 2. But the re-
occurrence rate, λ̃2, is 110.56 for boycott, which is
very small in comparison with the value of 4349.72
for somewhat. Hence based on this, our model as-
signs somewhat as a rare function word occurring in
a scattered manner over the entire corpus. Whereas
boycott is assigned as a topical content word, as it
should be.

5.5.2 follows vrs soviet

These terms were studied in connection with fit-
ting Poisson distributions to their term distribution
(Manning and Schütze, 1999), and hence determin-
ing their characteristics1 . In our model, follows has
large values of both λ̃1 and λ̃2 (Table 2), so that it
has the characteristics of a rare function word. But
soviet has a large λ̃1 value and a very small λ̃2 value,
so that it has the characteristics of a topical content
word. So the findings from our model agree with the
original work.

5.5.3 kennedy vrs except

Both these terms have nearly equal inverse doc-
ument frequency for the AP corpus (Church, 2000;
Umemura and Church, 2000) and will be assigned
equal weight. They used a method (Kwok, 1996)
based on average-term frequency to determine the
nature of the term. According to our model, the λ̃2

value of kennedy is very small as compared to that
for except. Hence using the λ̃1/λ̃2 measure, we can
correctly identify kennedy as a topical content term

1The original study was based on the New York Times, ours
on the Associated Press corpus

54

and except as an infrequent function word. This is in
agreement with the findings of the original analysis.

5.5.4 noriega and said

These terms were studied in the context of an
adaptive language model to demonstrate the fact that
the probability of a repeat occurrence of a term in a
document defies the “bag of words” independence
assumption (Church, 2000). The deviation from in-
dependence is greater for content terms like noriega
as compared to general terms like said. This can be
explained in the context of our model as said has
small values of λ̃1 and λ̃2, and their values are quite
close to each other (as compared to other terms, see
Table 2). Hence said is distributed more evenly in
the corpus than noriega. Therefore, noriega defies
the independence assumption to a much greater ex-
tent than said. Hence their findings (Church, 2000)
are well explained by our model.

6 Conclusion

In this paper we present a model for term re-
occurrence in text based on gaps between succes-
sive occurrences of a term in a document. Parameter
estimates based on this model reveal various charac-
teristics of term use in a collection. The model can
differentiate a term’s dependence on genre and col-
lection and we intend to investigate use of the model
for purposes like genre detection, corpus profiling,
authorship attribution, text classification, etc. The
proposed measure of λ̃1/λ̃2 can be appropriately
adopted as a means of feature selection that takes
into account the term’s occurrence pattern in a cor-
pus. We can capture both within-document bursti-
ness and rate of occurrence of a term in a single
model.

References

A. Bookstein and D.R Swanson. 1974. Probabilistic
models for automatic indexing. Journal of the Ameri-
can Society for Information Science, 25:312–318.

K. Church and W. Gale. 1995a. Inverse document fre-
quency (idf): A measure of deviation from poisson.
In Proceedings of the Third Workshop on Very Large
Corpora, pages 121–130.

K. Church and W. Gale. 1995b. Poisson mixtures. Nat-
ural Language Engineering, 1(2):163–190.

K. Church. 2000. Empirical estimates of adaptation: The
chance of two noriega’s is closer to p/2 than p2. In
COLING, pages 173–179.

Anne De Roeck, Avik Sarkar, and Paul H Garthwaite.
2004a. Defeating the homogeneity assumption. In
Proceedings of 7th International Conference on the
Statistical Analysis of Textual Data (JADT), pages
282–294.

Anne De Roeck, Avik Sarkar, and Paul H Garthwaite.
2004b. Frequent term distribution measures for
dataset profiling. In Proceedings of the 4th Interna-
tional conference of Language Resources and Evalua-
tion (LREC), pages 1647–1650.

Alexander Franz. 1997. Independence assumptions con-
sidered harmful. In Proceedings of the eighth confer-
ence on European chapter of the Association for Com-
putational Linguistics, pages 182–189.

A. Gelman, J. Carlin, H.S. Stern, and D.B. Rubin. 1995.
Bayesian Data Analysis. Chapman and Hall, London,
UK.

W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. 1996.
Markov Chain Monte Carlo in Practice. Interdisci-
plinary Statistics Series. Chapman and Hall, London,
UK.

Slava M. Katz. 1996. Distribution of content words and
phrases in text and language modelling. Natural Lan-
guage Engineering, 2(1):15–60.

A Kilgarriff. 1997. Using word frequency lists to mea-
sure corpus homogeneity and similarity between cor-
pora. In Proceedings of ACL-SIGDAT Workshop on
very large corpora, Hong Kong.

K. L. Kwok. 1996. A new method of weighting query
terms for ad-hoc retrieval. In SIGIR, pages 187–195.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge, Massachusetts.

Christian. P. Robert. 1996. Mixtures of distributions: in-
ference and estimation. In W.R. Gilks, S. Richardson,
and D.J. Spiegelhalter, editors, Markov Chain Monte
Carlo in Practice, pages 441–464.

D.J. Spiegelhalter, A. Thomas, N. G. Best, and D. Lunn.
2003. Winbugs: Windows version of bayesian infer-
ence using gibbs sampling, version 1.4.

K. Umemura and K. Church. 2000. Empirical term
weighting and expansion frequency. In Empirical
Methods in Natural Language Processing and Very
Large Corpora, pages 117–123.

55

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 56–63, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Domain Kernels for Text Categorization

Alfio Gliozzo and Carlo Strapparava
ITC-Irst

via Sommarive, I-38050, Trento, ITALY
{gliozzo,strappa}@itc.it

Abstract

In this paper we propose and evaluate
a technique to perform semi-supervised
learning for Text Categorization. In
particular we defined a kernel function,
namely the Domain Kernel, that allowed
us to plug “external knowledge” into the
supervised learning process. External
knowledge is acquired from unlabeled
data in a totally unsupervised way, and it
is represented by means of Domain Mod-
els.

We evaluated the Domain Kernel in two
standard benchmarks for Text Categoriza-
tion with good results, and we compared
its performance with a kernel function that
exploits a standard bag-of-words feature
representation. The learning curves show
that the Domain Kernel allows us to re-
duce drastically the amount of training
data required for learning.

1 Introduction

Text Categorization (TC) deals with the problem of
assigning a set of category labels to documents. Cat-
egories are usually defined according to a variety
of topics (e.g. SPORT vs. POLITICS) and a set of
hand tagged examples is provided for training. In the
state-of-the-art TC settings supervised classifiers are
used for learning and texts are represented by means
of bag-of-words.

Even if, in principle, supervised approaches reach
the best performance in many Natural Language

Processing (NLP) tasks, in practice it is not always
easy to apply them to concrete applicative settings.
In fact, supervised systems for TC require to be
trained a large amount of hand tagged texts. This
situation is usually feasible only when there is some-
one (e.g. a big company) that can easily provide al-
ready classified documents to train the system.

In most of the cases this scenario is quite unprac-
tical, if not infeasible. An example is the task of
categorizing personal documents, in which the cate-
gories can be modified according to the user’s inter-
ests: new categories are often introduced and, pos-
sibly, the available labeled training for them is very
limited.

In the NLP literature the problem of providing
large amounts of manually annotated data is known
as the Knowledge Acquisition Bottleneck. Cur-
rent research in supervised approaches to NLP often
deals with defining methodologies and algorithms to
reduce the amount of human effort required for col-
lecting labeled examples.

A promising direction to solve this problem is to
provide unlabeled data together with labeled texts
to help supervision. In the Machine Learning lit-
erature this learning schema has been called semi-
supervised learning. It has been applied to the
TC problem using different techniques: co-training
(Blum and Mitchell, 1998), EM-algorithm (Nigam
et al., 2000), Transduptive SVM (Joachims, 1999b)
and Latent Semantic Indexing (Zelikovitz and Hirsh,
2001).

In this paper we propose a novel technique to per-
form semi-supervised learning for TC. The under-
lying idea behind our approach is that lexical co-

56

herence (i.e. co-occurence in texts of semantically
related terms) (Magnini et al., 2002) is an inherent
property of corpora, and it can be exploited to help a
supervised classifier to build a better categorization
hypothesis, even if the amount of labeled training
data provided for learning is very low.

Our proposal consists of defining a Domain
Kernel and exploiting it inside a Support Vector
Machine (SVM) classification framework for TC
(Joachims, 2002). The Domain Kernel relies on the
notion of Domain Model, which is a shallow repre-
sentation for lexical ambiguity and variability. Do-
main Models can be acquired in an unsupervised
way from unlabeled data, and then exploited to de-
fine a Domain Kernel (i.e. a generalized similarity
function among documents)1 .

We evaluated the Domain Kernel in two stan-
dard benchmarks for TC (i.e. Reuters and 20News-
groups), and we compared its performance with a
kernel function that exploits a more standard Bag-
of-Words (BoW) feature representation. The use of
the Domain Kernel got a significant improvement in
the learning curves of both tasks. In particular, there
is a notable increment of the recall, especially with
few learning examples. In addition, F1 measure in-
creases by 2.8 points in the Reuters task at full learn-
ing, achieving the state-of-the-art results.

The paper is structured as follows. Section 2 in-
troduces the notion of Domain Model and describes
an automatic acquisition technique based on Latent
Semantic Analysis (LSA). In Section 3 we illustrate
the SVM approach to TC, and we define a Domain
Kernel that exploits Domain Models to estimate sim-
ilarity among documents. In Section 4 the perfor-
mance of the Domain Kernel are compared with a
standard bag-of-words feature representation, show-
ing the improvements in the learning curves. Section
5 describes the previous attempts to exploit semi-
supervised learning for TC, while section 6 con-
cludes the paper and proposes some directions for
future research.

1The idea of exploiting a Domain Kernel to help a super-
vised classification framework, has been profitably used also in
other NLP tasks such as word sense disambiguation (see for ex-
ample (Strapparava et al., 2004)).

2 Domain Models

The simplest methodology to estimate the similar-
ity among the topics of two texts is to represent
them by means of vectors in the Vector Space Model
(VSM), and to exploit the cosine similarity. More
formally, let T = {t1, t2, . . . , tn} be a corpus, let
V = {w1, w2, . . . , wk} be its vocabulary, let T be
the k × n term-by-document matrix representing T ,
such that ti,j is the frequency of word wi into the text
tj . The VSM is a k-dimensional space R

k, in which
the text tj ∈ T is represented by means of the vec-
tor ~tj such that the ith component of ~tj is ti,j. The
similarity among two texts in the VSM is estimated
by computing the cosine.

However this approach does not deal well with
lexical variability and ambiguity. For example the
two sentences “he is affected by AIDS” and “HIV is
a virus” do not have any words in common. In the
VSM their similarity is zero because they have or-
thogonal vectors, even if the concepts they express
are very closely related. On the other hand, the sim-
ilarity between the two sentences “the laptop has
been infected by a virus” and “HIV is a virus” would
turn out very high, due to the ambiguity of the word
virus.

To overcome this problem we introduce the notion
of Domain Model (DM), and we show how to use it
in order to define a domain VSM, in which texts and
terms are represented in a uniform way.

A Domain Model is composed by soft clusters of
terms. Each cluster represents a semantic domain
(Gliozzo et al., 2004), i.e. a set of terms that often
co-occur in texts having similar topics. A Domain
Model is represented by a k × k′ rectangular matrix
D, containing the degree of association among terms
and domains, as illustrated in Table 1.

MEDICINE COMPUTER SCIENCE

HIV 1 0
AIDS 1 0
virus 0.5 0.5
laptop 0 1

Table 1: Example of Domain Matrix

Domain Models can be used to describe lexical
ambiguity and variability. Lexical ambiguity is rep-

57

resented by associating one term to more than one
domain, while variability is represented by associat-
ing different terms to the same domain. For example
the term virus is associated to both the domain
COMPUTER SCIENCE and the domain MEDICINE

(ambiguity) while the domain MEDICINE is associ-
ated to both the terms AIDS and HIV (variability).

More formally, let D = {D1, D2, ..., Dk′} be
a set of domains, such that k′ � k. A Domain
Model is fully defined by a k × k′ domain matrix
D representing in each cell di,z the domain rele-
vance of term wi with respect to the domain Dz .
The domain matrix D is used to define a function
D : R

k → R
k′

, that maps the vectors ~tj , expressed
into the classical VSM, into the vectors ~t′j in the do-
main VSM. D is defined by2

D(~tj) = ~tj(I
IDF

D) = ~t′j (1)

where I
IDF is a diagonal matrix such that iIDF

i,i =

IDF (wi), ~tj is represented as a row vector, and
IDF (wi) is the Inverse Document Frequency of wi.

Vectors in the domain VSM are called Domain
Vectors. Domain Vectors for texts are estimated by
exploiting formula 1, while the Domain Vector ~w′

i,
corresponding to the word wi ∈ V , is the ith row of
the domain matrix D. To be a valid domain matrix
such vectors should be normalized (i.e. 〈 ~w′

i,
~w′

i〉 =
1).

In the Domain VSM the similarity among Domain
Vectors is estimated by taking into account second
order relations among terms. For example the simi-
larity of the two sentences “He is affected by AIDS”
and “HIV is a virus” is very high, because the terms
AIDS, HIV and virus are highly associated to the
domain MEDICINE.

In this work we propose the use of Latent Se-
mantic Analysis (LSA) (Deerwester et al., 1990) to
induce Domain Models from corpora. LSA is an
unsupervised technique for estimating the similar-
ity among texts and terms in a corpus. LSA is per-
formed by means of a Singular Value Decomposi-
tion (SVD) of the term-by-document matrix T de-
scribing the corpus. The SVD algorithm can be ex-
ploited to acquire a domain matrix D from a large

2In (Wong et al., 1985) a similar schema is adopted to define
a Generalized Vector Space Model, of which the Domain VSM
is a particular instance.

corpus T in a totally unsupervised way. SVD de-
composes the term-by-document matrix T into three
matrixes T ' VΣk′U

T where Σk′ is the diagonal
k × k matrix containing the highest k ′ � k eigen-
values of T, and all the remaining elements set to
0. The parameter k′ is the dimensionality of the Do-
main VSM and can be fixed in advance3 . Under this
setting we define the domain matrix DLSA

4 as

DLSA = I
N
V

√

Σk′ (2)

where I
N is a diagonal matrix such that i

N
i,i =

1
√

〈 ~w′

i
, ~w′

i
〉

, ~w′
i is the ith row of the matrix V

√
Σk′ .

3 The Domain Kernel

Kernel Methods are the state-of-the-art supervised
framework for learning, and they have been success-
fully adopted to approach the TC task (Joachims,
1999a).

The basic idea behind kernel methods is to embed
the data into a suitable feature space F via a map-
ping function φ : X → F , and then use a linear
algorithm for discovering nonlinear patterns. Kernel
methods allow us to build a modular system, as the
kernel function acts as an interface between the data
and the learning algorithm. Thus the kernel function
becomes the only domain specific module of the sys-
tem, while the learning algorithm is a general pur-
pose component. Potentially a kernel function can
work with any kernel-based algorithm, such as for
example SVM.

During the learning phase SVMs assign a weight
λi ≥ 0 to any example xi ∈ X . All the labeled
instances xi such that λi > 0 are called support vec-
tors. The support vectors lie close to the best sepa-
rating hyper-plane between positive and negative ex-
amples. New examples are then assigned to the class
of its closest support vectors, according to equation
3.

3It is not clear how to choose the right dimensionality. In
our experiments we used 400 dimensions.

4When DLSA is substituted in Equation 1 the Domain VSM
is equivalent to a Latent Semantic Space (Deerwester et al.,
1990). The only difference in our formulation is that the vectors
representing the terms in the Domain VSM are normalized by
the matrix I

N, and then rescaled, according to their IDF value,
by matrix I

IDF. Note the analogy with the tf idf term weighting
schema (Salton and McGill, 1983), widely adopted in Informa-
tion Retrieval.

58

f(x) =
n

∑

i=1

λiK(xi, x) + λ0 (3)

The kernel function K returns the similarity be-
tween two instances in the input space X , and can
be designed in order to capture the relevant aspects
to estimate similarity, just by taking care of satis-
fying set of formal requirements, as described in
(Schölkopf and Smola, 2001).

In this paper we define the Domain Kernel and we
apply it to TC tasks. The Domain Kernel, denoted
by KD, can be exploited to estimate the topic simi-
larity among two texts while taking into account the
external knowledge provided by a Domain Model
(see section 2). It is a variation of the Latent Seman-
tic Kernel (Shawe-Taylor and Cristianini, 2004), in
which a Domain Model is exploited to define an ex-
plicit mapping D : R

k → R
k′

from the classical
VSM into the domain VSM. The Domain Kernel is
defined by

KD(ti, tj) =
〈D(ti),D(tj)〉

√

〈D(tj),D(tj)〉〈D(ti),D(ti)〉
(4)

where D is the Domain Mapping defined in equa-
tion 1. To be fully defined, the Domain Kernel re-
quires a Domain Matrix D. In principle, D can be
acquired from any corpora by exploiting any (soft)
term clustering algorithm. Anyway, we belive that
adequate Domain Models for particular tasks can be
better acquired from collections of documents from
the same source. For this reason, for the experi-
ments reported in this paper, we acquired the matrix
DLSA, defined by equation 2, using the whole (un-
labeled) training corpora available for each task, so
tuning the Domain Model on the particular task in
which it will be applied.

A more traditional approach to measure topic sim-
ilarity among text consists of extracting BoW fea-
tures and to compare them in a vector space. The
BoW kernel, denoted by KBoW , is a particular case
of the Domain Kernel, in which D = I, and I is the
identity matrix. The BoW Kernel does not require
a Domain Model, so we can consider this setting
as “purely” supervised, in which no external knowl-
edge source is provided.

4 Evaluation

We compared the performance of both KD and
KBoW on two standard TC benchmarks. In sub-
section 4.1 we describe the evaluation tasks and the
preprocessing steps, in 4.2 we describe some algo-
rithmic details of the TC system adopted. Finally
in subsection 4.3 we compare the learning curves of
KD and KBoW .

4.1 Text Categorization tasks

For the experiments reported in this paper, we se-
lected two evaluation benchmarks typically used in
the TC literature (Sebastiani, 2002): the 20news-
groups and the Reuters corpora. In both the data sets
we tagged the texts for part of speech and we consid-
ered only the noun, verb, adjective, and adverb parts
of speech, representing them by vectors containing
the frequencies of each disambiguated lemma. The
only feature selection step we performed was to re-
move all the closed-class words from the document
index.

20newsgroups. The 20Newsgroups data set5 is
a collection of approximately 20,000 newsgroup
documents, partitioned (nearly) evenly across 20
different newsgroups. This collection has become
a popular data set for experiments in text appli-
cations of machine learning techniques, such as
text classification and text clustering. Some of
the newsgroups are very closely related to each
other (e.g. comp.sys.ibm.pc.hardware
/ comp.sys.mac.hardware), while others
are highly unrelated (e.g. misc.forsale /
soc.religion.christian). We removed
cross-posts (duplicates), newsgroup-identifying
headers (i.e. Xref, Newsgroups, Path, Followup-To,
Date), and empty documents from the original
corpus, so to obtain 18,941 documents. Then we
randomly divided it into training (80%) and test
(20%) sets, containing respectively 15,153 and
3,788 documents.

Reuters. We used the Reuters-21578 collec-
tion6, and we splitted it into training and test

5Available at http://www.ai.mit.edu-
/people/jrennie/20Newsgroups/.

6Available at http://kdd.ics.uci.edu/databases/-
reuters21578/reuters21578.html.

59

partitions according to the standard ModAptè
split. It includes 12,902 documents for 90 cat-
egories, with a fixed splitting between training
and test data. We conducted our experiments by
considering only the 10 most frequent categories,
i.e. Earn, Acquisition, Money-fx,
Grain, Crude, Trade, Interest,
Ship, Wheat and Corn, and we included in
our dataset all the non empty documents labeled
with at least one of those categories. Thus the final
dataset includes 9295 document, of which 6680 are
included in the training partition, and 2615 are in
the test set.

4.2 Implementation details

As a supervised learning device, we used the SVM
implementation described in (Joachims, 1999a).
The Domain Kernel is implemented by defining an
explicit feature mapping according to formula 1, and
by normalizing each vector to obtain vectors of uni-
tary length. All the experiments have been per-
formed on the standard parameter settings, using a
linear kernel.

We acquired a different Domain Model for each
corpus by performing the SVD processes on the
term-by-document matrices representing the whole
training partitions, and we considered only the first
400 domains (i.e. k′ = 400)7.

As far as the Reuters task is concerned, the TC
problem has been approached as a set of binary fil-
tering problems, allowing the TC system to pro-
vide more than one category label to each document.
For the 20newsgroups task, we implemented a one-
versus-all classification schema, in order to assign a
single category to each news.

4.3 Domain Kernel versus BoW Kernel

Figure 1 and Figure 2 report the learning curves for
both KD and KBoW , evaluated respectively on the
Reuters and the 20newgroups task. Results clearly
show that KD always outperforms KBoW , espe-
cially when very limited amount of labeled data is
provided for learning.

7To perform the SVD operation we adopted
LIBSVDC, an optimized package for sparse ma-
trix that allows to perform this step in few minutes
even for large corpora. It can be downloaded from
http://tedlab.mit.edu/∼dr/SVDLIBC/.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1
 m

ea
su

re

Fraction of labeled training data

Domain Kernel
BoW Kernel

Figure 1: Micro-F1 learning curves for Reuters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1
 m

ea
su

re

Fraction of labeled training data

Domain Kernel
BoW Kernel

Figure 2: Micro-F1 learning curves for 20news-
groups

Table 2 compares the performances of the two
kernels at full learning. KD achieves a better micro-
F1 than KBoW in both tasks. The improvement is
particularly significant in the Reuters task (+ 2.8 %).

Tables 3 shows the number of labeled examples
required by KD and KBoW to achieve the same
micro-F1 in the Reuters task. KD requires only
146 examples to obtain a micro-F1 of 0.84, while
KBoW requires 1380 examples to achieve the same
performance. In the same task, KD surpass the per-
formance of KBoW at full learning using only the
10% of the labeled data. The last column of the ta-
ble shows clearly that KD requires 90% less labeled
data than KBoW to achieve the same performances.

A similar behavior is reported in Table 4 for the

60

F1 Domain Kernel Bow Kernel
Reuters 0.928 0.900
20newsgroups 0.886 0.880

Table 2: Micro-F1 with full learning

F1 Domain Kernel Bow Kernel Ratio
.54 14 267 5%
.84 146 1380 10%
.90 668 6680 10%

Table 3: Number of training examples needed by
KD and KBoW to reach the same micro-F1 on the
Reuters task

20newsgroups task. It is important to notice that the
number of labeled documents is higher in this corpus
than in the previous one. The benefits of using Do-
main Models are then less evident at full learning,
even if they are significant when very few labeled
data are provided.

Figures 3 and 4 report a more detailed analysis
by comparing the micro-precision and micro-recall
learning curves of both kernels in the Reuters task8.
It is clear from the graphs that the main contribute
of KD is about increasing recall, while precision is
similar in both cases9. This last result confirms our
hypothesis that the information provided by the Do-
main Models allows the system to generalize in a
more effective way over the training examples, al-
lowing to estimate the similarity among texts even if
they have just few words in common.

Finally, KD achieves the state-of-the-art in the
Reuters task, as reported in section 5.

5 Related Works

To our knowledge, the first attempt to apply the
semi-supervised learning schema to TC has been
reported in (Blum and Mitchell, 1998). Their co-
training algorithm was able to reduce significantly
the error rate, if compared to a strictly supervised

8For the 20-newsgroups task both micro-precision and
micro-recall are equal to micro-F1 because a single category
label has been assigned to every instance.

9It is worth noting that KD gets a F1 measure of 0.54 (Preci-
sion/Recall of 0.93/0.38) using just 14 training examples, sug-
gesting that it can be profitably exploited for a bootstrapping
process.

F1 Domain Kernel Bow Kernel Ratio
.50 30 500 6%
.70 98 1182 8%
.85 2272 7879 29%

Table 4: Number of training examples needed by
KD and KBoW to reach the same micro-F1 on the
20newsgroups task

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Fraction of labeled training data

Domain Kernel
BoW Kernel

Figure 3: Learning curves for Reuters (Precision)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Fraction of labeled training data

Domain Kernel
BoW Kernel

Figure 4: Learning curves for Reuters (Recall)

classifier.
(Nigam et al., 2000) adopted an Expectation Max-

imization (EM) schema to deal with the same prob-
lem, evaluating extensively their approach on sev-
eral datasets. They compared their algorithm with
a standard probabilistic approach to TC, reporting
substantial improvements in the learning curve.

61

A similar evaluation is also reported in (Joachims,
1999b), where a transduptive SVM is compared
to a state-of-the-art TC classifier based on SVM.
The semi-supervised approach obtained better re-
sults than the standard with few learning data, while
at full learning results seem to converge.

(Bekkerman et al., 2002) adopted a SVM classi-
fier in which texts have been represented by their as-
sociations to a set of Distributional Word Clusters.
Even if this approach is very similar to ours, it is not
a semi-supervised learning schema, because authors
did not exploit any additional unlabeled data to in-
duce word clusters.

In (Zelikovitz and Hirsh, 2001) background
knowledge (i.e. the unlabeled data) is exploited to-
gether with labeled data to estimate document sim-
ilarity in a Latent Semantic Space (Deerwester et
al., 1990). Their approach differs from the one pro-
posed in this paper because a different categoriza-
tion algorithm has been adopted. Authors compared
their algorithm with an EM schema (Nigam et al.,
2000) on the same dataset, reporting better results
only with very few labeled data, while EM performs
better with more training.

All the semi-supervised approaches in the liter-
ature reports better results than strictly supervised
ones with few learning, while with more data the
learning curves tend to converge.

A comparative evaluation among semi-supervised
TC algorithms is quite difficult, because the used
data sets, the preprocessing steps and the splitting
partitions adopted affect sensibly the final results.
Anyway, we reported the best F1 measure on the
Reuters corpus: to our knowledge, the state-of-the-
art on the 10 top most frequent categories of the
ModApte split at full learning is F1 92.0 (Bekker-
man et al., 2002) while we obtained 92.8. It is im-
portant to notice here that this results has been ob-
tained thanks to the improvements of the Domain
Kernel. In addition, on the 20newsgroups task, our
methods requires about 100 documents (i.e. five
documents per category) to achieve 70% F1, while
both EM (Nigam et al., 2000) and LSI (Zelikovitz
and Hirsh, 2001) requires more than 400 to achieve
the same performance.

6 Conclusion and Future Works

In this paper a novel technique to perform semi-
supervised learning for TC has been proposed and
evaluated. We defined a Domain Kernel that allows
us to improve the similarity estimation among docu-
ments by exploiting Domain Models. Domain Mod-
els are acquired from large collections of non anno-
tated texts in a totally unsupervised way.

An extensive evaluation on two standard bench-
marks shows that the Domain Kernel allows us to re-
duce drastically the amount of training data required
for learning. In particular the recall increases sen-
sibly, while preserving a very good accuracy. We
explained this phenomenon by showing that the sim-
ilarity scores evaluated by the Domain Kernel takes
into account both variability and ambiguity, being
able to estimate similarity even among texts that do
not have any word in common.

As future work, we plan to apply our semi-
supervised learning method to some concrete ap-
plicative scenarios, such as user modeling and cat-
egorization of personal documents in mail clients.
In addition, we are going deeper in the direction of
semi-supervised learning, by acquiring more com-
plex structures than clusters (e.g. synonymy, hyper-
onymy) to represent domain models. Furthermore,
we are working to adapt the general framework pro-
vided by the Domain Models to a multilingual sce-
nario, in order to apply the Domain Kernel to a Cross
Language TC task.

Acknowledgments

This work has been partially supported by the ON-
TOTEXT (From Text to Knowledge for the Se-
mantic Web) project, funded by the Autonomous
Province of Trento under the FUP-2004 research
program.

References
R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Win-

ter. 2002. Distributional word clusters vs. words for
text categorization. Journal of Machine Learning Re-
search, 1:1183–1208.

A. Blum and T. Mitchell. 1998. Combining labeled and
unlabeled data with co-training. In COLT: Proceed-
ings of the Workshop on Computational Learning The-
ory, Morgan Kaufmann Publishers.

62

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. 1990. Indexing by latent semantic anal-
ysis. Journal of the American Society of Information
Science.

A. Gliozzo, C. Strapparava, and I. Dagan. 2004. Unsu-
pervised and supervised exploitation of semantic do-
mains in lexical disambiguation. Computer Speech
and Language, 18:275–299.

T. Joachims. 1999a. Making large-scale SVM learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in kernel methods: support vector
learning, chapter 11, pages 169 – 184. MIT Press,
Cambridge, MA, USA.

T. Joachims. 1999b. Transductive inference for text
classification using support vector machines. In Pro-
ceedings of ICML-99, 16th International Conference
on Machine Learning, pages 200–209. Morgan Kauf-
mann Publishers, San Francisco, US.

T. Joachims. 2002. Learning to Classify Text using Sup-
port Vector Machines. Kluwer Academic Publishers.

B. Magnini, C. Strapparava, G. Pezzulo, and A. Gliozzo.
2002. The role of domain information in word
sense disambiguation. Natural Language Engineer-
ing, 8(4):359–373.

K. Nigam, A. K. McCallum, S. Thrun, and T. M.
Mitchell. 2000. Text classification from labeled and
unlabeled documents using EM. Machine Learning,
39(2/3):103–134.

G. Salton and M.H. McGill. 1983. Introduction to mod-
ern information retrieval. McGraw-Hill, New York.

B. Schölkopf and A. J. Smola. 2001. Learning with Ker-
nels. Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press.

F. Sebastiani. 2002. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47.

J. Shawe-Taylor and N. Cristianini. 2004. Kernel Meth-
ods for Pattern Analysis. Cambridge University Press.

C. Strapparava, A. Gliozzo, and C. Giuliano. 2004. Pat-
tern abstraction and term similarity for word sense
disambiguation: Irst at senseval-3. In Proc. of
SENSEVAL-3 Third International Workshop on Eval-
uation of Systems for the Semantic Analysis of Text,
pages 229–234, Barcelona, Spain, July.

S.K.M. Wong, W. Ziarko, and P.C.N. Wong. 1985. Gen-
eralized vector space model in information retrieval.
In Proceedings of the 8th ACM SIGIR Conference.

S. Zelikovitz and H. Hirsh. 2001. Using LSI for text clas-
sification in the presence of background text. In Hen-
rique Paques, Ling Liu, and David Grossman, editors,
Proceedings of CIKM-01, 10th ACM International
Conference on Information and Knowledge Manage-
ment, pages 113–118, Atlanta, US. ACM Press, New
York, US.

63

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 64–71, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Discriminative Training of Clustering Functions:
Theory and Experiments with Entity Identification

Xin Li and Dan Roth
Department of Computer Science

University of Illinois, Urbana, IL 61801
(xli1,danr)@cs.uiuc.edu

Abstract

Clustering is an optimization procedure that
partitions a set of elements to optimize some
criteria, based on a fixed distance metric de-
fined between the elements. Clustering ap-
proaches have been widely applied in natural
language processing and it has been shown re-
peatedly that their success depends on defin-
ing a good distance metric, one that is appro-
priate for the task and the clustering algorithm
used. This paper develops a framework in
which clustering is viewed as a learning task,
and proposes a way to train a distance metric
that is appropriate for the chosen clustering al-
gorithm in the context of the given task. Ex-
periments in the context of the entity identifi-
cation problem exhibit significant performance
improvements over state-of-the-art clustering
approaches developed for this problem.

1 Introduction

Clustering approaches have been widely applied to nat-
ural language processing (NLP) problems. Typically,
natural language elements (words, phrases, sentences,
etc.) are partitioned into non-overlapping classes, based
on some distance (or similarity) metric defined between
them, in order to provide some level of syntactic or se-
mantic abstraction. A key example is that of class-based
language models (Brown et al., 1992; Dagan et al., 1999)
where clustering approaches are used in order to parti-
tion words, determined to be similar, into sets. This
enables estimating more robust statistics since these are
computed over collections of “similar” words. A large
number of different metrics and algorithms have been ex-
perimented with these problems (Dagan et al., 1999; Lee,
1997; Weeds et al., 2004). Similarity between words was
also used as a metric in a distributional clustering algo-
rithm in (Pantel and Lin, 2002), and it shows that func-
tionally similar words can be grouped together and even
separated to smaller groups based on their senses. At a

higher level, (Mann and Yarowsky, 2003) disambiguated
personal names by clustering people’s home pages using
a TFIDF similarity, and several other researchers have ap-
plied clustering at the same level in the context of the
entity identification problem (Bilenko et al., 2003; Mc-
Callum and Wellner, 2003; Li et al., 2004). Similarly, ap-
proaches to coreference resolution (Cardie and Wagstaff,
1999) use clustering to identify groups of references to
the same entity.

Clustering is an optimization procedure that takes as
input (1) a collection of domain elements along with (2)
a distance metric between them and (3) an algorithm se-
lected to partition the data elements, with the goal of op-
timizing some form of clustering quality with respect to
the given distance metric. For example, the K-Means
clustering approach (Hartigan and Wong, 1979) seeks to
maximize a measure of tightness of the resulting clusters
based on the Euclidean distance. Clustering is typically
called an unsupervised method, since data elements are
used without labels during the clustering process and la-
bels are not used to provide feedback to the optimiza-
tion process. E.g., labels are not taken into account when
measuring the quality of the partition. However, in many
cases, supervision is used at the application level when
determining an appropriate distance metric (e.g., (Lee,
1997; Weeds et al., 2004; Bilenko et al., 2003) and more).

This scenario, however, has several setbacks. First, the
process of clustering, simply a function that partitions a
set of elements into different classes, involves no learn-
ing and thus lacks flexibility. Second, clustering quality is
typically defined with respect to a fixed distance metric,
without utilizing any direct supervision, so the practical
clustering outcome could be disparate from one’s inten-
tion. Third, when clustering with a given algorithm and
a fixed metric, one in fact makes some implicit assump-
tions on the data and the task (e.g., (Kamvar et al., 2002);
more on that below). For example, the optimal conditions
under which for K-means works are that the data is gen-
erated from a uniform mixture of Gaussian models; this
may not hold in reality.

This paper proposes a new clustering framework that
addresses all the problems discussed above. Specifically,

64

we define clustering as a learning task: in the training
stage, a partition function, parameterized by a distance
metric, is trained with respect to a specific clustering al-
gorithm, with supervision. Some of the distinct proper-
ties of this framework are that: (1) The training stage is
formalized as an optimization problem in which a parti-
tion function is learned in a way that minimizes a clus-
tering error. (2) The clustering error is well-defined and
driven by feedback from labeled data. (3) Training a
distance metric with respect to any given clustering al-
gorithm seeks to minimize the clustering error on train-
ing data that, under standard learning theory assumptions,
can be shown to imply small error also in the application
stage. (4) We develop a general learning algorithm that
can be used to learn an expressive distance metric over
the feature space (e.g., it can make use of kernels).

While our approach makes explicit use of labeled data,
we argue that, in fact, many clustering applications in nat-
ural language also exploit this information off-line, when
exploring which metrics are appropriate for the task. Our
framework makes better use of this resource by incorpo-
rating it directly into the metric training process; training
is driven by true clustering error, computed via the spe-
cific algorithm chosen to partition the data.

We study this new framework empirically on the en-
tity identification problem – identifying whether differ-
ent mentions of real world entities, such as “JFK” and
“John Kennedy”, within and across text documents, ac-
tually represent the same concept (McCallum and Well-
ner, 2003; Li et al., 2004). Our experimental results ex-
hibit a significant performance improvement over exist-
ing approaches (20% − 30% F1 error reduction) on all
three types of entities we study, and indicate its promis-
ing prospective in other natural language tasks.

The rest of this paper discusses existing clustering ap-
proaches (Sec. 2) and then introduces our Supervised Dis-
criminative Clustering framework (SDC) (Sec. 3) and a
general learner for training in it (Sec. 4). Sec. 5 describes
the entity identification problem and Sec. 6 compares dif-
ferent clustering approaches on this task.

2 Clustering in Natural Language Tasks

Clustering is the task of partitioning a set of elements
S ⊆ X into a disjoint decomposition1 p(S) = {S1, S2,
· · · , SK} of S. We associate with it apartition function
p = pS : X → C = {1, 2, . . . K} that maps eachx ∈ S
to a class indexpS(x) = k iff x ∈ Sk. The subscriptS
in pS andpS(x) is omitted when clear from the context.
Notice that, unlike a classifier, the imagex ∈ S under a
partition function depends onS.

In practice, a clustering algorithmA (e.g. K-Means),
and a distance metricd (e.g., Euclidean distance), are typ-

1Overlapping partitions will not be discussed here.

ically used to generate a functionh to approximate the
true partition functionp. Denoteh(S) = Ad(S), the par-
tition of S by h. A distance (equivalently, a similarity)
functiond that measures the proximity between two ele-
ments is a pairwise functionX × X → R+, which can
be parameterized to represent a family of functions —
metric properties are not discussed in this paper. For ex-
ample, given any two elementx1 =< x

(1)
1 , · · · , x(m)

1 >

andx2 =< x
(1)
2 , · · · , x(m)

2 > in anm-dimensional space,
a linearly weighted Euclidean distance with parameters
θ = {wl}m

1 is defined as:

dθ(x1, x2) ≡
√√√√

m∑

l=1

wl · |x(l)
1 − x

(l)
2 |2 (1)

When supervision (e.g. class index of elements) is un-
available, the quality of a partition functionh operating
onS ⊆ X, is measured with respect to the distance met-
ric defined overX. Supposeh partitionsS into disjoint
setsh(S) = {S′k}K

1 , onequality functionused in the K-
Means algorithm is defined as:

qS(h) ≡
K∑

k=1

∑

x∈S′
k

d(x, µ′k)2, (2)

whereµ′k is the mean of elements in setS′k. However, this
measure can be computed irrespective of the algorithm.

2.1 What is a Good Metric?

A good metric is one in which close proximity correlates
well with the likelihood of being in the same class. When
applying clustering to some task, people typically decide
on the clustering quality measureqS(h) they want to op-
timize, and then chose a specific clustering algorithmA
and a distance metricd to generate a ‘good’ partition
function h. However, it is clear that without any super-
vision, the resulting function is not guaranteed to agree
with the target functionp (or one’s original intention).

Given this realization, there has been some work on
selectinga good distance metric for a family of related
problems and onlearninga metric for specific tasks. For
the former, the focus is on developing and selecting good
distance (similarity) metrics that reflect well pairwise
proximity between domain elements. The “goodness”
of a metric is empirically measured when combined with
different clustering algorithms on different problems. For
example (Lee, 1997; Weeds et al., 2004) compare similar-
ity metrics such as the Cosine, Manhattan and Euclidean
distances, Kullback-Leibler divergence, Jensen-Shannon
divergence, and Jaccard’s Coefficient, that could be ap-
plied in general clustering tasks, on the task of measur-
ing distributional similarity. (Cohen et al., 2003) com-
pares a number of string and token-based similarity met-
rics on the task of matching entity names and found that,

65

overall, the best-performing method is a hybrid scheme
(SoftTFIDF) combining a TFIDF weighting scheme of
tokens with the Jaro-Winkler string-distance scheme that
is widely used for record linkage in databases.

d(x1,x2) = [(x1
(1) -x2

(1))2+(x1
(2) -x2

(2))2]1/2 d(x1,x2) = |(x1
(1) +x2

(1))-(x1
(2) +x2

(2))|

(a) Single-Linkage with
Euclidean

(b) K-Means with
Euclidean

(c) K-Means with a
Linear Metric

Figure 1: Different combinations of clustering algorithms
with distance metrics. The 12 points, positioned in a two-
dimensional space< X(1), X(2) >, are clustered into two
groups containing solid and hollow points respectively.

Moreover, it is not clear whether there exists any
universal metric that is good for many different prob-
lems (or even different data sets for similar problems)
and is appropriate for any clustering algorithm. For the
word-based distributional similarity mentioned above,
this point was discussed in (Geffet and Dagan, 2004)
when it is shown that proximity metrics that are appro-
priate for class-based language models may not be ap-
propriate for other tasks. We illustrate this critical point in
Fig. 1. (a) and (b) show that even for the same data collec-
tion, different clustering algorithms with the same met-
ric could generate different outcomes. (b) and (c) show
that with the same clustering algorithm, different metrics
could also produce different outcomes.Therefore, a good
distance metric should be both domain-specific and asso-
ciated with a specific clustering algorithm.

2.2 Metric Learning via Pairwise Classification

Several works (Cohen et al., 2003; Cohen and Rich-
man, 2002; McCallum and Wellner, 2003; Li et al.,
2004) have tried to remedy the aforementioned problems
by attempting to learn a distance function in a domain-
specific way via pairwise classification. In the training
stage, given a set of labeled element pairs, a function
f : X × X → {0, 1} is trained to classify any two el-
ements as to whether they belong to the same class (1)
or not (0), independently of other elements. The dis-
tance between the two elements is defined by converting
the prediction confidence of the pairwise classifier, and
clustering is then performed based on this distance func-
tion. Particularly, (Li et al., 2004) applied this approach
to measuring name similarity in the entity identification
problem, where a pairwise classifier (LMR) is trained us-
ing the SNoW learning architecture (Roth, 1998) based
on variations of Perceptron and Winnow, and using a col-
lection of relational features between a pair of names.
The distance between two names is defined as a softmax

over the classifier’s output. As expected, experimental
evidence (Cohen et al., 2003; Cohen and Richman, 2002;
Li et al., 2004) shows that domain-specific distance func-
tions improve over a fixed metric. This can be explained
by the flexibility provided by adapting the metric to the
domain as well as the contribution of supervision that
guides the adaptation of the metric.

A few works (Xing et al., 2002; Bar-Hillel et al., 2003;
Schultz and Joachims, 2004; Mochihashi et al., 2004)
outside the NLP domain have also pursued this general
direction, and some have tried to learn the metric with
limited amount of supervision, no supervision or by in-
corporating other information sources such as constraints
on the class memberships of the data elements. In most of
these cases, the algorithm practically used in clustering,
(e.g. K-Means), is not considered in the learning proce-
dure, or only implicitly exploited by optimizing the same
objective function. (Bach and Jordan, 2003; Bilenko et
al., 2004) indeed suggest to learn a metric directly in a
clustering task but the learning procedure is specific for
one clustering algorithm.

3 Supervised Discriminative Clustering

To solve the limitations of existing approaches, we de-
velop the Supervised Discriminative Clustering Frame-
work (SDC), that can train a distance function with re-
spect to any chosen clustering algorithm in the context of
a given task, guided by supervision.

A labeled data set S

A Supervised
Learner

Training Stage:

Goal: h*=argmin
errS(h,p)

A distance
metric d

a clustering
algorithm A+

A unlabeled
data set S’

A partition
h(S’)

Application
Stage: h(S’)

A partition function
h(S) = A d(S)

Figure 2:Supervised Discriminative Clustering

Fig. 2 presents this framework, in which a cluster-
ing task is explicitly split into training and application
stages, and the chosen clustering algorithm involves in
both stages. In the training stage, supervision is directly
integrated into measuring the clustering errorerrS(h, p)
of a partition functionh by exploiting the feedback given
by the true partitionp. The goal of training is to find a par-
tition functionh∗ in a hypothesis spaceH that minimizes
the error. Consequently, given a new data setS′ in the ap-
plication stage, under some standard learning theory as-
sumptions, the hope is that the learned partition function

66

can generalize well and achieve small error as well.

3.1 Supervised and Unsupervised Training

Let p be the target function overX, h be a function in the
hypothesis spaceH, andh(S) = {S′k}K

1 . In principle,
given data setS ⊆ X, if the true partitionp(S) = {Sk}K

1

of S is available, one can measure the deviation ofh from
p overS, using anerror functionerrS(h, p) → R+. We
distinguish an error function from a quality function (as
in Equ. 2) as follows: an error function measures the dis-
agreement between clustering and the target partition (or
one’s intention) when supervision is given, while a qual-
ity is defined without any supervision.

For clustering, there is generally no direct way to com-
pare the true class indexp(x) of each element with that
given by a hypothesish(x), so an alternative is to mea-
sure the disagreement betweenp andh over pairs of el-
ements. Given a labeled data setS andp(S), one error
function, namelyweighted clustering error, is defined as
a sum of the pairwise errors over any two elements inS,
weighted by the distance between them:

errS(h, p) ≡ 1

|S|2
∑

xi,xj∈S

[d(xi, xj)·Aij+(D−d(xi, xj))·Bij]

(3)
whereD = maxxi,xj∈S d(xi, xj) is the maximum dis-
tance between any two elements inS andI is an indica-
tor function.Aij ≡ I[(p(xi) = p(xj) & h(xi) 6= h(xj)]
andBij ≡ I[(p(xi) 6= p(xj) & h(xi) = h(xj)] represent
two types of pairwise errors respectively.

Just like the quality defined in Equ. 2, this error is a
function of the metricd. Intuitively, the contribution of a
pair of elements that should belong to the same class but
are split byh, grows with their distance, and vice versa.
However, this measure is significantly different from the
quality, in that it does not just measure the tightness of the
partition given byh, but rather the difference between the
tightness of the partitions given byh and byp.

Given a set of observed data, the goal of training is to
learn a good partition function, parameterized by specific
clustering algorithms and distance functions. Depending
on whether training data is labeled or unlabeled, we can
further define supervised and unsupervised training.

Definition 3.1 Supervised Training: Given a labeled
data setS and p(S), a family of partition functionsH,
and the error functionerrS(h, p)(h ∈ H), the problem
is to find an optimal functionh∗ s.t.

h∗ = argminh∈H errS(h, p).

Definition 3.2 Unsupervised Training:Given an unla-
beled data setS (p(S) is unknown), a family of partition
functionsH, and a quality functionqS(h)(h ∈ H), the
problem is to find an optimal partition functionh∗ s.t.

h∗ = argmaxh∈H qS(h).

With this formalization, SDC along with supervised
training, can be distinguished clearly from (1) unsuper-
vised clustering approaches, (2) clustering over pairwise
classification; and (3) related works that exploit partial
supervision in metric learning as constraints.

3.2 Clustering via Metric Learning

By fixing the clustering algorithm in the training stage,
we can further define supervised metric learning, a spe-
cial case of supervised training.

Definition 3.3 Supervised Metric Learning:Given a la-
beled data setS andp(S), and a family of partition func-
tionsH = {h} that are parameterized by a chosen clus-
tering algorithmA and a family of distance metricsdθ

(θ ∈ Ω), the problem is to seek an optimal metricdθ∗

with respect toA, s.t. forh(S) = A dθ
(S)

θ∗ = argminθ errS(h, p). (4)

Learning the metric parametersθ requires parameteriz-
ing h as a function ofθ, when the algorithmA is chosen
and fixed inh. In the later experiments of Sec. 5, we
try to learn weighted Manhattan distances for the single-
link algorithm and other algorithms, in the task of en-
tity identification. In this case, when pairwise features
are extracted for any elementsx1, x2 ∈ X, (x1, x2) =<
φ1, φ2, · · · , φm >, the linearly weighted Manhattan dis-
tance, parameterized by (θ = {wl}m

1) is defined as:

d(x1, x2) ≡
m∑

l=1

wl · φl(x1, x2) (5)

wherewl is the weight over featureφl(x1, x2). Since
measurement of the error is dependent on the metric,
as shown in Equ. 3, one needs to enforce some con-
straints on the parameters. One constraint is

∑m
l=1 |wl| =

1, which prevents the error from being scale-dependent
(e.g., metrics giving smaller distance are always better).

4 A General Learner for SDC

In addition to the theoretical SDC framework, we also de-
velop a practical learning algorithm based on gradient de-
scent (in Fig. 3), that can train a distance function for any
chosen clustering algorithm (such as Single-Linkage and
K-Means), as in the setting of supervised metric learning.
The training procedure incorporates the clustering algo-
rithm (step 2.a) so that the metric is trained with respect
to the specific algorithm that will be applied in evalua-
tion. The convergence of this general training procedure
depends on the convexity of the error as a function ofθ.
For example, since the error function we use islinear in θ,
the algorithm is guaranteed to converge to a global mini-
mum. In this case, for rate of convergence, one can appeal
to general results that typically imply, when there exists
a parameter vector with zero error, that convergence rate

67

depends on the ‘separation” of the training data, which
roughly means the minimal error archived with this pa-
rameter vector. Results such as (Freund and Schapire,
1998) can be used to extend the rate of convergence re-
sult a bit beyond the separable case, when a small number
of the pairs are not separable.

Algorithm: SDC-Learner
Input: S andp(S): the labeled data set.A: the clustering
algorithm.errS(h, p): the clustering error function.α > 0
: the learning rate.T (typically T is large) : the number of
iterations allowed.
Output: θ∗ : the parameters in the distance functiond.

1. In the initial (I-) step, we randomly chooseθ0 for d.
After this step we have the initiald0 andh0.

2. Then we iterate overt (t = 1, 2, · · ·),
(a) PartitionS usinght−1(S) ≡ A dt−1(S);
(b) ComputeerrS(ht−1, p) and updateθ using the

formula:θt = θt−1 − α · ∂errS(ht−1,p)

∂θt−1 .

(c) Normalization:θt = 1
Z
· θt, whereZ = ||θt||.

3. Stopping Criterion: Ift > T , the algorithm exits and
outputs the metric in the iteration with the least error.

Figure 3:A general training algorithm for SDC

For the weighted clustering error in Equ. 3, and linearly
weighted Manhattan distances as in Equ. 5, the update
rule in Step2(b) becomes

wt
l = wt−1

l − α · [ψt−1
l (p, S)− ψt−1

l (h, S)]. (6)

whereψl(p, S) ≡ 1
|S|2

∑
xi,xj∈S φl(xi, xj) · I[p(xi) =

p(xj)] and ψl(h, S) ≡ 1
|S|2

∑
xi,xj∈S φl(xi, xj) ·

I[h(xi) = h(xj)], andα > 0 is the learning rate.

5 Entity Identification in Text

We conduct experimental study on the task of entity iden-
tification in text (Bilenko et al., 2003; McCallum and
Wellner, 2003; Li et al., 2004). A given entity – rep-
resenting a person, a location or an organization – may
be mentioned in text in multiple, ambiguous ways. Con-
sider, for example, an open domain question answering
system (Voorhees, 2002) that attempts, given a question
like: “When was President Kennedy born?” to search a
large collection of articles in order to pinpoint the con-
cise answer: “on May 29, 1917.” The sentence, and even
the document that contains the answer, may not contain
the name “President Kennedy”; it may refer to this en-
tity as “Kennedy”, “JFK” or “John Fitzgerald Kennedy”.
Other documents may state that “John F. Kennedy, Jr.
was born on November 25, 1960”, but this fact refers to
our target entity’s son. Other mentions, such as “Senator
Kennedy” or “Mrs. Kennedy” are even “closer” to the
writing of the target entity, but clearly refer to different

entities. Understanding natural language requires identi-
fying whether different mentions of a name, within and
across documents, represent the same entity.

We study this problem for three entity types – People,
Location and Organization. Although deciding the coref-
erence of names within the same document might be rela-
tively easy, since within a single document identical men-
tions typically refer to the same entity, identifying coref-
erence across-document is much harder. With no stan-
dard corpora for studying the problem in a general setting
– both within and across documents, we created our own
corpus. This is done by collecting about8, 600 names
from 300 randomly sampled 1998-2000 New York Times
articles in the TREC corpus (Voorhees, 2002). These
names are first annotated by a named entity tagger, then
manually verified and given as input to an entity identi-
fier.

Since the number of classes (entities) for names is very
large, standard multi-class classification is not feasible.
Instead, we compare SDC with several pairwise classifi-
cation and clustering approaches. Some of them (for ex-
ample, those based on SoftTFIDF similarity) do not make
use of any domain knowledge, while others do exploit su-
pervision, such as LMR and SDC. Other works (Bilenko
et al., 2003) also exploited supervision in this problem by
discriminative training of a pairwise classifier but were
shown to be inferior.

1. SoftTFIDF Classifier– a pairwise classifier deciding
whether any two names refer to the same entity, imple-
mented by thresholding a state-of-art SoftTFIDF similar-
ity metric for string comparison (Cohen et al., 2003). Dif-
ferent thresholds have been experimented but only the best
results are reported.

2. LMR Classifier (P|W) – a SNoW-based pairwise classi-
fier (Li et al., 2004) (described in Sec. 2.2) that learns a
linear function for each class over a collection of relational
features between two names: including string and token-
level features and structural features (listed in Table 1).

For pairwise classifiers like LMR and SoftTFIDF, predic-
tion is made over pairs of names so transitivity of predic-
tions is not guaranteed as in clustering.

3. Clustering over SoftTFIDF– a clustering approach based
on the SoftTFIDF similarity metric.

4. Clustering over LMR (P|W)– a clustering approach (Li et
al., 2004) by converting the LMR classifier into a similar-
ity metric (see Sec. 2.2).

5. SDC– our new supervised clustering approach. The dis-
tance metric is represented as a linear function over a set
of pairwise features as defined in Equ. 5.

The above approaches (2), (4) and (5) learn a classifier
or a distance metric using the same feature set as in Ta-
ble 1. Different clustering algorithms2, such as Single-
Linkage, Complete-Linkage, Graph clustering (George,

2The clustering packageClusterby Michael Eisen at Stan-
ford University is adopted for K-medoids andCLUTO by
(George, 2003) is used for other algorithms. Details of these
algorithms can be found there.

68

Honorific Equal active if both tokens are honorifics and identical.
Honorific Equivalence active if both tokens are honorifics, not identical, but equivalent.
Honorific Mismatch active for different honorifics.

Equality active if both tokens are identical.
Case-Insensitive Equal active if the tokens are case-insensitive equal.

Nickname active if tokens have a “nickname” relation.
Prefix Equality active if the prefixes of both tokens are equal.

Substring active if one of the tokens is a substring of the other.
Abbreviation active if one of the tokens is an abbreviation of the other.

Prefix Edit Distance active if the prefixes of both tokens have an edit-distance of 1.
Edit Distance active if the tokens have an edit-distance of1.

Initial active if one of the tokens is an initial of another.
Symbol Map active if one token is a symbolic representative of the other.

Structural recording the location of the tokens that generate other features in two names.

Table 1:Features employed by LMR and SDC.

2003) – seeking a minimum cut of a nearest neighbor
graph, Repeated Bisections and K-medoids (Chu et al.,
2001) (a variation of K-means) are experimented in (5).
The number of entities in a data set is always given.

6 Experimental Study

Our experimental study focuses on (1) evaluating the
supervised discriminative clustering approach on entity
identification; (2) comparing it with existing pairwise
classification and clustering approaches widely used in
similar tasks; and (3) further analyzing the characteris-
tics of this new framework.

We use the TREC corpus to evaluate different ap-
proaches in identifying three types of entities: People,
Locations and Organization. For each type, we generate
three pairs of training and test sets, each containing about
300 names. We note that the three entity types yield very
different data sets, exhibited by some statistical proper-
ties3. Results on each entity type will be averaged over
the three sets and ten runs of two-fold cross-validation for
each of them. For SDC, given a training set with anno-
tated name pairs, a distance function is first trained using
the algorithm in Fig. 3 (in20 iterations) with respect to
a clustering algorithm and then be used to partition the
corresponding test set with the same algorithm.

For a comparative evaluation, the outcomes of each ap-
proach on a test set of names are converted to a classifi-
cation over all possible pairs of names (including non-
matching pairs). Only examples in the setMp, those
that are predicated to belong to the same entity (posi-
tive predictions) are used in the evaluation, and are com-
pared with the setMa of examples annotated as positive.
The performance of an approach is then evaluated byF1

value, defined as:F1 =
2|Mp

⋂
Ma|

|Mp|+|Ma| .

3The average SoftTFIDF similarity between names of the
same entity is 0.81, 0.89 and 0.95 for people, locations and or-
ganizations respectively.

6.1 Comparison of Different Approaches

Fig. 4 presents the performance of different approaches
(described in Sec. 5) on identifying the three entity types.
We experimented with different clustering algorithms but
only the results by Single-Linkage are reported forClus-
ter over LMR (P|W)and SDC, since they are the best.

SDC works well for all three entity types in spite of
their different characteristics. The bestF1 values of SDC
are92.7%, 92.4% and95.7% for people, locations and
organizations respectively, about20% − 30% error re-
duction compared with the best performance of the other
approaches. This is an indication that this new approach
which integrates metric learning and supervision in a uni-
fied framework, has significant advantages4.

6.2 Further Analysis of SDC

In the next experiments, we will further analyze the char-
acteristics of SDC by evaluating it in different settings.

Different Training Sizes Fig. 5 reports the relationship
between the performance of SDC and different training
sizes. The learning curves for other learning-based ap-
proaches are also shown. We find that SDC exhibits good
learning ability with limited supervision. When training
examples are very limited, for example, only10% of all
300 names, pairwise classifiers based on Perceptron and
Winnow exhibit advantages over SDC. However, when
supervision become reasonable (30%+ examples), SDC
starts to outperform all other approaches.

Different Clustering Algorithms Fig. 6 shows the
performance of applying different clustering algorithms
(see Sec. 5) in the SDC approach. Single-Linkage and
Complete-Linkage outperform all other algorithms. One
possible reason is that this task has a great number of

4We note that in this experiment, the relative comparison
between the pairwise classifiers and the clustering approaches
over them is not consistent for all entity types. This can be
partially explained by the theoretical analysis in (Li et al., 2004)
and the difference between entity types.

69

80

82

84

86

88

90

92

94

96

(a) People
F

1 (
%

)
80

82

84

86

88

90

92

94

96

(b) Locations

F
1 (

%
)

80

82

84

86

88

90

92

94

96

(c) Organizations

F
1 (

%
)

SoftTFIDF
LMR (P)
LMR (W)
Cluster over SoftTFIDF
Cluster over LMR (P)
Cluster over LMR (W)
SDC

Figure 4:Performance of different approaches.The results are reported for SDC with a learning rateα = 100.0.
The Single-Linkage algorithm is applied whenever clustering is performed. Results are reported inF1 and averaged
over the three data sets for each entity type and10 runs of two-fold cross-validation. Each training set typically
contains300 annotated names.

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(a) People

F
1 (

%
)

LMR (P)
LMR (W)
Cluster over LMR (P)
Cluster over LMR (W)
SDC

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(b) Locations

F
1 (

%
)

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(c) Organizations

F
1 (

%
)

Figure 5:Performance for different training sizes. Five learning-based approaches are compared. Single-Linkage is
applied whenever clustering is performed. X-axis denotes different percentages of300 names used in training. Results
are reported inF1 and averaged over the three data sets for each entity type.

People Locations Organizations
40

50

60

70

80

90

Different Entity Types

F
1 (

%
)

Graph
K−Medoids
RB
Complete−Linkage
Single−Linkage

Figure 6:Different clustering algorithms. Five cluster-
ing algorithms are compared in SDC (α = 100.0). Re-
sults are averaged over the three data sets for each entity
type and10 runs of two-fold cross-validations.

classes (100 − 200 entities) for300 names in each sin-
gle data set. The results indicate that the metric learn-
ing process relies on properties of the data set, as well as
the clustering algorithm. Even if a good distance metric
could be learned in SDC, choosing an appropriate algo-
rithm for the specific task is still important.

Different Learning Rates We also experimented with
different learning rates in the SDC approach as shown in
Fig. 7. It seems that SDC is not very sensitive to different
learning rates as long as it is in a reasonable range.

People Locations Organizations

86

88

90

92

94

96

Different Entity Types

F
1 (

%
)

α=1.0
α=10.0
α=100.0
α=1000.0

Figure 7: Performance for different learning rates.
SDC with different learning rates (α = 1.0, 10.0, 100.0,
1000.0) compared in this setting. Single-Linkage cluster-
ing algorithm is applied.

6.3 Discussion

The reason that SDC can outperform existing clustering
approaches can be explained by the advantages of SDC –
training the distance function with respect to the chosen
clustering algorithm, guided by supervision, but they do
not explain why it can also outperform the pairwise clas-
sifiers. One intuitive explanation is that supervision in the
entity identification task or similar tasks is typically given
on whether two names correspond to the same entity –
entity-level annotation. Therefore it does not necessarily
mean whether they are similar in appearance. For exam-

70

ple, “Brian” and “Wilson” could both refer to a person
“Brian Wilson” in different contexts, and thus this name
pair is a positive example in training a pairwise classi-
fier. However, with features that only capture the appear-
ance similarity between names, such apparently different
names become training noise. This is what exactly hap-
pened when we train the LMR classifier with such name
pairs. SDC, however, can employ this entity-level anno-
tation and avoid the problem through transitivity in clus-
tering. In the above example, if there is “Brian Wilson”
in the data set, then “Brian” and “Wilson” can be both
clustered into the same group with “Brian Wilson”. Such
cases do not frequently occur for locations and organiza-
tion but still exist .

7 Conclusion

In this paper, we explicitly formalize clustering as a learn-
ing task, and propose a unified framework for training
a metric for any chosen clustering algorithm, guided by
domain-specific supervision. Our experiments exhibit the
advantage of this approach over existing approaches on
Entity Identification. Further research in this direction
will focus on (1) applying it to more NLP tasks, e.g.
coreference resolution; (2) analyzing the related theoret-
ical issues, e.g. the convergence of the algorithm; and
(3) comparing it experimentally with related approaches,
such as (Xing et al., 2002) and (McCallum and Wellner,
2003).

Acknowledgement This research is supported by
NSF grants IIS-9801638 and ITR IIS-0085836, an ONR
MURI Award and an equipment donation from AMD.

References
F. R. Bach and M. I. Jordan. 2003. Learning spectral clustering.

In NIPS-03.

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. 2003.
Learning distance functions using equivalence relations. In
ICML-03, pages 11–18.

M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fien-
berg. 2003. Adaptive name matching in information integra-
tion. IEEE Intelligent Systems, pages 16–23.

M Bilenko, S. Basu, and R. J. Mooney. 2004. Integrating con-
straints and metric learning in semi-supervised clustering. In
ICML-04, pages 81–88.

P. Brown, P. deSouza R. Mercer, V. Pietra, and J. Lai. 1992.
Class-based n-gram models of natural language.Computa-
tional Linguistics, 18(4):467–479.

C. Cardie and K. Wagstaff. 1999. Noun phrase coreference as
clustering. InEMNLP-99, pages 82–89.

S. C. Chu, J. F. Roddick, and J. S. Pan. 2001. A comparative
study and extensions to k-medoids algorithms. InICOTA-01.

W. Cohen and J. Richman. 2002. Learning to match and clus-
ter large high-dimensional data sets for data integration. In
KDD-02, pages 475–480.

W. Cohen, P. Ravikumar, and S. Fienberg. 2003. A comparison
of string metrics for name-matching tasks. InIIWeb Work-
shop 2003, pages 73–78.

I. Dagan, L. Lee, and F. Pereira. 1999. Similarity-based mod-
els of word cooccurrence probabilities.Machine Learning,
34(1-3):43–69.

Y. Freund and R. Schapire. 1998. Large margin classification
using the Perceptron algorithm. InCOLT-98.

M. Geffet and I. Dagan. 2004. Automatic feature vector quality
and distributional similarity. InCOLING-04.

K. George. 2003. Cluto: A clustering toolkit. Technical report,
Dept of Computer Science, University of Minnesota.

J. Hartigan and M. Wong. 1979. A k-means clustering algo-
rithm. Applied Statistics, 28(1):100–108.

S. Kamvar, D. Klein, and C. Manning. 2002. Interpreting and
extending classical agglomerative clustering algorithms us-
ing a model-based approach. InICML-02, pages 283–290.

L. Lee. 1997. Similarity-Based Approaches to Natural Lan-
guage Processing. Ph.D. thesis, Harvard University, Cam-
bridge, MA.

X. Li, P. Morie, and D. Roth. 2004. Identification and trac-
ing of ambiguous names: Discriminative and generative ap-
proaches. InAAAI-04, pages 419–424.

G. Mann and D. Yarowsky. 2003. Unsupervised personal name
disambiguation. InCoNLL-03, pages 33–40.

A. McCallum and B. Wellner. 2003. Toward conditional mod-
els of identity uncertainty with application to proper noun
coreference. InIJCAI Workshop on Information Integration
on the Web.

D. Mochihashi, G. Kikui, and K. Kita. 2004. Learning non-
structural distance metric by minimum cluster distortions. In
COLING-04.

P. Pantel and D. Lin. 2002. Discovering word senses from text.
In KDD-02, pages 613–619.

D. Roth. 1998. Learning to resolve natural language ambigui-
ties: A unified approach. InAAAI-98, pages 806–813.

M. Schultz and T. Joachims. 2004. Learning a distance metric
from relative comparisons. InNIPS-04.

E. Voorhees. 2002. Overview of the TREC-2002 question an-
swering track. InTREC-02, pages 115–123.

J. Weeds, D. Weir, and D. McCarthy. 2004. Characterising
measures of lexical distributional similarity. InCOLING-04.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. 2002.
Distance metric learning, with application to clustering with
side-information. InNIPS-02.

71

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 72–79, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Using Uneven Margins SVM and Perceptron for Information Extraction

Yaoyong Li, Kalina Bontcheva and Hamish Cunningham
Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, UK

{yaoyong,kalina,hamish}@dcs.shef.ac.uk

Abstract

The classification problem derived from
information extraction (IE) has an imbal-
anced training set. This is particularly
true when learning from smaller datasets
which often have a few positive training
examples and many negative ones. This
paper takes two popular IE algorithms –
SVM and Perceptron – and demonstrates
how the introduction of an uneven margins
parameter can improve the results on im-
balanced training data in IE. Our experi-
ments demonstrate that the uneven margin
was indeed helpful, especially when learn-
ing from few examples. Essentially, the
smaller the training set is, the more bene-
ficial the uneven margin can be. We also
compare our systems to other state-of-the-
art algorithms on several benchmarking
corpora for IE.

1 Introduction

Information Extraction (IE) is the process of auto-
matic extraction of information about pre-specified
types of events, entities or relations from text such
as newswire articles or Web pages. IE is useful in
many applications, such as information gathering in
a variety of domains, automatic annotations of web
pages for Semantic Web, and knowledge manage-
ment.

A wide range of machine learning techniques
have been used for IE and achieved state-of-the-art
results, comparable to manually engineered IE sys-
tems. A learning algorithm usually learns a model

from a set of documents which have been manually
annotated by the user. Then the model can be used
to extract information from new documents. Manual
annotation is a time-consuming process. Hence, in
many cases learning from small data sets is highly
desirable. Therefore in this paper we also evaluate
the performance of our algorithms on small amounts
of training data and show their learning curve.

The learning algorithms for IE can be classified
broadly into two main categories: rule learning and
statistical learning. The former induces a set of
rules from training examples. There are many rule
based learning systems, e.g. SRV (Freitag, 1998),
RAPIER (Califf, 1998), WHISK (Soderland, 1999),
BWI (Freitag and Kushmerick, 2000), and (LP)2

(Ciravegna, 2001). Statistical systems learn a statis-
tical model or classifiers, such as HMMs (Freigtag
and McCallum, 1999), Maximal Entropy (Chieu and
Ng., 2002), the SVM (Isozaki and Kazawa, 2002;
Mayfield et al., 2003), and Perceptron (Carreras et
al., 2003). IE systems also differ from each other
in the NLP features that they use. These include
simple features such as token form and capitalisa-
tion information, linguistic features such as part-of-
speech, semantic information from gazetteer lists,
and genre-specific information such as document
structure. In general, the more features the system
uses, the better performance it can achieve.

This paper concentrates on classifier-based learn-
ing for IE, which typically converts the recognition
of each information entity into a set of classification
problems. In the framework discussed here, two bi-
nary classifiers are trained for each type of informa-
tion entity. One classifier is used for recognising the
entity’s start token and the other – the entity’s end
token.

72

The classification problem derived from IE usu-
ally has imbalanced training data, in which positive
training examples are vastly outnumbered by neg-
ative ones. This is particularly true for smaller data
sets where often there are hundreds of negative train-
ing examples and only few positive ones. Two ap-
proaches have been studied so far to deal with imbal-
anced data in IE. One approach is to under-sample
majority class or over-sample minority class in order
to obtain a relatively balanced training data (Zhang
and Mani, 2003). However, under-sampling can
potentially remove certain important examples, and
over-sampling can lead to over-fitting and a larger
training set. Another approach is to divide the prob-
lem into several sub-problems in two layers, each of
which has less imbalanced training set than the orig-
inal one (Carreras et al., 2003; Sitter and Daelemans,
2003). The output of the classifier in the first layer is
used as the input to the classifiers in the second layer.
As a result, this approach needs more classifiers than
the original problem. Moreover, the classification
errors in the first layer will affect the performance of
the second one.

In this paper we explore another approach to han-
dle the imbalanced data in IE, namely, adapting
the learning algorithms for balanced classification to
imbalanced data. We particularly study two popular
classification algorithms in IE, Support Vector Ma-
chines (SVM) and Perceptron.

SVM is a general supervised machine learning
algorithm, that has achieved state of the art per-
formance on many classification tasks, including
NE recognition. Isozaki and Kazawa (2002) com-
pared three commonly used methods for named en-
tity recognition – the SVM with quadratic kernel,
maximal entropy method, and a rule based learning
system, and showed that the SVM-based system per-
formed better than the other two. Mayfield et al.
(2003) used a lattice-based approach to named en-
tity recognition and employed the SVM with cubic
kernel to compute transition probabilities in a lattice.
Their results on CoNLL2003 shared task were com-
parable to other systems but were not the best ones.

Previous research on using SVMs for IE adopts
the standard form of the SVM, which treats posi-
tive and negative examples equally. As a result, they
did not consider the difference between the balanced
classification problems, where the SVM performs

quite well, and the imbalanced ones. Li and Shawe-
Taylor (2003) proposes an uneven margins version
of the SVM and shows that the SVM with uneven
margins performs significantly better than the stan-
dard SVM on document classification problems with
imbalanced training data. Since the classification
problem for IE is also imbalanced, this paper inves-
tigates the SVM with uneven margins for IE tasks
and demonstrates empirically that the uneven mar-
gins SVM does have better performance than the
standard SVM.

Perceptron is a simple, fast and effective learn-
ing algorithm, which has successfully been applied
to named entity recognition (Carreras et al., 2003).
The system uses a two-layer structure of classifiers
to handle the imbalanced data. The first layer clas-
sifies each word as entity or non-entity. The second
layer classifies the named entities identified by the
first layer in the respective entity classes. Li et al.
(2002) proposed another variant of Perceptron, the
Perceptron algorithm with uneven margins (PAUM),
designed especially for imbalanced data. In this pa-
per we explore the application of PAUM to IE.

The rest of the paper is structured as follows. Sec-
tion 2 describes the uneven margins SVM and Per-
ceptron algorithms. Sections 3.1 and 3.2 discuss
the classifier-based framework for IE and the exper-
imental datasets we used, respectively. We compare
our systems to other state-of-the-art systems on three
benchmark datasets in Section 3.3. Section 3.4 dis-
cusses the effects of the uneven margins parameter
on the SVM and Perceptron’s performances. Finally,
Section 4 provides some conclusions.

2 Uneven Margins SVM and Perceptron

Li and Shawe-Taylor (2003) introduced an uneven
margins parameter into the SVM to deal with imbal-
anced classification problems. They showed that the
SVM with uneven margins outperformed the stan-
dard SVM on document classification problem with
imbalanced training data. Formally, given a training
set Z = ((x1, y1), . . . , (xm, ym)),where xi is the n-
dimensional input vector and yi (= +1 or −1) its
label, the SVM with uneven margins is obtained by
solving the quadratic optimisation problem:

min
w, b, ξ 〈w,w〉 + C

m∑

i=1

ξi

73

s.t. 〈w,xi〉 + ξi + b ≥ 1 if yi = +1

〈w,xi〉 − ξi + b ≤ −τ if yi = −1

ξi ≥ 0 for i = 1, ...,m

We can see that the uneven margins parameter
τ was added to the constraints of the optimisation
problem. τ is the ratio of negative margin to the
positive margin of the classifier and is equal to 1 in
the standard SVM. For an imbalanced dataset with
a few positive examples and many negative ones, it
would be beneficial to use larger margin for positive
examples than for the negative ones. Li and Shawe-
Taylor (2003) also showed that the solution of the
above problem could be obtained by solving a re-
lated standard SVM problem by, for example, using
a publicly available SVM package1 .

Perceptron is an on-line learning algorithm for
linear classification. It checks the training exam-
ples one by one by predicting their labels. If the
prediction is correct, the example is passed; other-
wise, the example is used to correct the model. The
algorithm stops when the model classifies all train-
ing examples correctly. The margin Perceptron not
only classifies every training example correctly but
also outputs for every training example a value (be-
fore thresholding) larger than a predefined parameter
(margin). The margin Perceptron has better general-
isation capability than the standard Perceptron. Li
et al. (2002) proposed the Perceptron algorithm with
uneven margins (PAUM) by introducing two margin
parameters τ+ and τ

−
into the updating rules for the

positive and negative examples, respectively. Sim-
ilar to the uneven margins parameter in SVM, two
margin parameters allow the PAUM to handle im-
balanced datasets better than both the standard Per-
ceptron and the margin Perceptron. Additionally, it
is known that the Perceptron learning will stop after
limited loops only on a linearly separable training
set. Hence, a regularisation parameter λ is used in
PAUM to guarantee that the algorithm would stop
for any training dataset after some updates. PAUM
is simple and fast and performed very well on doc-
ument classification, in particularly on imbalanced
training data.

1The SVMlight package version 3.5, available from
http://svmlight.joachims.org/, was used to learn the SVM clas-
sifiers in our experiments.

3 Experiments

3.1 Classifier-Based Framework for IE

In the experiments we adopted a classifier-based
framework for applying the SVM and PAUM algo-
rithms to IE. The framework consists of three stages:
pre-processing of the documents to obtain feature
vectors, learning classifiers or applying classifiers to
test documents, and finally post-processing the re-
sults to tag the documents.

The aim of the preprocessing is to form input vec-
tors from documents. Each document is first pro-
cessed using the open-source ANNIE system, which
is part of GATE2 (Cunningham et al., 2002). This
produces a number of linguistic (NLP) features, in-
cluding token form, capitalisation information, to-
ken kind, lemma, part-of-speech (POS) tag, seman-
tic classes from gazetteers, and named entity types
according to ANNIE’s rule-based recogniser.

Based on the linguistic information, an input
vector is constructed for each token, as we iter-
ate through the tokens in each document (includ-
ing word, number, punctuation and other symbols)
to see if the current token belongs to an information
entity or not. Since in IE the context of the token is
usually as important as the token itself, the features
in the input vector come not only from the current
token, but also from preceding and following ones.
As the input vector incorporates information from
the context surrounding the current token, features
from different tokens can be weighted differently,
based on their position in the context. The weight-
ing scheme we use is the reciprocal scheme, which
weights the surrounding tokens reciprocally to the
distance to the token in the centre of the context
window. This reflects the intuition that the nearer
a neighbouring token is, the more important it is
for classifying the given token. Our experiments
showed that such a weighting scheme obtained bet-
ter results than the commonly used equal weighting
of features (Li et al., 2005).

The key part of the framework is to convert the
recognition of information entities into binary clas-
sification tasks – one to decide whether a token is the
start of an entity and another one for the end token.

After classification, the start and end tags of the

2Available from http://www.gate.ac.uk/

74

entities are obtained and need to be combined into
one entity tag. Therefore some post-processing
is needed to guarantee tag consistency and to try
to improve the results by exploring other informa-
tion. The currently implemented procedure has three
stages. First, in order to guarantee the consistency
of the recognition results, the document is scanned
from left to right to remove start tags without match-
ing end tags and end tags without preceding start
tags. The second stage filters out candidate enti-
ties from the output of the first stage, based on their
length. Namely, a candidate entity tag is removed
if the entity’s length (i.e., the number of tokens) is
not equal to the length of any entity of the same type
in the training set. The third stage puts together all
possible tags for a sequence of tokens and chooses
the best one according to the probability which was
computed from the output of the classifiers (before
thresholding) via a Sigmoid function.

3.2 The Experimental Datasets
The paper reports evaluation results on three corpora
covering different IE tasks – named entity recogni-
tion (CoNLL-2003) and template filling or scenario
templates in different domains (Jobs and CFP). The
CoNLL-20033 provides the most recent evaluation
results of many learning algorithms on named entity
recognition. The Jobs corpus4 has also been used re-
cently by several learning systems. The CFP corpus
was created as part of the recent Pascal Challenge
for evaluation of machine learning methods for IE5.

In detail, we used the English part of the CoNLL-
2003 shared task dataset, which consists of 946 doc-
uments for training, 216 document for development
(e.g., tuning the parameters in learning algorithm),
and 231 documents for evaluation (i.e., testing), all
of which are news articles taken from the Reuters
English corpus (RCV1). The corpus contains four
types of named entities — person, location, organ-
isation and miscellaneous names. In the other two
corpora domain-specific information was extracted
into a number of slots. The Job corpus includes 300
computer related job advertisements and 17 slots en-
coding job details, such as title, salary, recruiter,
computer language, application, and platform. The

3See http://cnts.uia.ac.be/conll2003/ner/
4See http://www.isi.edu/info-agents/RISE/repository.html.
5See http://nlp.shef.ac.uk/pascal/.

CFP corpus consists of 1100 conference or work-
shop call for papers (CFP), of which 600 were anno-
tated. The corpus includes 11 slots such as work-
shop and conference names and acronyms, work-
shop date, location and homepage.

3.3 Comparison to Other Systems

Named Entity Recognition The algorithms are
evaluated on the CoNLL-2003 dataset. Since this set
comes with development data for tuning the learning
algorithm, different settings were tried in order to
obtain the best performance on the development set.
Different SVM kernel types, window sizes (namely
the number of tokens in left or right side of the token
at the centre of window), and the uneven margins
parameter τ were tested. We found that quadratic
kernel, window size 4 and τ = 0.5 produced best
results on the development set. These settings were
used in all experiments on the CoNLL-2003 dataset
in this paper, unless otherwise stated. The parameter
settings for PAUM described in Li et al. (2002), e.g.
τ+ = 50, τ

−
= 1, were adopted in all experiments

with PAUM, unless otherwise stated.
Table 1 presents the results of our system using

three learning algorithms, the uneven margins SVM,
the standard SVM and the PAUM on the CONLL-
2003 test set, together with the results of three
participating systems in the CoNLL-2003 shared
task: the best system (Florian et al., 2003), the
SVM-based system (Mayfield et al., 2003) and the
Perceptron-based system (Carreras et al., 2003).

Firstly, our uneven margins SVM system per-
formed significantly better than the other SVM-
based system. As the two systems are different from
each other in not only the SVM models used but
also other aspects such as the NLP features and the
framework, in order to make a fair comparison be-
tween the uneven margins SVM and the standard
SVM, we also present the results of the two learning
algorithms implemented in our framework. We can
see from Table 1 that, under the same experimental
settings, the uneven margins SVM again performed
better than the standard SVM.

Secondly, our PAUM-based system performed
slightly better than the system based on voted Per-
ceptron, but there is no significant difference be-
tween them. Note that they adopted different mech-
anisms to deal with the imbalanced data in IE (refer

75

Table 1: Comparison to other systems on CoNLL-2003 corpus: F -measure(%) on each entity type and the
overall micro-averaged F-measure. The 90% confidence intervals for results of other three systems are also
presented. The best performance figures for each entity type and overall appear in bold.

System LOC MISC ORG PER Overall
Our SVM with uneven margins 89.25 77.79 82.29 90.92 86.30
Systems Standard SVM 88.86 77.32 80.16 88.93 85.05

PAUM 88.18 76.64 78.26 89.73 84.36
Participating Best one 91.15 80.44 84.67 93.85 88.76(±0.7)
Systems Another SVM 88.77 74.19 79.00 90.67 84.67(±1.0)

Voted Perceptron 87.88 77.97 80.09 87.31 84.30(±0.9)

to Section 1). The structure of PAUM system is sim-
pler than that of the voted Perceptron system.

Finally, the PAUM system performed worse than
the SVM system. On the other hand, training time
of PAUM is only 1% of that for the SVM and the
PAUM implementation is much simpler than that of
SVM. Therefore, when simplicity and speed are re-
quired, PAUM presents a good alternative.

Template Filling On Jobs corpus our systems
are compared to several state-of-the-art learning sys-
tems, which include the rule based systems Rapier
(Califf, 1998), (LP)2 (Ciravegna, 2001) and BWI
(Freitag and Kushmerick, 2000), the statistical sys-
tem HMM (Freitag and Kushmerick, 2000), and the
double classification system (Sitter and Daelemans,
2003). In order to make the comparison as informa-
tive as possible, the same settings are adopted in our
experiments as those used by (LP)2, which previ-
ously reported the highest results on this dataset. In
particular, the results are obtained by averaging the
performance in ten runs, using a random half of the
corpus for training and the rest for testing. Only ba-
sic NLP features are used: token form, capitalisation
information, token types, and lemmas.

Preliminary experiments established that the
SVM with linear kernel obtained better results than
SVM with quadratic kernel on the Jobs corpus (Li
et al., 2005). Hence we used the SVM with linear
kernel in the experiments on the Jobs data. Note that
PAUM always uses linear kernel in our experiments.

Table 2 presents the results of our systems as well
as the other six systems which have been evaluated
on the Jobs corpus. Note that the results for all the
17 slots are available for only three systems, Rapier,
(LP)2 and double classification, while the results

for some slots were available for the other three sys-
tems. We computed the macro-averaged F1 (the
mean of the F1 of all slots) for our systems as well
as for the three fully evaluated systems in order to
make a comparison of the overall performance.

Firstly, the overall performance of our two sys-
tems is significantly better than the other three fully
evaluated systems. The PAUM system achieves the
best performance on 5 out of the 17 slots. The SVM
system performs best on the other 3 slots. Secondly,
the double classification system had much worse
overall performance than our systems and other two
fully evaluated systems. HMM was evaluated only
on two slots. It achieved best result on one slot but
was much worse on the other slot than our two sys-
tems and some of the others. Finally, somewhat sur-
prisingly, our PAUM system achieves better perfor-
mance than the SVM system on this dataset. More-
over, the computation time of PAUM is about 1/3 of
that of the SVM. Hence, the PAUM system performs
quite satisfactory on the Jobs corpus.

Our systems were also evaluated by participating
in a Pascal challenge – Evaluating Machine Learn-
ing for Information Extraction. The evaluation pro-
vided not only the CFP corpus but also the linguistic
features for all tokens by pre-processing the docu-
ments. The main purpose of the challenge was to
evaluate machine learning algorithms based on the
same linguistic features. The only compulsory task
is task1, which used 400 annotated documents for
training and other 200 annotated documents for test-
ing. See Ireson and Ciravegna (2005) for a short
overview of the challenge. The learning methods ex-
plored by the participating systems included LP 2,
HMM, CRF, SVM, and a variety of combinations

76

Table 2: Comparison to other systems on the jobs corpus: F1 (%) on each entity type and overall perfor-
mance as macro-averaged F1. Standard deviations for the MA F1 of our systems are presented in parenthe-
sis. The highest score on each slot and overall performance appears in bold.

Slot SVM PAUM (LP)2 Rapier DCs BWI HMM semi-CRF
Id 97.7 97.4 100 97.5 97 100 – –
Title 49.6 53.1 43.9 40.5 35 50.1 57.7 40.2
Company 77.2 78.4 71.9 70.0 38 78.2 50.4 60.9
Salary 86.5 86.4 62.8 67.4 67 – – –
Recruiter 78.4 81.4 80.6 68.4 55 – – –
State 92.8 93.6 84.7 90.2 94 – – –
City 95.5 95.2 93.0 90.4 91 – – –
Country 96.2 96.5 81.0 93.2 92 – – –
Language 86.9 87.3 91.0 81.8 33 – – –
Platform 80.1 78.4 80.5 72.5 36 – – –
Application 70.2 69.7 78.4 69.3 30 – – –
Area 46.8 54.0 53.7 42.4 17 – – –
Req-years-e 80.8 80.0 68.8 67.2 76 – – –
Des-years-e 81.9 85.6 60.4 87.5 47 – – –
Req-degree 87.5 87.9 84.7 81.5 45 – – –
Des-degree 59.2 62.9 65.1 72.2 33 – – –
Post date 99.2 99.4 99.5 99.5 98 – – –
MA F1 80.8(±1.0) 81.6(±1.1) 77.2 76.0 57.9 – – –

of different learning algorithms. Firstly, the sys-
tem of the challenge organisers, which is based on
LP 2 obtained the best result for Task1, followed by
one of our participating systems which combined the
uneven margins SVM and PAUM (see Ireson and
Ciravegna (2005)). Our SVM and PAUM systems
on their own were respectively in the fourth and fifth
position among the 20 participating systems. Sec-
ondly, at least six other participating system were
also based on SVM but used different IE framework
and possibly different SVM models from our SVM
system. Our SVM system achieved better results
than all those SVM-based systems, showing that the
SVM models and the IE framework of our system
were quite suitable to IE task. Thirdly, our PAUM
based system was not as good as our SVM system
but was still better than the other SVM based sys-
tems. The computation time of the PAUM system
was about 1/5 of that of our SVM system.

Table 3 presents the per slot results and over-
all performance of our SVM and PAUM systems
as well as the system with the best overall result.
Compared to the best system, our SVM system per-

formed better on two slots and had similar results
on many of other slots. The best system had ex-
tremely good results on the two slots, C-acronym
and C-homepage. Actually, the F1 values of the best
system on the two slots were more than double of
those of every other participating system.

3.4 Effects of Uneven Margins Parameter

A number of experiments were conducted to inves-
tigate the influence of the uneven margins parameter
on the SVM and Perceptron’s performances. Table 4
show the results with several different values of un-
even margins parameter respectively for the SVM
and the Perceptron on two datasets – CoNLL-2003
and Jobs. The SVM with uneven margins (τ < 1.0)
had better results than the standard SVM (τ = 1).
We can also see that the results were similar for the τ

between 0.6 and 0.4, showing that the results are not
particularly sensitive to the value of the uneven mar-
gins parameter. The uneven margins parameter has
similar effect on Perceptron as on the SVM. Table 4
shows that the PAUM had better results than both the
standard Perceptron and the margin Perceptron

77

Table 3: Results of our SVM and PAUM systems
on CFP corpus: F-measures(%) on individual entity
type and the overall figures, together with the system
with the highest overall score. The highest score on
each slot appears in bold.

SLOT PAUM SVM Best one
W-name 51.9 54.2 35.2
W-acronym 50.4 60.0 86.5
W-date 67.0 69.0 69.4
W-homepage 69.6 70.5 72.1
W-location 60.0 66.0 48.8
W-submission 70.2 69.6 86.4
W-notification 76.1 85.6 88.9
W-camera-ready 71.5 74.7 87.0
C-name 43.2 47.7 55.1
C-acronym 38.8 38.7 90.5
C-homepage 7.1 11.6 39.3
Micro-average 61.1 64.3 73.4

Our conjecture was that the uneven margins pa-
rameter was more helpful on small training sets, be-
cause the smaller a training set is, the more imbal-
anced it could be. Therefore we carried out exper-
iments on a small numbers of training documents.
Table 5 shows the results of the SVM and the uneven
margins SVM on different numbers of training doc-
uments from CoNLL-2003 and Jobs datasets. The
performance of both the standard SVM and the un-
even margins SVM improves consistently as more
training documents are used. Moreover, compared
to the results one large training sets shown in Table
4, the uneven margins SVM obtains more improve-
ments on small training sets than the standard SVM
model. We can see that the smaller the training set
is, the better the results of the uneven margins SVM
are in comparison to the standard SVM.

4 Conclusions

This paper studied the uneven margins versions of
two learning algorithms – SVM and Perceptron – to
deal with the imbalanced training data in IE. Our ex-
periments showed that the uneven margin is helpful,
in particular on small training sets. The smaller the
training set is, the more beneficial the uneven margin
could be. We also showed that the systems based on
the uneven margins SVM and Perceptron were com-

Table 4: The effects of uneven margins parameter
of the SVM and Perceptron, respectively: macro av-
eraged F1(%) on the two datasets CoNLL-2003 (de-
velopment set) and Jobs. The standard deviations for
the Jobs dataset show the statistical significances of
the results. In bold are the best performance figures
for each dataset and each system.

τ 1.0 0.8 0.6 0.4 0.2
Conll 89.0 89.6 89.7 89.2 85.3
Jobs 79.0 79.9 81.0 80.8 79.0

±1.4 ±1.2 ±0.9 ±1.0 ±1.3
(τ+, τ

−
) (0,0) (1,1) (50,1)

Conll 83.5 83.9 84.4
Jobs 74.1 78.8 81.6

±1.5 ±1.0 ±1.1

parable to other state-of-the-art systems.
Our SVM system obtained better results than

other SVM-based systems on the CoNLL-2003 cor-
pus and CFP corpus respectively, while being sim-
pler than most of them. This demonstrates that our
SVM system is both effective and efficient.

We also explored PAUM, a simple and fast
learning algorithm for IE. The results of PAUM
were somehow worse (about 0.02 overall F-measure
lower) than those of the SVM on two out of three
datasets. On the other hand, PAUM is much faster
to train and easier to implement than SVM. It is also
worth noting that PAUM outperformed some other
learning algorithms. Therefore, even PAUM on its
own would be a good learning algorithm for IE.
Moreover, PAUM could be used in combination with
other classifiers or in the more complicated frame-
work such as the one in Carreras et al. (2003).

Since many other tasks in Natural Language Pro-
cessing, like IE, often lead to imbalanced classifica-
tion problems and the SVM has been used widely
in Natural Language Learning (NLL), we can ex-
pect that the uneven margins SVM and PAUM are
likely to obtain good results on other NLL problems
as well.

Acknowledgements

This work is supported by the EU-funded SEKT
project (http://www.sekt-project.org).

78

Table 5: The performances of the SVM system with
small training sets: macro-averaged F1(%) on the
two datasets CoNLL-2003 (development set) and
Jobs. The uneven margins SVM (τ = 0.4) is com-
pared to the standard SVM model with even margins
(τ = 1). The standard deviations are presented for
results on the Jobs dataset.

size 10 20 30 40 50
τ = 0.4

Conll 60.6 66.4 70.4 72.2 72.8
Jobs 51.6 60.9 65.7 68.6 71.1

±2.7 ±2.5 ±2.1 ±1.9 ±2.5
τ = 1

Conll 46.2 58.6 65.2 68.3 68.6
Jobs 47.1 56.5 61.4 65.4 68.1

±3.4 ±3.1 ±2.7 ±1.9 ±2.1

References
M. E. Califf. 1998. Relational Learning Techniques for

Natural Language Information Extraction. Ph.D. the-
sis, University of Texas at Austin.

X. Carreras, L. Màrquez, and L. Padró. 2003. Learn-
ing a perceptron-based named entity chunker via on-
line recognition feedback. In Proceedings of CoNLL-
2003, pages 156–159. Edmonton, Canada.

H. L. Chieu and H. T. Ng. 2002. A Maximum En-
tropy Approach to Information Extraction from Semi-
Structured and Free Text. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence,
pages 786–791.

F. Ciravegna. 2001. (LP)2, an Adaptive Algorithm for
Information Extraction from Web-related Texts. In
Proceedings of the IJCAI-2001 Workshop on Adaptive
Text Extraction and Mining, Seattle.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguis-
tics (ACL’02).

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. 2003.
Named Entity Recognition through Classifier Combi-
nation. In Proceedings of CoNLL-2003, pages 168–
171. Edmonton, Canada.

D. Freigtag and A. K. McCallum. 1999. Information Ex-
traction with HMMs and Shrinkage. In Proceesings
of Workshop on Machine Learnig for Information Ex-
traction, pages 31–36.

D. Freitag and N. Kushmerick. 2000. Boosted Wrapper
Induction. In Proceedings of AAAI 2000.

D. Freitag. 1998. Machine Learning for Information Ex-
traction in Informal Domains. Ph.D. thesis, Carnegie
Mellon University.

N. Ireson and F. Ciravegna. 2005. Pascal Chal-
lenge The Evaluation of Machine Learning
for Information Extraction. In Proceedings of
Dagstuhl Seminar Machine Learning for the
Semantic Web (http://www.smi.ucd.ie/Dagstuhl-
MLSW/proceedings/).

H. Isozaki and H. Kazawa. 2002. Efficient Support
Vector Classifiers for Named Entity Recognition. In
Proceedings of the 19th International Conference on
Computational Linguistics (COLING’02), pages 390–
396, Taipei, Taiwan.

Y. Li and J. Shawe-Taylor. 2003. The SVM with
Uneven Margins and Chinese Document Categoriza-
tion. In Proceedings of The 17th Pacific Asia Con-
ference on Language, Information and Computation
(PACLIC17), Singapore, Oct.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and
J. Kandola. 2002. The Perceptron Algorithm with Un-
even Margins. In Proceedings of the 9th International
Conference on Machine Learning (ICML-2002), pages
379–386.

Y. Li, K. Bontcheva, and H. Cunningham. 2005. SVM
Based Learning System For Information Extraction.
In Proceedings of Sheffield Machine Learning Work-
shop, Lecture Notes in Computer Science. Springer
Verlag.

J. Mayfield, P. McNamee, and C. Piatko. 2003. Named
Entity Recognition Using Hundreds of Thousands of
Features. In Proceedings of CoNLL-2003, pages 184–
187. Edmonton, Canada.

A. De Sitter and W. Daelemans. 2003. Information ex-
traction via double classification. In Proceedings of
ECML/PRDD 2003 Workshop on Adaptive Text Ex-
traction and Mining (ATEM 2003), Cavtat-Dubrovnik,
Croatia.

S. Soderland. 1999. Learning information extrac-
tion rules for semi-structured and free text. Machine
Learning, 34(1):233–272.

J. Zhang and I. Mani. 2003. KNN Approach to Un-
balanced Data Distributions: A Case Study Involv-
ing Information Extraction. In Proceedings of the
ICML’2003 Workshop on Learning from Imbalanced
Datasets.

79

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 80–87, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Improving sequence segmentation learning by predicting trigrams

Antal van den Bosch
ILK / Computational Linguistics and AI

Tilburg University
Tilburg, The Netherlands

Antal.vdnBosch@uvt.nl

Walter Daelemans
CNTS, Department of Linguistics

University of Antwerp
Antwerp, Belgium

Walter.Daelemans@ua.ac.be

Abstract

Symbolic machine-learning classifiers are
known to suffer from near-sightedness
when performing sequence segmentation
(chunking) tasks in natural language pro-
cessing: without special architectural ad-
ditions they are oblivious of the decisions
they made earlier when making new ones.
We introduce a new pointwise-prediction
single-classifier method that predicts tri-
grams of class labels on the basis of win-
dowed input sequences, and uses a simple
voting mechanism to decide on the labels
in the final output sequence. We apply
the method to maximum-entropy, sparse-
winnow, and memory-based classifiers us-
ing three different sentence-level chunk-
ing tasks, and show that the method is able
to boost generalization performance in
most experiments, attaining error reduc-
tions of up to 51%. We compare and com-
bine the method with two known alterna-
tive methods to combat near-sightedness,
viz. a feedback-loop method and a stack-
ing method, using the memory-based clas-
sifier. The combination with a feedback
loop suffers from the label bias problem,
while the combination with a stacking
method produces the best overall results.

1 Optimizing output sequences

Many tasks in natural language processing have the
full sentence as their domain. Chunking tasks, for
example, deal with segmenting the full sentence into
chunks of some type, for example constituents or
named entities, and possibly labeling each identified

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � �

� ��

�

� �
� ��

�

�
�

� � � � � � � � � � � � � �

Figure 1: Standard windowing process. Sequences
of input symbols and output symbols are converted
into windows of fixed-width input symbols each as-
sociated with one output symbol.

chunk. The latter typically involves disambigua-
tion among alternative labels (e.g. syntactic role la-
beling, or semantic type assignment). Both tasks,
whether seen as separate tasks or as one, involve the
use of contextual knowledge from the available in-
put (e.g. words with part-of-speech tags), but also
the coordination of segmentations and disambigua-
tions over the sentence as a whole.

Many machine-learning approaches to chunking
tasks use windowing, a standard representational ap-
proach to generate cases that can be sequentially
processed. Each case produces one element of the
output sequence. The simplest method to process
these cases is that each case is classified in isolation,
generating a so-called point-wise prediction; the se-
quence of subsequent predictions can be concate-
nated to form the entire output analysis of the sen-
tence. Within a window, fixed-width subsequences
of adjacent input symbols, representing a certain
contextual scope, are mapped to one output symbol,
typically associated with one of the input symbols,
for example the middle one. Figure 1 displays this
standard version of the windowing process.

80

The fact that the point-wise classifier is only
trained to associate subsequences of input symbols
to single output symbols as accurately as possible
is a problematic restriction: it may easily cause the
classifier to produce invalid or impossible output se-
quences, since it is incapable of taking into account
any decisions it has made earlier. This well-known
problem has triggered at least the following three
main types of solutions.

Feedback loop Each training or test example may
represent not only the regular windowed input, but
also a copy of previously made classifications, to al-
low the classifier to be more consistent with its pre-
vious decisions. Direct feedback loops that copy
a predicted output label to the input representa-
tion of the next example have been used in sym-
bolic machine-learning architectures such as the the
maximum-entropy tagger described by Ratnaparkhi
(1996) and the memory-based tagger (MBT) pro-
posed by Daelemans et al. (1996). This solution as-
sumes that processing is directed, e.g. from left to
right. A noted problem of this approach is thelabel
bias problem(Lafferty et al., 2001), which is that a
feedback-loop classifier may be driven to be consis-
tent with its previous decision also in the case this
decision was wrong; sequences of errors may result.

Stacking, boosting, and voting The partly incor-
rect concatenated output sequence of a single classi-
fier may serve as input to a second-stage classifier in
a stacking architecture, a common machine-learning
optimization technique (Wolpert, 1992). Although
less elegant than a monolithic single-classifier ar-
chitecture, this method is known to be capable of
recognizing recurring errors of the first-stage clas-
sifier and correcting them (Veenstra, 1998). Boost-
ing (Freund and Schapire, 1996) has been applied to
optimize chunking systems (Carreras et al., 2002),
as well as voting over sets of different classifiers
(Florian et al., 2003). Punyakanok and Roth (2001)
present two methods for combining the predictions
of different classifiers according to constraints that
ensure that the resulting output is made more coher-
ent.

Output sequence optimization Rather than bas-
ing classifications only on model parameters esti-
mated from co-occurrences between input and out-

put symbols employed for maximizing the likeli-
hood of point-wise single-label predictions at the
output level, classifier output may be augmented by
an optimization over the output sequence as a whole
using optimization techniques such as beam search-
ing in the space of a conditional markov model’s
output (Ratnaparkhi, 1996) or hidden markov mod-
els (Skut and Brants, 1998). Maximum-entropy
markov models (McCallum et al., 2000) and con-
ditional random fields (Lafferty et al., 2001) opti-
mize the likelihood of segmentations of output sym-
bol sequences through variations of Viterbi search.
A non-stochastic, non-generative method for output
sequence optimization is presented by Argamon et
al. (1999), who propose a memory-based sequence
learner that finds alternative chunking analyses of a
sequence, and produces one best-guess analysis by a
tiling algorithm that finds an optimal joining of the
alternative analyses.

In this paper we introduce a symbolic machine-
learning method that can be likened to the ap-
proaches of the latter type of output sequence op-
timizers, but which does not perform a search in
a space of possible analyses. The approach is to
have a point-wise symbolic machine-learning clas-
sifier predict series of overlappingn-grams (in the
current study, trigrams) of class symbols, and have
a simple voting mechanism decide on the final out-
put sequence based on the overlapping predicted tri-
grams. We show that the approach has similar posi-
tive effects when applied to a memory-based classi-
fier and a maximum-entropy classifier, while yield-
ing mixed effects with a sparse-winnow classifier.
We then proceed to compare the trigram prediction
method to a feedback-loop method and a stacking
method applied using the memory-based classifier.
The three methods attain comparable error reduc-
tions. Finally, we combine the trigram-prediction
method with each of the two other methods. We
show that the combination of the trigram-prediction
method and the feedback-loop method does not
improve performance due to the label bias prob-
lem. In contrast, the combination of the trigram-
prediction method and the stacking method leads to
the overall best results, indicating that the latter two
methods solve complementary aspects of the near-
sightedness problem.

The structure of the paper is as follows. First,

81

we introduce the three chunking sequence segmen-
tation tasks studied in this paper and explain the au-
tomatic algorithmic model selection method for the
three machine-learning classifiers used in our study,
in Section 2. The subsequent three sections report
on empirical results for the different methods pro-
posed for correcting the near-sightedness of classi-
fiers: the new class-trigrams method, a feedback-
loop approach in combination with single classes
and class trigrams, and two types of stacking in com-
bination with single classes and class trigrams. Sec-
tion 6 sums up and discusses the main results of the
comparison.

2 Data and methodology

The three data sets we used for this study repre-
sent a varied set of sentence-level chunking tasks
of both syntactic and semantic nature: English
base phrase chunking (henceforthCHUNK), En-
glish named-entity recognition (NER), and disflu-
ency chunking in transcribed spoken Dutch utter-
ances (DISFL).

CHUNK is the task of splitting sentences into
non-overlapping syntactic phrases or constituents.
The used data set, extracted from the WSJ Penn
Treebank, contains 211,727 training examples and
47,377 test instances. The examples represent
seven-word windows of words and their respective
(predicted) part-of-speech tags, and each example
is labeled with a class using the IOB type of seg-
mentation coding as introduced by Ramshaw and
Marcus (1995), marking whether the middle word
is inside (I), outside (O), or at the beginning (B)
of a chunk. Words occuring less than ten times in
the training material are attenuated (converted into a
more general string that retains some of the word’s
surface form). Generalization performance is mea-
sured by the F-score on correctly identified and la-
beled constituents in test data, using the evaluation
method originally used in the “shared task” sub-
event of the CoNLL-2000 conference (Tjong Kim
Sang and Buchholz, 2000) in which this particu-
lar training and test set were used. An example
sentence with base phrases marked and labeled is
the following: [He]NP [reckons]V P [the current account

deficit]NP [will narrow]V P [to]PP [only $ 1.8 billion]NP

[in]PP [September]NP .

NER, named-entity recognition, is to recognize
and type named entities in text. We employ the En-
glish NER shared task data set used in the CoNLL-
2003 conference, again using the same evaluation
method as originally used in the shared task (Tjong
Kim Sang and De Meulder, 2003). This data set
discriminates four name types: persons, organiza-
tions, locations, and a rest category of “miscellany
names”. The data set is a collection of newswire ar-
ticles from the Reuters Corpus, RCV11. The given
training set contains 203,621 examples; as test set
we use the “testb” evaluation set which contains
46,435 examples. Examples represent seven-word
windows of unattenuated words with their respec-
tive predicted part-of-speech tags. No other task-
specific features such as capitalization identifiers or
seed list features were used. Class labels use the
IOB segmentation coding coupled with the four pos-
sible name type labels. Analogous to theCHUNK

task, generalization performance is measured by the
F-score on correctly identified and labeled named
entities in test data. An example sentence with
the named entities segmented and typed is the fol-
lowing: [U.N.]organization official [Ekeus]person heads for

[Baghdad]location.

DISFL, disfluency chunking, is the task of rec-
ognizing subsequences of words in spoken utter-
ances such as fragmented words, laughter, self-
corrections, stammering, repetitions, abandoned
constituents, hesitations, and filled pauses, that are
not part of the syntactic core of the spoken utter-
ance. We use data introduced by Lendvai et al.
(2003), who extracted the data from a part of the
Spoken Dutch Corpus of spontaneous speech2 that
is both transcribed and syntactically annotated. All
words and multi-word subsequences judged not to
be part of the syntactic tree are defined as disfluent
chunks. We used a single 90% – 10% split of the
data, producing a training set of 303,385 examples
and a test set of 37,160 examples. Each example
represents a window of nine words (attenuated be-
low an occurrence threshold of 100) and 22 binary
features representing various string overlaps (to en-
code possible repetitions); for details, cf. (Lendvai

1Reuters Corpus, Volume 1, English language, 1996-08-20
to 1997-08-19.

2CGN, Spoken Dutch Corpus, version 1.0,
http://lands.let.kun.nl/cgn/ehome.htm.

82

et al., 2003). Generalization performance is mea-
sured by the F-score on correctly identified disfluent
chunks in test data. An example of a chunked Spo-
ken Dutch Corpus sentence is the following (“uh” is
a filled pause; without the disfluencies, the sentence
means “I have followed this process with a certain
amount of scepticism for about a year”):[ik uh] ik heb

met de nodige scepsis [uh] deze gang van zaken [zo’n]

zo’n jaar aangekeken.

We perform our experiments on the three tasks us-
ing three machine-learning algorithms: the memory-
based learning ork-nearest neighbor algorithm as
implemented in the TiMBL software package (ver-
sion 5.1) (Daelemans et al., 2004), henceforth re-
ferred to asMBL ; maximum-entropy classification
(Guiasu and Shenitzer, 1985) as implemented in
the maxent software package (version 20040930)
by Zhang Le3, henceforthMAXENT ; and a sparse-
winnow network (Littlestone, 1988) as implemented
in the SNoW software package (version 3.0.5) by
Carlson et al. (1999), henceforthWINNOW. All
three algorithms have algorithmic parameters that
bias their performance; to allow for a fair compar-
ison we optimized each algorithm on each task us-
ing wrapped progressive sampling (Van den Bosch,
2004) (WPS), a heuristic automatic procedure that,
on the basis of validation experiments internal to
the training material, searches among algorithmic
parameter combinations for a combination likely to
yield optimal generalization performance on unseen
data. We used wrapped progressive sampling in all
experiments.

3 Predicting class trigrams

There is no intrinsic bound to what is packed into
a class label associated to a windowed example.
For example, complex class labels can span over
trigrams of singular class labels. A classifier that
learns to produce trigrams of class labels will at least
produce syntactically valid trigrams from the train-
ing material, which might partly solve some near-
sightedness problems of the single-class classifier.
Although simple and appealing, the lurking disad-
vantage of the trigram idea is that the number of
class labels increases explosively when moving from

3Maximum Entropy Modeling Toolkit for Python
and C++, http://homepages.inf.ed.ac.uk/s0450736/

maxent toolkit.html.

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � �

� ��
� �

� ��
�

�

� � � � � � � � � � � � � �

�
�

� � 	�

Figure 2: Windowing process with trigrams of class
symbols. Sequences of input symbols and output
symbols are converted into windows of fixed-width
input symbols each associated with, in this example,
trigrams of output symbols.

single class labels to wider trigrams. TheCHUNK

data, for example, has 22 classes (“IOB” codes as-
sociated with chunk types); in the same training set,
846 different trigrams of these 22 classes and the
start/end context symbol occur. The eight original
classes ofNER combine to 138 occurring trigrams.
DISFL only has two classes, but 18 trigram classes.

Figure 2 illustrates the procedure by which win-
dows are created with, as an example, class trigrams.
Each windowed instance maps to a class label that
incorporates three atomic class labels, namely the
focus class label that was the original unigram label,
plus its immediate left and right neighboring class
labels.

While creating instances this way is trivial, it is
not entirely trivial how the output of overlapping
class trigrams recombines into a normal string of
class sequences. When the example illustrated in
Figure 2 is followed, each single class label in the
output sequence is effectively predicted three times;
first, as the right label of a trigram, next as the mid-
dle label, and finally as the left label. Although
it would be possible to avoid overlaps and classify
only every three words, there is an interesting prop-
erty of overlapping class labeln-grams: it is pos-
sible to vote over them. To pursue our example of
trigram classes, the following voting procedure can
be followed to decide about the resulting unigram
class label sequence:

1. When all three votes are unanimous, their com-
mon class label is returned;

2. When two out of three votes are for the same

83

MBL MAXENT WINNOW

Task Baseline Trigram red. Baseline Trigram red. Baseline Trigram red.

CHUNK 91.9 92.7 10 90.3 91.9 17 89.5 88.3 -11
NER 77.2 80.2 17 47.5 74.5 51 68.9 70.1 4
DISFL 77.9 81.7 17 75.3 80.7 22 70.5 65.3 -17

Table 1: Comparison of generalization performances of three machine-learning algorithms in terms of F-
score on the three test sets without and with class trigrams. Each third column displays the error reduction
in F-score by the class trigrams method over the other method. The best performances per task are printed
in bold.

class label, this class label is returned;
3. When all three votes disagree (i.e., when ma-

jority voting ties), the class label is returned of
which the classifier is most confident.

Classifier confidence, needed for the third tie-
breaking rule, can be heuristically estimated by tak-
ing the distance of the nearest neighbor inMBL , the
estimated probability value of the most likely class
produced by theMAXENT classifier, or the activa-
tion level of the most active unit of theWINNOW

network.
Clearly this scheme is one out of many possible

schemes, using variants of voting as well as variants
of n (and having multiple classifiers with differentn,
so that some back-off procedure could be followed).
For now we use this procedure with trigrams as an
example. To measure its effect we apply it to the se-
quence tasksCHUNK, NER, andDISFL. The results
of this experiment, where in each caseWPSwas used
to find optimal algorithmic parameters of all three
algorithms, are listed in Table 1. We find rather posi-
tive effects of the trigram method both withMBL and
MAXENT ; we observe relative error reductions in the
F-score on chunking ranging between 10% and a re-
markable 51% error reduction, withMAXENT on the
NER task. WithWINNOW, we observe decreases in
performance onCHUNK andDISFL, and a minor er-
ror reduction of 4% onNER.

4 The feedback-loop method versus class
trigrams

An alternative method for providing a classifier ac-
cess to its previous decisions is a feedback-loop ap-
proach, which extends the windowing approach by
feeding previous decisions of the classifier as fea-
tures into the current input of the classifier. This

Task Baseline Feedback Trigrams Feed+Tri

CHUNK 91.9 93.0 92.7 89.8
NER 77.2 78.1 80.2 77.5
DISFL 77.9 78.6 81.7 79.1

Table 2: Comparison of generalization perfor-
mances in terms of F-score ofMBL on the three test
sets, with and without a feedback loop, and the error
reduction attained by the feedback-loop method, the
F-score of the trigram-class method, and the F-score
of the combination of the two methods.

approach was proposed in the context of memory-
based learning for part-of-speech tagging as MBT

(Daelemans et al., 1996). The number of decisions
fed back into the input can be varied. In the exper-
iments described here, the feedback loop iteratively
updates a memory of the three most recent predic-
tions.

The feedback-loop approach can be combined
both with single class and class trigram output. In
the latter case, the full trigram class labels are copied
to the input, retaining at any time the three most re-
cently predicted labels in the input. Table 2 shows
the results for both options on the three chunking
tasks. The feedback-loop method outperforms the
trigram-class method onCHUNK, but not on the
other two tasks. It does consistently outperform
the baseline single-class classifier. Interestingly, the
combination of the two methods performs worse
than the baseline classifier onCHUNK, and also per-
forms worse than the trigram-class method on the
other two tasks.

84

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

��

�

� �
��

�

�
�

� � � � � � � � � � � � � �

� � 	
 � �
 �

� �
� 	

�
� 	

� �

� �

Figure 3: The windowing process after a first-stage
classifier has produced a predicted output sequence.
Sequences of input symbols, predicted output sym-
bols, and real output symbols are converted into win-
dows of fixed-width input symbols and predicted
output symbols, each associated with one output
symbol.

5 Stacking versus class trigrams

Stacking, a term popularized by Wolpert (1992) in
an artificial neural network context, refers to a class
of meta-learning systems that learn to correct er-
rors made by lower-level classifiers. We implement
stacking by adding a windowed sequence of previ-
ous and subsequent output class labels to the origi-
nal input features (here, we copy a window of seven
predictions to the input, centered around the middle
position), and providing these enriched examples as
training material to a second-stage classifier. Fig-
ure 3 illustrates the procedure. Given the (possibly
erroneous) output of a first classifier on an input se-
quence, a certain window of class symbols from that
predicted sequence is copied to the input, to act as
predictive features for the real class label.

To generate the output of a first-stage classifier,
two options are open. We name these optionsper-
fect andadaptive. They differ in the way they create
training material for the second-stage classifier:

Perfect – the training material is created straight
from the training material of the first-stage classi-
fier, by windowing over the real class sequences.
In doing so, the class label of each window is ex-
cluded from the input window, since it is always
the same as the class to be predicted. In training,
this focus feature would receive an unrealistically

Perfect Adaptive
Task Baseline stacking stacking

CHUNK 91.9 92.0 92.6
NER 77.2 78.3 78.9
DISFL 77.9 80.5 81.6

Table 3: Comparison of generalization perfor-
mances in terms of F-score ofMBL on the three test
sets, without stacking, and with perfect and adaptive
stacking.

high weight, especially considering that in testing
this feature would contain errors. To assign a very
high weight to a feature that may contain an erro-
neous value does not seem a good idea in view of
the label bias problem.

Adaptive – the training material is created in-
directly by running an internal 10-fold cross-
validation experiment on the first-stage training set,
concatenating the predicted output class labels on all
of the ten test partitions, and converting this out-
put to class windows. In contrast with the perfect
variant, we do include the focus class feature in the
copied class label window. The adaptive approach
can in principle learn from recurring classification
errors in the input, and predict the correct class in
case an error re-occurs.

Table 3 lists the comparative results on the
CHUNK, NER, and DISFL tasks introduced earlier.
They show that both types of stacking improve per-
formance on the three tasks, and that the adaptive
stacking variant produces higher relative gains than
the perfect variant; in terms of error reduction in F-
score as compared to the baseline single-class clas-
sifier, the gains are 9% forCHUNK, 7% for NER,
and 17% forDISFL. There appears to be more use-
ful information in training data derived from cross-
validated output with errors, than in training data
with error-free material.

Stacking and class trigrams can be combined.
One possible straightforward combination is that of
a first-stage classifier that predicts trigrams, and a
second-stage stacked classifier that also predicts tri-
grams (we use the adaptive variant, since it produced
the best results), while including a centered seven-
positions-wide window of first-stage trigram class
labels in the input. Table 4 compares the results

85

Adaptive
Task stacking Trigram Combination

CHUNK 92.6 92.8 93.1
NER 78.9 80.2 80.6
DISFL 81.6 81.7 81.9

Table 4: Comparison of generalization perfor-
mances in terms of F-score byMBL on the three test
sets, with adaptive stacking, trigram classes, and the
combination of the two.

of adaptive stacking and trigram classes with those
of the combination of the two. As can be seen, the
combination produces even better results than both
the stacking and the trigram-class methods individ-
ually, on all three tasks. Compared to the baseline
single-class classifier, the error reductions are 15%
for CHUNK, 15% forNER, and 18% forDISFL.

As an additional analysis, we inspected the pre-
dictions made by the trigram-class method and its
combinations with the stacking and the feedback-
loop methods on theCHUNK task to obtain a bet-
ter view on the amount of disagreements between
the trigrams. We found that with the trigram-class
method, in 6.3% of all votes some disagreement
among the overlapping trigrams occurs. A slightly
higher percentage of disagreements, 7.1%, is ob-
served with the combination of the trigram-class and
the stacking method. Interestingly, in the combina-
tion of the trigram-class and feedback-loop methods,
only 0.1% of all trigram votes are not unanimous.
This clearly illustrates that in the latter combination
the resulting sequence of trigrams is internally very
consistent – also in its errors.

6 Conclusion

Classifiers trained on chunking tasks that make iso-
lated. near-sighted decisions on output symbols and
that do not optimize the resulting output sequences
afterwards or internally through a feedback loop,
tend to produce weak models for sequence process-
ing tasks. To combat this weakness, we have pro-
posed a new method that uses a single symbolic
machine-learning classifier predicting trigrams of
classes, using a simple voting mechanism to reduce
the sequence of predicted overlapping trigrams to a
sequence of single output symbols. Compared to

their near-sighted counterparts, error reductions are
attained of 10 to 51% withMBL and MAXENT on
three chunking tasks. We found weaker results with
a WINNOW classifier, suggesting that the latter is
more sensitive to the division of the class space in
more classes, likely due to the relatively sparser co-
occurrences between feature values and class labels
on whichWINNOW network connection weights are
based.

We have contrasted the trigram-class method
against a feedback-loop method (MBT) and a stack-
ing method, all using a memory-based classifier
(but the methods generalize to any machine-learning
classifier). With the feedback-loop method, modest
error reductions of 3%, 4%, and 17% are measured;
stacking attains comparable improvements of 7%,
9%, and 17% error reductions in the chunking F-
score. We then combined the trigram-class method
with the two other methods. The combination with
the feedback-loop system led to relatively low per-
formance results. A closer analysis indicated that
the two methods appear to render each other ineffec-
tive: by feeding back predicted trigrams in the input,
the classifier is very much geared towards predicting
a next trigram that will be in accordance with the
two partly overlapping trigrams in the input, as sug-
gested by overwhelming evidence in this direction
in training material – this problem is also known as
the label bias problem (Lafferty et al., 2001). (The
fact that maximum-entropy markov models also suf-
fer from this problem prompted Laffertyet al. to
propose conditional random fields.)

We also observed that the positive effects of the
trigram-class and stacking variants do not mute each
other when combined. The overall highest error re-
ductions are attained with the combination: 15%
for CHUNK, 15% for NER, and 18% forDISFL.
The combination of the two methods solve more er-
rors than the individual methods do. Apparently,
they both introduce complementary disagreements
in overlapping trigrams, which the simple voting
mechanism can convert to more correct predictions
than the two methods do individually.

Further research should focus on a deep quan-
titative and qualitative analysis of the different er-
rors the different methods correct when compared
to the baseline single-class classifier, as well as
the errors they may introduce. Alternatives to the

86

IOB-style encoding should also be incorporated in
these experiments (Tjong Kim Sang, 2000). Ad-
ditionally, a broader comparison with point-wise
predictors (Kashima and Tsuboi, 2004) as well as
Viterbi-based probabilistic models (McCallum et al.,
2000; Lafferty et al., 2001; Sha and Pereira, 2003)
in large-scale comparative studies is warranted.
Also, the scope of the study may be broadened to
all sequential language processing tasks, including
tasks in which no segmentation takes place (e.g.
part-of-speech tagging), and tasks at the morpho-
phonological level (e.g. grapheme-phoneme conver-
sion and morphological analysis).

Acknowledgements

The authors wish to thank Sander Canisius for dis-
cussions and suggestions. The work of the first au-
thor is funded by NWO, the Netherlands Organi-
sation for Scientific Research; the second author’s
work is partially funded by the EU BioMinT project.

References
S. Argamon, I. Dagan, and Y. Krymolowski. 1999. A

memory-based approach to learning shallow natural
language patterns.Journal of Experimental and Theo-
retical Artificial Intelligence, 10:1–22.

A. J. Carlson, C. M. Cumby, J. L. Rosen, and D. Roth.
1999. Snow user guide. Technical Report UIUCDCS-
R-99-2101, Cognitive Computation Group, Computer
Science Department, University of Illinois, Urbana,
Illinois.

X. Carreras, L. M̀arques, and L. Padró. 2002. Named
entity extraction using AdaBoost. InProceedings of
CoNLL-2002, pages 167–170. Taipei, Taiwan.

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 1996.
MBT: A memory-based part of speech tagger genera-
tor. In E. Ejerhed and I. Dagan, editors,Proceedings
of WVLC, pages 14–27. ACL SIGDAT.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. 2004. TiMBL: Tilburg memory based learner,
version 5.1.0, reference guide. Technical Report ILK
04-02, ILK Research Group, Tilburg University.

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. 2003.
Named entity recognition through classifier combina-
tion. In W. Daelemans and M. Osborne, editors,Pro-
ceedings of CoNLL-2003, pages 168–171. Edmonton,
Canada.

Y. Freund and R. E. Schapire. 1996. Experiments with a
new boosting algorithm. In L. Saitta, editor,Proceed-
ings of ICML-96, pages 148–156, San Francisco, CA.
Morgan Kaufmann.

S. Guiasu and A. Shenitzer. 1985. The principle of max-
imum entropy.The Mathematical Intelligencer, 7(1).

H. Kashima and Y. Tsuboi. 2004. Kernel-based discrim-
inative learning algorithms for labeling sequences,
trees and graphs. InProceedings of ICML-2004,
Banff, Canada.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProceedings
of ICML-01, Williamstown, MA.

P. Lendvai, A. van den Bosch, and E. Krahmer. 2003.
Memory-based disfluency chunking. InProceedings
of DISS’03), Gothenburg, Sweden, pages 63–66.

N. Littlestone. 1988. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318.

A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-
mum entropy Markov models for information extrac-
tion and segmentation. InProceedings of ICML-00,
Stanford, CA.

V. Punyakanok and D. Roth. 2001. The use of classifiers
in sequential inference. InNIPS-13; The 2000 Con-
ference on Advances in Neural Information Processing
Systems, pages 995–1001. The MIT Press.

L.A. Ramshaw and M.P. Marcus. 1995. Text chunking
using transformation-based learning. InProceedings
of WVLC-95, Cambridge, MA, pages 82–94.

A. Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of EMNLP, May 17-18,
1996, University of Pennsylvania.

F. Sha and F. Pereira. 2003. Shallow parsing with Condi-
tional Random Fields. InProceedings of HLT-NAACL
2003, Edmonton, Canada.

W. Skut and T. Brants. 1998. Chunk tagger: statistical
recognition of noun phrases. InESSLLI-1998 Work-
shop on Automated Acquisition of Syntax and Parsing.

E. Tjong Kim Sang and S. Buchholz. 2000. Introduction
to the CoNLL-2000 shared task: Chunking. InPro-
ceedings of CoNLL-2000 and LLL-2000, pages 127–
132.

E. Tjong Kim Sang and F. De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In W. Daele-
mans and M. Osborne, editors,Proceedings of CoNLL-
2003, pages 142–147. Edmonton, Canada.

E. Tjong Kim Sang. 2000. Noun phrase recognition by
system combination. InProceedings of ANLP-NAACL
2000, pages 50–55. Seattle, Washington, USA. Mor-
gan Kaufman Publishers.

A. van den Bosch. 2004. Wrapped progressive sampling
search for optimizing learning algorithm parameters.
In R. Verbrugge, N. Taatgen, and L. Schomaker, edi-
tors, Proceedings of the 16th Belgian-Dutch AI Con-
ference, pages 219–226, Groningen, The Netherlands.

J. Veenstra. 1998. Fast NP chunking using memory-
based learning techniques. InProceedings of BENE-
LEARN’98, pages 71–78, Wageningen, The Nether-
lands.

D. H. Wolpert. 1992. Stacked Generalization.Neural
Networks, 5:241–259.

87

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 88–95, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

An Expectation Maximization Approach to Pronoun Resolution

Colin Cherry andShane Bergsma
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8

{colinc,bergsma }@cs.ualberta.ca

Abstract

We propose an unsupervised Expectation
Maximization approach to pronoun reso-
lution. The system learns from a fixed
list of potential antecedents for each pro-
noun. We show that unsupervised learn-
ing is possible in this context, as the per-
formance of our system is comparable to
supervised methods. Our results indicate
that a probabilistic gender/number model,
determined automatically from unlabeled
text, is a powerful feature for this task.

1 Introduction

Coreference resolution is the process of determin-
ing which expressions in text refer to the same real-
world entity. Pronoun resolution is the important yet
challenging subset of coreference resolution where a
system attempts to establish coreference between a
pronominal anaphor, such as a third-person pronoun
like he, she, it,or they, and a preceding noun phrase,
called an antecedent. In the following example, a
pronoun resolution system must determine the cor-
rect antecedent for the pronouns “his” and “he.”

(1) When the president entered the arena with his
family, he was serenaded by a mariachi band.

Pronoun resolution has applications across many
areas of Natural Language Processing, particularly
in the field of information extraction. Resolving a
pronoun to a noun phrase can provide a new inter-
pretation of a given sentence, giving a Question An-
swering system, for example, more data to consider.

Our approach is a synthesis of linguistic and sta-
tistical methods. For each pronoun, a list of an-
tecedent candidates derived from the parsed corpus
is presented to the Expectation Maximization (EM)
learner. Special cases, such as pleonastic, reflex-
ive and cataphoric pronouns are dealt with linguisti-
cally during list construction. This allows us to train
on and resolve all third-person pronouns in a large
Question Answering corpus. We learn lexicalized
gender/number, language, and antecedent probabil-
ity models. These models, tied to individual words,
can not be learned with sufficient coverage from la-
beled data. Pronouns are resolved by choosing the
most likely antecedent in the candidate list accord-
ing to these distributions. The resulting resolution
accuracy is comparable to supervised methods.

We gain further performance improvement by ini-
tializing EM with a gender/number model derived
from special cases in the training data. This model
is shown to perform reliably on its own. We also
demonstrate how the models learned through our un-
supervised method can be used as features in a su-
pervised pronoun resolution system.

2 Related Work

Pronoun resolution typically employs some com-
bination of constraints and preferences to select
the antecedent from preceding noun phrase candi-
dates. Constraints filter the candidate list of improb-
able antecedents, while preferences encourage se-
lection of antecedents that are more recent, frequent,
etc. Implementation of constraints and preferences
can be based on empirical insight (Lappin and Le-
ass, 1994), or machine learning from a reference-

88

annotated corpus (Ge et al., 1998). The majority
of pronoun resolution approaches have thus far re-
lied on manual intervention in the resolution pro-
cess, such as using a manually-parsed corpus, or
manually removing difficult non-anaphoric cases;
we follow Mitkov et al.’s approach (2002) with a
fully-automatic pronoun resolution method. Pars-
ing, noun-phrase identification, and non-anaphoric
pronoun removal are all done automatically.

Machine-learned, fully-automatic systems are
more common in noun phrase coreference resolu-
tion, where the method of choice has been deci-
sion trees (Soon et al., 2001; Ng and Cardie, 2002).
These systems generally handle pronouns as a subset
of all noun phrases, but with limited features com-
pared to systems devoted solely to pronouns. Kehler
used Maximum Entropy to assign a probability dis-
tribution over possible noun phrase coreference re-
lationships (1997). Like his approach, our system
does not make hard coreference decisions, but re-
turns a distribution over candidates.

The above learning approaches require anno-
tated training data for supervised learning. Cardie
and Wagstaff developed an unsupervised approach
that partitions noun phrases into coreferent groups
through clustering (1999). However, the partitions
they generate for a particular document are not use-
ful for processing new documents, while our ap-
proach learns distributions that can be used on un-
seen data. There are also approaches to anaphora
resolution using unsupervised methods to extract
useful information, such as gender and number (Ge
et al., 1998), or contextual role-knowledge (Bean
and Riloff, 2004). Co-training can also leverage
unlabeled data through weakly-supervised reference
resolution learning (M̈uller et al., 2002). As an alter-
native to co-training, Ng and Cardie (2003) use EM
to augment a supervised coreference system with
unlabeled data. Their feature set is quite different, as
it is designed to generalize from the data in a labeled
set, while our system models individual words. We
suspect that the two approaches can be combined.

Our approach is inspired by the use of EM in
bilingual word alignment, which finds word-to-word
correspondences between a sentence and its transla-
tion. The prominent statistical methods in this field
are unsupervised. Our methods are most influenced
by IBM’s Model 1 (Brown et al., 1993).

3 Methods

3.1 Problem formulation

We will consider our training set to consist of
(p, k, C) triples: one for each pronoun, wherep is
the pronoun to be resolved,k is the pronoun’s con-
text, andC is a candidate list containing the nounsp
could potentially be resolved to. Initially, we takek
to be the parsed sentence thatp appears in.
C consists of all nouns and pronouns that precede

p, looking back through the current sentence and the
sentence immediately preceding it. This small win-
dow may seem limiting, but we found that a cor-
rect candidate appeared in 97% of such lists in a
labeled development text. Mitkov et al. also limit
candidate consideration to the same window (2002).
Each triple is processed with non-anaphoric pronoun
handlers (Section 3.3) and linguistic filters (Sec-
tion 3.4), which produce the final candidate lists.

Before we pass the(p, k, C) triples to EM, we
modify them to better suit our EM formulation.
There are four possibilities for the gender and num-
ber of third-person pronouns in English: masculine,
feminine, neutral and plural (e.g.,he, she, it, they).
We assume a noun is equally likely to corefer with
any member of a given gender/number category, and
reduce eachp to a category label accordingly. For
example,he, his, him andhimself are all labeled as
mascfor masculine pronoun. Plural, feminine and
neutral pronouns are handled similarly. We reduce
the context termk to p’s immediate syntactic con-
text, including onlyp’s syntactic parent, the parent’s
part of speech, andp’s relationship to the parent, as
determined by a dependency parser. Incorporating
context only through the governing constituent was
also done in (Ge et al., 1998). Finally, each candi-
date inC is augmented with ordering information,
so we know how many nouns to “step over” before
arriving at a given candidate. We will refer to this or-
dering information as a candidate’sj term, for jump.
Our example sentence in Section 1 would create the
two triples shown in Figure 1, assuming the sentence
began the document it was found in.

3.2 Probability model

Expectation Maximization (Dempster et al., 1977) is
a process for filling in unobserved data probabilisti-
cally. To use EM to do unsupervised pronoun reso-

89

his:
p = masc k = p’s family
C = arena (0), president (1)

he:
p = masc k = serenadep
C = family (0), masc(1), arena (2),

president (3)

Figure 1: EM input for our example sentence.
j-values follow each lexical candidate.

lution, we phrase the resolution task in terms of hid-
den variables of an observed process. We assume
that in each case, one candidate from the candidate
list is selected as the antecedent beforep andk are
generated. EM’s role is to induce a probability dis-
tribution over candidates to maximize the likelihood
of the(p, k) pairs observed in our training set:

Pr(Dataset) =
∏

(p,k)∈Dataset

Pr(p, k) (1)

We can rewrite Pr(p, k) so that it uses a hidden can-
didate (or antecedent) variablec that influences the
observedp andk:

Pr(p, k) =
∑
c∈C

Pr(p, k, c) (2)

Pr(p, k, c) = Pr(p, k|c)Pr(c) (3)

To improve our ability to generalize to future cases,
we use a näıve Bayes assumption to state that the
choices of pronoun and context are conditionally in-
dependent, given an antecedent. That is, once we
select the word the pronoun represents, the pronoun
and its context are no longer coupled:

Pr(p, k|c) = Pr(p|c)Pr(k|c) (4)

We can split each candidatec into its lexical com-
ponentl and its jump valuej. That is,c = (l, j).
If we assume thatl andj are independent, and that
p andk each depend only on thel component ofc,
we can combine Equations 3 and 4 to get our final
formulation for the joint probability distribution:

Pr(p, k, c) = Pr(p|l)Pr(k|l)Pr(l)Pr(j) (5)

The jump termj, though important when resolving
pronouns, is not likely to be correlated with any lex-
ical choices in the training set.

Table 1: Examples of learned pronoun probabilities.

Word (l) masc fem neut plur
company 0.03 0.01 0.95 0.01
president 0.94 0.01 0.03 0.02
teacher 0.19 0.71 0.09 0.01

This results in four models that work together to
determine the likelihood of a given candidate. The
Pr(p|l) distribution measures the likelihood of a pro-
noun given an antecedent. Since we have collapsed
the observed pronouns into groups, this models a
word’s affinity for each of the four relevant gen-
der/number categories. We will refer to this as our
pronoun model. Pr(k|l) measures the probability of
the syntactic relationship between a pronoun and its
parent, given a prospective antecedent for the pro-
noun. This is effectively alanguage model, grading
lexical choice by context. Pr(l) measures the prob-
ability that the wordl will be found to be an an-
tecedent. This is useful, as some entities, such as
“president” in newspaper text, are inherently more
likely to be referenced with a pronoun. Finally,
Pr(j) measures the likelihood of jumping a given
number of noun phrases backward to find the cor-
rect candidate. We represent these models with ta-
ble look-up. Table 1 shows selectedl-value entries
in the Pr(p|l) table from our best performing EM
model. Note that the probabilities reflect biases in-
herent in our news domain training set.

Given models for the four distributions above,
we can assign a probability to each candidate in
C according to the observationsp and k; that is,
Pr(c|p, k) can be obtained by dividing Equation 5
by Equation 2. Remember thatc = (l, j).

Pr(c|p, k) =
Pr(p|l)Pr(k|l)Pr(l)Pr(j)∑

c′∈C Pr(p|l′)Pr(k|l′)Pr(l′)Pr(j′)
(6)

Pr(c|p, k) allows us to get fractional counts of
(p, k, c) triples in our training set, as if we had actu-
ally observedc co-occurring with(p, k) in the pro-
portions specified by Equation 6. This estimation
process is effectively the E-step in EM.

The M-step is conducted by redefining our mod-
els according to these fractional counts. For exam-
ple, after assigning fractional counts to candidates

90

according to Pr(c|p, k), we re-estimate Pr(p|l) with
the following equation for a specific(p, l) pair:

Pr(p|l) =
N(p, l)
N(l)

(7)

whereN() counts the number of times we see a
given event or joint event throughout the training set.

Given trained models, we resolve pronouns by
finding the candidatêc that is most likely for the
current pronoun, that iŝc = argmaxc∈CPr(c|p, k).
Because Pr(p, k) is constant with respect toc,
ĉ = argmaxc∈CPr(p, k, c).

3.3 Non-anaphoric Pronouns

Not every pronoun in text refers anaphorically to a
preceding noun phrase. There are a frequent num-
ber of difficult cases that require special attention,
including pronouns that are:

• Pleonastic: pronouns that have a grammatical
function but do not reference an entity. E.g. “It
is important to observe it is raining.”
• Cataphora: pronouns that reference a future

noun phrase. E.g. “In his speech, the president
praised the workers.”
• Non-noun referential: pronouns that refer to a

verb phrase, sentence, or implicit concept. E.g.
“John told Mary they should buy a car.”

If we construct them naı̈vely, the candidate lists
for these pronouns will be invalid, introducing noise
in our training set. Manual handling or removal
of these cases is infeasible in an unsupervised ap-
proach, where the input is thousands of documents.
Instead, pleonastics are identified syntactically us-
ing an extension of the detector developed by Lap-
pin and Leass (1994). Roughly 7% of all pronouns
in our labeled test data are pleonastic. We detect
cataphora using a pattern-based method on parsed
sentences, described in (Bergsma, 2005b). Future
nouns are only included when cataphora are iden-
tified. This approach is quite different from Lap-
pin and Leass (1994), who always include all fu-
ture nouns from the current sentence as candidates,
with a constant penalty added to possible cataphoric
resolutions. The cataphora module identifies 1.4%
of test data pronouns to be cataphoric; in each in-
stance this identification is correct. Finally, we know

of no approach that handles pronouns referring to
verb phrases or implicit entities. The unavoidable
errors for these pronouns, occurring roughly 4% of
the time, are included in our final results.

3.4 Candidate list modifications

It would be possible forC to include every noun
phrase in the current and previous sentence, but per-
formance can be improved by automatically remov-
ing improbable antecedents. We use a standard set of
constraints to filter candidates. If a candidate’s gen-
der or number is known, and does not match the pro-
noun’s, the candidate is excluded. Candidates with
known gender include other pronouns, and names
with gendered designators (such as “Mr.” or “Mrs.”).
Our parser also identifies plurals and some gendered
first names. We remove fromC all times, dates, ad-
dresses, monetary amounts, units of measurement,
and pronouns identified as pleonastic.

We use the syntactic constraints from Binding
Theory to eliminate candidates (Haegeman, 1994).
For the reflexiveshimself, herself, itselfand them-
selves, this allows immediate syntactic identification
of the antecedent. These cases become unambigu-
ous; only the indicated antecedent is included inC.

We improve the quality of our training set by re-
moving known noisy cases before passing the set
to EM. For example, we anticipate that sentences
with quotation marks will be problematic, as other
researchers have observed that quoted text requires
special handling for pronoun resolution (Kennedy
and Boguraev, 1996). Thus we remove pronouns
occurring in the same sentences as quotes from the
learning process. Also, we exclude triples where
the constraints removed all possible antecedents, or
where the pronoun was deemed to be pleonastic.
Performing these exclusions is justified for training,
but in testing we state results for all pronouns.

3.5 EM initialization

Early in the development of this system, we were
impressed with the quality of the pronoun model
Pr(p|l) learned by EM. However, we found we could
construct an even more precise pronoun model for
common words by examining unambiguous cases in
our training data. Unambiguous cases are pronouns
having only one word in their candidate listC. This
could be a result of the preprocessors described in

91

Sections 3.3 and 3.4, or the pronoun’s position in
the document. A PrU (p|l) model constructed from
only unambiguous examples covers far fewer words
than a learned model, but it rarely makes poor gen-
der/number choices. Furthermore, it can be obtained
without EM. Training on unambiguous cases is sim-
ilar in spirit to (Hindle and Rooth, 1993). We found
in our development and test sets that, after applying
filters, roughly 9% of pronouns occur with unam-
biguous antecedents.

When optimizing a probability function that is not
concave, the EM algorithm is only guaranteed to
find a local maximum; therefore, it can be helpful
to start the process near the desired end-point in pa-
rameter space. The unambiguous pronoun model
described above can provide such a starting point.
When using thisinitializer , we perform our ini-
tial E-step by weighting candidates according to
PrU (p|l), instead of weighting them uniformly. This
biases the initial E-step probabilities so that a strong
indication of the gender/number of a candidate from
unambiguous cases will either boost the candidate’s
chances or remove it from competition, depending
on whether or not the predicted category matches
that of the pronoun being resolved.

To deal with the sparseness of the PrU (p|l) dis-
tribution, we use add-1 smoothing (Jeffreys, 1961).
The resulting effect is that words with few unam-
biguous occurrences receive a near-uniform gen-
der/number distribution, while those observed fre-
quently will closely match the observed distribution.
During development, we also tried clever initializers
for the other three models, including an extensive
language model initializer, but none were able to im-
prove over PrU (p|l) alone.

3.6 Supervised extension

Even though we have justified Equation 5 with rea-
sonable independence assumptions, our four mod-
els may not be combined optimally for our pronoun
resolution task, as the models are only approxima-
tions of the true distributions they are intended to
represent. Following the approach in (Och and Ney,
2002), we can view the right-hand-side of Equa-
tion 5 as a special case of:

exp

(
λ1 log Pr(p|l) + λ2 log Pr(k|l)+
λ3 log Pr(l) + λ4 log Pr(j)

)
(8)

where∀i : λi = 1. Effectively, the log proba-
bilities of our models become feature functions in
a log-linear model. When labeled training data is
available, we can use the Maximum Entropy princi-
ple (Berger et al., 1996) to optimize theλ weights.

This provides us with an optional supervised ex-
tension to the unsupervised system. Given a small
set of data that has the correct candidates indicated,
such as the set we used while developing our unsu-
pervised system, we can re-weight the final models
provided by EM to maximize the probability of ob-
serving the indicated candidates. To this end, we
follow the approach of (Och and Ney, 2002) very
closely, including their handling of multiple correct
answers. We use the limited memory variable met-
ric method as implemented in Malouf’s maximum
entropy package (2002) to set our weights.

4 Experimental Design

4.1 Data sets

We used two training sets in our experiments, both
drawn from the AQUAINT Question Answering
corpus (Vorhees, 2002). For each training set, we
manually labeled pronoun antecedents in a corre-
spondingkey containing a subset of the pronouns
in the set. These keys are drawn from a collection
of complete documents. For each document, all pro-
nouns are included. With the exception of the super-
vised extension, the keys are used only to validate
the resolution decisions made by a trained system.
Further details are available in (Bergsma, 2005b).

The development set consists of 333,000 pro-
nouns drawn from 31,000 documents. The devel-
opment key consists of 644 labeled pronouns drawn
from 58 documents; 417 are drawn from sentences
without quotation marks. The development set and
its key were used to guide us while designing the
probability model, and to fine-tune EM and smooth-
ing parameters. We also use the development key as
labeled training data for our supervised extension.

The test set consists of 890,000 pronouns drawn
from 50,000 documents. The test key consists of
1209 labeled pronouns drawn from 118 documents;
892 are drawn from sentences without quotation
marks. All of the results reported in Section 5 are
determined using the test key.

92

4.2 Implementation Details

To get the context values and implement the syntac-
tic filters, we parsed our corpora with Minipar (Lin,
1994). Experiments on the development set indi-
cated that EM generally began to overfit after 2 it-
erations, so we stop EM after the second iteration,
using the models from the second M-step for test-
ing. During testing, ties in likelihood are broken by
taking the candidate closest to the pronoun.

The EM-produced models need to be smoothed,
as there will be unseen words and unobserved(p, l)
or (k, l) pairs in the test set. This is because prob-
lematic cases are omitted from the training set, while
all pronouns are included in the key. We han-
dle out-of-vocabulary events by replacing words or
context-values that occur only once during training
with a specialunknown symbol. Out-of-vocabulary
events encountered during testing are also treated
as unknown. We handle unseen pairs with additive
smoothing. Instead of adding 1 as in Section 3.5, we
addδp = 0.00001 for (k, l) pairs, andδw = 0.001
for (p, l) pairs. Theseδ values were determined ex-
perimentally with the development key.

4.3 Evaluation scheme

We evaluate our work in the context of a fully auto-
matic system, as was done in (Mitkov et al., 2002).
Our evaluation criteria is similar to theirresolution
etiquette. We define accuracy as the proportion of
pronouns correctly resolved, either to any coreferent
noun phrase in the candidate list, or to the pleonas-
tic category, which precludes resolution. Systems
that handle and state performance for all pronouns
in unrestricted text report much lower accuracy than
most approaches in the literature. Furthermore, au-
tomatically parsing and pre-processing texts causes
consistent degradation in performance, regardless of
the accuracy of the pronoun resolution algorithm. To
have a point of comparison to other fully-automatic
approaches, note the resolution etiquette score re-
ported in (Mitkov et al., 2002) is 0.582.

5 Results

5.1 Validation of unsupervised method

The key concern of our work is whether enough
useful information is present in the pronoun’s cat-
egory, context, and candidate list for unsupervised

learning of antecedents to occur. To that end, our
first set of experiments compare the pronoun resolu-
tion accuracy of our EM-based solutions to that of a
previous-noun baseline on our test key. The results
are shown in Table 2. The columns split the results
into three cases: all pronouns with no exceptions;
all cases where the pronoun was found in a sentence
containing no quotation marks (and therefore resem-
bling the training data provided to EM); and finally
all pronouns excluded by the second case. We com-
pare the following methods:

1. Previous noun: Pick the candidate from the fil-
tered list with the lowestj value.

2. EM, no initializer : The EM algorithm trained
on the test set, starting from a uniform E-step.

3. Initializer, no EM : A model that ranks candi-
dates using only a pronoun model built from
unambiguous cases (Section 3.5).

4. EM w/ initializer : As in (2), but using the ini-
tializer in (3) for the first E-step.

5. Maxent extension: The models produced by
(4) are used as features in a log-linear model
trained on the development key (Section 3.6).

6. Upper bound: The percentage of cases with a
correct answer in the filtered candidate list.

For a reference point, picking the previous noun be-
fore applying any of our candidate filters receives an
accuracy score of 0.281 on the “All” task.

Looking at the “All” column in Table 2, we see
EM can indeed learn in this situation. Starting from
uniform parameters it climbs from a 40% baseline
to a 60% accurate model. However, the initializer
can do slightly better with precise but sparse gen-
der/number information alone. As we hoped, com-
bining the initializer and EM results in a statistically
significant1 improvement over EM with a uniform
starting point, but it is not significantly better than
the initializer alone. The advantage of the EM pro-
cess is that it produces multiple models, which can
be re-weighted with maximum entropy to reach our
highest accuracy, roughly 67%. Theλ weights that
achieve this score are shown in Table 3.

Maximum entropy leaves the pronoun model
Pr(p|l) nearly untouched and drastically reduces the

1Significance is determined throughout Section 5 using Mc-
Nemar’s test with a significance levelα = 0.05.

93

Table 2: Accuracy for all cases, all excluding sen-
tences with quotes, and only sentences with quotes.

Method All No“ ” Only“ ”

1 Previous noun 0.397 0.399 0.391
2 EM, no initializer 0.610 0.632 0.549
3 Initializer, no EM 0.628 0.642 0.587
4 EM w/ initializer 0.632 0.663 0.546
5 Maxent extension 0.669 0.696 0.593
6 Upper bound 0.838 0.868 0.754

influence of all other models (Table 3). This, com-
bined with the success of the initializer alone, leads
us to believe that a strong notion of gender/number
is very important in this task. Therefore, we im-
plemented EM with several models that used only
pronoun category, but none were able to surpass the
initializer in accuracy on the test key. One factor
that might help explain the initializer’s success is
that despite using only a PrU (p|l) model, the ini-
tializer also has an implicit factor resembling a Pr(l)
model: when two candidates agree with the category
of the pronoun, add-1 smoothing ensures the more
frequent candidate receives a higher probability.

As was stated in Section 3.4, sentences with quo-
tations were excluded from the learning process be-
cause the presence of a correct antecedent in the can-
didate list was less frequent in these cases. This is
validated by the low upper bound of 0.754 in the
only-quote portion of the test key. We can see that
all methods except for the previous noun heuris-
tic score noticeably better when ignoring those sen-
tences that contain quotation marks. In particular,
the difference between our three unsupervised solu-
tions ((2), (3) and (4)) are more pronounced. Much
of the performance improvements that correspond
to our model refinements are masked in the overall
task because adding the initializer to EM does not
improve EM’s performance on quotes at all. Devel-
oping a method to construct more robust candidate
lists for quotations could improve our performance
on these cases, and greatly increase the percentage
of pronouns we are training on for a given corpus.

Table 3: Weights set by maximum entropy.

Model Pr(p|l) Pr(k|l) Pr(l) Pr(j)
Lambda 0.931 0.056 0.070 0.167

Table 4: Comparison to SVM.

Method Accuracy

Previous noun 0.398
EM w/ initializer 0.664
Maxent extension 0.708
SVM 0.714

5.2 Comparison to supervised system

We put our results in context by comparing our
methods to a recent supervised system. The compar-
ison system is an SVM that uses 52 linguistically-
motivated features, including probabilistic gen-
der/number information obtained through web
queries (Bergsma, 2005a). The SVM is trained
with 1398 separate labeled pronouns, the same train-
ing set used in (Bergsma, 2005a). This data is
also drawn from the news domain. Note the su-
pervised system was not constructed to handle all
pronoun cases, so non-anaphoric pronouns were re-
moved from the test key and from the candidate lists
in the test key to ensure a fair comparison. As ex-
pected, this removal of difficult cases increases the
performance of our system on the test key (Table 4).
Also note there is no significant difference in per-
formance between our supervised extension and the
SVM. The completely unsupervised EM system per-
forms worse, but with only a 7% relative reduction
in performace compared to the SVM; the previous
noun heuristic shows a 44% reduction.

5.3 Analysis of upper bound

If one accounts for the upper bound in Table 2, our
methods do very well on those cases where a cor-
rect answer actually appears in the candidate list: the
best EM solution scores 0.754, and the supervised
extension scores 0.800. A variety of factors result in
the 196 candidate lists that do not contain a true an-
tecedent. 21% of these errors arise from our limited
candidate window (Section 3.1). Incorrect pleonas-
tic detection accounts for another 31% while non-

94

noun referential pronouns cause 25% (Section 3.3).
Linguistic filters (Section 3.4) account for most of
the remainder. An improvement in any of these com-
ponents would result in not only higher final scores,
but cleaner EM training data.

6 Conclusion

We have demonstrated that unsupervised learning is
possible for pronoun resolution. We achieve accu-
racy of 63% on an all-pronoun task, or 75% when
a true antecedent is available to EM. There is now
motivation to develop cleaner candidate lists and
stronger probability models, with the hope of sur-
passing supervised techniques. For example, incor-
porating antecedent context, either at the sentence
or document level, may boost performance. Further-
more, the lexicalized models learned in our system,
especially the pronoun model, are potentially pow-
erful features for any supervised pronoun resolution
system.

References
David L. Bean and Ellen Riloff. 2004. Unsupervised learning

of contextual role knowledge for coreference resolution. In
HLT-NAACL, pages 297–304.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della
Pietra. 1996. A maximum entropy approach to natural lan-
guage processing.Computational Linguistics, 22(1):39–71.

Shane Bergsma. 2005a. Automatic acquisition of gender infor-
mation for anaphora resolution. InProceedings of the 18th
Conference of the Canadian Society for Computational Intel-
ligence (Canadian AI 2005), pages 342–353, Victoria, BC.

Shane Bergsma. 2005b. Corpus-based learning for pronom-
inal anaphora resolution. Master’s thesis, Department
of Computing Science, University of Alberta, Edmonton.
http://www.cs.ualberta.ca/˜bergsma/Pubs/thesis.pdf.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation.Computational
Linguistics, 19(2):263–312.

Claire Cardie and Kiri Wagstaff. 1999. Noun phrase corefer-
ence as clustering. InProceedings of the 1999 Joint SIGDAT
Conference on Empirical Methods in Natural Language Pro-
cessing and Very Large Corpora, pages 82–89.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, 39(1):1–38.

Niyu Ge, John Hale, and Eugene Charniak. 1998. A statistical
approach to anaphora resolution. InProceedings of the Sixth
Workshop on Very Large Corpora, pages 161–171.

L. Haegeman. 1994.Introduction to Government & Binding
theory: Second Edition. Basil Blackwell, Cambridge, UK.

Donald Hindle and Mats Rooth. 1993. Structural ambiguity
and lexical relations.Computational Linguistics, 19(1):103–
120.

Harold Jeffreys, 1961.Theory of Probability, chapter 3.23. Ox-
ford: Clarendon Press, 3rd edition.

Andrew Kehler. 1997. Probabilistic coreference in informa-
tion extraction. InProceedings of the Second Conference on
Empirical Methods in Natural Language Processing, pages
163–173.

Christopher Kennedy and Branimir Boguraev. 1996. Anaphora
for everyone: Pronominal anaphora resolution without a
parser. InProceedings of the 16th Conference on Compu-
tational Linguistics, pages 113–118.

Shalom Lappin and Herbert J. Leass. 1994. An algorithm for
pronominal anaphora resolution.Computational Linguis-
tics, 20(4):535–561.

Dekang Lin. 1994. Principar - an efficient, broad-coverage,
principle-based parser. InProceedings of COLING-94,
pages 42–48, Kyoto, Japan.

Robert Malouf. 2002. A comparison of algorithms for max-
imum entropy parameter estimation. InProceedings of the
Sixth Conference on Natural Language Learning (CoNLL-
2002), pages 49–55.

Ruslan Mitkov, Richard Evans, and Constantin Orasan. 2002.
A new, fully automatic version of Mitkov’s knowledge-poor
pronoun resolution method. InProceedings of the Third
International Conference on Computational Linguistics and
Intelligent Text Processing, pages 168–186.

Christoph M̈uller, Stefan Rapp, and Michael Strube. 2002. Ap-
plying co-training to reference resolution. InProceedings
of the 40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 352–359.

Vincent Ng and Claire Cardie. 2002. Improving machine learn-
ing approaches to coreference resolution. InProceedings of
the 40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 104–111.

Vincent Ng and Claire Cardie. 2003. Weakly supervised nat-
ural language learning without redundant views. InHLT-
NAACL 2003: Proceedings of the Main Conference, pages
173–180.

Franz J. Och and Hermann Ney. 2002. Discriminative training
and maximum entropy models for statistical machine trans-
lation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 295–302,
Philadelphia, PA, July.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim.
2001. A machine learning approach to coreference resolu-
tion of noun phrases.Computational Linguistics, 27(4):521–
544.

Ellen Vorhees. 2002. Overview of the TREC 2002 question an-
swering track. InProceedings of the Eleventh Text REtrieval
Conference (TREC).

95

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 96–103, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Probabilistic Head-Driven Parsing for Discourse Structure

Jason Baldridge and Alex Lascarides
School of Informatics

University of Edinburgh
2 Buccleuch Place

Edinburgh, EH8 9LW
Scotland, UK

{jbaldrid,alex}@inf.ed.ac.uk

Abstract

We describe a data-driven approach to
building interpretable discourse structures
for appointment scheduling dialogues. We
represent discourse structures as headed
trees and model them with probabilis-
tic head-driven parsing techniques. We
show that dialogue-based features regard-
ing turn-taking and domain specific goals
have a large positive impact on perfor-
mance. Our best model achieves an f -
score of 43.2% for labelled discourse rela-
tions and 67.9% for unlabelled ones, sig-
nificantly beating a right-branching base-
line that uses the most frequent relations.

1 Introduction

Achieving a model of discourse interpretation that is
both robust and deep is a major challenge. Consider
the dialogue in Figure 1 (the sentence numbers are
from the Redwoods treebank (Oepen et al., 2002)).
A robust and deep interpretation of it should resolve
the anaphoric temporal description in utterance 154
to the twenty sixth of July in the afternoon. It should
identify that time and before 3pm on the twenty-
seventh as potential times to meet, while ruling out
July thirtieth to August third. It should gracefully
handle incomplete or ungrammatical utterances like
152 and recognise that utterances 151 and 152 have
no overall effect on the time and place to meet.

According to Hobbs et al. (1993) and Asher and
Lascarides (2003), a discourse structure consisting
of hierarchical rhetorical connections between utter-
ances is vital for providing a unified model of a wide

149 PAM: maybe we can get together, and, discuss, the

planning, say, two hours, in the next, couple weeks,

150 PAM: let me know what your schedule is like.

151 CAE: okay, let me see.
152 CAE: twenty,
153 CAE: actually, July twenty sixth and twenty seventh looks

good,
154 CAE: the twenty sixth afternoon,
155 CAE: or the twenty seventh, before three p.m., geez.
156 CAE: I am out of town the thirtieth through the,
157 CAE: the third, I am in San Francisco.

Figure 1: A dialogue extract from Redwoods.

range of anaphoric and intentional discourse phe-
nomena, contributing to the interpretations of pro-
nouns, temporal expressions, presuppositions and
ellipses (among others), as well as influencing com-
municative goals. This suggests that a robust model
of discourse structure could complement current ro-
bust interpretation systems, which tend to focus on
only one aspect of the semantically ambiguous ma-
terial, such as pronouns (e.g., Strübe and Müller
(2003)), definite descriptions (e.g., Vieira and Poe-
sio (2000)), or temporal expressions (e.g., Wiebe
et al. (1998)). This specialization makes it hard to
assess how they would perform in the context of a
more comprehensive set of interpretation tasks.

To date, most methods for constructing discourse
structures are not robust. They typically rely on
grammatical input and use symbolic methods which
inevitably lack coverage. One exception is Marcu’s
work (Marcu, 1997, 1999) (see also Soricut and
Marcu (2003) for constructing discourse structures
for individual sentences). Marcu (1999) uses a
decision-tree learner and shallow syntactic features

96

to create classifiers for discourse segmentation and
for identifying rhetorical relations. Together, these
amount to a model of discourse parsing. However,
the results are trees of Rhetorical Structure Theory
(RST) (Mann and Thompson, 1986), and the clas-
sifiers rely on well-formedness constraints on RST

trees which are too restrictive (Moore and Pollack,
1992). Furthermore, RST does not offer an account
of how compositional semantics gets augmented,
nor does it model anaphora. It is also designed for
monologue rather than dialogue, so it does not of-
fer a precise semantics of questions or non-sentential
utterances which convey propositional content (e.g.,
154 and 155 in Figure 1). Another main approach to
robust dialogue processing has been statistical mod-
els for identifying dialogue acts (e.g., Stolcke et al.
(2000)). However, dialogue acts are properties of
utterances rather than hierarchically arranged rela-
tions between them, so they do not provide a basis
for resolving semantic underspecification generated
by the grammar (Asher and Lascarides, 2003).

Here, we present the first probabilistic approach
to parsing the discourse structure of dialogue.
We use dialogues from Redwoods’ appointment
scheduling domain and adapt head-driven genera-
tive parsing strategies from sentential parsing (e.g.,
Collins (2003)) for discourse parsing. The discourse
structures we build conform to Segmented Dis-
course Representation Theory (SDRT) (Asher and
Lascarides, 2003). SDRT provides a precise dynamic
semantic interpretation for its discourse structures
which augments the conventional semantic repre-
sentations that are built by most grammars. We thus
view the task of learning a model of SDRT-style dis-
course structures as one step towards achieving the
goal of robust and precise semantic interpretations.

We describe SDRT in the context of our domain
in Section 2. Section 3 discusses how we encode
and annotate discourse structures as headed trees
for our domain. Section 4 provides background on
probabilistic head-driven parsing models, and Sec-
tion 5 describes how we adapt the approach for dis-
course and gives four models for discourse parsing.
We report results in Section 6, which show the im-
portance of dialogue-based features on performance.
Our best model performs far better than a baseline
that uses the most frequent rhetorical relations and
right-branching segmentation.

h0 : Request-Elab(149, 150)∧
Plan-Elab(150, h1)

h1 : Elaboration(153, h2)∧
Continuation(153, 156)∧
Continuation(156, 157)

h2 : Alternation(154, 155)

Figure 2: The SDRS for the dialogue in Figure 1.

2 Segmented Discourse Representation
Theory

SDRT extends prior work in dynamic semantics (e.g.,
van Eijk and Kamp (1997)) via logical forms that
feature rhetorical relations. The logical forms con-
sist of speech act discourse referents which la-
bel content (either of a clause or of text seg-
ments). Rhetorical relations such as Explanation
relate these referents. The resulting structures are
called segmented discourse representation struc-
tures or SDRSs. An SDRS for the dialogue in Fig-
ure 1 is given in Figure 2; we have used the numbers
of the elementary utterances from Redwoods as the
speech act discourse referents but have omitted their
labelled logical forms. Note that utterances 151 and
152, which do not contribute to the truth conditions
of the dialogue, are absent – we return to this shortly.

There are several things to note about this SDRS.
First, SDRT’s dynamic semantics of rhetorical rela-
tions imposes constraints on the contents of its argu-
ments. For example, Plan-Elab(150, h1) (standing
for Plan-Elaboration) means that h1 provides infor-
mation from which the speaker of 150 can elaborate
a plan to achieve their communicative goal (to meet
for two hours in the next couple of weeks). The
relation Plan-Elab contrasts with Plan-Correction,
which would relate the utterances in dialogue (1):

(1) a. A: Can we meet at the weekend?
b. B: I’m afraid I’m busy then.

Plan-Correction holds when the content of the sec-
ond utterance in the relation indicates that its com-
municative goals conflict with those of the first one.
In this case, A indicates he wants to meet next week-
end, and B indicates that he does not (note that then
resolves to the weekend). Utterances (1ab) would
also be related with IQAP (Indirect Question Answer

97

Pair): this means that (1b) provides sufficient infor-
mation for the questioner A to infer a direct answer
to his question (Asher and Lascarides, 2003).

The relation Elaboration(153, h2) in Figure 2
means that the segment 154 to 155 resolves to a
proposition which elaborates part of the content of
the proposition 153. Therefore the twenty sixth in
154 resolves to the twenty sixth of July—any other
interpretation contradicts the truth conditional con-
sequences of Elaboration. Alternation(154, 155)
has truth conditions similar to (dynamic) disjunc-
tion. Continuation(156, 157) means that 156 and
157 have a common topic (here, this amounts to a
proposition about when CAE is unavailable to meet).

The second thing to note about Figure 2 is how
one rhetorical relation can outscope another: this
creates a hierarchical segmentation of the discourse.
For example, the second argument to the Elabo-
ration relation is the label h2 of the Alternation-
segment relating 154 to 155. Due to the semantics
of Elaboration and Alternation, this ensures that the
dialogue entails that one of 154 or 155 is true, but it
does not entail 154, nor 155.

Finally, observe that SDRT allows for a situ-
ation where an utterance connects to more than
one subsequent utterance, as shown here with
Elaboration(153, h2) ∧ Continuation(153, 156). In
fact, SDRT also allows two utterances to be related
by multiple relations (see (1)) and it allows an utter-
ance to rhetorically connect to multiple utterances in
the context. These three features of SDRT capture the
fact that an utterance can make more than one illo-
cutionary contribution to the discourse. An example
of the latter kind of structure is given in (2):

(2) a. A: Shall we meet on Wednesday?
b. A: How about one pm?
c. B: Would one thirty be OK with you?

The SDRS for this dialogue would feature the re-
lations Plan-Correction(2b, 2c), IQAP(2b, 2c) and
Q-Elab(2a, 2c). Q-Elab, or Question-Elaboration,
always takes a question as its second argument;
any answers to the question must elaborate a plan
to achieve the communicative goal underlying the
first argument to the relation. From a logical per-
spective, recognising Plan-Correction(2b, 2c) and
Q-Elab(2a, 2c) are co-dependent.

Segment/h0

ind

149

Request-Elab

imp

150

Plan-Elab

Segment/h1

Pass

pause

151

irr

152

ind

153

Elaboration/h2

ind

154

Alternation

ind

155

Continuation

ind

156

Continuation

ind

157

Figure 3: The discourse structure for the dialogue
from Figure 1 in tree form.

3 Augmenting the Redwoods treebank
with discourse structures

Our starting point is to create training material for
probabilistic discourse parsers. For this, we have
augmented dialogues from the Redwoods Treebank
(Oepen et al., 2002) with their analyses within a
fragment of SDRT (Baldridge and Lascarides, 2005).
This is a very different effort from that being pur-
sued for the Penn Discourse Treebank (Miltsakaki
et al., 2004), which uses discourse connectives
rather than abstract rhetorical relations like those in
SDRT in order to provide theory neutral annotations.
Our goal is instead to leverage the power of the se-
mantics provided by SDRT’s relations, and in partic-
ular to do so for dialogue as opposed to monologue.

Because the SDRS-representation scheme, as
shown in Figure 2, uses graph structures that do not
conform to tree constraints, it cannot be combined
directly with statistical techniques from sentential
parsing. We have therefore designed a headed tree
encoding of SDRSs, which can be straightforwardly
modeled with standard parsing techniques and from
which SDRSs can be recovered.

For instance, the tree for the dialogue in Figure 1
is given in Figure 3. The SDRS in Figure 2 is recov-
ered automatically from it. In this tree, utterances
are leaves which are immediately dominated by their
tag, indicating either the sentence mood (indicative,
interrogative or imperative) or that it is irrelevant, a
pause or a pleasantry (e.g., hello), annotated as pls.
Each non-terminal node has a unique head daugh-
ter: this is either a Segment node, Pass node, or a

98

leaf utterance tagged with its sentence mood. Non-
terminal nodes may in addition have any number of
daughter irr, pause and pls nodes, and an additional
daughter labelled with a rhetorical relation.

The notion of headedness has no status in the se-
mantics of SDRSs themselves. The heads of these
discourse trees are not like verbal heads with sub-
categorization requirements in syntax; here, they are
nothing more than the left argument of a rhetor-
ical relation, like 154 in Alternation(154, 155).
Nonetheless, defining one of the arguments of
rhetorical relations as a head serves two main pur-
poses. First, it enables a fully deterministic algo-
rithm for recovering SDRSs from these trees. Sec-
ond, it is also crucial for creating probabilistic head-
driven parsing models for discourse structure.

Segment and Pass are non-rhetorical node types.
The former explicitly groups multiple utterances.
The latter allows its head daughter to enter into re-
lations with segments higher in the tree. This allows
us to represent situations where an utterance attaches
to more than one subsequent utterance, such as 153
in dialogue (1). Annotators manually annotate the
rhetorical relation, Segment and Pass nodes and de-
termine their daughters. They also tag the individual
utterances with one of the three sentence moods or
irr, pause or pls. The labels for segments (e.g., h0

and h1 in Figure 3) are added automatically. Non-
veridical relations such as Alternation also introduce
segment labels on their parents; e.g., h2 in Figure 3.

The SDRS is automatically recovered from this
tree representation as follows. First, each rela-
tion node generates a rhetorical connection in the
SDRS: its first argument is the discourse referent
of its parent’s head daughter, and the second is the
discourse referent of the node itself (which unless
stated otherwise is its head daughter’s discourse ref-
erent). For example, the structure in Figure 3 yields
Request-Elab(149, 150), Alternation(154, 155) and
Elaboration(153, h2). The labels for the relations
in the SDRS—which determine segmentation—must
also be recovered. This is easily done: any node
which has a segment label introduces an outscopes
relation between that and the discourse referents
of the node’s daughters. This produces, for ex-
ample, outscopes(h0, 149), outscopes(h1, 153) and
outscopes(h2, 154). It is straightforward to deter-
mine the labels of all the rhetorical relations from

these conditions. Utterances such as 151 and 152,
which are attached with pause and irr to indicate that
they have no overall truth conditional effect on the
dialogue, are ignored when constructing the SDRS,
so SDRT does not assign these terms any semantics.
Overall, this algorithm generates the SDRS in Fig-
ure 2 from the tree in Figure 3.

Thus far, 70 dialogues have been annotated and
reviewed to create our gold-standard corpus. On av-
erage, these dialogues have 237.5 words, 31.5 ut-
terances, and 8.9 speaker turns. In all, there are 30
different rhetorical relations in the inventory for this
annotation task, and 6 types of tags for the utterances
themselves: ind, int, imp, pause, irr and pls.

Finally, we annotated all 6,000 utterances in the
Verbmobil portion of Redwoods with the following:
whether the time mentioned (if there is one) is a
good time to meet (e.g., I’m free then or Shall we
meet at 2pm?) or a bad time to meet (e.g., I’m busy
then or Let’s avoid meeting at the weekend). These
are used as features in our model of discourse struc-
ture (see Section 5). We use these so as to minimise
using directly detailed features from the utterances
themselves (e.g. the fact that the utterance contains
the word free or busy, or that it contains a negation),
which would lead to sparse data problems given the
size of our training corpus. We ultimately aim to
learn good-time and bad-time from sentence-level
features extracted from the 6,000 Redwoods analy-
ses, but we leave this to future work.

4 Generative parsing models

There is a significant body of work on probabilistic
parsing, especially that dealing with the English sen-
tences found in the annotated Penn Treebank. One
of the most important developments in this work is
that of Collins (2003). Collins created several lex-
icalised head-driven generative parsing models that
incorporate varying levels of structural information,
such as distance features, the complement/adjunct
distinction, subcategorization and gaps. These mod-
els are attractive for constructing our discourse trees,
which contain heads that establish non-local depen-
dencies in a manner similar to that in syntactic pars-
ing. Also, the co-dependent tasks of determining
segmentation and choosing the rhetorical connec-
tions are both heavily influenced by the content of

99

the utterances/segments which are being considered,
and lexicalisation allows the model to probabilisti-
cally relate such utterances/segments very directly.

Probabilistic Context Free Grammars (PCFGs)
determine the conditional probability of a right-
hand side of a rule given the left-hand side,
P(RHS|LHS). Collins instead decomposes the
calculation of such probabilities by first generating a
head and then generating its left and right modifiers
independently. In a supervised setting, doing this
gathers a much larger set of rules from a set of la-
belled data than a standard PCFG, which learns only
rules that are directly observed.1

The decomposition of a rule begins by noting that
rules in a lexicalised PCFG have the form:

P (h) → Ln(ln) . . . L1(l1)H(h)R1(r1) . . . Rm(rm)

where h is the head word, H(h) is the label of the
head constituent, P (h) is its parent, and Li(li) and
Ri(ri) are the n left and m right modifiers, respec-
tively. It is also necessary to include STOP sym-
bols Ln+1 and Rm+1 on either side to allow the
Markov process to properly model the sequences of
modifiers. By assuming these modifiers are gener-
ated independently of each other but are dependent
on the head and its parent, the probability of such
expansions can be calculated as follows (where Ph,
Pl and Pr are the probabilities for the head, left-
modifiers and right-modifiers respectively):

P(Ln(ln) . . . L1(l1)H(h)R1(r1) . . . Rm(rm)|P (h)) =

Ph(H|P (h))

×
Y

i=1...n+1

Pl(Li(li)|P (h), H)

×
Y

i=1...m+1

Pr(Ri(ri)|P (h), H)

This provides the simplest of models. More con-
ditioning information can of course be added from
any structure which has already been generated. For
example, Collins’ model 1 adds a distance feature
that indicates whether the head and modifier it is
generating are adjacent and whether a verb is in the
string between the head and the modifier.

1A similar effect can be achieved by converting n-ary trees
to binary form.

5 Discourse parsing models

In Section 3, we outlined how SDRSs can be repre-
sented as headed trees. This allows us to create pars-
ing models for discourse that are directly inspired by
those described in the previous section. These mod-
els are well suited for our discourse parsing task.
They are lexicalised, so there is a clear place in the
discourse model for incorporating features from ut-
terances: simply replace lexical heads with whole
utterances, and exploit features from those utter-
ances in discourse parsing in the same manner as
lexical features are used in sentential parsing.

Discourse trees contain a much wider variety of
kinds of information than syntactic trees. The leaves
of these trees are sentences with full syntactic and
semantic analyses, rather than words. Furthermore,
each dialogue has two speakers, and speaker style
can change dramatically from dialogue to dialogue.
Nonetheless, the task is also more constrained in
that there are fewer overall constituent labels, there
are only a few labels which can act as heads, and
trees are essentially binary branching apart from
constituents containing ignorable utterances.

The basic features we use are very similar to those
for the syntactic parsing model given in the previous
section. The feature P is the parent label that is the
starting point for generating the head and its modi-
fiers. H is the label of the head constituent. The tag
t is also used, except that rather than being a part-of-
speech, it is either a sentence mood label (ind, int, or
imp) or an ignorable label (irr, pls, or pause). The
word feature w in our model is the first discourse cue
phrase present in the utterance.2 In the absence of a
cue phrase, w is the empty string. The distance fea-
ture ∆ is true if the modifier being generated is adja-
cent to the head and false otherwise. To incorporate
a larger context into the conditioning information,
we also utilize a feature HCR, which encodes the
child relation of a node’s head.

We have two features that are particular to dia-
logue. The first ST , indicates whether the head ut-
terance of a segment starts a turn or not. The other,
TC, encodes the number of turn changes within a
segment with one of the values 0, 1, or ≥ 2.

Finally, we use the good/bad-time annotations
discussed in Section 3 for a feature TM indicating

2We obtained our list of cue phrases from Oates (2001).

100

Head features Modifier features
P t w HCR ST TC TM P t w H ∆ HCR ST TC TM

Model 1 X X X X X X X X

Model 2 X X X X X X X X X X X X

Model 3 X X X X X X X X X X X X X X

Model 4 X X X X X X X X X X X X X X X X

Figure 4: The features active for determining the head and modifier probabilities in each of the four models.

one of the following values for the head utterance of
a segment: good time, bad time, neither, or both.

With these features, we create the four models
given in Figure 4. As example feature values, con-
sider the Segment node labelled h1 in Figure 3. Here,
the features have as values: P=Segment, H=Pass,
t=ind (the tag of utterance 153), w=Actually (see
153 in Figure 1), HCR=Elaboration, ST=false,
TC=0, and TM=good time.

As is standard, linear interpolation with back-off
levels of decreasing specificity is used for smooth-
ing. Weights for the levels are determined as in
Collins (2003).

6 Results

For our experiments, we use a standard chart parsing
algorithm with beam search that allows a maximum
of 500 edges per cell. The figure of merit for the
cut-off combines the probability of an edge with the
prior probability of its label, head and head tag. Hy-
pothesized trees that do not conform to some simple
discourse tree constraints are also pruned.3

The parser is given the elementary discourse units
as defined in the corpus. These units correspond di-
rectly to the utterances already defined in Redwoods
and we can thus easily access their complete syntac-
tic analyses directly from the treebank.

The parser is also given the correct utterance
moods to start with. This is akin to getting the cor-
rect part-of-speech tags in syntactic parsing. We
do this since we are using the parser for semi-
automated annotation. Tagging moods for a new
discourse is a very quick and reliable task for the
human. With them the parser can produce the more
complex hierarchical structure more accurately than
if it had to guess them – with the potential to dra-
matically reduce the time to annotate the discourse

3E.g., nodes can have at most one child with a relation label.

structures of further dialogues. Later, we will create
a sentence mood tagger that presents an n-best list
for the parser to start with, from the tag set ind, int,
imp, irr, pause, and pls.

Models are evaluated by using a leave-one-out
strategy, in which each dialogue is parsed after train-
ing on all the others. We measure labelled and un-
labelled performance with both the standard PAR-
SEVAL metric for comparing spans in trees and a
relation-based metric that compares the SDRS’s pro-
duced by the trees. The latter gives a more direct in-
dication of the accuracy of the actual discourse log-
ical form, but we include the former to show perfor-
mance using a more standard measure. Scores are
globally determined rather than averaged over all in-
dividual dialogues.

For the relations metric, the relations from the
derived discourse tree for the test dialogue are ex-
tracted; then, the overlap with relations from the
corresponding gold standard tree is measured. For
labelled performance, the model is awarded a point
for a span or relation which has the correct discourse
relation label and both arguments are correct. For
unlabelled, only the arguments need to be correct.4

Figure 5 provides the f -scores5 of the various
models and compares them against those of a base-
line model and annotators. All differences between
models are significant, using a pair-wise t-test at
99.5% confidence, except that between the baseline
and Model 2 for unlabelled relations.

The baseline model is based on the most frequent
way of attaching the current utterance to its dia-

4This is a much stricter measure than one which measures
relations between a head and its dependents in syntax because
it requires two segments rather than two heads to be related cor-
rectly. For example, Model 4’s labelled and unlabelled relation
f-scores using segments are 43.2% and 67.9%, respectively; on
a head-to-head basis, they rise to 50.4% and 81.8%.

5The f -score is calculated as 2×precision×recall

precision+recall
.

101

PARSEVAL Relations
Model Lab. Unlab. Lab. Unlab.
Baseline 14.7 33.8 7.4 53.3
Model 1 22.7 42.2 23.1 47.0
Model 2 30.1 51.1 31.0 54.3
Model 3 39.4 62.8 39.4 64.4
Model 4 46.3 69.2 43.2 67.9
Inter-annotator 53.7 76.5 50.3 73.0
Annotator-gold 75.9 88.0 75.3 84.0

Figure 5: Model performance.

logue context. The baseline is informed by the gold-
standard utterance moods. For this corpus, this re-
sults in a baseline which is a right-branching struc-
ture, where the relation Plan-Elaboration is used if
the utterance is indicative, Question-Elaboration if
it is interrogative, and Request-Elaboration if it is
imperative. The baseline also appropriately handles
ignorable utterances (i.e, those with the mood labels
irrelevant, pause, or pleasantry).

The baseline performs poorly on labelled rela-
tions (7.4%), but is more competitive on unlabelled
ones (53.3%). The main reason for this is that
it takes no segmentation risks. It simply relates
every non-ignorable utterance to the previous one,
which is indeed a typical configuration with com-
mon content-level relations like Continuation. The
generative models take risks that allow them to cor-
rectly identify more complex segments – at the cost
of missing some of these easier cases.

Considering instead the PARSEVAL scores for the
baseline, the labelled performance is much higher
(14.7%) and the unlabelled is much lower (33.8%)
than for relations. The difference in labelled per-
formance is due to the fact that the intentional-level
relations used in the baseline often have arguments
that are multi-utterance segments in the gold stan-
dard. These are penalized in the relations compar-
ison, but the spans used in PARSEVAL are blind to
them. On the other hand, the unlabelled score drops
considerably – this is due to poor performance on
dialogues whose gold standard analyses do not have
a primarily right-branching structure.

Model 1 performs most poorly of all the models.
It is significantly better than the baseline on labelled
relations, but significantly worse on unlabelled rela-

tions. All its features are derived from the structure
of the trees, so it gets no clues from speaker turns or
the semantic content of utterances.

Model 2 brings turns and larger context via the
ST and HCR features, respectively. This improves
segmentation over Model 1 considerably, so that the
model matches the baseline on unlabelled relations
and beats it significantly on labelled relations.

The inclusion of the TC feature in Model 3 brings
large (and significant) improvements over Model 2.
Essentially, this feature has the effect of penalizing
hypothesized content-level segments that span sev-
eral turns. This leads to better overall segmentation.

Finally, Model 4 incorporates the domain-based
TM feature that summarizes some of the semantic
content of utterances. This extra information im-
proves the determination of labelled relations. For
example, it is especially useful in distinguishing a
Plan-Correction from a Plan-Elaboration.

The overall trend of differences between PARSE-
VAL and relations scoring show that PARSEVAL is
tougher on overall segmentation and relations scor-
ing is tougher on whether a model got the right ar-
guments for each labelled relation. It is the latter
that ultimately matters for the discourse structures
produced by the parser to be useful; nonetheless, the
PARSEVAL scores do show that each model progres-
sively improves on capturing the trees themselves,
and that even Model 1 – as a syntactic model – is
far superior to the baseline for capturing the overall
form of the trees.

We also compare our best model against two up-
perbounds: (1) inter-annotator agreement on ten
dialogues that were annotated independently and
(2) the best annotator against the gold standard
agreed upon after the independent annotation phase.
For the first, the labelled/unlabelled relations f -
scores are 50.3%/73.0% and for the latter, they are
75.3%/84.0%—this is similar to the performance on
other discourse annotation projects, e.g., Carlson
et al. (2001). On the same ten dialogues, Model 4
achieves 42.3%/64.9%.

It is hard to compare these models with Marcu’s
(1999) rhetorical parsing model. Unlike Marcu, we
did not use a variety of corpora, have a smaller train-
ing corpus, are analysing dialogues as opposed to
monologues, have a larger class of rhetorical re-
lations, and obtain the elementary discourse units

102

from the Redwoods annotations rather than estimat-
ing them. Even so, it is interesting that the scores
reported in Marcu (1999) for labelled and unlabelled
relations are similar to our scores for Model 4.

7 Conclusion

In this paper, we have shown how the complex task
of creating structures for SDRT can be adapted to a
standard probabilistic parsing task. This is achieved
via a headed tree representation from which SDRSs
can be recovered. This enables us to directly ap-
ply well-known probabilistic parsing algorithms and
use features inspired by them. Our results show
that using dialogue-based features are a major factor
in improving the performance of the models, both
in terms of determining segmentation appropriately
and choosing the right relations to connect them.

There is clearly a great deal of room for improve-
ment, even with our best model. Even so, that
model performed sufficiently well for use in semi-
automated annotation: when correcting the model’s
output on ten dialogues, one annotator took 30 sec-
onds per utterance, compared to 39 for another an-
notator working on the same dialogues with no aid.

In future work, we intend to exploit an exist-
ing implementation of SDRT’s semantics (Schlangen
and Lascarides, 2002), which adopts theorem prov-
ing to infer resolutions of temporal anaphora and
communicative goals from SDRSs for scheduling di-
alogues. This additional semantic content can in
turn be added (semi-automatically) to a training cor-
pus. This will provide further features for learn-
ing discourse structure and opportunities for learn-
ing anaphora and goal information directly.

Acknowledgments

This work was supported by Edinburgh-Stanford
Link R36763, ROSIE project. Thanks to Mirella La-
pata and Miles Osborne for comments.

References
N. Asher and A. Lascarides. Logics of Conversation. Cam-

bridge University Press, 2003.

J. Baldridge and A. Lascarides. Annotating discourse struc-
tures for robust semantic interpretation. In Proceedings of
the 6th International Workshop on Computational Seman-
tics, Tilburg, The Netherlands, 2005.

L. Carlson, D. Marcu, and M. Okurowski. Building a discourse-
tagged corpus in the framework of rhetorical structure the-
ory. In Proceedings of the 2nd SIGDIAL Workshop on Dis-
course and Dialogue, Eurospeech, 2001.

M. Collins. Head-driven statistical models for natural language
parsing. Computational Linguistics, 29(4):589–638, 2003.

J. R. Hobbs, M. Stickel, D. Appelt, and P. Martin. Interpretation
as abduction. Artificial Intelligence, 63(1–2):69–142, 1993.

W. C. Mann and S. A. Thompson. Rhetorical structure theory:
Description and construction of text structures. In G. Kem-
pen, editor, Natural Language Generation: New Results in
Artificial Intelligence, pages 279–300. 1986.

D. Marcu. The rhetorical parsing of unrestricted natural lan-
guage texts. In Proceedings of ACL/EACL, pages 96–103,
Somerset, New Jersey, 1997.

D. Marcu. A decision-based approach to rhetorical parsing.
In Proceedings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL99), pages 365–372,
Maryland, 1999.

E. Miltsakaki, R. Prasad, A. Joshi, and B. Webber. The Penn
Discourse TreeBank. In Proceedings of the Language Re-
sources and Evaluation Conference, Lisbon, Portugal, 2004.

J. D. Moore and M. E. Pollack. A problem for RST: The need
for multi-level discourse analysis. Computational Linguis-
tics, 18(4):537–544, 1992.

S. Oates. Generating multiple discourse markers in text. Mas-
ter’s thesis, ITRI, University of Brighton, 2001.

S. Oepen, E. Callahan, C. Manning, and K. Toutanova. LinGO
Redwoods—a rich and dynamic treebank for HPSG. In Pro-
ceedings of the LREC parsing workshop: Beyond PARSEVAL,
towards improved evaluation measures for parsing systems,
pages 17–22, Las Palmas, 2002.

D. Schlangen and A. Lascarides. Resolving fragments using
discourse information. In Proceedings of the 6th Interna-
tional Workshop on the Semantics and Pragmatics of Dia-
logue (Edilog), Edinburgh, 2002.

R. Soricut and D. Marcu. Sentence level discourse parsing using
syntactic and lexical information. In Proceedings of Human
Language Technology and North American Association for
Computational Linguistics, Edmonton, Canada, 2003.

A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, D. Jurafsky
R. Bates, P. Taylor, R. Martin, C. van Ess-Dykema, and
M. Meteer. Dialogue act modeling for automatic tagging and
recognition of conversational speech. Computational Lin-
guistics, 26(3):339–374, 2000.

M. Strübe and C. Müller. A machine learning approach to pro-
noun resolution in spoken dialogue. In Proceedings of the
41st Annual Meeting of the Association for Computational
Linguistics (ACL2003), pages 168–175, 2003.

J. van Eijk and H. Kamp. Representing discourse in context.
In J. van Benthem and A. ter Meulen, editors, Handbook of
Logic and Linguistics, pages 179–237. Elsevier, 1997.

R. Vieira and M. Poesio. Processing definite descriptions in
corpora. In Corpus-based and computational approaches to
anaphora. UCL Press, 2000.

J. M. Wiebe, T. P. O’Hara, T. Ohrstrom-Sandgren, and K. J. Mc-
Keever. An empirical approach to temporal reference resolu-
tion. Journal of Artificial Intelligence Research, 9:247–293,
1998.

103

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 104–111, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

 Intentional Context in
Situated Natural Language Learning

Michael Fleischman and Deb Roy

Cognitive Machines
The Media Laboratory

Massachusetts Institute of Technology
mbf@mit.edu, dkroy@media.mit.edu

Abstract

Natural language interfaces designed for
situationally embedded domains (e.g.
cars, videogames) must incorporate
knowledge about the users’ context to
address the many ambiguities of situated
language use. We introduce a model of
situated language acquisition that operates
in two phases. First, intentional context is
represented and inferred from user actions
using probabilistic context free grammars.
Then, utterances are mapped onto this
representation in a noisy channel
framework. The acquisition model is
trained on unconstrained speech collected
from subjects playing an interactive game,
and tested on an understanding task.

1 Introduction

As information technologies move off of our
desktops and into the world, the need for Natural
Language Processing (NLP) systems that exploit
information about the environment becomes
increasingly apparent. Whether in physical
environments (for cars and cell phones) or in
virtual ones (for videogames and training
simulators), applications are beginning to demand
language interfaces that can understand
unconstrained speech about constrained domains.
Unlike most text-based NLP research, which
focuses on open-domain problems, work we refer
to as situated NLP focuses on improving language
processing by exploiting domain-specific
information about the non-linguistic situational
context of users’ interactions. For applications
where agents interact in shared environments, such
information is critical for successful
communication.

Previous work in situated NLP has focused on
methods for grounding the meaning of words in
physical and virtual environments. The motivation
for this work comes from the inability of text-
based NLP technologies to offer viable models of
semantics for human computer interaction in
shared environments. For example, imagine a
situation in which a human user is interacting with
a robotic arm around a table of different colored
objects. If the human were to issue the command
“give me the blue one,” both the manually-coded
(Lenat, 1995; Fellbaum, 1998) and statistical
models (Manning and Schutze, 2000) of meaning
employed in text-based NLP are inadequate; for, in
both models, the meaning of a word is based only
on its relations to other words. However, in order
for the robot to successfully “give me the blue
one,” it must be able to link the meaning of the
words in the utterance to its perception of the
environment (Roy, Hsiao, & Mavridis, 2004).
Thus, recent work on grounding meaning has
focused on how words and utterances map onto
physical descriptions of the environment: either in
the form of perceptual representations (Roy, in
press, Siskind, 2001, Regier, 1996) or control
schemas (Bailey, 1997 Narayanan, 1999).1

While such physical descriptions are useful
representations for some classes of words (e.g.,
colors, shapes, physical movements), they are
insufficient for more abstract language, such as
that which denotes intentional action. This
insufficiency stems from the fact that intentional
actions (i.e. actions performed with the purpose of
achieving a goal) are highly ambiguous when
described only in terms of their physically
observable characteristics. For example, imagine a
situation in which one person moves a cup towards
another person and utters the unknown word

1 Note that Narayanan’s work moves away from purely
physical to metaphorical levels of description.

104

“blicket.” Now, based only on the physical
description of this action, one might come to think
of “blicket” as meaning anything from “give cup”,
to “offer drink”, to “ask for change.” This
ambiguity stems from the lack of contextual
information that strictly perceptual descriptions of
action provide.

This research presents a methodology for
modeling the intentional context of utterances and
describes how such representations can be used in
a language learning task. We decompose language
learning into two phases: intention recognition and
linguistic mapping. In the first phase, we model
intentional action using a probabilistic context free
grammar. We use this model to parse sequences of
observed physical actions, thereby inferring a
hierarchical tree representation of a user’s
intentions. In the second phase, we use a noisy
channel model to learn a mapping between
utterances and nodes in that tree representation.
We present pilot situated language acquisition
experiments using a dataset of paired spontaneous
speech and action collected from human subjects
interacting in a shared virtual environment. We
evaluate the acquired model on a situated language
understanding task.

2 Intention Recognition

The ability to infer the purpose of others’ actions
has been proposed in the psychological literature
as essential for language learning in children
(Tommasello, 2003, Regier, 2003). In order to
understand how such intention recognition might
be modeled in a computational framework, it is
useful to specify the types of ambiguities that make
intentional actions difficult to model. Using as an
example the situation involving the cup described
above, we propose that this interaction
demonstrates two distinct types of ambiguity. The
first type, which we refer to as a vertical ambiguity
describes the ambiguity between the “move cup”
vs. “offer drink” meanings of “blicket.” Here the
ambiguity is based on the level of description that
the speaker intended to convey. Thus, while both
meanings are correct (i.e., both meanings
accurately describe the action), only one
corresponds to the word “blicket.”

The second type of ambiguity, referred to as
horizontal ambiguity describes the ambiguity
between the “offer drink” vs. “ask for change”

interpretations of “blicket.” Here there is an
ambiguity based on what actually is the intention
behind the physical action. Thus, it is the case that
only one of these meaning corresponds to “blicket”
and the other meaning is not an accurate
description of the intended action.

Figure 1 shows a graphical representation of
these ambiguities. Here the leaf nodes represent a
basic physical description of the action, while the
root nodes represent the highest-level actions for
which the leaf actions were performed2. Such a
tree representation is useful in that it shows both
the horizontal ambiguity that exists between the
nodes labeled “ask for change” and “offer drink,”
as well as the vertical ambiguity that exits between
the nodes labeled “offer drink” and “move cup.”

Figure 1: Graphical representation of vertical and
horizontal ambiguities for actions.

In order to exploit the intuitive value of such a
tree representation, we model intention recognition
using probabilistic context free grammars
(PCFG)3. We develop a small set of production
rules in which the left hand side represents a higher
order intentional action (e.g., “offer drink”), and
the right hand side represents a sequence of lower
level actions that accomplish it (e.g. “grasp cup”,
“move cup”, “release cup”). Each individual
action (i.e. letter in the alphabet of the PCFG) is
further modeled as a simple semantic frame that
contains roles for an agent, an object, an action,
and multiple optional modifier roles (see inset
figure 1). While in this initial work productions
are created by hand (a task made feasible by the

2 In other words, high-level actions (e.g. “be polite) are
preformed by means of the performance of lower-level
actions (e.g. “offer drink”).
3 The idea of a “grammar of behavior” has a rich history
in the cognitive sciences dating back at least to Miller et
al., 1960

O ffe r D r in k

M o v e C u p

o b s e r v e d a c t io n

A c tio n : O f fe r
A g e n t: P e r s o n 1
P a t ie n t: P e r s o n 2
O b je c t: D r in k

A s k fo r C h a n g e

B e P o l i te

L i f t C u p S l id e C u p

“ B lic k e t”

105

constrained nature of situated domains) learning
such rules automatically is discussed in section 4.2.

Just as in the plan recognition work of Pynadath,
(1999), we cast the problem of intention
recognition as a probabilistic parsing problem in
which sequences of physical actions are used to
infer an abstract tree representation. Resolving
horizontal ambiguities thus becomes equivalent to
determining which parse tree is most likely given a
sequence of events. Further, resolving vertical
ambiguities corresponds to determining which
level node in the inferred tree is the correct level of
description that the speaker had in mind.

3 Linguistic Mapping

Given a model of intention recognition, the
problem for a language learner becomes one of
mapping spoken utterances onto appropriate
constituents of their inferred intentional
representations. Given the intention representation
above, this is equivalent to mapping all of the
words in an utterance to the role fillers of the
appropriate semantic frame in the induced
intention tree. To model this mapping procedure,
we employ a noisy channel model in which the
probability of inferring the correct meaning given
an utterance is approximated by the (channel)
probability of generating that utterance given that
meaning, times the (source) prior probability of the
meaning itself (see Equation 1).

≈)|(utterancemeaningp (1)
)1()()|(αα −• meaningpmeaningutterancep

Here utterance refers to some linguistic unit
(usually a sentence) and meaning refers to some
node in the tree (represented as a semantic frame)
inferred during intention recognition4. We can use
the probability associated with the inferred tree (as
given by the PCFG parser) as the source
probability. Further, we can learn the channel
probabilities in an unsupervised manner using a
variant of the EM algorithm similar to machine
translation (Brown et al., 1993), and statistical
language understanding (Epstein, 1996).

4 Pilot Experiments

4.1 Data Collection

4 α refers to a weighting coefficient.

In order to avoid the many physical and perceptual
problems that complicate work with robots and
sensor-grounded data, this work focuses on
language learning in virtual environments. We
focus on multiplayer videogames , which support
rich types of social interactions. The complexities
of these environments highlight the problems of
ambiguous speech described above, and
distinguish this work from projects characterized
by more simplified worlds and linguistic
interactions, such as SHRDLU (Winograd, 1972).
Further, the proliferation of both commercial and
military applications (e.g., Rickel et al., 2002)
involving such virtual worlds suggests that they
will continue to become an increasingly important
area for natural language research in the future.

Figure 2: Screen shot of Neverwinter Nights game used
in experimentation.

In order to test our model, we developed a virtual
environment based on the multi-user videogame
Neverwinter Nights.5 The game, shown in Figure
2, provides useful tools for generating modules in
which players can interact. The game was
instrumented such that all players’ speech/text
language and actions are recorded during game
play. For data collection, a game was designed in
which a single player must navigate their way
through a cavernous world, collecting specific
objects, in order to escape. Subjects were paired
such that one, the novice, would control the virtual
character, while the other, the expert, guided her
through the world. While the expert could say
anything in order to tell the novice where to go and
what to do, the novice was instructed not to speak,
but only to follow the commands of the expert.

5 http://nwn.bioware.com/

106

RightClickDoor RightClickFloor RightClickFloor RightClickFloor LeftClickDoor

“ok go into the room” “go over to that door” “now open the door”

Expert’s utterances:

Novice’s actions:

RightClickDoor RightClickFloor RightClickFloor RightClickFloor LeftClickDoor

MoveThruRoomOpenDoor OpenDoor

FindAxe PickUpAxe

GetAxe

Intention Recognition

Action: Get
Agent: Player
Object: Axe

GetAxe -> GoToAxe TakeAxe
FindAxe -> Open Move Open
OpenDoor -> ClickDoor

Behavior Grammar

Action: Open
Agent: Player
Object: Door

RightClickDoor RightClickFloor RightClickFloor RightClickFloor LeftClickDoor

MoveThruRoomOpenDoor OpenDoor

FindAxe PickUpAxe

GetAxe

Linguistic Mapping

“now open the door”

P(words|roles)

Figure 3. Experimental methodology: a) subjects’ speech and action sequences are recorded; b) an intentional tree is
inferred over the sequence of observed actions using a PCFG parser; c) the linguistic mapping algorithm examines
the mappings between the utterance and all possible nodes to learn the best mapping of words given semantic roles.

The purpose behind these restrictions was to elicit
free and spontaneous speech that is only
constrained by the nature of the task. This
environment seeks to emulate the type of speech
that a real situated language system might
encounter: i.e., natural in its characteristics, but
limited in its domain of discourse.

The subjects in the data collection were
university graduate and undergraduate students.
Subjects (8 male, 4 female) were staggered such
that the novice in one trial became the expert in the
next. Each pair played the game at least five times,
and for each of those trials, all speech from the
expert and all actions from the novice were
recorded. Table 1 shows examples of utterances
recorded from game play, the observed actions
associated with them, and the actions’ inferred
semantic frame.

Utterance Action Frame
ok this time you are
gonna get the axe first

MOVE
ROOM1

act: GET
obj: AXE

through the red archway
on your right

MOVE
ROOM2

act: MOVE
goal: ARCH
manner: THRU

now open that door CLICK_ON
LEVER

act: OPEN
obj: DOOR

ok now take the axe CLICK_ON
CHEST

act: TAKE
obj: AXE
source: CHEST

Table 1: Representative test utterances collected from
subjects with associated game actions and frames

Data collection produces two parallel streams of
information: the sequence of actions taken by the
novice and the audio stream produced by the
expert (figure 3a). The audio streams are
automatically segmented into utterances using a
speech endpoint detector, which are then
transcribed by a human annotator. Each action in

the sequence is then automatically parsed, and each
node in the tree is replaced with a semantic frame
(figure 3b).6 The data streams are then fed into the
linguistic mapping algorithms as a parallel corpus
of the expert’s transcribed utterances and the
inferred semantic roles associated with the
novice’s actions (figure 3c).

4.2 Algorithms

Intention Recognition

As described in section 2, we represent the task
model associated with the game as a set of
production rules in which the right hand side
consists of an intended action (e.g. “find key”) and
the left hand side consists of a sequence of sub-
actions that are sufficient to complete that action
(e.g. “go through door, open chest, pick_up key”).
By applying probabilities to the rules, intention
recognition can be treated as a probabilistic context
free parsing problem, following Pynadath, 1999.
For these initial experiments we have hand-
annotated the training data in order to generate the
grammar used for intention recognition, estimating
their maximum likelihood probabilities over the
training set. In future work, we intend to examine
how such grammars can be learned in conjunction
with the language itself; extending research on
learning task models (Nicolescu and Mataric,
2003) and work on learning PCFGs (Klein and
Manning, 2004) with our own work on
unsupervised language learning.

Given the PCFG, we use a probabilistic Earley
parser (Stolcke, 1994), modified slightly to output

6 We use 65 different frames, comprised of 35 unique
role fillers.

107

partial trees (with probabilities) as each action is
observed. Figure 4 shows a time slice of an
inferred intention tree after a player mouse clicked
on a lever in the game. Note that both the vertical
and horizontal ambiguities that exist for this action
in the game parallel the ambiguities shown in
Figure 1. As described above, each node in the
tree is represented as a semantic frame (see figure
4 insets), whose roles are aligned to the words in
the utterances during the linguistic mapping phase.

Linguistic Mapping

The problem of learning a mapping between
linguistic labels and nodes in an inferred
intentional tree is recast as one of learning the
channel probabilities in Equation 1. Each node in
a tree is treated as a simple semantic frame and the
role fillers in these frames, along with the words in
the utterances, are treated as a parallel corpus.
This corpus is used as input to a standard
Expectation Maximization algorithm that estimates
the probabilities of generating a word given the
occurrence of a role filler. We follow IBM Model
1 (Brown et al., 1993) and assume that each word
in an utterance is generated by exactly one role in
the parallel frame

Using standard EM to learn the role to word
mapping is only sufficient if one knows to which
level in the tree the utterance should be mapped.
However, because of the vertical ambiguity
inherent in intentional actions, we do not know in
advance which is the correct utterance-to-level
mapping. To account for this, we extend the
standard EM algorithm as follows (see figure 3c):

1) set uniform likelihoods for all utterance-to-
level mappings

2) for each mapping, run standard EM
3) merge output distributions of EM (weighting

each by its mapping likelihood)
4) use merged distribution to recalculate

likelihoods of all utterance-to-level mappings
5) goto step 2

4.3 Experiments

Methodologies for evaluating language acquisition
tasks are not standardized. Given our model, there
exists the possibility of employing intrinsic
measures of success, such as word alignment
accuracy. However, we choose to measure the
success of learning by examining the related (and
more natural) task of language understanding.

For each subject pair, the linguistic mapping
algorithms are trained on the first four trials of
game play and tested on the final trial. (This gives
on average 130 utterances of training data and 30
utterances of testing data per pair.) For each
utterance in the test data, we calculate the
likelihood that it was generated by each frame seen
in testing. We select the maximum likelihood
frame as the system’s hypothesized meaning for
the test utterance, and examine both how often the
maximum likelihood estimate exactly matches the
true frame (frame accuracy), and how many of the
role fillers within the estimated frame match the
role fillers of the true frame (role accuracy).7

Figure 4: Inferred intention tree (with semantic
frames) from human subject game play.

For each subject, the algorithm’s parameters are
optimized using data from all other subjects. We
assume correct knowledge of the temporal
alignment between utterances and actions. In
future work, we will relax this assumption to
explore the effects of not knowing which actions
correspond to which utterances in time.

To examine the performance of the model, three
experiments are presented. Experiment 1
examines the basic performance of the algorithms
on the language understanding task described
above given uniform priors. The system is tested
under two conditions: 1) using the extended EM
algorithm given an unknown utterance-to-level
alignment, and 2) using the standard EM algorithm
given the correct utterance-to-level alignment.

Experiment 2 tests the benefit of incorporating
intentional context directly into language
understanding. This is done by using the parse
probability of each hypothesized intention as the

7 See Fleischman and Roy (2005) for experiments
detailing performance on specific word categories.

F in d K e y E x it L e v e l

G o T h r o u g h D o o r

O p e n D o o r

P u l l L e v e r T u r n K n o b

c l ic k _ o n l e v e r

A c t io n : M o v e
A g e n t: P la y e r
O b je c t: D o o r
M a n n e r : T h ro u g h

A c tio n : G e t
A g e n t: P la y e r
O b je c t: K e y
S o u r c e : C h e s t

A c t io n : E x it
A g e n t:

P la y e r
O b je c t: L e v e l

A c t io n : O p e n
A g e n t:

P la y e r
O b je c t: D o o r

108

source probability in Equation 1. Thus, given an
utterance to understand, we cycle through all
possible actions in the grammar, parse each one as
if it were observed, and use the probability
generated by the parser as its prior probability. By
changing the weighting coefficient (α) between the
source and channel probabilities, we show the
range of performances of the system from using no
context at all (α=1) to using only context itself
(α=0) in understanding.

Figure 5: Comparison of models trained with utterance-
to-level alignment both known and unknown.
Performance is on a language understanding task
(baseline equivalent to choosing most frequent frame)

Experiment 3 studies to what extent inferred tree
structures are necessary when modeling language
acquisition. Although, in section 1, we have
presented intuitive reasons why such structures are
required, one might argue that inferring trees over
sequences of observed actions might not actually
improve understanding performance when
compared to a model trained only on the observed
actions themselves. This hypothesis is tested by
comparing a model trained given the correct
utterance-to-level alignment (described in
experiment 1) with a model in which each
utterance is aligned to the leaf node (i.e. observed
action) below the correct level of alignment. For
example, in figure 4, this would correspond to
mapping the utterance “go through the door”, not
to “GO THROUGH DOOR”, but rather to
“CLICK_ON LEVER.”

4.4 Results

Experiment 1: We present the average performance
over all subject pairs, trained with the correct
utterance-to-level alignment both known and
unknown, and compare it to a baseline of choosing
the most frequent frame from the training data.
Figure 5 shows the percentage of maximum

likelihood frames chosen by the system that
exactly match the intended frame (frame
accuracy), as well as, the percentage of roles from
the maximum likelihood frame that overlap with
roles in the intended frame (role accuracy).

As expected, the understanding performance
goes down for both frames and roles when the
correct utterance-to-level alignment is unknown.
Interestingly, while the frame performance
declines by 14.3%, the performance on roles only
declines 6.4%. This difference is due primarily to
the fact that, while the mapping from words to
action role fillers is hindered by the need to
examine all alignments, the mapping from words
to object role fillers remains relatively robust. This
is due to the fact that while each level of intention
carries a different action term, often the objects
described at different levels remain the same. For
example, in figure 4, the action fillers “TAKE”,
“MOVE”, “OPEN”, and “PULL” occur only once
along the path. However, the object filler
“DOOR” occurs multiple times. Thus, the chance
that the role filler “DOOR” correctly maps to the
word “door” is relatively high compared to the role
filler “OPEN” mapping to the word “open.”8

Figure 6: Frame accuracy as a function of α value (Eq.
1) trained on unknown utterance-to-level alignments.

Experiment 2: Figure 6 shows the average frame
accuracy of the system trained without knowing
the correct utterance-to-level alignment, as a
function of varying the α values from Equation 1.
The graph shows that including intentional context
does improve system performance when it is not
given too much weight (i.e., at relatively high
alpha values). This suggests that the benefit of
intentional context is somewhat outweighed by the
power of the learned role to word mappings.

8 This asymmetry for learning words about actions vs.
objects is well known in psychology (Gleitman, 1990)
and is addressed directly in Fleischman and Roy, 2005.

2 5 %

2 7 %

2 9 %

3 1 %

3 3 %

3 5 %

3 7 %

3 9 %

4 1 %

4 3 %

4 5 %

4 7 %

4 9 %

0 . 2 0 . 4 0 . 6 0 . 8 1α

Fr
am

e
A

cc
ur

ac
y

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

f r a m e a c c u r a c y r o le a c c u r a c y

b a s e l in e u n k n o w n le v e l k n o w n le v e l

109

Looking closer, we find a strong negative
correlation (r=-0.81) between the understanding
performance using only channel probabilities (α=1)
and the improvement obtained by including the
intentional context. In other words, the better one
does without context, the less context improves
performance. Thus, we expect that in noisier
environments (such as when speech recognition is
employed) where channel probabilities are less
reliable, employing intentional context will be
even more advantageous.

Experiment 3: Figure 7 shows the average
performance on both frame and role accuracy for
systems trained without using the inferred tree
structure (on leaf nodes only) and on the full tree
structure (given the correct utterance-to-level
alignment). Baselines are calculated by choosing
the most frequent frame from training.9

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

frame accuracy role accuracy

baseline (observed) observed baseline (inferred) inferred

Figure 7: Comparison of models trained on inferred
intentional tree vs. directly on observed actions

It is clear from the figure that understanding
performance is higher when the intentional tree is
used in training. This is a direct result of the fact
that speakers often speak about high-level
intentions with words that do not directly refer to
the observed actions. For example, after opening a
door, experts often say: “go through the door,” for
which the observed action is a simple movement
(e.g., “MOVE ROOMx”). Also, by referring to
high-level intentions, experts can describe
sequences of actions that are not immediately
referred to. For example, an expert might say: “get
the key” to describe a sequence of actions that
begins with “CLICK_ON CHEST.” Thus, the
result of not learning over a parsed hierarchical

9 Note that baselines are different for the two conditions,
because there are a differing number of frames used in
the leaf node only condition.

representation of intentions is increased noise, and
subsequently, poorer understanding performance.

5 Discussion

The results from these experiments, although
preliminary, indicate that this model of language
acquisition performs well above baseline on a
language understanding task. This is particularly
encouraging given the unconstrained nature of the
speech on which it was trained. Thus, even free
and spontaneous speech can be handled when
modeling a constrained domain of discourse.10

In addition to performing well given difficult
data, the experiments demonstrate the advantages
of using an inferred intentional representation both
as a contextual aid to understanding and as a
representational scaffolding for language learning.
More important than these preliminary results,
however, is the general lesson that this work
suggests about the importance of knowledge
representations for situated language acquisition.

As discussed in section 2, learning language
about intentional action requires dealing with two
distinct types of ambiguity. These difficulties
cannot be handled by merely increasing the
amount of data used, or switching to a more
sophisticated learning algorithm. Rather, dealing
with language use for situated applications requires
building appropriate knowledge representations
that are powerful enough for unconstrained
language, yet scalable enough for practical
applications. The work presented here is an initial
demonstration of how the semantics of
unconstrained speech can be modeled by focusing
on constrained domains.

As for scalability, it is our contention that for
situated NLP, it is not a question of being able to
scale up a single model to handle open-domain
speech. The complexity of situated communication
requires the use of domain-specific knowledge for
modeling language use in different contexts. Thus,
with situated NLP systems, it is less productive to
focus on how to scale up single models to operate
beyond their original domains. Rather, as more
individual applications are tackled (e.g. cars,

10 Notably, situated applications for which natural
language interfaces are required typically have limited
domains (e.g., talking to one’s car doesn’t require open-
domain language processing).

110

phones, videogames, etc.) the interesting question
becomes one of how agents can learn to switch
between different models of language as they
interact in different domains of discourse.

6 Conclusion

We have introduced a model of language
acquisition that explicitly incorporates intentional
contexts in both learning and understanding. We
have described pilot experiments on paired
language and action data in order to demonstrate
both the model’s feasibility as well as the efficacy
of using intentional context in understanding.
Although we have demonstrated a first step toward
an advanced model of language acquisition, there
is a great deal that has not been addressed. First,
what is perhaps most obviously missing is any
mention of syntax in the language learning process
and its role in bootstrapping for language
acquisition. Future work will focus on moving
beyond the IBM Model 1 assumptions, to develop
more syntactically-structured models.

Further, although the virtual environment used in
this research bears similarity to situated
applications that demand NL interfaces, it is not
known exactly how well the model will perform
“in the real world.” Future work will examine
installing models in real world applications. In
parallel investigations, we will explore our method
as a cognitive model of human language learning.

Finally, as was mentioned previously, the task
model for this domain was hand annotated and,
while the constrained nature of the domain
simplified this process, further work is required to
learn such models jointly with language.

In summary, we have presented first steps
toward tackling problems of ambiguity inherent in
grounding the semantics of situated language. We
believe this work will lead to practical applications
for situated NLP, and provide new tools for
modeling human cognitive structures and
processes underlying situated language use
(Fleischman and Roy, 2005).

Acknowledgments
Peter Gorniak developed the software to capture

data from the videogame used in our experiments.

References

D. Bailey, J Feldman, S. Narayanan., & G. Lakoff..
Embodied lexical development. 19th Cognitive
Science Society Meeting. Mahwah, NJ, 1997.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra &
R. L. Mercer. “The Mathematics of Sta-tistical
Machine Translation: Parameter Estimation,”
Computational Linguistics 19(2). 1993.

M Epstein Statistical Source Channel Models for
Natural Language Understanding Ph. D. thesis,
New York University, September, 1996

C. Fellbaum WordNet: An On-line Lexical Database
and Some of its Applications. MIT Press, 1998.

M. Fleischman and D.K. Roy. Why Verbs are
Harder to Learn than Nouns: Initial Insights from a
Computational Model of Intention Recognition in
Situated Word Learning. CogSci. Italy, 2005.

L. Gleitman. "The structural sources of verb
meanings." Language Acquisition, 1(1), 1990.

D. Klein and C. Manning, "Corpus-Based Induction
of Syntactic Structure: Models of Dependency and
Constituency", Proc. of the 42nd ACL, 2004 [

D. B Lenat,. CYC: A Large-Scale Investment in
Knowledge Infrastructure". Comm. of ACM, 1995.

C. Manning, H. Schutze,. Foundations of Statistical
Natural Language Processing. MIT Press, 2001.

G. A. Miller, E. Galanter, and K. Pribram 1960. Plans
and the Structure of Behavior. New York: Halt.

S. Narayanan.. Moving right along: A computational
model of metaphoric reasoning about events. In
Proc. of AAAI. Orlando, FL, 1999.

M. Nicolescu, M. Mataric´, Natural Methods for
Robot Task Learning: Instructive Demonstration,
Generalization and Practice, AGENTS, Australia, 2003.

D. Pynadath, 1999. Probabilistic Grammars for Plan
Recognition. Ph.D. Thesis, University of Michigan.

T. Regier. The human semantic potential. MIT Press,
Cambridge, MA, 1996.

T. Regier. Emergent constraints on word-learning: A
computational review. TICS, 7, 263-268, 2003.

J. Rickel, S. Marsella, J. Gratch, R. Hill, D. Traum
and W. Swartout, "Towards a New Generation of
Virtual Humans for Interactive Experiences," in
IEEE Intelligent Systems July/August 2002.

D.Roy, K. Hsiao, and N. Mavridis. Mental imagery
for a conversational robot. IEEE Trans. on
Systems, Man, and Cybernetics, 34(3) 2004.

D. Roy. (in press). Grounding Language in the
World: Schema Theory Meets Semiotics. AI.

J. Siskind. Grounding the Lexical Semantics of
Verbs in Visual Perception using Force Dynamics
and Event Logic. JAIR, 2001.

A. Stolcke. Bayesian Learning of Probabilistic
Language Models. Ph.d., UC Berkeley, 1994.

M. Tomasello. Constructing a Language: A Usage-
Based Theory of Language Acquisition. Harvard
University Press, 2003.

T. Winograd. Understanding Natural Language.
Academic Press, 1972.

111

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 112–119, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Representational Bias in Unsupervised Learning of Syllable Structure

Sharon Goldwater and Mark Johnson
Department of Cognitive and Linguistic Sciences

Brown University
Providence, RI 02912

{Sharon Goldwater,Mark Johnson}@brown.edu

Abstract

Unsupervised learning algorithms based
on Expectation Maximization (EM) are
often straightforward to implement and
provably converge on a local likelihood
maximum. However, these algorithms of-
ten do not perform well in practice. Com-
mon wisdom holds that they yield poor
results because they are overly sensitive
to initial parameter values and easily get
stuck in local (but not global) maxima.
We present a series of experiments indi-
cating that for the task of learning sylla-
ble structure, the initial parameter weights
are not crucial. Rather, it is the choice of
model class itself that makes the differ-
ence between successful and unsuccess-
ful learning. We use a language-universal
rule-based algorithm to find a good set of
parameters, and then train the parameter
weights using EM. We achieve word ac-
curacy of 95.9% on German and 97.1% on
English, as compared to 97.4% and 98.1%
respectively for supervised training.

1 Introduction

The use of statistical methods in computational lin-
guistics has produced advances in tasks such as pars-
ing, information retrieval, and machine translation.
However, most of the successful work to date has
used supervised learning techniques. Unsupervised
algorithms that can learn from raw linguistic data,
as humans can, remain a challenge. In a statistical

framework, one method that can be used for unsu-
pervised learning is to devise a probabilistic model
of the data, and then choose the values for the model
parameters that maximize the likelihood of the data
under the model.

If the model contains hidden variables, there is
often no closed-form expression for the maximum
likelihood parameter values, and some iterative ap-
proximation method must be used. Expectation
Maximization (EM) (Neal and Hinton, 1998) is
one way to find parameter values that at least lo-
cally maximize the likelihood for models with hid-
den variables. EM is attractive because at each
iteration, the likelihood of the data is guaranteed
not to decrease. In addition, there are efficient
dynamic-programming versions of the EM algo-
rithm for several classes of models that are important
in computational linguistics, such as the forward-
backward algorithm for training Hidden Markov
Models (HMMs) and the inside-outside algorithm
for training Probabilistic Context-Free Grammars
(PCFGs).

Despite the advantages of maximum likelihood
estimation and its implementation via various in-
stantiations of the EM algorithm, it is widely re-
garded as ineffective for unsupervised language
learning. Merialdo (1994) showed that with only
a tiny amount of tagged training data, supervised
training of an HMM part-of-speech tagger outper-
formed unsupervised EM training. Later results (e.g.
Brill (1995)) seemed to indicate that other methods
of unsupervised learning could be more effective (al-
though the work of Banko and Moore (2004) sug-
gests that the difference may be far less than previ-

112

ously assumed). Klein and Manning (2001; 2002)
recently achieved more encouraging results using an
EM-like algorithm to induce syntactic constituent
grammars, based on a deficient probability model.

It has been suggested that EM often yield poor
results because it is overly sensitive to initial param-
eter values and tends to converge on likelihood max-
ima that are local, but not global (Carroll and Char-
niak, 1992). In this paper, we present a series of
experiments indicating that for the task of learning
a syllable structure grammar, the initial parameter
weights are not crucial. Rather, it is the choice of
the model class, i.e., therepresentational bias, that
makes the difference between successful and unsuc-
cessful learning.

In the remainder of this paper, we first describe
the task itself and the structure of the two differ-
ent classes of models we experimented with. We
then present a deterministic algorithm for choosing
a good set of parameters for this task. The algo-
rithm is based on language-universal principles of
syllabification, but produces different parameters for
each language. We apply this algorithm to English
and German data, and describe the results of exper-
iments using EM to learn the parameter weights for
the resulting models. We conclude with a discussion
of the implications of our experiments.

2 Statistical Parsing of Syllable Structure

Knowledge of syllable structure is important for
correct pronunciation of spoken words, since cer-
tain phonemes may be pronounced differently de-
pending on their position in the syllable. A num-
ber of different supervised machine learning tech-
niques have been applied to the task of automatic
syllable boundary detection, including decision-tree
classifiers (van den Bosch et al., 1998), weighted
finite state transducers (Kiraz and Möbius, 1998),
and PCFGs (M̈uller, 2001; M̈uller, 2002). The re-
searchers presenting these systems have generally
argued from the engineering standpoint that sylla-
ble boundary detection is useful for pronunciation of
unknown words in text-to-speech systems. Our mo-
tivation is a more scientific one: we are interested in
the kinds of procedures and representations that can
lead to successful unsupervised language learning in
both computers and humans.

Our work has some similarity to that of M̈uller,

who trains a PCFG of syllable structure from a
corpus of words with syllable boundaries marked.
We, too, use a model defined by a grammar to de-
scribe syllable structure.1 However, our work dif-
fers from Müller’s in that it focuses on how to learn
the model’s parameters in an unsupervised manner.
Several researchers have worked on unsupervised
learning of phonotactic constraints and word seg-
mentation (Elman, 2003; Brent, 1999; Venkatara-
man, 2001), but to our knowledge there is no pre-
viously published work on unsupervised learning of
syllable structure.

In the work described here, we experimented with
two different classes of models of syllable structure.
Both of these model classes are presented as PCFGs.
The first model class, described in Müller (2002),
encodes information about the positions within a
word or syllable in which each phoneme is likely
to appear. In thispositional model, each syllable
is labeled as initial (I), medial (M), final (F), or as
the one syllable in a monosyllabic word (O). Syl-
lables are broken down into an optional onset (the
initial consonant or consonant cluster) followed by a
rhyme. The rhyme consists of a nucleus (the vowel)
followed by an optional coda consonant or cluster.
Each phoneme is labeled with a preterminal cate-
gory of the formCatPos.x.y, whereCat ∈ {Ons,
Nuc, Cod}, Pos∈ {I, M, F, O}, x is the position
of a consonant within its cluster, andy is the total
number of consonants in the cluster.x andy are un-
used whenCat = Nuc, since all nuclei consist of a
single vowel. See Fig. 1 for an example parse.

Rather than directly encoding positional infor-
mation, the second model class we investigate (the
bigram model) models statistical dependencies be-
tween adjacent phonemes and adjacent syllables.
In particular, each onset or coda expands directly
into one or more terminal phonemes, thus capturing
the ordering dependencies between consonants in a
cluster. Also, the shape of each syllable (whether it
contains an onset or coda) depends on the shape of
the previous syllable, so that the model can learn,
for example, that syllables ending in a coda should
be followed by syllables with an onset.2 This kind

1We follow Müller in representing our models as PCFGs be-
cause this representation is easy to present. The languages gen-
erated by these PCFGs are in fact regular, and it is straightfor-
ward to transform the PCFGs into equivalent regular grammars.

2 Many linguists believe that, cross-linguistically, a poten-

113

Word

SylI

RhyI

NucI

@

SylM

OnsM

OnsM.1.2

g

OnsM.2.2

r

RhyM

NucM

i

SylF

OnsF

OnsF.1.1

m

RhyF

NucF

@

CodF

CodF.1.2

n

CodF.2.2

t

Word

WdN

SylN

Nuc

@

WdON

SylON

Ons

g r

Nuc

i

WdON

SylONC

Ons

m

Nuc

@

Cod

n t

Figure 1: Positional analysis (left) and bigram analysis (right) of the wordagreement. Groups of terminals
dominated by a Syl* node constitute syllables. Terminals appear in the SAMPA encoding of IPA used by
CELEX.

of bigram dependency between syllables is modeled
using rules of the form WdX → SylX WdY , where
X andY are drawn from the set of possible combi-
nations of onset, nucleus, and coda in a syllable:{N,
ON, NC, ONC}. Each SylX category has only one
expansion. See Fig. 1 for an example.

With respect to either of these two model classes,
each way of assigning syllable boundaries to a word
corresponds to exactly one parse of that word. This
makes it simple to train the models from a corpus in
which syllable boundaries are provided, as in Müller
(2001). We used two different corpora for our exper-
iments, one German (from the ECI corpus of news-
paper text) and one English (from the Penn WSJ
corpus). Each corpus was created by converting
the orthographic forms in the original text into their
phonemic transcriptions using the CELEX database
(Baayen et al., 1995). CELEX includes syllable
boundaries, which we used for supervised training
and for evaluation. Any words in the original texts
that were not listed in CELEX were discarded, since
one of our goals is to compare supervised and un-
supervised training.3 From the resulting phonemic
corpora, we created a training set of 20,000 tokens
and a test set of 10,000 tokens. Using standard max-
imum likelihood supervised training procedures, we
obtained similar results for models from the two
model classes. In German, word accuracy (i.e. the

tially ambiguous consonant, such as theb in saber, is always
syllabified as the onset of the second syllable rather than the
coda of the first. We discuss this point further in Section 3.

3Due to the nature of the corpora, the percentage of words
discarded was fairly high: 35.6% of the English tokens (pri-
marily proper nouns, acronyms, and numerals, with a smaller
number of morphologically complex words) and 26.7% of the
German tokens (with compound words making up a somewhat
larger portion of these discards).

percentage of words with no syllabification errors)
was 97.4% for the bigram model and 97.2% for the
positional model,4 while in English it was 98.1%
and 97.6% respectively. These results for English
are in line with previous reported results using other
supervised learning techniques, e.g. van den Bosch
et al. (1998). Since many of the words in the data are
monosyllabic (49.1% in German, 61.2% in English)
and therefore contain no ambiguous syllable bound-
aries, we also calculated the multisyllabic word ac-
curacy. This was 94.9% (bigram) and 94.5% (posi-
tional) in German, and 95.2% (bigram) and 93.8%
(positional) in English.

3 Categorical Parsing of Syllable Structure

In the previous section, we described two different
model classes and showed that the maximum like-
lihood estimates with supervised training data yield
good models of syllable structure. In moving to un-
supervised learning, however, there are two prob-
lems that need to be addressed: exactly what class of
models do we want to consider (i.e., what kinds of
rules should the model contain), and how should we
select a particular model from that class (i.e., what
weights should the rules have)? We take as our so-
lution to the latter problem the most straightforward
approach; namely, maximum likelihood estimation
using EM. This leaves us with the question of how
to choose a set of parameters in the first place. In this
section, we describe an algorithm based on two fun-
damental phonological principles that, when given a
set of data from a particular language, will produce a

4Müller reports slightly lower results of 96.88% on German
using the same positional model. We have no explanation for
this discrepancy.

114

set of rules appropriate to that language. These rules
can then be trained using EM.

Given a particular rule schema, it is not imme-
diately clear which of the possible rules should ac-
tually be included in the model. For example, in
the bigram model, should we start off with the rule
Ons→ k n? This rule is unnecessary for English,
and could lead to incorrect parses of words such
asweakness. But /kn/ is a legal onset in German,
and since we want an algorithm that is prepared to
learn any language, disallowing /kn/ as an onset out
of hand is unacceptable. On the other hand, the set
of all combinatorially possible consonant clusters is
infinite, and even limiting ourselves to clusters actu-
ally seen in the data for a particular language yields
extremely unlikely-sounding onsets like /lkj/ (calcu-
late) and /bst/ (substance). Ideally, we should limit
the set of rules to ones that are likely to actually be
used in the language of interest.

The algorithm we have developed for produc-
ing a set of language-appropriate rules is essentially
a simple categorical (i.e., non-statistical) syllable
parser based on the principles ofonset maximiza-
tion andsonority sequencing(Blevins, 1995). Onset
maximization is the idea that in word-medial conso-
nant clusters, as many consonants as possible (given
the phonotactics of the language) should be assigned
to onset position. This idea is widely accepted and
has been codified in Optimality Theory (Prince and
Smolensky, 1993) by proposing the existence of a
universal preference for syllables with onsets.5

In addition to onset maximization, our categorical
parser follows the principle of sonority sequencing
whenever possible. This principle states that, within
a syllable, segments that are closer to the nucleus
should be higher in sonority than segments that are
further away. Vowels are considered to be the most
sonorous segments, followed by glides (/j/, /w/), liq-
uids (/l/, /r/), nasals (/n/, /m/, /N/), fricatives (/v/,
/s/, /T/, . . .), and stops (/b/, /t/, /k/, . . .). Given a

5An important point, which we return to in Section 5, is
that exceptions to onset maximization may occur at morpheme
boundaries. Some linguists also believe that there are addi-
tional exceptions in certain languages (including English and
German), where stressed syllables attract codas. Under this the-
ory, the correct syllabification forsaberwould not besa.ber, but
rathersab.er, or possiblysa[b]er, where the[b] is ambisyllabic.
Since the syllable annotations in the CELEX database follow
simple onset maximization, we take that as our approach as well
and do not consider stress when assigning syllable boundaries.

cluster of consonants between two syllable nuclei,
sonority sequencing states that the syllable boundary
should occur either just before or just after the con-
sonant with lowest sonority. Combining this princi-
ple with onset maximization predicts that the bound-
ary should fall before the lowest-sonority segment.

Predicting syllable boundaries in this way is not
foolproof. In some cases, clusters that are predicted
by sonority sequencing to be acceptable are in fact
illegal in some languages. The illegal English on-
set clusterkn is a good example. In other cases,
such as the English onsetstr, clusters are allowed
despite violating sonority sequencing. These mis-
matches between universal principles and language-
specific phonotactics lead to errors in the predic-
tions of the categorical parser, such aswea.knessand
ins.tru.ment. In addition, certain consonant clusters
like bst (as in substance) may contain more than
one minimum sonority point. To handle these cases,
the categorical parser follows onset maximization
by adding any consonants occurring between the
two minima to the onset of the second syllable:
sub.stance.

Not surprisingly, the categorical parser does not
perform as well as the supervised statistical parser:
only 92.7% of German words and 94.9% of English
words (85.7% and 86.8%, respectively, of multisyl-
labic words) are syllabified correctly. However, a
more important result of parsing the corpus using
the categorical parser is that its output can be used
to define a model class (i.e., a set of PCFG rules)
from which a model can be learned using EM.

Specifically, our model class contains the set of
rules that were proposed at least once by the cat-
egorical parser in its analysis of the training cor-
pus; in the EM experiments described below, the
rule probabilities are initialized to their frequency
in the categorical parser’s output. Due to the mis-
takes made by the categorical parser, there will be
some rules, likeOns→ k n in English, that are not
present in the model trained on the true syllabifica-
tion, but many possible but spurious rules, such as
Ons→b s t, will be avoided. Although clusters that
violate sonority sequencing tend to be avoided by
the categorical parser, it does find examples of these
types of clusters at the beginnings and endings of
words, as well as occasionally word-medially (as in
sub.stance). This means that many legal clusters that

115

Bigram Positional
all multi all multi

CP 92.7 85.7 92.7 85.7
CP + EM 95.9 91.9 91.8 84.0
CP-U + EM 95.9 91.9 92.0 84.4
supervised 97.4 94.9 97.2 94.5
SP + EM 71.6 44.3 94.4 89.1
SP-U + EM 71.6 44.3 94.4 89.0

Table 1: Results for German: % of all words (or
multisyllabic words) correctly syllabified.

violate sonority sequencing will also be included in
the set of rules found by this procedure, although
their probabilities may be considerably lower than
those of the supervised model. In the following sec-
tion, we show that these differences in rule probabil-
ities are unimportant; in fact, it is not the rule prob-
abilities estimated from the categorical parser’s out-
put, but only the set of rules itself that matters for
successful task performance.

4 Experiments

In this section, we present a series of experiments us-
ing EM to learn a model of syllable structure. All of
our experiments use the same German and English
20,000-word training corpora and 10,000-word test-
ing corpora as described in Section 2.6

For our first experiment, we ran the categorical
parser on the training corpora and estimated a model
from the parse trees it produced, as described in the
previous section. This is essentially a single step
of Viterbi EM training. We then continued to train
the model by running (standard) EM to convergence.
Results of this experiment with Categorical Pars-
ing + EM (CP + EM) are shown in Tables 1 and
2. For both German and English, using this learn-
ing method with the bigram model yields perfor-
mance that is much better than the categorical parser
alone, though not quite as good as the fully super-
vised regime. On the other hand, training a posi-
tional model from the categorical parser’s output and
then running EM causes performance to degrade.

To determine whether the good performance of

6Of course, for unsupervised learning, it is not necessary to
use a distinct testing corpus. We did so in order to use the same
testing corpus for both supervised and unsupervised learning
experiments, to ensure fair comparison of results.

Bigram Positional
all multi all multi

CP 94.9 86.8 94.9 86.8
CP + EM 97.1 92.6 94.1 84.9
CP-U + EM 97.1 92.6 94.1 84.9
supervised 98.1 95.2 97.6 93.8
SP + EM 86.0 64.0 96.5 90.9
SP-U + EM 86.0 64.0 67.6 16.5

Table 2: Results for English.

the bigram model was simply due to good initial-
ization of the parameter weights, we performed a
second experiment. Again starting with the set of
rules output by the categorical parser, we initialized
the rule weights to the uniform distribution. The re-
sults of this experiment (CP-U + EM) show that for
the class of bigram models, the performance of the
final model found by EM does not depend on the
initial rule probabilities. Performance within the po-
sitional model framework does depend on the initial
rule probabilities, since accuracy in German is dif-
ferent for the two experiments.

As we have pointed out, the rules found by the
categorical parser are not exactly the same as the
rules found using supervised training. This raises
the question of whether the difference in perfor-
mance between the unsupervised and supervised bi-
gram models is due to differences in the rules. To
address this question, we performed two additional
experiments. First, we simply ran EM starting from
the model estimated from supervised training data.
Second, we kept the set of rules from the supervised
training data, but reinitialized the probabilities to a
uniform distribution before running EM. The results
of these experiments are shown as SP + EM and SP-
U + EM, respectively. Again, performance of the
bigram model is invariant with respect to initial pa-
rameter values, while the performance of the posi-
tional model is not. Interestingly, the performance
of the bigram model in these two experiments is far
worse than in the CP experiments. This result is
counterintuitive, since it would seem that the model
rules found by the supervised system are the opti-
mal rules for this task. In the following section, we
explain why these rules are not, in fact, the optimal
rules for unsupervised learning, as well as why we
believe the bigram model performs so much better

116

than the positional model in the unsupervised learn-
ing situation.

5 Discussion

The results of our experiments raise two interesting
questions. First, when starting from the categorical
parser’s output, why does the bigram model improve
after EM training, while the positional model does
not? And second, why does applying EM to the su-
pervised bigram model lead to worse performance
than applying it to the model induced from the cate-
gorical parser?

To answer the first question, notice that one dif-
ference between the bigram model and the posi-
tional model is that onsets and codas in the bigram
model are modeled using the same set of parame-
ters regardless of where in the word they occur. This
means that the bigram model generalizes whatever it
learns about clusters at word edges to word-medial
clusters (and, of course, vice versa). Since the cate-
gorical parser only makes errors word-medially, in-
correct clusters are only a small percentage of clus-
ters overall, and the bigram model can overcome
these errors by reanalyzing the word-medial clus-
ters. The errors that are made after EM training
are mostly due to overgeneralization from clusters
that are very common at word edges, e.g. predicting
le.gi.sla.tion instead of le.gis.la.tion.

In contrast to the bigram model, the positional
model does not generalize over different positions
of the word, which means that it learns and repeats
the word-medial errors of the categorical parser. For
example, this model predicts /E.gzE.kju.tIv/ for ex-
ecutive, just as the categorical parser does, although
/gz/ is never attested in word-initial position. In ad-
dition, each segment in a cluster is generated in-
dependently, which means clusters like /tl/ may be
placed together in an onset because /t/ is common
as the first segment of an onset, and /l/ is common
as the second. While this problem exists even in
the supervised positional model, it is compounded
in the unsupervised version because of the errors of
the categorical parser.

The differences between these two models are an
example of the bias-variance trade-off in probabilis-
tic modeling (Geman et al., 1992): models with low
bias will be able to fit a broad range of observations
fairly closely, but slight changes in the observed data

will cause relatively large changes in the induced
model. On the other hand, models with high bias
are less sensitive to changes in the observed data.
Here, the bigram model induced from the categor-
ical parser has a relatively high bias: regardless of
the parameter weights, it will be a poor model of
data where word-medial onsets and codas are very
different from those at word edges, and it cannot
model data with certain onsets such as /vp/ or /tz/
at all because the rulesOns→ v p and Ons→ t z
are simply absent. The induced positional model
can model both of these situations, and can fit the
true parses more closely as well (as evidenced by
the fact that the likelihood of the data under the su-
pervised positional model is higher than the like-
lihood under the supervised bigram model). As a
result, however, it is more sensitive to the initial
parameter weights and learns to recreate the errors
produced by the categorical parser. This sensitiv-
ity to initial parameter weights also explains the ex-
tremely poor performance of the positional model
in the SP-U + EM experiment on English. Because
the model is so unconstrained, in this case it finds a
completely different local maximum (not the global
maximum) which more or less follows coda max-
imization rather than onset maximization, yielding
syllabifications likesynd.ic.ateandtent.at.ive.ly.

The concept of representational bias can also ex-
plain why applying EM to the supervised bigram
model performs so poorly. Examining the model in-
duced from the categorical parser reveals that, not
surprisingly, it contains more rules than the super-
vised bigram model. This is because the categori-
cal parser produces a wider range of onsets and co-
das than there are in the true parses. However, the
induced model is not a superset of the supervised
model. There are four rules (three in English) that
occur in the supervised model but not the induced
model. These are the rules that allow words where
one syllable contains a coda and the following syl-
lable has no onset. These are never produced by the
categorical parser because of its onset-maximization
principle. However, it turns out that a very small per-
centage of words do follow this pattern (about .14%
of English tokens and 1.1% of German tokens). In
English, these examples seem to consist entirely of
words where the unusual syllable boundary occurs at
a morpheme boundary (e.g.un.usually, dis.appoint,

117

week.end, turn.over). In German, all but a handful of
examples occur at morpheme boundaries as well.7

The fact that the induced bigram model is unable
to model words with codas followed by no onset is
a very strong bias, but these words are so infrequent
that the model can still fit the data quite well. The
missing rules have no effect on the accuracy of the
parser, because in the supervised model the proba-
bilities on the rules allowing these kinds of words
are so low that they are never used in the Viterbi
parses anyway. The problem is that if these rules are
included in the model prior to running EM, they add
several extra free parameters, and suddenly EM is
able to reanalyze many of the words in the corpus to
make better use of these parameters. It ends up pre-
ferring certain segments and clusters as onsets and
others as codas, which raises the likelihood of the
corpus but leads to very poor performance. Essen-
tially, it seems that the presence of a certain kind of
morpheme boundary is an additional parameter of
the “true” model that the bigram model doesn’t in-
clude. Trying to account for the few cases where this
parameter matters requires introducing extra param-
eters that allow EM too much freedom of analysis.
It is far better to constrain the model, disallowing
certain rare analyses but enabling the model to learn
successfully in a way that is robust to variations in
initial conditions and idiosyncracies of the data.

6 Conclusion

We make no claims that our learning system em-
bodies a complete model of syllabification. A full
model would need to account for the effects of mor-
phological boundaries, as well as the fact that some
languages allow resyllabification over word bound-
aries. Nevertheless, we feel that the results presented
here are significant. We have shown that, despite
previous discouraging results (Carroll and Charniak,
1992; Merialdo, 1994), it is possible to achieve good
results using EM to learn linguistic structures in an
unsupervised way. However, the choice of model
parameters is crucial for successful learning. Car-
roll and Charniak, for example, generated all pos-

7The exceptions in our training data wereauserkoren ‘cho-
sen’, erobern ‘capture’, and forms oferinnern ‘remind’, all of
which were listed in CELEX as having a syllable boundary, but
no morpheme boundary, after the first consonant. Our knowl-
edge of German is not sufficient to determine whether there is
some other factor that can explain these cases.

sible rules within a particular framework and relied
on EM to remove the “unnecessary” rules by letting
their probabilities go to zero. We suggest that this
procedure tends to yield models with low bias but
high variance, so that they are extremely sensitive
to the small variations in expected rule counts that
occur with different initialization weights.

Our work suggests that using models with higher
bias but lower variance may lead to much more
successful results. In particular, we used univer-
sal phonological principles to induce a set of rules
within a carefully chosen grammatical framework.
We found that there were several factors that en-
abled our induced bigram model to learn success-
fully where the comparison positional model did
not:

1. The bigram model encodes bigram dependen-
cies of syllable shape and disallows onset-less
syllables following syllables with codas.

2. The bigram model does not distinguish be-
tween different positions in a word, so it can
generalize onset and coda sequences from word
edges to word-medial position.

3. The bigram model learns specific sequences
of legal clusters rather than information about
which positions segments are likely to occur in.

Notice that each of these factors imposes a con-
straint on the kinds of data that can be modeled. We
have already discussed the fact that item 1 rules out
the correct syllabification of certain morphologically
complex words, but since our system currently has
no way to determine morpheme boundaries, it is bet-
ter to do so than to introduce extra free parameters.
One possible extension to this work would be to try
to incorporate morphological boundary information
(either annotated or induced) into the model.

A more interesting constraint is the one imposed
by item 2, since in fact most languages do have some
differences between the onsets and (especially) co-
das allowed at word edges and within words. How-
ever, the proper way to handle this fact is not by
introducing completely independent parameters for
initial, medial, and final positions, since this allows
far too much freedom. It would be extremely sur-
prising to find a language with one set of codas al-
lowed word-internally, and a completely disjoint set

118

allowed word-finally. In fact, the usual situation is
that word-internal onsets and codas are a subset of
those allowed at word edges, and this is exactly why
using word edges to induce our rules was successful.

Considering language more broadly, it is com-
mon to find patterns of linguistic phenomena with
many similarities but some differences as well. For
such cases, adding extra parameters to a supervised
model often yields better performance, since the
augmented model can capture both primary and sec-
ondary effects. But it seems that, at least for the
current state of unsupervised learning, it is better to
limit the number of parameters and focus on those
that capture the main effects in the data. In our task
of learning syllable structure, we were able to use
just a few simple principles to constrain the model
successfully. For more complex tasks such as syn-
tactic parsing, the space of linguistically plausible
models is much larger. We feel that a research pro-
gram integrating results from the study of linguistic
universals, human language acquisition, and compu-
tational modeling is likely to yield the most insight
into the kinds of constraints that are needed for suc-
cessful learning.

Ultimately, of course, we will want to be able to
capture not only the main effects in the data, but
some of the subtler effects as well. However, we
believe that the way to do this is not by introducing
completely free parameters, but by using a Bayesian
prior that would enforce a degree of similarity be-
tween certain parameters. In the meantime, we have
shown that employing linguistic universals to deter-
mine which set of parameters to include in a lan-
guage model for syllable parsing allows us to use
EM for learning the parameter weights in a success-
ful and robust way.

Acknowledgments

We would like to thank Eugene Charniak and our
colleagues in BLLIP for their support and helpful
suggestions. This research was partially supported
by NSF awards IGERT 9870676 and ITR 0085940
and NIMH award 1R0-IMH60922-01A2.

References

R. Baayen, R. Piepenbrock, and L. Gulikers. 1995. The
CELEX lexical database (release 2) [cd-rom].

M. Banko and R. Moore. 2004. A study of unsupervised part-
of-speech tagging. InProceedings of COLING ’04.

J. Blevins. 1995. The syllable in phonological theory. In
J. Goldsmith, editor,the Handbook of Phonological Theory.
Blackwell, Oxford.

M. Brent. 1999. An efficient, probabilistically sound algorithm
for segmentation and word discovery.Machine Learning,
34:71–105.

E. Brill. 1995. Unsupervised learning of disambiguation rules
for part of speech tagging. InProceedings of the 3rd Work-
shop on Very Large Corpora, pages 1–13.

G. Carroll and E. Charniak. 1992. Two experiments on learning
probabilistic dependency grammars from corpora. InPro-
ceedings of the AAAI Workshop on Statistically-Based Natu-
ral Language Processing Techniques, San Jose, CA.

J. Elman. 2003. Generalization from sparse input. InProceed-
ings of the 38th Annual Meeting of the Chicago Linguistic
Society.

S. Geman, E. Bienenstock, and R. Doursat. 1992. Neural net-
works and the bias/variance dilemma.Neural Computation,
4:1–58.

G. A. Kiraz and B. M̈obius. 1998. Multilingual syllabifica-
tion using weighted finite-state transducers. InProceedings
of the Third European Speech Communication Association
Workshop on Speech Synthesis.

D. Klein and C. Manning. 2001. Distributional phrase struc-
ture induction. InProceedings of the Conference on Natural
Language Learning, pages 113–120.

D. Klein and C. Manning. 2002. A generative constituent-
context model for improved grammar induction. InProceed-
ings of the ACL.

B. Merialdo. 1994. Tagging english text with a probabilistic
model.Computational Linguistics, 20(2):155–172.

K. Müller. 2001. Automatic detection of syllable boundaries
combining the advantages of treebank and bracketed corpora
training. InProceedings of the ACL.

K. Müller. 2002. Probabilistic context-free grammars for
phonology. InProceedings of the Workshop on Morpholog-
ical and Phonological Learning at ACL.

R. Neal and G. Hinton, 1998.A New View of the EM Algorithm
That Justifies Incremental and Other Variants, pages 355–
368. Kluwer.

A. Prince and P. Smolensky. 1993. Optimality theory: Con-
straint interaction in generative grammar. Technical Report
TR-2, Rutgers Center for Cognitive Science, Rutgers Univ.

A. van den Bosch, T. Weijters, and W. Daelemans. 1998. Mod-
ularity in inductively-learned word pronunciation systems.
In New Methods in Language Processing and Computational
Language Learning (NeMLaP3/CoNLL98).

A. Venkataraman. 2001. A statistical model for word dis-
covery in transcribed speech.Computational Linguistics,
27(3):351–372.

119

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 120–127, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

An Analogical Learner for Morphological Analysis

Nicolas Stroppa & François Yvon
GET/ENST & LTCI, UMR 5141

46 rue Barrault, 75013 Paris, France
{stroppa,yvon }@enst.fr

Abstract

Analogical learning is based on a two-
step inference process: (i) computation
of a structural mapping between a new
and a memorized situation; (ii) transfer
of knowledge from the known to the un-
known situation. This approach requires
the ability to search for and exploit such
mappings, hence the need to properly de-
fine analogical relationships, and to effi-
ciently implement their computation.

In this paper, we propose a unified defini-
tion for the notion of (formal) analogical
proportion, which applies to a wide range
of algebraic structures. We show that this
definition is suitable for learning in do-
mains involving large databases of struc-
tured data, as is especially the case in Nat-
ural Language Processing (NLP). We then
present experimental results obtained on
two morphological analysis tasks which
demonstrate the flexibility and accuracy of
this approach.

1 Introduction

Analogical learning (Gentner et al., 2001) is based
on a two-step inductive process. The first step con-
sists in the construction of astructuralmapping be-
tween a new instance of a problem and solved in-
stances of the same problem. Once this mapping
is established, solutions for the new instance can be

induced, based on one or several analogs. The im-
plementation of this kind of inference process re-
quires techniques for searching for, and reasoning
with, structural mappings, hence the need to prop-
erly define the notion of analogical relationships and
to efficiently implement their computation.

In Natural Language Processing (NLP), the typ-
ical dimensionality of databases, which are made
up of hundreds of thousands of instances, makes
the search for complex structural mappings a very
challenging task. It is however possible to take ad-
vantage of the specific nature of linguistic data to
work around this problem. Formal (surface) analog-
ical relationships between linguistic representations
are often a good sign of deeper analogies: a surface
similarity between the word stringswrite andwriter
denotes a deeper (semantic) similarity between the
related concepts. Surface similarities can of course
be misleading. In order to minimize such confu-
sions, one can take advantage of other specificities
of linguistic data: (i) their systemic organization in
(pseudo)-paradigms, and (ii) their high level of re-
dundancy. In a large lexicon, we can indeed expect
to find many instances of pairs likewrite-writer: for
instanceread -reader, review-reviewer...

Complementing surface analogies with statistical
information thus has the potential to make the search
problem tractable, while still providing with many
good analogs. Various attempts have been made to
use surface analogies in various contexts: automatic
word pronunciation (Yvon, 1999), morphological
analysis (Lepage, 1999a; Pirrelli and Yvon, 1999)
and syntactical analysis (Lepage, 1999b). These ex-
periments have mainly focused on linear represen-

120

tations of linguistic data, taking the form of finite
sequences of symbols, using a restrictive and some-
timesad-hoc definition of the notion of an analogy.

The first contribution of this paper is to propose a
general definition of formal analogical proportions
for algebraic structures commonly used in NLP:
attribute-value vectors, words on finite alphabets and
labeled trees. The second contribution is to show
how these formal definitions can be used within an
instance-based learning framework to learn morpho-
logical regularities.

This paper is organized as follows. In Section 2,
our interpretation of analogical learning is intro-
duced and related to other models of analogical
learning and reasoning. Section 3 presents a general
algebraic framework for defining analogical propor-
tions as well as its instantiation to the case of words
and labeled trees. This section also discusses the
algorithmic complexity of the inference procedure.
Section 4 reports the results of experiments aimed
at demonstrating the flexibility of this model and at
assessing its generalization performance. We con-
clude by discussing current limitations of this model
and by suggesting possible extensions.

2 Principles of analogical learning

2.1 Analogical reasoning

The ability to identify analogical relationships be-
tween what looks like unrelated situations, and to
use these relationships to solve complex problems,
lies at the core of human cognition (Gentner et al.,
2001). A number of models of this ability have
been proposed, based on symbolic (e.g. (Falken-
heimer and Gentner, 1986; Thagard et al., 1990;
Hofstadter and the Fluid Analogies Research group,
1995)) or subsymbolic (e.g. (Plate, 2000; Holyoak
and Hummel, 2001)) approaches. The main focus
of these models is the dynamic process of analogy
making, which involves the identification of a struc-
tural mappings between a memorized and a new sit-
uation. Structural mapping relates situations which,
while being apparently very different, share a set of
common high-level relationships. The building of
a structural mapping between two situations utilizes
several subparts of their descriptions and the rela-
tionships between them.

Analogy-making seems to play a central role in

our reasoning ability; it is also invoked to explain
some human skills which do not involve any sort of
conscious reasoning. This is the case for many tasks
related to the perception and production of language:
lexical access, morphological parsing, word pronun-
ciation, etc. In this context, analogical models have
been proposed as a viable alternative to rule-based
models, and many implementation of these low-
level analogical processes have been proposed such
as decision trees, neural networks or instance-based
learning methods (see e.g. (Skousen, 1989; Daele-
mans et al., 1999)). These models share an accepta-
tion of analogy which mainly relies on surfacesimi-
larities between instances.

Our learner tries to bridge the gap between these
approaches and attempts to remain faithful to the
idea of structural analogies, which prevails in the
AI literature, while also exploiting the intuitions of
large-scale, instance-based learning models.

2.2 Analogical learning

We consider the following supervised learning task:
a learner is given a setS of training instances
{X1, . . . , Xn} independently drawn from some un-
known distribution. Each instanceXi is a vector
containingm features:〈Xi1, . . . , Xim〉. GivenS,
the task is to predict the missing features of partially
informed new instances. Put in more standard terms,
the set of known (resp. unknown) features for a new
valueX forms theinput space(resp.output space):
the projections ofX onto the input (resp. output)
space will be denotedI(X) (resp.O(X)). This set-
ting is more general than the simpler classification
task, in which only one feature (the class label) is
unknown, and covers many other interesting tasks.

The inference procedure can be sketched as fol-
lows: training examples are simply stored for fu-
ture use; no generalization (abstraction) of the data
is performed, which is characteristic oflazy learning
(Aha, 1997). Given a new instanceX, we identify
formal analogical proportions involvingX in the in-
put space; known objects involved in these propor-
tions are then used to infer the missing features.

An analogical proportion is a relation involv-
ing four objectsA, B, C and D, denoted by
A : B :: C : D and which readsA is to B asC is
to D. The definition and computation of these pro-
portions are studied in Section 3. For the moment,

121

we contend that it is possible to construct analogical
proportions between (possibly partially informed)
objects inS. Let I(X) be a partially described ob-
ject not seen during training. The analogical infer-
ence process is formalized as:

1. Construct the setT (X) ⊂ S3 defined as:

T (X) = {(A,B,C) ∈ S3 |
I(A) : I(B) :: I(C) : I(X)}

2. For each(A,B,C) ∈ T (X), compute hy-

potheseŝO(X) by solving the equation:

Ô(X) = O(A) : O(B) :: O(C) :?

This inference procedure shows lots of similari-
ties with thek-nearest neighbors classifier (k-NN)
which, given a new instance, (i) searches the training
set for close neighbors, (ii) compute the unknown
class label according to the neighbors’ labels. Our
model, however, does not use any metric between
objects: we only rely on the definition of analogical
proportions, which reveal systemic, rather than su-
perficial, similarities. Moreover, inputs and outputs
are regarded in a symmetrical way: outputs are not
restricted to a set of labels, and can also be structured
objects such as sequences. The implementation of
the model still has to address two specific issues.

• When exploringS3, an exhaustive search eval-
uates|S|3 triples, which can prove to be in-
tractable. Moreover, objects inS may be
unequally relevant, and we might expect the
search procedure to treat them accordingly.

• Whenever several competing hypotheses are

proposed forÔ(X), a ranking must be per-
formed. In our current implementation, hy-
potheses are ranked based on frequency counts.

These issues are well-known problems fork-NN
classifiers. The second one does not appear to be
critical and is usually solved based on a majority
rule. In contrast, a considerable amount of effort has
been devoted to reduce and optimize the search pro-
cess, via editing and condensing methods, as stud-
ied e.g. in (Dasarathy, 1990; Wilson and Martinez,
2000). Proposals for solving this problem are dis-
cussed in Section 3.4.

3 An algebraic framework for analogical
proportions

Our inductive model requires the availability of a de-
vice for computing analogical proportions on feature
vectors. We consider that an analogical proportion
holds between four feature vectors when the propor-
tion holds for all components. In this section, we
propose a unified algebraic framework for defining
analogical proportions between individual features.
After giving the general definition, we present its in-
stantiation for two types of features: words over a
finite alphabet and sets of labelled trees.

3.1 Analogical proportions

Our starting point will be analogical proportions in
a setU , which we define as follows:∀x, y, z, t ∈
U, x : y :: z : t if and only if eitherx = y andz = t
or x = z andy = t. In the sequel, we assume that
U is additionally provided with an associative inter-
nal composition law⊕, which makes(U,⊕) a semi-
group. The generalization of proportions to semi-
groups involves two key ideas: thedecompositionof
objects into smaller parts, subject toalternation con-
straints. To formalize the idea of decomposition, we
define thefactorizationof an elementu in U as:

Definition 1 (Factorization)
A factorizationof u ∈ U is a sequenceu1 . . . un,
with ∀i, ui ∈ U , such that:u1 ⊕ . . . ⊕ un = u.
Each termui is a factorof u.

The alternation constraint expresses the fact that
analogically related objects should be made of alter-
nating factors: forx : y :: z : t to hold, each factor
in x should be found alternatively iny and inz. This
yields a first definition of analogical proportions:

Definition 2 (Analogical proportion)
(x, y, z, t) ∈ U form ananalogical proportion, de-

noted byx : y :: z : t if and only if there exists some
factorizationsx1⊕ . . . ⊕xd = x, y1⊕ . . . ⊕yd = y,
z1 ⊕ . . . ⊕ zd = z, t1 ⊕ . . . ⊕ td = t such that
∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}. The smallestd for
which such factorizations exist is termed thedegree
of the analogical proportion.

This definition is valid for any semigroup, anda
fortiori for any richer algebraic structure. Thus, it
readily applies to the case of groups, vector spaces,
free monoids, sets and attribute-value structures.

122

3.2 Words over Finite Alphabets

3.2.1 Analogical Proportions between Words

Let Σ be a finite alphabet.Σ? denotes the set of
finite sequences of elements ofΣ, calledwordsover
Σ. Σ?, provided with the concatenation operation.
is a free monoid whose identity element is the empty
word ε. Forw ∈ Σ?, w(i) denotes theith symbol in
w. In this context, definition (2) can be re-stated as:

Definition 3 (Analogical proportion in (Σ?,.))
(x, y, z, t) ∈ Σ? form an analogical proportion, de-
noted byx : y :: z : t if and only if there exists some
integer d and some factorizationsx1 . . . xd = x,
y1 . . . yd = y, z1 . . . zd = z, t1 . . . td = t such that
∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}.

An example of analogy between words is:

viewing : reviewer :: searching : researcher

with x1 = ε, x2 = view, x3 = ing andt1 = re,
t2 = search, t3 = er. This definition generalizes
the proposal of (Lepage, 1998). It does not ensure
the existence of a solution to an analogical equation,
nor its uniqueness when it exists. (Lepage, 1998)
gives a set of necessary conditions for a solution to
exist. These conditions also apply here. In particu-
lar, if t is a solution ofx : y :: z :?, thent contains,
in the same relative order, all the symbols iny andz
that are not inx. As a consequence, all solutions of
an equation have the same length.

3.2.2 A Finite-state Solver

Definition (3) yields an efficient procedure for
solving analogical equations, based on finite-state
transducers. The main steps of the procedure are
sketched here. A full description can be found in
(Yvon, 2003). To start with, let us introduce the no-
tions ofcomplementary setandshuffle product.

Complementary set If v is a subword ofw, the
complementary setof v with respect tow, denoted
by w\v is the set of subwords ofw obtained by re-
moving fromw, in a left-to-right fashion, the sym-
bols inv. For example,eea is a complementary sub-
word of xmplr with respect toexemplar. Whenv is
not a subword ofw, w\v is empty. This notion can
be generalized to any regular language.

The complementary set ofv with respect tow is
a regular set: it is the output language of the finite-
state transducerTw (see Figure 1) for the inputv.

0 1 k
w(1) : ε

ε : w(1)

w(k) : ε

ε : w(k)

Figure 1: The transducerTw computing comple-
mentary sets wrtw.

Shuffle Theshuffleu • v of two wordsu andv is
introduced e.g. in (Sakarovitch, 2003) as follows:

u • v = {u1v1u2v2 . . . unvn, st.ui, vi ∈ Σ?,

u1 . . . un = u, v1 . . . vn = v}

The shuffle of two wordsu andv contains all the
wordsw which can be composed using all the sym-
bols in u and v, subject to the condition that ifa
precedesb in u (or in v), then it precedesb in w.
Taking, for instance,u = abc and v = def , the
words abcdef , abdefc, adbecf are in u • v; this
is not the case withabefcd. This operation gen-
eralizes straightforwardly to languages. The shuf-
fle of two regular languages is regular (Sakarovitch,
2003); the automatonA, computingK•L, is derived
from the automataAK = (Σ, QK , q0

K , FK , δK) and
AL = (Σ, QL, q0

L, FL, δL) recognizing respectively
K andL as the product automataA = (Σ, QK ×
QL, (q0

K , q
0
L), FK × FL, δ), whereδ is defined as:

δ((qK , qL), a) = (rK , rL) if and only if either
δK(qK , a) = rK andqL = rL or δL(qL, a) = rL
andqK = rK .

The notions of complementary set and shuffle are
related through the following property, which is a
direct consequence of the definitions.

w ∈ u • v ⇔ u ∈ w\v

Solving analogical equations The notions of
shuffle and complementary sets yield another
characterization of analogical proportion between
words, based on the following proposition:

Proposition 1.

∀x, y, z, t ∈ Σ?, x : y :: z : t⇔ x • t ∩ y • z 6= ∅

An analogical proportion is thus established if the
symbols inx andt are also found iny andz, and ap-
pear in the same relative order. A corollary follows:

123

Proposition 2.

t is a solution ofx : y :: z :?⇔ t ∈ (y • z)\x

The set of solutions of an analogical equation
x : y :: z :? is a regular set, which can be computed
with a finite-state transducer. It can also be shown
that this analogical solver generalizes the approach
based on edit distance proposed in (Lepage, 1998).

3.3 Trees

Labelled trees are very common structures in NLP
tasks: they can represent syntactic structures, or
terms in a logical representation of a sentence. To
express the definition of analogical proportion be-
tween trees, we introduce the notion of substitution.

Definition 4 (Substitution)
A (single)substitutionis a pair (variable ← tree).
The application of the substitution(v ← t′) to a tree
t consists in replacing each leaf oft labelled byv by
the treet′. The result of this operation is denoted:
t(v ← t′). For each variablev, we define the binary
operator/v ast /v t′ = t (v ← t′).

Definition 2 can then be extended as:

Definition 5 (Analogical proportion (trees))
(x, y, z, t) ∈ U form an analogical propor-
tion, denoted byx : y :: z : t iff there exists some
variables (v1, . . . , vn−1) and some factorizations
x1 /v1 . . . /vn−1 xn = x, y1 /v1 . . . /vn−1 yn = y,
z1 /v1 . . . /vn−1 zn = z, t1 /v1 . . . /vn−1 tn = t such
that∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}.

An example of such a proportion is illustrated on
Figure 2 with syntactic parse trees.

This definition yields an effective algorithm
computing analogical proportions between trees
(Stroppa and Yvon, 2005). We consider here a sim-
pler heuristic approach, consisting in (i) linearizing
labelled trees into parenthesized sequences of sym-
bols and (ii) using the analogical solver for words
introduced above. This approach yields a faster, al-
beit approximative algorithm, which makes analogi-
cal inference tractable even for large tree databases.

3.4 Algorithmic issues

We have seen how to compute analogical relation-
ships for features whose values are words and trees.

S

NP

the police

VP

have VP

impounded

NP

his car

:

S

NP

his car

VP

AUX

have

VP

been VP

impounded

PP

by NP

the police

::

S

NP

the mouse

VP

has VP

eaten

NP

the cat

:

S

NP

the cat

VP

AUX

has

VP

been VP

eaten

PP

by NP

the mouse

Figure 2: Analogical proportion between trees.

If we use, for trees, the solver based on tree lin-
earizations, the resolution of an equation amounts,
in both cases, to solving analogies on words.

The learning algorithm introduced in Section 2.2
is a two-step procedure: a search step and a trans-
fer step. The latter step only involves the resolu-
tion of (a restricted number of) analogical equations.
When x, y and z are known, solvingx : y :: z :?
amounts to computing the output language of the
transducer representing(y • z)\x: the automaton
for this language has a number of states bounded by
|x |× |y |× |z |. Given the typical length of words in
our experiments, and given that the worst-case ex-
ponential bound for determinizing this automaton is
hardly met, the solving procedure is quite efficient.

The problem faced during the search procedure
is more challenging: givenx, we need to retrieve
all possible triples(y, z, t) in a finite setL such
that x : y :: z : t. An exhaustive search requires
the computation of the intersection of the finite-
state automaton representing the output language of
(L • L)\x with the automaton forL. Given the size
of L in our experiments (several hundreds of thou-
sands of words), a complete search is intractable and
we resort to the following heuristic approach.

L is first split intoK bins{L1, ..., LK}, with |Li |
small with respect to|L |. We then randomly select
k bins and compute, for each binLi, the output lan-
guage of(Li •Li)\x, which is then intersected with
L: we thus only consider triples containing at least

124

two words from the same bin. It has to be noted that
the bins are not randomly constructed: training ex-
amples are grouped into inflectional or derivational
families. To further speed up the search, we also im-
pose an upper bound on the degree of proportions.
All triples retrieved during thesek partial searches
are then merged and considered for the transfer step.

The computation of analogical relationships has
been implemented in a generic analogical solver;
this solver is based on Vaucanson, an automata ma-
nipulation library using high performance generic
programming (Lombardy et al., 2003).

4 Experiments

4.1 Methodology

The main purpose of these experiments is to demon-
strate the flexibility of the analogical learner. We
considered two different supervised learning tasks,
both aimed at performing the lexical analysis of iso-
lated word forms. Each of these tasks represents a
possible instantiation of the learning procedure in-
troduced in Section 2.2.

The first experiment consists in computing one
or several vector(s) of morphosyntactic features to
be associated with a form. Each vector comprises
the lemma, the part-of-speech, and, based on the
part-of-speech, additional features such as number,
gender, case, tense, mood, etc. An (English) in-
put/output pair for this tasks thus looks like: in-
put=replying; output={reply; V-pp-- }, where the
placeholder ’- ’ denotes irrelevant features. Lexi-
cal analysis is useful for many applications: a POS
tagger, for instance, needs to “guess” the possi-
ble part(s)-of-speech of unknown words (Mikheev,
1997). For this task, we use the definition of analog-
ical proportions for “flat” feature vectors (see sec-
tion 3.1) and for word strings (section 3.2). The
training data is a list of fully informed lexical en-
tries; the test data is a list of isolated word forms
not represented in the lexicon. Bins are constructed
based on inflectional families.

The second experiment consists in computing a
morphological parse of unknown lemmas: for each
input lemma, the output of the system is one or sev-
eral parse trees representing a possible hierarchical
decomposition of the input into (morphologically
categorized) morphemes (see Figure 3). This kind

of analysis makes it possible to reconstruct the series
of morphological operations deriving a lemma, to
compute its root, its part-of-speech, and to identify
morpheme boundaries. This information is required,
for instance, to compute the pronunciation of an un-
known word; or to infer the compositional meaning
of a complex (derived or compound) lemma. Bins
gather entries sharing a common root.

input=acrobatically; output =
B

���
HHH

A
�� HH

N

acrobat

A|N.

ic

B|A.

ally

Figure 3: Input/output pair for task 2. Bound mor-
phemes have a compositional type:B|A. denotes a
suffix that turns adjectives into adverbs.

These experiments use the English, German, and
Dutch morphological tables of the CELEX database
(Burnage, 1990). For task 1, these tables contain
respectively 89 000, 342 000 and 324 000 different
word forms, and the number of features to predict is
respectively 6, 12, and 10. For task 2, which was
only conducted with English lemma, the total num-
ber of different entries is 48 407.

For each experiment, we perform 10 runs, using
1 000 randomly selected entries for testing1. Gen-
eralization performance is measured as follows: the
system’s output is compared with the reference val-
ues (due to lexical ambiguity, a form may be asso-
ciated in the database with several feature vectors
or parse trees). Per instanceprecisionis computed
as the relative number of correct hypotheses, i.e.
hypotheses which exactly match the reference: for
task 1, all features have to be correct; for task 2, the
parse tree has to be identical to the reference tree.
Per instancerecall is the relative number of refer-
ence values that were actually hypothesized. Preci-
sion and recall are averaged over the test set; num-
bers reported below are averaged over the 10 runs.

Various parameters affect the performance:k, the
number of randomly selected bins considered during
the search step (see Section 3.4) andd, the upper

1Due to lexical ambiguity, the number of tested instances is
usually greater than 1 000.

125

bound of the degree of extracted proportions.

4.2 Experimental results

Experimental results for task 1 are given in Tables 1,
2 and 3. For each main category, two recall and pre-
cision scores are computed: one for the sole lemma
and POS attributes (left column); and one for the
lemma and all the morpho-syntactic features (on the
right). In these experiments, parameters are set as
follows: k = 150 andd = 3. Ask grows, both recall
and precision increase (up to a limit);k = 150 ap-
pears to be a reasonable trade-off between efficiency
and accuracy. A further increase ofd does not sig-
nificantly improve accuracy: takingd = 3 or d = 4
yields very comparable results.

Lemma + POS Lemma + Features
Rec. Prec. Rec. Prec.

Nouns 76.66 94.64 75.26 95.37
Verbs 94.83 97.14 94.79 97.37

Adjectives 26.68 72.24 27.89 87.67

Table 1: Results on task 1 for English

Lemma + POS Lemma + Features
Rec. Prec. Rec. Prec.

Nouns 71.39 92.17 54.59 74.75
Verbs 96.75 97.85 93.26 94.36

Adjectives 91.59 96.09 90.02 95.33

Table 2: Results on task 1 for Dutch

Lemma + POS Lemma + Features
Rec. Prec. Rec. Prec.

Nouns 93.51 98.28 77.32 81.70
Verbs 99.55 99.69 90.50 90.63

Adjectives 99.14 99.28 99.01 99.15

Table 3: Results on task 1 for German

As a general comment, one can note that high
generalization performance is achieved for lan-
guages and categories involving rich inflectional
paradigms: this is exemplified by the performance
on all German categories. English adjectives, at
the other end of this spectrum, are very difficult to
analyze. A simple and effective workaround for
this problem consists in increasing the size the sub-
lexicons (Li in Section 3.4) so as to incorporate in a

given bin all the members of the same derivational
(rather than inflectional) family. For Dutch, these
results are comparable with the results reported in
(van den Bosch and Daelemans, 1999), who report
an accuracy of about 92% on the task of predicting
the main syntactic category.

Rec. Prec.
Morphologically Complex 46.71 70.92

Others 17.00 46.86

Table 4: Results on task 2 for English

The second task is more challenging since the ex-
act parse tree of a lemma must be computed. For
morphologically complex lemmas (involving affixa-
tion or compounding), it is nevertheless possible to
obtain acceptable results (see Table 4, showing that
some derivational phenomena have been captured.
Further analysis is required to assess more precisely
the potential of this method.

From a theoretical perspective, it is important to
realize that our model does not commit us to a
morpheme-based approach of morphological pro-
cesses. This is obvious in task 1; and even if
task 2 aims at predicting a morphematic parse of in-
put lemmas, this goal is achievedwithout segment-
ing the input lemma into smaller units. For in-
stance, our learner parses the lemmaenigmatically
as: [[[.N enigma][.A|N ical]]B|A. ly], that is with-
out trying to decide to which morph the orthographic
t should belong. In this model, input and output
spaces are treated symmetrically and correspond to
distinct levels of representation.

5 Discussion and future work

In this paper, we have presented a generic analog-
ical inference procedure, which applies to a wide
range of actual learning tasks, and we have detailed
its instantiation for common feature types. Prelimi-
nary experiments have been conducted on two mor-
phological analysis tasks and have shown promising
generalization performance.

These results suggest that our main hypotheses
are valid: (i) searching for triples is tractable even
with databases containing several hundred of thou-
sands instances; (ii) formal analogical proportions
are a reliable sign of deeper analogies between lin-

126

guistic entities; they can thus be used to devise flex-
ible and effective learners for NLP tasks.

This work is currently being developed in various
directions: first, we are gathering additional experi-
mental results on several NLP tasks, to get a deeper
understanding of the generalization capabilities of
our analogical learner. One interesting issue, not
addressed in this paper, is the integration of vari-
ous forms of linguistic knowledge in the definition
of analogical proportions, or in the specification of
the search procedure. We are also considering al-
ternative heuristic search procedures, which could
improve or complement the approaches presented in
this paper. A possible extension would be to define
and take advantage of non-uniform distributions of
training instances, which could be used both during
the searching and ranking steps. We finally believe
that this approach might also prove useful in other
application domains involving structured data and
are willing to experiment with other kinds of data.

References

David W. Aha. 1997. Editorial.Artificial Intelligence
Review, 11(1-5):7–10. Special Issue on Lazy Learn-
ing.

Gavin Burnage. 1990. CELEX: a guide for users. Tech-
nical report, University of Nijmegen, Center for Lexi-
cal Information, Nijmegen.

Walter Daelemans, Antal Van Den Bosch, and Jakub Za-
vrel. 1999. Forgetting exceptions is harmful in lan-
guage learning.Machine Learning, 34(1–3):11–41.

B.V. Dasarathy, editor. 1990.Nearest neighbor (NN)
Norms: NN Pattern Classification Techniques. IEEE
Computer Society Press, Los Alamitos, CA.

Brian Falkenheimer and Dedre Gentner. 1986. The
structure-mapping engine. InProceedings of the meet-
ing of the American Association for Artificial Intelli-
gence (AAAI), pages 272–277.

Dedre Gentner, Keith J. Holyoak, and Boicho N.
Konikov, editors. 2001.The Analogical Mind. The
MIT Press, Cambridge, MA.

Douglas Hofstadter and the Fluid Analogies Research
group, editors. 1995.Fluid Concepts and Creative
Analogies. Basic Books.

Keith J. Holyoak and John E. Hummel. 2001. Under-
standing analogy within a biological symbol system.
In Dedre Gentner, Keith J. Holyoak, and Boicho N.

Konikov, editors,The analogical mind, pages 161–
195. The MIT Press, Cambridge, MA.

Yves Lepage. 1998. Solving analogies on words: An
algorithm. InProceedings of COLING-ACL ’98, vol-
ume 2, pages 728–735, Montréal, Canada.

Yves Lepage. 1999a. Analogy+tables=conjugation.
In G. Friedl and H.G. Mayr, editors,Proceedings of
NLDB ’99, pages 197–201, Klagenfurt, Germany.

Yves Lepage. 1999b. Open set experiments with direct
analysis by analogy. InProceedings of NLPRS ’99,
volume 2, pages 363–368, Beijing, China.

Sylvain Lombardy, Raphaël Poss, Yann Ŕegis-Gianas,
and Jacques Sakarovitch. 2003. Introducing Vaucan-
son. InProceedings of CIAA 2003, pages 96–107.

Andrei Mikheev. 1997. Automatic rule induction for
unknown word guessing.Computational Linguistics,
23(3):405–423.

Vito Pirrelli and François Yvon. 1999. Analogy in the
lexicon: a probe into analogy-based machine learning
of language. InProceedings of the 6th International
Symposium on Human Communication, Santiago de
Cuba, Cuba.

Tony A. Plate. 2000. Analogy retrieval and processing
with distributed vector representations.Expert sys-
tems, 17(1):29–40.

Jacques Sakarovitch. 2003.Eléments de th́eorie des au-
tomates. Vuibert, Paris.

Royal Skousen. 1989.Analogical Modeling of Lan-
guage. Kluwer, Dordrecht.

Nicolas Stroppa and François Yvon. 2005. Formal
models of analogical relationships. Technical report,
ENST, Paris, France.

Paul Thagard, Keith J. Holoyak, Greg Nelson, and David
Gochfeld. 1990. Analog retrieval by constraint satis-
faction. Artificial Intelligence, 46(3):259–310.

Antal van den Bosch and Walter Daelemans. 1999.
Memory-based morphological processing. InPro-
ceedings of ACL, pages 285–292, Maryland.

D. Randall Wilson and Tony R. Martinez. 2000. Reduc-
tion techniques for instance-based learning algorithms.
Machine Learning, 38(3):257–286.

François Yvon. 1999. Pronouncing unknown words us-
ing multi-dimensional analogies. InProc. Eurospeech,
volume 1, pages 199–202, Budapest, Hungary.

François Yvon. 2003. Finite-state machines solving
analogies on words. Technical report, ENST.

127

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 128–135, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Morphology Induction From Term Clusters

Dayne Freitag
HNC Software, LLC

3661 Valley Centre Drive
San Diego, CA 92130, USA

daynefreitag@fairisaac.com

Abstract

We address the problem of learning a
morphological automaton directly from
a monolingual text corpus without re-
course to additional resources. Like pre-
vious work in this area, our approach ex-
ploits orthographic regularities in a search
for possible morphological segmentation
points. Instead of affixes, however, we
search for affix transformation rules that
express correspondences between term
clusters induced from the data. This
focuses the system on substrings hav-
ing syntactic function, and yields cluster-
to-cluster transformation rules which en-
able the system to process unknown mor-
phological forms of known words accu-
rately. A stem-weighting algorithm based
on Hubs and Authorities is used to clar-
ify ambiguous segmentation points. We
evaluate our approach using the CELEX
database.

1 Introduction

This paper presents a completely unsupervised
method for inducing morphological knowledge di-
rectly from a large monolingual text corpus. This
method works by searching for transformation rules
that express correspondences between term clusters
which are induced from the corpus in an initial step.
It covers both inflectional and derivational morphol-
ogy, and is able to process previously unseen morphs

of a word, as long as one of its morphs has been as-
signed to a cluster.

Aside from its academic appeal, acquisition of
this morphological knowledge is a step toward the
goal of rapidly retargetable natural language pro-
cessing. Toward this end, we envisage two uses for
it:

1. It can be used to perform morphological nor-
malization (i.e., stemming (Porter, 1980)).

2. In the form of transformation rules, it can help
us classify unknown words, thereby enhancing
the utility of cluster-based features for applica-
tions such as information extraction (Miller et
al., 2004; Freitag, 2004).

There is a considerable literature on the problem
of morphology induction in general, and unsuper-
vised (or lightly supervised) induction in particular.
Much of the work attempts to exploit orthographic
regularities alone, seeking affixation patterns (or sig-
natures) that permit a compressive representation of
the corpus. Several researchers propose algorithms
based on the minimum description length (MDL)
principle, achieving reasonable success in discov-
ering regular morphological patterns (Brent et al.,
1995; Goldsmith, 2000; Creutz and Lagus, 2002;
Argamon et al., 2004). MDL has information the-
oretic underpinnings, and an information theoretic
objective function achieves similar success (Snover
et al., 2002). Note that none of these approaches at-
tempts to account for the syntactic dimension of af-
fixation. And all must adopt strategies to cope with a
very large search space (the power set of the vocab-

128

ulary, in the limit). Such strategies form a common
theme in these papers.

Our approach implicitly employs term co-
occurrence statistics in the form of statistically de-
rived term clusters. A number of researchers use
such statistics directly. A common technique is to
cast a word as a distribution over other words that
occur within some limited window across the cor-
pus. This definition of co-occurrence yields a se-
mantic distance measure which tends to draw to-
gether inflectional variants of a word. Combined
with heuristics such as string edit distance, it can be
used to find reliable conflation sets (Xu and Croft,
1998; Baroni et al., 2002). A somewhat tighter def-
inition of co-occurrence, which nevertheless yields
a semantic distance measure, serves as the basis of
a method that captures irregular inflectional trans-
formations in Yarowsky and Wicentowski (2001).1

Schone and Jurafsky (2001) employ distributions
over adjacent words (yielding a syntactic distance
metric) to improve the precision of their conflation
sets.

In contrast with these approaches, ours is predi-
cated on a strictly local notion of co-occurrence. It
is well known that clustering terms from a corpus
in English or a related language, using a distance
measure based on local co-occurrence, yields clus-
ters that correspond roughly to part of speech cate-
gories (Schütze, 1995; Clark, 2000). The heart of
our idea is to search for affix transformation rules
mapping terms in one cluster to those in another.
The search for such rules has previously been con-
ducted in the context of supervised part-of-speech
tagging (Mikheev, 1997), but not to our knowledge
using word clusters. Basing the search for affix pat-
terns on a syntactic partition of the vocabulary, albeit
a noisy one, greatly reduces the size of the space of
possible conflation sets. Furthermore, the resulting
rules can be assigned a syntactic interpretation.

2 Clustering

A prerequisite of our method is a clustering of
terms in the corpus vocabulary into rough syntac-
tic groups. To achieve this, we first collect co-
occurrence statistics for each word, measuring the

1Note that this method presupposes the availability of sev-
eral resources in addition to a corpus, including a list of canon-
ical inflectional suffixes.

recently soon slightly quickly ...
underwriter designer commissioner ...
increased posted estimated raised ...
agreed declined expects wants ...

Table 1: Sample members of four clusters from the
Wall Street Journal corpus.

frequency of words found immediately adjacent to
it in the corpus, treating left occurrences as dis-
tinct from right occurrences. This co-occurrence
database serves as input to information theoretic co-
clustering (Dhillon et al., 2003), which seeks a par-
tition of the vocabulary that maximizes the mutual
information between term categories and their con-
texts. This approach to term clustering is closely
related to others from the literature (Brown et al.,
1992; Clark, 2000).2

Recall that the mutual information between ran-
dom variables

�
and � can be written:

�������
	 �
����������������� ������������������������ � (1)

Here,
�

and � correspond to term and context clus-
ters, respectively, each event

�
and

�
the observation

of some term and contextual term in the corpus. We
perform an approximate maximization of ! ���

us-
ing a simulated annealing procedure in which each
random trial move takes a word

�
or context

�
out

of the cluster to which it is tentatively assigned and
places it into another.

We performed this procedure on the Wall Street
Journal (WSJ) portion of the North American News
corpus, forming 200 clusters. Table 1 shows sample
terms from several hand-selected clusters.

3 Method

In our experiments and the discussion that follows,
stems are sub-strings of words, to which attach af-
fixes, which are sub-string classes denoted by perl-
style regular expressions (e.g., e?d$ or ˆre). A
transform is an affix substitution which entails a
change of clusters. We depict the affix part of the

2While we have not experimented with other clustering ap-
proaches, we assume that the accuracy of the derived mor-
phological information is not very sensitive to the particular
methodology.

129

transform using a perl-style s/// operator. For ex-
ample, the transform s/ed$/ing/ corresponds to
the operation of replacing the suffix ed with ing.

3.1 Overview

The process of moving from term clusters to a trans-
form automaton capable of analyzing novel forms
consists of four stages:

1. Acquire candidate transformations. By
searching for transforms that align a large
number of terms in a given pair of clusters,
we quickly identify affixation patterns that are
likely to have syntactic significance.

2. Weighting stems and transforms. The output
of Step 1 is a set of transforms, some overlap-
ping, others dubious. This step weights them
according to their utility across the vocabulary,
using an algorithm similar to Hubs and Author-
ities (Kleinberg, 1998).

3. Culling transforms. We segment the words in
the vocabulary, using the transform weights to
choose among alternative segmentations. Fol-
lowing this segmentation step, we discard any
transform that failed to participate in at least
one segmentation.

4. Constructing an automaton. From the re-
maining transforms we construct an automaton,
the nodes of which correspond to clusters, the
edges to transforms. The resulting data struc-
ture can be used to construct morphological
parses.

The remainder of this section describes each of these
steps in detail.

3.2 Acquiring Transforms

Once we are in possession of a sufficiently large
number of term clusters, the acquisition of candidate
transforms is conceptually simple. For each pair of
clusters, we count the number of times each possible
transform is in evidence, then discard those trans-
forms occurring fewer than some small number of
times.

For each pair of clusters, we search for suffix
or prefix pairs, which, when stripped from match-
ing members in the respective clusters lead to as

s/ful$/less/ pain harm use ...
s/ˆ/over/ charged paid hauled ...
s/cked$/wing/ kno sho che ...
s/nd$/ts/ le se fi ...
s/s$/ed/ recall assert add ...
s/ts$/ted/ asser insis predic ...
s/es$/ing/ argu declar acknowledg ...
s/s$/ing/ recall assert add ...

Table 2: Sample transforms and matching stems
from the Wall Street Journal after the acquisition
step.

large a cluster intersection as possible. For ex-
ample, if walked and talked are in Cluster 1,
and walking and talking are in Cluster 2, then
walk and talk are in the intersection, given the
transform s/ed$/ing/. In our experiments, we
retain any cluster-to-cluster transform producing an
intersection having at least three members.

Table 2 lists some transforms derived from the
WSJ as part of this process, along with a few of the
stems they match. These were chosen for the sake of
illustration; this list does not necessarily the reflect
the quality or distribution of the output. (For exam-
ple, transforms based on the pattern s/$/s/ easily
form the largest block.)

A frequent problem is illustrated by the trans-
forms s/s$/ed/ and s/ts$/ted/. Often,
we observe alternative segmentations for the same
words and must decide which to prefer. We resolve
most of these questions using a simple heuristic. If
one transform subsumes another—if the vocabulary
terms it covers is a strict superset of those covered
by the other transform—then we discard the sec-
ond one. In the table, all members of the transform
s/ts$/ted/ are also members of s/s$/ed/, so
we drop s/ts$/ted/ from the set.

The last two lines of the table represent an ob-
vious opportunity to generalize. In cases like this,
where two transforms are from the same cluster pair
and involve source or destination affixes that dif-
fer in a single letter, the other affixes being equal,
we introduce a new transform in which the elided
letter is optional (in this example, the transform
s/e?s$/ing/). The next step seeks to resolve
this uncertainty.

130

s/$/s/ 0.2
s/e?$/ed/ 0.1
s/e?$/ing/ 0.1
s/s$/ses/ 1.6e-14
s/w$/ws/ 1.6e-14
s/ˆb/c/ 1.6e-14

Table 3: The three highest-weighted and lowest-
weighted transforms.

3.3 Weighting Stems and Transforms

The observation that morphologically significant af-
fixes are more likely to be frequent than arbitrary
word endings is central to MDL-based systems. Of
course, the same can be said about word stems: a
string is more likely to be a stem if it is observed
with a variety of affixes (or transforms). Moreover,
our certainty that it is a valid stem increases with our
confidence that the affixes we find attached to it are
valid.

This suggests that candidate affixes and stems
can “nominate” each other in a way analogous to
“hubs” and “authorities” on the Web (Kleinberg,
1998). In this step, we exploit this insight in order
to weight the “stem-ness” and “affix-ness” of can-
didate strings. Our algorithm is closely based on
the Hubs and Authorities Algorithm. We say that
a stem and transform are “linked” if we have ob-
served a stem to participate in a transform. Begin-
ning with a uniform distribution over stems, we zero
the weights associated with transforms, then propa-
gate the stem weights to the transforms. For each
stem � and transform � , such that � and � are
linked, the weight of � is added to the weight of
� . Next, the stem weights are zeroed, and the trans-
form weights propagated to the stems in the same
way. This procedure is iterated a few times or until
convergence (five times in these experiments).

3.4 Culling Transforms

The output of this procedure is a weighting of can-
didate stems, on the one hand, and transforms, on
the other. Table 3 shows the three highest-weighted
and three lowest-weighted transforms from an ex-
periment involving the 10,000 most frequent words
in the WSJ.

Although these weights have no obvious linguis-

1: procedure SEGMENT(�)
2: �����	��

� � Expansions to transform sets
3: �����	��
�� � Stems to scores
4: for each transform � do
5: if there exists � s.t. �������	� then
6: �������	����
������������ ��!��#"
7: end if
8: end for
9: for �$�&%(' �*),+ � � � do

10: -.���	��

�
11: for �/�0� do
12: �1
��324�
13: -.���	�5
�-.����� 687 +�9:)<;>= � � �
14: end for
15: �?
 � 'A@CB(D)

�
-.� � �

16: �����	��
E�����	� 6F-0�����
17: end for
18: return

� 'A@CB(D)
�
��� � �

19: end procedure

Table 4: The segmentation procedure.

tic interpretation, we nevertheless can use them to
filter further the transform set. In general, however,
there is no single threshold that removes all dubi-
ous transforms. It does appear to hold, though, that
correct transforms (e.g., s/$/s/) outweigh com-
peting incorrect transforms (e.g., s/w$/ws/). This
observation motivates our culling procedure: We ap-
ply the transforms to the vocabulary in a competitive
segmentation procedure, allowing highly weighted
transforms to “out-vote” alternative transforms with
lower weights. At the completion of this pass
through the vocabulary, we retain only those trans-
forms that contribute to at least one successful seg-
mentation.

Table 4 lists the segmentation procedure. In this
pseudocode, � is a word, � a transform, and � a
stem. The operation �G�,� produces the set of (two)
words generated by applying the affixes of � to � ; the
operation �H2I� (the stemming operation) removes
the longest matching affix of � from � . Given a
word � , we first find the set of transforms associ-
ated with � , grouping them by the pair of words
to which they correspond (Lines 4–8). For exam-
ple, given the word “created”, and the transforms
s/ed$/ing/, s/ted$/ting/, and s/s$/d/,

131

the first two transforms will be grouped together in
� (with index !�� D + ' = +�� � � D + ' = 9 �) "), while the third
will be part of a different group.

Once we have grouped associated transforms, we
use them to stem � , accumulating evidence for dif-
ferent stemmings in - . In Line 15, we then discard
all but the highest scoring stemming. The score of
this stemming is then added to its “global” score in
Line 16.

The purpose of this procedure is the suppression
of spurious segmentations in Line 15. Although this
pseudocode returns only the highest weighted seg-
mentation, it is usually the case that all candidate
segmentations stored in � are valid, i.e., that sev-
eral or all breakpoints of a product of multiple af-
fixation are correctly found. And it is a byproduct
of this procedure that we require for the final step in
our pipeline: In addition to accumulating stemming
scores, we record the transforms that contributed to
them. We refer to this set of transforms as the culled
set.

3.5 Constructing an Automaton

Given the culled set of transforms, creation of a
parser is straightforward. In the last two steps we
have considered a transform to be a pair of af-
fixes

� ��� � ��� � . Recall that for each such trans-
form there are one or more cluster-specific trans-
forms of the form

���
�
� � � �	� � � � � � in which the

source and destination affixes correspond to clusters.
We now convert this set of specific transforms into
an automaton in which clusters form the nodes and
arcs are affixation operations. For every transform���

�
� ��� �	� � � ��� � , we draw an arc from

�
� to

�
� ,

labeling it with the general transform
� � � � � � � , and

draw the inverse arc from
�
� to

�
� .

We can now use this automaton for a kind of un-
supervised morphological analysis. Given a word,
we construct an analysis by finding paths through
the automaton to known (or possibly unknown) stem
words. Each step replaces one (possibly empty) af-
fix with another one, resulting in a new word form.
In general, many such paths are possible. Most of
these are redundant, generated by following given
affixation arcs to alternative clusters (there are typ-
ically several plural noun clusters, for example) or
collapsing compound affixations into a single oper-
ation.

189
photos
secrets
tapes

177
staffers
workers

competitors
factories
families

s/e?s$/ers/

s/s$/ors/

s/ors$/ions/

187
re-engineering

leadership
confidentiality

s/$/e?s/

s/$/e?s/

s/y$/ies/

Figure 1: A fragment of the larger automaton from
the Wall Street Journal corpus.

In our experiments, we generate all possible paths
under the constraint that an operation lead to a
known longer wordform, that it be a possible stem
of the given word, and that the operation not consti-
tute a loop in the search.3 We then sort the analy-
sis traces heuristically and return the top one as our
analysis. In comparing two traces, we use the fol-
lowing criteria, in order:

 Prefer the trace with the shorter starting stem.

 Prefer the trace involving fewer character ed-
its. (The number of edits is summed across
the traces, the trace with the smaller sum pre-
ferred.)

 Prefer the trace having more correct cluster as-
signments of intermediate wordforms.

 Prefer the longer trace.

Note that it is not always clear how to perform an
affixation. Consider the transform s/ing$/e?d/,
for example. In practice, however, this is not a
source of difficulty. We attempt both possible expan-
sions (with or without the “e”). If either produces a
known wordform which is found in the destination
cluster, we discard the other one. If neither result-
ing wordform can be found in the destination cluster,
both are added to the frontier in our search.

4 Evaluation

We evaluate by taking the highest-ranked trace, us-
ing the ordering heuristics described in the previ-
ous section, as the system’s analysis of a given

3One wordform �
� is a possible stem of another ��� , if after
stripping any of the affixes in the culled set the resulting string
is a sub-string of � � .

132

word. This analysis takes the form of a se-
quence of hypothetical wordforms, from a puta-
tive stem to the target wordform (e.g., decide,
decision, decisions). The CELEX morpho-
logical database (Baayen et al., 1995) is used to pro-
duce a reference analysis, by tracing back from the
target wordform through any inflectional affixation,
then through successive derivational affixations un-
til a stem is reached. Occasionally, this yields more
than one analysis. In such cases, all analyses are re-
tained, and the system’s analysis is given the most
optimistic score. In other words, if a CELEX analy-
sis is found which matches the system’s analysis, it
is judged to be correct.

4.1 Results

In evaluating an analysis, we distinguish the follow-
ing outcomes (ordered from most favorable to least):

 Cor. The system’s analysis matches CELEX’s.

 Over. The system’s analysis contains all the
wordforms in CELEX’s, also contains addi-
tional wordforms, and each of the wordforms
is a legitimate morph of the CELEX stem.

 Under. The system’s analysis contains some
of the wordforms in CELEX’s; it may con-
tain additional wordforms which are legitimate
morphs of the CELEX stem. This happens, for
example, when the CELEX stem is unknown to
the system.

 Fail. The system failed to produce an analysis
for a word for which CELEX produced a multi-
wordform analysis.

 Spur. The system produced an analysis for a
word which CELEX considered a stem.

 Incor. All other (incorrect) cases.

Note that we discard any wordforms which are not
in CELEX. Depending on the vocabulary size, any-
where from 15% to 30% are missing. These are of-
ten proper nouns.

In addition, we measure precision, recall, and
F1 as in Schone and Jurafsky (2001). These met-
rics reflect the algorithm’s ability to group known
terms which are morphologically related. Groups

1K 5K 10K 10K+1K 20K
Cor 0.74 0.74 0.75 0.64 0.71
Over 0 0.004 0.003 0.002 0.002
Under 0.005 0.04 0.05 0.06 0.07
Fail 0.25 0.21 0.18 0.28 0.14
Spur 0 0.002 0.01 0.01 0.02
Incor 0 0.003 0.01 0.02 0.05
Prec 1.0 0.98 0.95 1.0 0.80
Rec 0.85 0.82 0.81 0.96 0.82
F1 0.92 0.90 0.87 0.98 0.81

Table 5: Results of experiments using the Wall
Street Journal corpus.

are formed by collecting all wordforms that, when
analyzed, share a root form. We report these num-
bers as Prec, Rec, and F1.

We performed the procedure outlined in Sec-
tion 3.1 using the � most frequent terms from the
Wall Street Journal corpus, for � ranging from 1000
to 20,000. The expense of performing these steps is
modest compared with that of collecting term co-
occurrence statistics and generating term clusters.
Our perl implementation of this procedure consumes
just over two minutes on a lightly loaded 2.5 GHz
Intel machine running Linux, given a collection of
10,000 wordforms in 200 clusters.

The header of each column in Table 5 displays the
size of the vocabulary. The column labeled 10K+1K
stands for an experiment designed to assess the abil-
ity of the algorithm to process novel terms. For this
column, we derived the morphological automaton
from the 10,000 most frequent terms, then used it
to analyze the next 1000 terms.

The surprising precision/recall scores in this
column—scores that are high despite an actual
degradation in performance—argues for caution in
the use and interpretation of the precision/recall met-
rics in this context. The difficulty of the morpho-
logical conflation set task is a function of the size
and constituency of a vocabulary. With a small sam-
ple of terms relatively low on the Zipf curve, high
precision/recall scores mainly reflect the algorithm’s
ability to determine that most of the terms are not
related—a Pyrrhic victory. Nevertheless, these met-
rics give us a point of comparison with Schone and
Jurafsky (2001) who, using a vocabulary of English
words occurring at least 10 times in a 6.7 million-
word newswire corpus, report F1 of 88.1 for con-

133

flation sets based only on suffixation, and 84.5 for
circumfixation. While a direct comparison would
be dubious, the results in Table 5 are comparable to
those of Schone and Jurafsky. (Note that we include
both prefixation and suffixation in our algorithm and
evaluation.)

Not surprisingly, precision and recall degrade as
the vocabulary size increases. The top rows of the
table, however, suggest that performance is reason-
able at small vocabulary sizes and robust across
the columns, up to 20K, at which point the system
increasingly generates incorrect analyses (more on
this below).

4.2 Discussion

A primary advantage of basing the search for af-
fixation patterns on term clusters is that the prob-
lem of non-morphological orthographic regularities
is greatly mitigated. Nevertheless, as the vocabu-
lary grows, the inadequacy of the simple frequency
thresholds we employ becomes clear. In this section,
we speculate briefly about how this difficulty might
be overcome.

At the 20K size, the system identifies and retains
a number of non-morphological regularities. An ex-
ample are the transforms s/$/e/ and s/$/o/,
both of which align members of a name cluster with
other members of the same cluster (Clark/Clarke,
Brook/Brooke, Robert/Roberto, etc.). As a conse-
quence, the system assigns the analysis tim =>
time to the word “time”, suggesting that it be
placed in the name cluster.

There are two ways in which we can attempt to
suppress such analyses. One is to adjust parameters
so that noise transforms are less likely. The proce-
dure for acquiring candidate transforms, described
in Section 3.2, discards any that match fewer than 3
stems. When we increase this parameter to 5 and run
the 20K experiment again, the incorrect rate falls to
0.02 and F1 rises to 0.84. While this does not solve
the larger problem of spurious transforms, it does
indicate that a search for a more principled way to
screen transforms should enhance performance.

The other way to improve analyses is to corrob-
orate predictions they make about the constituent
wordforms. If the tim => time analysis is cor-
rect, then the word “time” should be at home in the
name cluster. This is something we can check. Re-

call that in our framework both terms and clusters
are associated with distributions over adjacent terms
(or clusters). We can hope to improve precision by
discarding analyses that assign a term to a cluster
from which it is too distributionally distant. Apply-
ing such a filter in the 20K experiment, has a similar
impact on performance as the transform filter of the
previous paragraph, with F1 rising to 0.84.4

Several researchers have established the utility of
a filter in which the broader context distributions
surrounding two terms are compared, in an effort to
insure that they are semantically compatible (Schone
and Jurafsky, 2001; Yarowsky and Wicentowski,
2001). This would constitute a straightforward ex-
tension of our framework.

Note that the system is often able to produce the
correct analysis, but ordering heuristics described in
Section 3.5 cause it to be discarded in favor of an
incorrect one. The analyses us => using and
use => using are an example, the former be-
ing the one favored for the word “using”. Note,
though, that our automaton construction procedure
discards a potentially useful piece of information—
the amount of support each arc receives from the
data (the number of stems it matches). This might
be converted into something like a traversal proba-
bility and used in ordering analyses.

Of course, a further shortcoming of our approach
is its inability to account for irregular forms. It
shares this limitation with all other approaches based
on orthographic similarity (a notable exception is
Yarowsky and Wicentowski (2001)). However, there
is reason to believe that it could be extended to
accommodate at least some irregular forms. We
note, for example, the cluster pair 180/185, which
is dominated by the transform s/e?$/ed/. Clus-
ter 180 contains words like “make”, “pay”, and
“keep”, while Cluster 185 contains “made”, “paid”,
and “kept”. In other words, once a strong correspon-
dence is found between two clusters, we can search
for an alignment which covers the orphans in the re-
spective clusters.

4Specifically, we take the Hellinger distance between the
two distributions, scaled into the range � ������� , and discard those
analyses for which the term is at a distance greater than 0.5 from
the proposed cluster.

134

5 Conclusion

We have shown that automatically computed term
clusters can form the basis of an effective unsuper-
vised morphology induction system. Such clusters
tend to group terms by part of speech, greatly sim-
plifying the search for syntactically significant af-
fixes. Furthermore, the learned affixation patterns
are not just orthographic features or morphological
conflation sets, but cluster-to-cluster transformation
rules. We exploit this in the construction of morpho-
logical automata able to analyze previously unseen
wordforms.

We have not exhausted the sources of evidence
implicit in this framework, and we expect that at-
tending to features such as transform frequency will
lead to further improvements. Our approach may
also benefit from the kinds of broad-context seman-
tic filters proposed elsewhere. Finally, we hope to
use the cluster assignments suggested by the mor-
phological rules in refining the original cluster as-
signments, particularly of low-frequency words.

Acknowledgments

This material is based on work funded in whole or
in part by the U.S. Government. Any opinions, find-
ings, conclusions, or recommendations expressed in
this material are those of the authors, and do not nec-
essarily reflect the views of the U.S. Government.

References
S. Argamon, N. Akiva, A. Amir, and O. Kapah. 2004.

Efficient unsupervised recursive word segmentation
using minimum description length. In Proc. 20th In-
ternational Conference on Computational Linguistics
(Coling-04).

R.H. Baayen, R. Piepenbrock, and L. Gulikers. 1995.
The CELEX Lexical Database (CD-ROM). LDC, Uni-
versity of Pennsylvania, Philadelphia.

M. Baroni, J. Matiasek, and H. Trost. 2002. Unsu-
pervised discovery of morphologically related words
based on orthographic and semantic similarity. In
Proc. ACL-02 Workshop on Morphological and
Phonological Learning.

M. Brent, S.K. Murthy, and A. Lundberg. 1995. Discov-
ering morphemic suffixes: A case study in minimum
description length induction. In Proc. 5th Interna-
tional Workshop on Artificial Intelligence and Statis-
tics.

P.F. Brown, V.J. Della Pietra, P.V. deSouza, J.C. Lai,
and R.L. Mercer. 1992. Class-based n-gram mod-
els of natural language. Computational Linguistics,
18(4):467–479.

A. Clark. 2000. Inducing syntactic categories by context
distribution clustering. In CoNLL 2000, September.

M. Creutz and K. Lagus. 2002. Unsupervised discov-
ery of morphemes. In Morphological and Phonologi-
cal Learning: Proceedings of the 6th Workshop of the
ACL Special Interest Group in Computational Phonol-
ogy (SIGPHON).

I.S. Dhillon, S. Mallela, and D.S. Modha. 2003.
Information-theoretic co-clustering. Technical Report
TR-03-12, Dept. of Computer Science, U. Texas at
Austin.

D. Freitag. 2004. Trained named entity recognition using
distributional clusters. In Proceedings of EMNLP-04.

J. Goldsmith. 2000. Unsupervised learning
of the morphology of a natural language.
http://humanities.uchicago.edu/faculty/goldsmith/
Linguistica2000/Paper/paper.html.

J.M. Kleinberg. 1998. Authoritative sources in a hyper-
linked environment. In Proc. ACM-SIAM Symposium
on Discrete Algorithms.

A. Mikheev. 1997. Automatic rule induction for
unknown-word guessing. Computational Linguistics,
23(3):405–423.

S. Miller, J. Guinness, and A. Zamanian. 2004. Name
tagging with word clusters and discriminative training.
In Proceedings of HLT/NAACL 04.

M. Porter. 1980. An algorithm for suffix stripping. Pro-
gram, 14(3).

P. Schone and D. Jurafsky. 2001. Knowledge-free induc-
tion of inflectional morphologies. In Proc. NAACL-01.

H. Schütze. 1995. Distributional part-of-speech tagging.
In Proc. 7th EACL Conference (EACL-95), March.

M.G. Snover, G.E. Jarosz, and M.R. Brent. 2002. Un-
supervised learning of morphology using a novel di-
rected search algorithm: Taking the first step. In
Morphological and Phonological Learning: Proc. 6th
Workshop of the ACL Special Interest Group in Com-
putational Phonology (SIGPHON).

J. Xu and W.B. Croft. 1998. Corpus-based stemming us-
ing co-occurrence of word variants. ACM TOIS, 18(1).

D. Yarowsky and R. Wicentowski. 2001. Minimally su-
pervised morphological analysis by multimodal align-
ment. In Proceedings of ACL-01.

135

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 136–143, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Beyond the Pipeline: Discrete Optimization in NLP

Tomasz Marciniak and Michael Strube
EML Research gGmbH

Schloss-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

http://www.eml-research.de/nlp

Abstract

We present a discrete optimization model based on
a linear programming formulation as an alternative
to the cascade of classifiers implemented in many
language processing systems. Since NLP tasks are
correlated with one another, sequential processing
does not guarantee optimal solutions. We apply our
model in an NLG application and show that it per-
forms better than a pipeline-based system.

1 Introduction

NLP applications involve mappings between com-
plex representations. In generation a representa-
tion of the semantic content is mapped onto the
grammatical form of an expression, and in analy-
sis the semantic representation is derived from the
linear structure of a text or utterance. Each such
mapping is typically split into a number of differ-
ent tasks handled by separate modules. As noted
by Daelemans & van den Bosch (1998), individ-
ual decisions that these tasks involve can be formu-
lated as classification problems falling in either of
two groups: disambiguation or segmentation. The
use of machine-learning to solve such tasks facil-
itates building complex applications out of many
light components. The architecture of choice for
such systems has become a pipeline, with strict or-
dering of the processing stages. An example of
a generic pipeline architecture is GATE (Cunning-
ham et al., 1997) which provides an infrastructure
for building NLP applications. Sequential process-
ing has also been used in several NLG systems (e.g.
Reiter (1994), Reiter & Dale (2000)), and has been
successfully used to combine standard preprocess-
ing tasks such as part-of-speech tagging, chunking

and named entity recognition (e.g. Buchholz et al.
(1999), Soon et al. (2001)).

In this paper we address the problem of aggregat-
ing the outputs of classifiers solving different NLP
tasks. We compare pipeline-based processing with
discrete optimization modeling used in the field of
computer vision and image recognition (Kleinberg
& Tardos, 2000; Chekuri et al., 2001) and recently
applied in NLP by Roth & Yih (2004), Punyakanok
et al. (2004) and Althaus et al. (2004). Whereas
Roth and Yih used optimization to solve two tasks
only, and Punyakanok et al. and Althaus et al. fo-
cused on a single task, we propose a general for-
mulation capable of combining a large number of
different NLP tasks. We apply the proposed model
to solving numerous tasks in the generation process
and compare it with two pipeline-based systems.

The paper is structured as follows: in Section 2 we
discuss the use of classifiers for handling NLP tasks
and point to the limitations of pipeline processing.
In Section 3 we present a general discrete optimiza-
tion model whose application in NLG is described
in Section 4. Finally, in Section 5 we report on the
experiments and evaluation of our approach.

2 Solving NLP Tasks with Classifiers

Classification can be defined as the task Ti of as-
signing one of a discrete set of mi possible labels
Li = {li1, ..., limi}

1 to an unknown instance. Since
generic machine-learning algorithms can be applied
to solving single-valued predictions only, complex

1Since we consider different NLP tasks with varying num-
bers of labels we denote the cardinality of Li, i.e. the set of
possible labels for task Ti, as mi.

136

Start

l n1 l n2

l 22l 21

l 11 l 12

l nnm

l 22m

l1m1

p(l)11
p(l)1m1

p(
l

)
12

1T

T2

Tn

2m2
p(l)
p(l)22

p(l)
21

...

...

...

...

......

...

Figure 1: Sequential processing as a graph.

structures, such as parse trees, coreference chains or
sentence plans, can only be assembled from the out-
puts of many different classifiers.

In an application implemented as a cascade of
classifiers the output representation is built incre-
mentally, with subsequent classifiers having access
to the outputs of previous modules. An important
characteristic of this model is its extensibility: it
is generally easy to change the ordering or insert
new modules at any place in the pipeline2 . A ma-
jor problem with sequential processing of linguis-
tic data stems from the fact that elements of linguis-
tic structure, at the semantic or syntactic levels, are
strongly correlated with one another. Hence clas-
sifiers that have access to additional contextual in-
formation perform better than if this information is
withheld. In most cases, though, if task Tk can use
the output of Ti to increase its accuracy, the reverse
is also true. In practice this type of processing may
lead to error propagation. If due to the scarcity of
contextual information the accuracy of initial clas-
sifiers is low, erroneous values passed as input to
subsequent tasks can cause further misclassifications
which can distort the final outcome (also discussed
by Roth and Yih and van den Bosch et al. (1998)).

As can be seen in Figure 1, solving classifica-
tion tasks sequentially corresponds to the best-first
traversal of a weighted multi-layered lattice. Nodes
at separate layers (T1, ..., Tn) represent labels of dif-
ferent classification tasks and transitions between
the nodes are augmented with probabilities of se-

2Both operations only require retraining classifiers with a
new selection of the input features.

lecting respective labels at the next layer. In the se-
quential model only transitions between nodes be-
longing to subsequent layers are allowed. At each
step, the transition with the highest local probability
is selected. Selected nodes correspond to outcomes
of individual classifiers. This graphical representa-
tion shows that sequential processing does not guar-
antee an optimal context-dependent assignment of
class labels and favors tasks that occur later, by pro-
viding them with contextual information, over those
that are solved first.

3 Discrete Optimization Model

As an alternative to sequential ordering of NLP
tasks we consider the metric labeling problem for-
mulated by Kleinberg & Tardos (2000), and orig-
inally applied in an image restoration application,
where classifiers determine the ”true” intensity val-
ues of individual pixels. This task is formulated as a
labeling function f : P → L, that maps a set P of n
objects onto a set L of m possible labels. The goal
is to find an assignment that minimizes the overall
cost function Q(f), that has two components: as-
signment costs, i.e. the costs of selecting a particular
label for individual objects, and separation costs, i.e.
the costs of selecting a pair of labels for two related
objects3 . Chekuri et al. (2001) proposed an integer
linear programming (ILP) formulation of the met-
ric labeling problem, with both assignment cost and
separation costs being modeled as binary variables
of the linear cost function.

Recently, Roth & Yih (2004) applied an ILP
model to the task of the simultaneous assignment
of semantic roles to the entities mentioned in a sen-
tence and recognition of the relations holding be-
tween them. The assignment costs were calculated
on the basis of predictions of basic classifiers, i.e.
trained for both tasks individually with no access to
the outcomes of the other task. The separation costs
were formulated in terms of binary constraints, that
specified whether a specific semantic role could oc-
cur in a given relation, or not.

In the remainder of this paper, we present a more
general model, that is arguably better suited to hand-
ling different NLP problems. More specifically, we

3These costs were calculated as the function of the metric
distance between a pair of pixels and the difference in intensity.

137

put no limits on the number of tasks being solved,
and express the separation costs as stochastic con-
straints, which for almost any NLP task can be cal-
culated off-line from the available linguistic data.

3.1 ILP Formulation

We consider a general context in which a specific
NLP problem consists of individual linguistic de-
cisions modeled as a set of n classification tasks
T = {T1, ..., Tn}, that potentially form mutually
related pairs. Each task Ti consists in assigning a
label from Li = {li1, ..., limi} to an instance that
represents the particular decision. Assignments are
modeled as variables of a linear cost function. We
differentiate between simple variables that model in-
dividual assignments of labels and compound vari-
ables that represent respective assignments for each
pair of related tasks.

To represent individual assignments the following
procedure is applied: for each task Ti, every label
from Li is associated with a binary variable x(lij).
Each such variable represents a binary choice, i.e. a
respective label lij is selected if x(lij) = 1 or re-
jected otherwise. The coefficient of variable x(lij),
that models the assignment cost c(lij), is given by:

c(lij) = −log2(p(lij))

where p(lij) is the probability of lij being selected as
the outcome of task Ti. The probability distribution
for each task is provided by the basic classifiers that
do not consider the outcomes of other tasks4.

The role of compound variables is to provide pair-
wise constraints on the outcomes of individual tasks.
Since we are interested in constraining only those
tasks that are truly dependent on one another we first
apply the contingency coefficient C to measure the
degree of correlation for each pair of tasks5.

In the case of tasks Ti and Tk which are sig-
nificantly correlated, for each pair of labels from

4In this case the ordering of tasks is not necessary, and the
classifiers can run independently from each other.

5C is a test for measuring the association of two nominal
variables, and hence adequate for the type of tasks that we con-
sider here. The coefficient takes values from 0 (no correlation)
to 1 (complete correlation) and is calculated by the formula:
C = (χ2/(N + χ2))1/2, where χ2 is the chi-squared statistic
and N the total number of instances. The significance of C is
then determined from the value of χ2 for the given data. See
e.g. Goodman & Kruskal (1972).

Li × Lk we build a single variable x(lij , lkp). Each
such variable is associated with a coefficient repre-
senting the constraint on the respective pair of labels
lij , lkp calculated in the following way:

c(lij , lkp) = −log2(p(lij,lkp))

with p(lij,lkp) denoting the prior joint probability of
labels lij, and lkp in the data, which is independent
from the general classification context and hence can
be calculated off-line6 .

The ILP model consists of the target function and
a set of constraints which block illegal assignments
(e.g. only one label of the given task can be se-
lected)7 . In our case the target function is the cost
function Q(f), which we want to minimize:

min Q(f) =
∑

Ti∈T

∑

lij∈Li

c(lij) · x(lij)

+
∑

Ti,Tk∈T,i<k

∑

lij ,lkp∈Li×Lk

c(lij , lkp) · x(lij , lkp)

Constraints need to be formulated for both the
simple and compound variables. First we want to
ensure that exactly one label lij belonging to task Ti

is selected, i.e. only one simple variable x(lij) rep-
resenting labels of a given task can be set to 1:

∑

lij∈Li

x(lij) = 1, ∀i ∈ {1, ..., n}

We also require that if two simple variables x(lij)
and x(lkp), modeling respectively labels lij and lkp

are set to 1, then the compound variable x(lij , lkp),
which models co-occurrence of these labels, is also
set to 1. This is done in two steps: we first en-
sure that if x(lij) = 1, then exactly one variable
x(lij , lkp) must also be set to 1:

x(lij)−
∑

lkp∈Lk

x(lij , lkp) = 0,

∀i, k ∈ {1, ..., n}, i < k ∧ j ∈ {1, ..., mi}

and do the same for variable x(lkp):

6In Section 5 we discuss an alternative approach which con-
siders the actual input.

7For a detailed overview of linear programming and differ-
ent types of LP problems see e.g. Nemhauser & Wolsey (1999).

138

l 11

1T
Tn

l 21

T2

l n1

l 1m1

l 2m2

l nmn

...
...

...

c(l)11

c(l ,l)
11 2m

11 21

c(l ,l)

1m
 21

c(l ,l)

c(l ,
l)

21 nm

c(l ,l)

c(
l

 ,
l

)
21

n1

c(
l

,l

)

2m

n1

2m n
m

c(l
 ,

l
)

c(l)2m21c(l)

c(l)n1

c(l)nm

1mc(l)

1m 2m

Figure 2: Graph representation of the ILP model.

x(lkp)−
∑

lij∈Li

x(lij , lkp) = 0,

∀i, k ∈ {1, ..., n}, i < k ∧ p ∈ {1, ..., mk}

Finally, we constrain the values of both simple
and compound variables to be binary:

x(lij) ∈ {0, 1} ∧ x(lij , lkp) ∈ {0, 1},

∀i, k ∈ {1, ..., n} ∧ j ∈ {1, ..., mi} ∧ p ∈ {1, ..., mk}

3.2 Graphical Representation
We can represent the decision process that our ILP
model involves as a graph, with the nodes corre-
sponding to individual labels and the edges marking
the association between labels belonging to corre-
lated tasks. In Figure 2, task T1 is correlated with
task T2 and task T2 with task Tn. No correlation
exists for pair T1, Tn. Both nodes and edges are
augmented with costs. The goal is to select a sub-
set of connected nodes, minimizing the overall cost,
given that for each group of nodes T1, T2, ..., Tn ex-
actly one node must be selected, and the selected
nodes, representing correlated tasks, must be con-
nected. We can see that in contrast to the pipeline
approach (cf. Figure 1), no local decisions determine
the overall assignment as the global distribution of
costs is considered.

4 Application for NL Generation Tasks

We applied the ILP model described in the previous
section to integrate different tasks in an NLG ap-
plication that we describe in detail in Marciniak &

Strube (2004). Our classification-based approach to
language generation assumes that different types of
linguistic decisions involved in the generation pro-
cess can be represented in a uniform way as clas-
sification problems. The linguistic knowledge re-
quired to solve the respective classifications is then
learned from a corpus annotated with both seman-
tic and grammatical information. We have applied
this framework to generating natural language route
directions, e.g.:

(a) Standing in front of the hotel (b) fol-
low Meridian street south for about 100
meters, (c) passing the First Union Bank
entrance on your right, (d) until you see
the river side in front of you.

We analyze the content of such texts in terms of
temporally related situations, i.e. actions (b), states
(a) and events (c,d), denoted by individual discourse
units8. The semantics of each discourse unit is fur-
ther given by a set of attributes specifying the se-
mantic frame and aspectual category of the pro-
filed situation. Our corpus of semantically anno-
tated route directions comprises 75 texts with a to-
tal number of 904 discourse units (see Marciniak &
Strube (2005)). The grammatical form of the texts
is modeled in terms of LTAG trees also represented
as feature vectors with individual features denoting
syntactic and lexical elements at both the discourse
and clause levels. The generation of each discourse
unit consists in assigning values to the respective
features, of which the LTAG trees are then assem-
bled. In Marciniak & Strube (2004) we implemented
the generation process sequentially as a cascade of
classifiers that realized incrementally the vector rep-
resentation of the generated text’s form, given the
meaning vector as input. The classifiers handled the
following eight tasks, all derived from the LTAG-
based representation of the grammatical form:
T1: Discourse Units Rank is concerned with or-
dering discourse units at the local level, i.e. only
clauses temporally related to the same parent clause
are considered. This task is further split into a series
of binary precedence classifications that determine
the relative position of two discourse units at a time

8The temporal structure was represented as a tree, with dis-
course units as nodes.

139

Discourse Unit T3 T4 T5

Pass the First Union Bank ... null vp bare inf.
It is necessary that you pass ... null np+vp bare inf.
Passing the First Union Bank ... null vp gerund
After passing ... after vp gerund
After your passing . . . after np+vp gerund
As you pass ... as np+vp fin. pres.
Until you pass ... until np+vp fin. pres.
Until passing . . . until vp gerund

Table 1: Different realizations of tasks: Connective, Verb

Form and S Exp. Rare but correct constructions are in italics.

T : Verb Lex6

T : Phrase Type7

T : Phrase Rank8

4T : S Exp.

T : Disc. Units Dir.2

T : Verb Form5

T : Disc. Units Rank1

T : Connective3

Figure 3: Correlation network for the generation tasks. Cor-

related tasks, are connected with lines.

(e.g. (a) before (c), (c) before (d), etc.). These partial
results are later combined to determine the ordering.
T2: Discourse Unit Position specifies the position
of the child discourse unit relative to the parent one
(e.g. (a) left of (b), (c) right of (b), etc.).
T3: Discourse Connective determines the lexical
form of the discourse connective (e.g. null in (a), un-
til in (d)).
T4: S Expansion specifies whether a given dis-
course unit would be realized as a clause with the
explicit subject (i.e. np+vp expansion of the root S
node in a clause) (e.g. (d)) or not (e.g. (a), (b)).
T5: Verb Form determines the form of the main
verb in a clause (e.g. gerund in (a), (c), bare infini-
tive in (b), finite present in (d)).
T6: Verb Lexicalization provides the lexical form
of the main verb (e.g. stand, follow, pass, etc.).
T7: Phrase Type determines for each verb argu-
ment in a clause its syntactic realization as a noun
phrase, prepositional phrase or a particle.
T8: Phrase Rank determines the ordering of verb
arguments within a clause. As in T1 this task is split
into a number binary classifications.

To apply the LP model to the generation problem
discussed above, we first determined which pairs of
tasks are correlated. The obtained network (Fig-
ure 3) is consistent with traditional analyses of the
linguistic structure in terms of adjacent but sepa-
rate levels: discourse, clause, phrase. Only a few
correlations extend over level boundaries and tasks
within those levels are correlated. As an example
consider three interrelated tasks: Connective, S Exp.
and Verb Form and their different realizations pre-
sented in Table 1. Apparently different realization
of any of these tasks can affect the overall meaning
of a discourse unit or its stylistics. It can also be seen
that only certain combinations of different forms are
allowed in the given semantic context. We can con-
clude that for such groups of tasks sequential pro-
cessing may fail to deliver an optimal assignment.

5 Experiments and Results

In order to evaluate our approach we conducted
experiments with two implementations of the ILP
model and two different pipelines (presented below).
Each system takes as input a tree structure, repre-
senting the temporal structure of the text. Individ-
ual nodes correspond to single discourse units and
their semantic content is given by respective feature
vectors. Generation occurs in a number of stages,
during which individual discourse units are realized.

5.1 Implemented Systems

We used the ILP model described in Section 3 to
build two generation systems. To obtain assignment
costs, both systems get a probability distribution for
each task from basic classifiers trained on the train-
ing data. To calculate the separation costs, modeling
the stochastic constraints on the co-occurrence of la-
bels, we considered correlated tasks only (cf. Figure
3) and applied two calculation methods, which re-
sulted in two different system implementations.

In ILP1, for each pair of tasks we computed the
joint distribution of the respective labels consider-
ing all discourse units in the training data before the
actual input was known. Such obtained joint distri-
butions were used for generating all discourse units
from the test data. An example matrix with joint dis-
tribution for selected labels of tasks Connective and
Verb Form is given in Table 2. An advantage of this

140

null and as after until T3 Connective
T5 Verb Form

0.40 0.18 0 0 0 bare inf
0 0 0 0.04 0.01 gerund

0.05 0.01 0.06 0.03 0.06 fin pres
0.06 0.05 0 0 0 will inf

Table 2: Joint distribution matrix for selected labels of tasks
Connective (horizontal) and Verb Form (vertical), computed for
all discourse units in a corpus.

null and as after until T3 Connective
T5 Verb Form

0.13 0.02 0 0 0 bare inf
0 0 0 0 0 gerund
0 0 0.05 0.02 0.27 fin pres

0.36 0.13 0 0 0 will inf

Table 3: Joint distribution matrix for tasks Connective and
Verb Form, considering only discourse units similar to (c): until
you see the river side in front of you, at Phi-threshold ≥ 0.8.

approach is that the computation can be done in an
offline mode and has no impact on the run-time.

In ILP2, the joint distribution for a pair of tasks
was calculated at run-time, i.e. only after the actual
input had been known. This time we did not con-
sider all discourse units in the training data, but only
those whose meaning, represented as a feature vec-
tor was similar to the meaning vector of the input
discourse unit. As a similarity metric we used the
Phi coefficient9 , and set the similarity threshold at
0.8. As can be seen from Table 3, the probability
distribution computed in this way is better suited to
the specific semantic context. This is especially im-
portant if the available corpus is small and the fre-
quency of certain pairs of labels might be too low to
have a significant impact on the final assignment.

As a baseline we implemented two pipeline sys-
tems. In the first one we used the ordering of
tasks most closely resembling the conventional NLG
pipeline (see Figure 4). Individual classifiers had ac-
cess to both the semantic features, and those output
by the previous modules. To train the classifiers,
the correct feature values were extracted from the
training data and during testing the generated, and
hence possibly erroneous, values were taken. In the

9Phi is a measure of the extent of correlation between two
sets of binary variables, see e.g. Edwards (1976). To represent
multi-class features on a binary scale we applied dummy cod-
ing which transforms multi class-nominal variables to a set of
dummy variables with binary values.

other pipeline system we wanted to minimize the
error-propagation effect and placed the tasks in the
order of decreasing accuracy. To determine the or-
dering of tasks we applied the following procedure:
the classifier with the highest baseline accuracy was
selected as the first one. The remaining classifiers
were trained and tested again, but this time they had
access to the additional feature. Again, the classi-
fier with the highest accuracy was selected and the
procedure was repeated until all classifiers were or-
dered.

5.2 Evaluation

We evaluated our system using leave-one-out cross-
validation, i.e. for all texts in the corpus, each
text was used once for testing, and the remaining
texts provided the training data. To solve individ-
ual classification tasks we used the decision tree
learner C4.5 in the pipeline systems and the Naive
Bayes algorithm10 in the ILP systems. Both learn-
ing schemes yielded highest results in the respec-
tive configurations11 . For each task we applied
a feature selection procedure (cf. Kohavi & John
(1997)) to determine which semantic features should
be taken as the input by the respective basic classi-
fiers12. We started with an empty feature set, and
then performed experiments checking classification
accuracy with only one new feature at a time. The
feature that scored highest was then added to the fea-
ture set and the whole procedure was repeated itera-
tively until no performance improvement took place,
or no more features were left.

To evaluate individual tasks we applied two met-
rics: accuracy, calculated as the proportion of cor-
rect classifications to the total number of instances,
and the κ statistic, which corrects for the propor-
tion of classifications that might occur by chance13

10Both implemented in the Weka machine learning software
(Witten & Frank, 2000).

11We have found that in direct comparison C4.5 reaches
higher accuracies than Naive Bayes but the probability distri-
bution that it outputs is strongly biased towards the winning la-
bel. In this case it is practically impossible for the ILP system
to change the classifier’s decision, as the costs of other labels
get extremely high. Hence the more balanced probability dis-
tribution given by Naive Bayes can be easier corrected in the
optimization process.

12I.e. trained using the semantic features only, with no access
to the outputs of other tasks.

13Hence the κ values obtained for tasks of different difficul-

141

Pipeline 1 Pipeline 2 ILP 1 ILP 2
Tasks Pos. Accuracy κ Pos. Accuracy κ Accuracy κ Accuracy κ
Dis.Un. Rank 1 96.81% 90.90% 2 96.81% 90.90% 97.43% 92.66% 97.43% 92.66%
Dis.Un. Pos. 2 98.04% 89.64% 1 98.04% 89.64% 96.10% 77.19% 97.95% 89.05%
Connective 3 78.64% 60.33% 7 79.10% 61.14% 79.15% 61.22% 79.36% 61.31%
S Exp. 4 95.90% 89.45% 3 96.20% 90.17% 99.48% 98.65% 99.49% 98.65%
Verb Form 5 86.76% 77.01% 4 87.83% 78.90% 92.81% 87.60% 93.22% 88.30%
Verb Lex 6 64.58% 60.87% 8 67.40% 64.19% 75.87% 73.69% 76.08% 74.00%
Phr. Type 7 86.93% 75.07% 5 87.08% 75.36% 87.33% 76.75% 88.03% 77.17%
Phr. Rank 8 84.73% 75.24% 6 86.95% 78.65% 90.22% 84.02% 91.27% 85.72%

Phi 0.85 0.87 0.89 0.90

Table 4: Results reached by the implemented ILP systems and two baselines. For both pipeline systems, Pos. stands for the
position of the tasks in the pipeline.

(Siegel & Castellan, 1988). For end-to-end evalua-
tion, we applied the Phi coefficient to measure the
degree of similarity between the vector representa-
tions of the generated form and the reference form
obtained from the test data. The Phi statistic is sim-
ilar to κ as it compensates for the fact that a match
between two multi-label features is more difficult to
obtain than in the case of binary features. This mea-
sure tells us how well all the tasks have been solved
together, which in our case amounts to generating
the whole text.

The results presented in Table 4 show that the ILP
systems achieved highest accuracy and κ for most
tasks and reached the highest overall Phi score. No-
tice that for the three correlated tasks that we consid-
ered before, i.e. Connective, S Exp. and Verb Form,
ILP2 scored noticeably higher than the pipeline sys-
tems. It is interesting to see the effect of sequential
processing on the results for another group of cor-
related tasks, i.e. Verb Lex, Phrase Type and Phrase
Rank (cf. Figure 3). Verb Lex got higher scores
in Pipeline2, with outputs from both Phrase Type
and Phrase Rank (see the respective pipeline posi-
tions), but the reverse effect did not occur: scores
for both phrase tasks were lower in Pipeline1 when
they had access to the output from Verb Lex, con-
trary to what we might expect. Apparently, this was
due to the low accuracy for Verb Lex which caused
the already mentioned error propagation14 . This ex-
ample shows well the advantage that optimization
processing brings: both ILP systems reached much

ties can be directly compared, which gives a clear notion how
well individual tasks have been solved.

14Apparantly, tasks which involve lexical choice get low
scores with retrieval measures as the semantic content allows
typically more than one correct form

higher scores for all three tasks.

5.3 Technical Notes

The size of an LP model is typically expressed in the
number of variables and constraints. In the model
presented here it depends on the number of tasks in
T , the number of possible labels for each task, and
the number of correlated tasks. For n different tasks
with the average of m labels, and assuming every
two tasks are correlated with each other, the num-
ber of variables in the LP target functions is given
by: num(var) = n · m + 1/2 · n(n − 1) · m2

and the number of constraints by: num(cons) =
n + n · (n− 1) ·m. To solve the ILP models in our
system we use lp solve, an efficient GNU-licence
Mixed Integer Programming (MIP) solver15, which
implements the Branch-and-Bound algorithm. In
our application, the models varied in size from: 557
variables and 178 constraints to 709 variables and
240 constraints, depending on the number of ar-
guments in a sentence. Generation of a text with
23 discourse units took under 7 seconds on a two-
processor 2000 MHz AMD machine.

6 Conclusions

In this paper we argued that pipeline architectures in
NLP can be successfully replaced by optimization
models which are better suited to handling corre-
lated tasks. The ILP formulation that we proposed
extends the classification paradigm already estab-
lished in NLP and is general enough to accommo-
date various kinds of tasks, given the right kind of
data. We applied our model in an NLG applica-
tion. The results we obtained show that discrete

15http://www.geocities.com/lpsolve/

142

optimization eliminates some limitations of sequen-
tial processing, and we believe that it can be suc-
cessfully applied in other areas of NLP. We view
our work as an extension to Roth & Yih (2004) in
two important aspects. We experiment with a larger
number of tasks having a varying number of labels.
To lower the complexity of the models, we apply
correlation tests, which rule out pairs of unrelated
tasks. We also use stochastic constraints, which are
application-independent, and for any pair of tasks
can be obtained from the data.

A similar argument against sequential modular-
ization in NLP applications was raised by van den
Bosch et al. (1998) in the context of word pronun-
ciation learning. This mapping between words and
their phonemic transcriptions traditionally assumes
a number of intermediate stages such as morpho-
logical segmentation, graphemic parsing, grapheme-
phoneme conversion, syllabification and stress as-
signment. The authors report an increase in gener-
alization accuracy when the the modular decompo-
sition is abandoned (i.e. the tasks of conversion to
phonemes and stress assignment get conflated and
the other intermediate tasks are skipped). It is inter-
esting to note that a similar dependence on the inter-
mediate abstraction levels is present in such applica-
tions as parsing and semantic role labelling, which
both assume POS tagging and chunking as their pre-
ceding stages.

Currently we are working on a uniform data for-
mat that would allow to represent different NLP ap-
plications as multi-task optimization problems. We
are planning to release a task-independent Java API
that would solve such problems. We want to use this
generic model for building NLP modules that tradi-
tionally are implemented sequentially.

Acknowledgements: The work presented here
has been funded by the Klaus Tschira Foundation,
Heidelberg, Germany. The first author receives a
scholarship from KTF (09.001.2004).

References
Althaus, E., N. Karamanis & A. Koller (2004). Computing lo-

cally coherent discourses. In Proceedings of the 42 Annual
Meeting of the Association for Computational Linguistics,
Barcelona, Spain, July 21-26, 2004, pp. 399–406.

Buchholz, S., J. Veenstra & W. Daelemans (1999). Cascaded
grammatical relation assignment. In Joint SIGDAT Confer-
ence on Empirical Methods in Natural Language Processing

and Very Large Corpora, College Park, Md., June 21-22,
1999, pp. 239–246.

Chekuri, C., S. Khanna, J. Naor & L. Zosin (2001). Approx-
imation algorithms for the metric labeling problem via a
new linear programming formulation. In Proceedings of the
12th Annual ACM SIAM Symposium on Discrete Algorithms,
Washington, DC, pp. 109–118.

Cunningham, H., K. Humphreys, Y. Wilks & R. Gaizauskas
(1997). Software infrastructure for natural language process-
ing. In Proceedings of the Fifth Conference on Applied Natu-
ral Language Processing Washington, DC, March 31 - April
3, 1997, pp. 237–244.

Daelemans, W. & A. van den Bosch (1998). Rapid develop-
ment of NLP modules with memory-based learning. In Pro-
ceedings of ELSNET in Wonderland. Utrecht: ELSNET, pp.
105–113.

Edwards, Allen, L. (1976). An Introduction to Linear Regres-
sion and Correlation. San Francisco, Cal.: W. H. Freeman.

Goodman, L. A. & W. H. Kruskal (1972). Measures of asso-
ciation for cross-classification, iv. Journal of the American
Statistical Association, 67:415–421.

Kleinberg, J. M. & E. Tardos (2000). Approximation algorithms
for classification problems with pairwise relationships: Met-
ric labeling and Markov random fields. Journal of the ACM,
49(5):616–639.

Kohavi, R. & G. H. John (1997). Wrappers for feature subset
selection. Artificial Intelligence Journal, 97:273–324.

Marciniak, T. & M. Strube (2004). Classification-based gen-
eration using TAG. In Proceedings of the 3rd International
Conference on Natural Language Generation, Brockenhurst,
UK, 14-16 July, 2004, pp. 100–109.

Marciniak, T. & M. Strube (2005). Modeling and annotating the
semantics of route directions. In Proceedings of the 6th In-
ternational Workshop on Computational Semantics, Tilburg,
The Netherlands, January 12-14, 2005, pp. 151–162.

Nemhauser, G. L. & L. A. Wolsey (1999). Integer and combi-
natorial optimization. New York, NY: Wiley.

Punyakanok, V., D. Roth, W. Yih & Z. Dav (2004). Semantic
role labeling via integer linear programming inference. In
Proceedings of the 20th International Conference on Com-
putational Linguistics, Geneva, Switzerland, August 23-27,
2004, pp. 1346–1352.

Reiter, E. (1994). Has a consensus NL generation architecture
appeared, and is it psycholinguistically plausible? In Pro-
ceedings of the 7th International Workshop on Natural Lan-
guage Generation, Kennebunkport, Maine, pp. 160–173.

Reiter, E. & R. Dale (2000). Building Natural Language Gener-
ation Systems. Cambridge, UK: Cambridge University Press.

Roth, D. & W. Yih (2004). A linear programming formulation
for global inference in natural language tasks. In Proceed-
ings of the 8th Conference on Computational Natural Lan-
guage Learning, Boston, Mass., May 2-7, 2004, pp. 1–8.

Siegel, S. & N. J. Castellan (1988). Nonparametric Statistics
for the Behavioral Sciences. New York, NY: McGraw-Hill.

Soon, W. M., H. T. Ng & D. C. L. Lim (2001). A machine
learning approach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

van den Bosch, A., T. Weijters & W. Daelemans (1998). Modu-
larity in inductively-learned word pronunciation systems. In
D. Powers (Ed.), Proceedings of NeMLaP3/CoNLL98, pp.
185–194.

Witten, I. H. & E. Frank (2000). Data Mining - Practical Ma-
chine Learning Tools and Techniques with Java Implementa-
tions. San Francisco, Cal.: Morgan Kaufmann.

143

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 144–151, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Investigating the Effects of Selective Sampling on the Annotation Task

Ben Hachey, Beatrice Alexand Markus Becker
School of Informatics

University of Edinburgh
Edinburgh, EH8 9LW, UK

{bhachey,v1balex,s0235256 }@inf.ed.ac.uk

Abstract

We report on an active learning experi-
ment for named entity recognition in the
astronomy domain. Active learning has
been shown to reduce the amount of la-
belled data required to train a supervised
learner by selectively sampling more in-
formative data points for human annota-
tion. We inspect double annotation data
from the same domain and quantify poten-
tial problems concerning annotators’ per-
formance. For data selectively sampled
according to different selection metrics,
we find lower inter-annotator agreement
and higher per token annotation times.
However, overall results confirm the util-
ity of active learning.

1 Introduction

Supervised training of named entity recognition
(NER) systems requires large amounts of manually
annotated data. However, human annotation is typ-
ically costly and time-consuming. Active learn-
ing promises to reduce this cost by requesting only
those data points for human annotation which are
highly informative. Example informativity can be
estimated by the degree of uncertainty of a single
learner as to the correct label of a data point (Cohn
et al., 1995) or in terms of the disagreement of a
committee of learners (Seung et al., 1992). Ac-
tive learning has been successfully applied to a va-
riety of tasks such as document classification (Mc-
Callum and Nigam, 1998), part-of-speech tagging

(Argamon-Engelson and Dagan, 1999), and parsing
(Thompson et al., 1999).

We employ a committee-based method where the
degree of deviation of different classifiers with re-
spect to their analysis can tell us if an example is
potentially useful. In a companion paper (Becker et
al., 2005), we present active learning experiments
for NER in radio-astronomical texts following this
approach.1 These experiments prove the utility of
selective sampling and suggest that parameters for a
new domain can be optimised in another domain for
which annotated data is already available.

However there are some provisos for active learn-
ing. An important point to consider is what effect
informativeexamples have on the annotators. Are
these examples more difficult? Will they affect the
annotators’ performance in terms of accuracy? Will
they affect the annotators performance in terms of
time? In this paper, we explore these questions us-
ing doubly annotated data. We find that selective
sampling does have an adverse effect on annotator
accuracy and efficiency.

In section 2, we present standard active learn-
ing results showing that good performance can be
achieved using fewer examples than random sam-
pling. Then, in section 3, we address the questions
above, looking at the relationship between inter-
annotator agreement and annotation time and the ex-
amples that are selected by active learning. Finally,
section 4 presents conclusions and future work.

1Please refer to the companion paper for details of the
selective sampling approach with experimental adaptation re-
sults as well as more information about the corpus of radio-
astronomical abstracts.

144

2 Bootstrapping NER

The work reported here was carried out in order to
assess methods of porting a statisticalNER system to
a new domain. We started with aNER system trained
on biomedical literature and built a new system to
identify four novel entities in abstracts from astron-
omy articles. This section introduces the Astronomy
Bootstrapping Corpus (ABC) which was developed
for the task, describes our active learning approach
to bootstrapping, and gives a brief overview of the
experiments.

2.1 The Astronomy Bootstrapping Corpus

The ABC corpus consists of abstracts of radio astro-
nomical papers from the NASA Astrophysics Data
System archive2, a digital library for physics, as-
trophysics, and instrumentation. Abstracts were ex-
tracted from the years 1997-2003 that matched the
query “quasar AND line”. A set of 50 abstracts
from the year 2002 were annotated as seed mate-
rial and 159 abstracts from 2003 were annotated as
testing material. A further 778 abstracts from the
years 1997-2001 were provided as an unannotated
pool for bootstrapping. On average, these abstracts
contain 10 sentences with a length of 30 tokens. The
annotation marks up four entity types:

Instrument-name (IN) Names of telescopes and
other measurement instruments, e.g.Superconduct-
ing Tunnel Junction (STJ) camera, Plateau de Bure
Interferometer, Chandra, XMM-Newton Reflection
Grating Spectrometer (RGS), Hubble Space Tele-
scope.

Source-name (SN) Names of celestial objects,
e.g. NGC 7603, 3C 273, BRI 1335-0417, SDSSp
J104433.04-012502.2, PC0953+ 4749.

Source-type (ST) Types of objects, e.g.Type II Su-
pernovae (SNe II), radio-loud quasar, type 2 QSO,
starburst galaxies, low-luminosity AGNs.

Spectral-feature (SF) Features that can be
pointed to on a spectrum, e.g.Mg II emission, broad
emission lines, radio continuum emission at 1.47
GHz, CO ladder from (2-1) up to (7-6), non-LTE
line.

2http://adsabs.harvard.edu/preprint_
service.html

The seed and test data sets were annotated by two
astrophysics PhD students. In addition, they anno-
tated 1000 randomly sampled sentences from the
pool to provide a random baseline for active learn-
ing. These sentences were doubly annotated and ad-
judicated and form the basis for our calculations in
section 3.

2.2 Inter-Annotator Agreement

In order to ensure consistency in annotation projects,
corpora are often annotated by more than one an-
notator, e.g. in the annotation of the Penn Treebank
(Marcus et al., 1994). In these cases, inter-annotator
agreement is frequently reported between different
annotated versions of a corpus as an indicator for
the difficulty of the annotation task. For example,
Brants (2000) reports inter-annotator agreement in
terms of accuracy and f-score for the annotation of
the German NEGRA treebank.

Evaluation metrics for named entity recognition
are standardly reported as accuracy on the token
level, and as f-score on the phrasal level, e.g.
Sang (2002), where token level annotation refers to
the B-I-O coding scheme.3 Likewise, we will use
accuracy to report inter-annotator agreement on the
token level, and f-score for the phrase level. We
may arbitrarily assign one annotator’s data as the
gold standard, since both accuracy and f-score are
symmetric with respect to the test and gold set. To
see why this is the case, note that accuracy can sim-
ply be defined as the ratio of the number of tokens
on which the annotators agree over the total number
of tokens. Also the f-score is symmetric, since re-
call(A,B) = precision(B,A) and (balanced) f-score is
the harmonic mean of recall and precision (Brants,
2000). The pairwise f-score for the ABC corpus is
85.52 (accuracy of 97.15) with class information and
86.15 (accuracy of 97.28) without class information.
The results in later sections will be reported using
this pairwise f-score for measuring agreement.

For NER, it is also common to compare an anno-
tator’s tagged document to the final, reconciled ver-
sion of the document, e.g. Robinson et al. (1999)
and Strassel et al. (2003). The inter-annotator f-
score agreement calculated this way for MUC-7 and
Hub 4 was measured at 97 and 98 respectively. The

3B-X marks the beginning of a phrase of type X, I-X denotes
the continuation of an X phrase, and O a non-phrasal token.

145

doubly annotated data for the ABC corpus was re-
solved by the original annotators in the presence
of an astronomy adjudicator (senior academic staff)
and a computational linguist. This approach gives
an f-score of 91.89 (accuracy of 98.43) with class
information for the ABC corpus. Without class in-
formation, we get an f-score of 92.22 (accuracy of
98.49), indicating that most of our errors are due to
boundary problems. These numbers suggest that our
task is more difficult than the genericNER tasks from
the MUC and HUB evaluations.

Another common agreement metric is the kappa
coefficient which normalises token level accuracy
by chance, e.g. Carletta et al. (1997). This met-
ric showed that the human annotators distinguish
the four categories with a reproducibility of K=.925
(N=44775, k=2; where K is the kappa coefficient,
N is the number of tokens and k is the number of
annotators).

2.3 Active Learning

We have already mentioned that there are two main
approaches in the literature to assessing the informa-
tivity of an example: the degree of uncertainty of a
single learner and the disagreement between a com-
mittee of learners. For the current work, we employ
query-by-committee (QBC). We use a conditional
Markov model (CMM) tagger (Klein et al., 2003;
Finkel et al., 2005) to train two different models on
the same data by splitting the feature set. In this sec-
tion we discuss several parameters of this approach
for the current task.

Level of annotation For the manual annotation of
named entity examples, we needed to decide on the
level of granularity. The question arises of what con-
stitutes an example that will be submitted to the an-
notators. Possible levels include the document level,
the sentence level and the token level. The most fine-
grained annotation would certainly be on the token
level. However, it seems unnatural for the annota-
tor to label individual tokens. Furthermore, our ma-
chine learning tool models sequences at the sentence
level and does not allow to mix unannotated tokens
with annotated ones. At the other extreme, one may
submit an entire document for annotation. A possi-
ble disadvantage is that a document with some inter-
esting parts may well contain large portions with re-

dundant, already known structures for which know-
ing the manual annotation may not be very useful.
In the given setting, we decided that the best granu-
larity is the sentence.

Sample Selection Metric There are a variety of
metrics that could be used to quantify the degree
of deviation between classifiers in a committee (e.g.
KL-divergence, information radius, f-measure). The
work reported here uses two sentence-level met-
rics based on KL-divergence and one based on f-
measure.

KL-divergencehas been used for active learning
to quantify the disagreement of classifiers over the
probability distribution of output labels (McCallum
and Nigam, 1998; Jones et al., 2003). It measures
the divergence between two probability distributions
p andq over the same event spaceχ:

D(p||q) =
∑
x∈χ

p(x) log
p(x)
q(x)

(1)

KL-divergence is a non-negative metric. It is zero
for identical distributions; the more different the two
distributions, the higher the KL-divergence. Intu-
itively, a high KL-divergence score indicates an in-
formative data point. However, in the current formu-
lation, KL-divergence only relates to individual to-
kens. In order to turn this into a sentence score, we
need to combine the individual KL-divergences for
the tokens within a sentence into one single score.
We employed mean and max.

The f-complementhas been suggested for active
learning in the context of NP chunking as a struc-
tural comparison between the different analyses of
a committee (Ngai and Yarowsky, 2000). It is the
pairwise f-measure comparison between the multi-
ple analyses for a given sentence:

fMcomp =
1
2

∑
M,M ′∈M

(1− F1(M(t),M ′(t))) (2)

whereF1 is the balanced f-measure ofM(t) and
M ′(t), the preferred analyses of data pointt accord-
ing to different membersM,M ′ of ensembleM.
We take the complement so that it is oriented the
same as KL-divergence with high values indicating
high disagreement. This is equivalent to taking the
inter-annotator agreement between|M| classifiers.

146

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 10000 15000 20000 25000 30000 35000 40000 45000

F-
sc

or
e

Number of Tokens in Training Data

Ave KL-divergence
Random sampling

Figure 1: Learning curve of the real AL experiment.

2.4 Experiments

To tune the active learning parameters discussed
in section 2.3, we ran detailed simulated experi-
ments on the named entity data from the BioNLP
shared task of the COLING 2004 International
Joint Workshop on Natural Language Processing in
Biomedicine and its Applications (Kim et al., 2004).
These results are treated in detail in the companion
paper (Becker et al., 2005).

We used the CMM tagger to train two different
models by splitting the feature set to give multiple
views of the same data. The feature set was hand-
crafted such that it comprises different views while
empirically ensuring that performance is sufficiently
similar. On the basis of the findings of the simulation
experiments we set up the real active learning anno-
tation experiment using: average KL-divergence as
the selection metric and a feature split that divides
the full feature set roughly into features of words
and features derived from external resources. As
smaller batch sizes require more retraining iterations
and larger batch sizes increase the amount of anno-
tation necessary at each round and could lead to un-
necessary strain for the annotators, we settled on a
batch size of 50 sentences for the real AL experi-
ment as a compromise between computational cost
and work load for the annotator.

We developed an active annotation tool and ran
real annotation experiments on the astronomy ab-
stracts described in section 2.1. The tool was given
to the same astronomy PhD students for annotation
who were responsible for the seed and test data. The
learning curve for selective sampling is plotted in

figure 1.4 The randomly sampled data was dou-
bly annotated and the learning curve is averaged be-
tween the two annotators.

Comparing the selective sampling performance to
the baseline, we confirm that active learning pro-
vides a significant reduction in the number of exam-
ples that need annotating. In fact, the random curve
reaches an f-score of 76 after approximately 39000
tokens have been annotated while the selective sam-
pling curve reaches this level of performance after
only ≈ 24000 tokens. This represents a substantial
reduction in tokens annotated of 38.5%. In addition,
at 39000 tokens, selectively sampling offers an error
reduction of 21.4% with a 3 point improvement in
f-score.

3 Evaluating Selective Sampling

Standardly, the evaluation of active learning meth-
ods and the comparison of sample selection metrics
draws on experiments over gold-standard annotated
corpora, where a set of annotated data is at our dis-
posal, e.g. McCallum and Nigam (1998), Osborne
and Baldridge (2004). This assumes implicitly that
annotators will always produce gold-standard qual-
ity annotations, which is typically not the case, as we
discussed in Section 2.2. What is more, we speculate
that annotators might have an even higher error rate
on the supposedly more informative, but possibly
also more difficult examples. However, this would
not be reflected in the carefully annotated and veri-
fied examples of a gold standard corpus. In the fol-
lowing analysis, we leverage information from dou-
bly annotated data to explore the effects on annota-
tion of selectively sampled examples.

To evaluate the practicality and usefulness of ac-
tive learning as a generally applicable methodology,
it is desirable to be able to observe the behaviour
of the annotators. In this section, we will report on
the evaluation of various subsets of the doubly an-
notated portion of the ABC corpus comprising 1000
sentences, which we sample according to a sample
selection metric. That is, examples are added to the
subsets according to the sample selection metric, se-
lecting those with higher disagreement first. This
allows us to trace changes in inter-annotator agree-

4Learning curves reflect the performance on the test set us-
ing the full feature set.

147

ment between the full corpus and selected subsets
thereof. Also, we will inspect timing information.
This novel methodology allows us to experiment
with different sample selection metrics without hav-
ing to repeat the actual time and resource intensive
annotation.

3.1 Error Analysis

To investigate the types of classification errors, it is
common to set up a confusion matrix. One approach
is to do this at the token level. However, we are deal-
ing with phrases and our analysis should reflect that.
Thus we devised a method for constructing a confu-
sion matrix based on phrasal alignment. These con-
fusion matrices are constructed by giving a double
count for each phrase that has matching boundaries
and a single count for each phrase that does not have
matching boundaries. To illustrate, consider the fol-
lowing sentences–annotated with phrasesA, B, and
C for annotator 1 on top and annotator 2 on bottom–
as sentence 1 and sentence 2 respectively:

A A

BA C
A

BA C

A

Sentence 1 will get a count of 2 forA/A and for
A/B and a count of 1 for O/C, while sentence 2
will get 2 counts ofA/O, and 1 count each of O/A,
O/B, and O/C. Table 1 contains confusion matrices
for the first 100 sentences sorted by averaged KL-
divergence and for the full set of 1000 random sen-
tences from the pool data. (Note that these confusion
matrices contain percentages instead of raw counts
so they can be directly compared.)

We can make some interesting observations look-
ing at these phrasal confusion matrices. The main
effect we observed is the same as was suggested by
the f-score inter-annotator agreement errors in sec-
tion 2.1. Specifically, looking at the full random set
of 1000 sentences, almost all errors (Where∗ is any
entity phrase type,∗/O + O/∗ errors

all errors = 95.43%) are
due to problems with phrase boundaries. Compar-
ing the full random set to the 100 sentences with
the highest averaged KL-divergence, we can see that
this is even more the case for the sub-set of 100 sen-
tences (97.43%). Therefore, we can observe that

100: A2
IN SN ST SF O

IN 12.0 0.0 0.0 0.0 0.4
SN 0.0 10.4 0.0 0.0 0.4

A1 ST 0.0 0.4 30.3 0.0 1.0
SF 0.0 0.0 0.0 31.1 3.9
O 0.2 0.4 2.9 6.4 —

1000: A2
IN SN ST SF O

IN 9.4 0.0 0.0 0.0 0.3
SN 0.0 10.1 0.2 0.1 0.3

A1 ST 0.0 0.1 41.9 0.1 1.6
SF 0.0 0.0 0.1 25.1 3.0
O 0.3 0.2 2.4 4.8 —

Table 1: Phrasal confusion matrices for document
sub-set of 100 sentences sorted by average KL-
divergence and for full random document sub-set of
1000 sentences (A1: Annotator 1, A2: Annotator 2).

Entity 100 1000

Instrument-name 12.4% 9.7%
Source-name 10.8% 10.7%
Source-type 31.7% 43.7%
Spectral-feature 35.0% 28.2%
O 9.9% 7.7%

Table 2: Normalised distributions of agreed entity
annotations.

there is a tendency for the averaged KL-divergence
selection metric to choose sentences where phrase
boundary identification is difficult.

Furthermore, comparing the confusion matrices
for 100 sentences and for the full set of 1000 shows
that sentences containing less common entity types
tend to be selected first while sentences containing
the most common entity types are dispreferred. Ta-
ble 2 contains the marginal distribution for annotator
1 (A1) from the confusion matrices for the ordered
sub-set of 100 and for the full random set of 1000
sentences. So, for example, the sorted sub-set con-
tains 12.4%Instrument-name annotations (the
least common entity type) while the full set con-
tains 9.7%. And, 31.7% of agreed entity annota-
tions in the first sub-set of 100 areSource-type
(the most common entity type), whereas the propor-

148

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0 5000 10000 15000 20000 25000 30000

In
te

r-
an

no
ta

to
r A

gr
ee

m
en

t (
A

cc
)

Size (Tokens) of KL-sorted Document Subset

KL-divergence

Figure 2: Raw agreement plotted against KL-sorted
document subsets.

tion of agreedSource-type annotations in the
full random set is 43.7%. Looking at the O row, we
also observe that sentences with difficult phrases are
preferred. A similar effect can be observed in the
marginals for annotator 2.

3.2 Annotator Performance

So far, the behaviour we have observed is what you
would expect from selective sampling; there is a
marked improvement in terms of cost and error rate
reduction over random sampling. However, selec-
tive sampling raises questions of cognitive load and
the quality of annotation. In the following section
we investigate the relationship between informativ-
ity, inter-annotator agreement, and annotation time.

While reusability of selective samples for other
learning algorithms has been explored (Baldridge
and Osborne, 2004), no effort has been made to
quantify the effect of selective sampling on anno-
tator performance. We concentrate first on the ques-
tion: Are informative examples more difficult to an-
notate? One way to quantify this effect is to look
at the correlation between human agreement and the
token-level KL-divergence. The Pearson correlation
coefficient indicates the degree to which two vari-
ables are related. It ranges between−1 and1, where
1 means perfectly positive correlation, and−1 per-
fectly negative correlation. A value of0 indicates no
correlation. The Pearson correlation coefficient on
all tokens gives a very weak correlation coefficient
of −0.009.5 However, this includes many trivial to-

5In order to make this calculation, we give token-level agree-

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 100 200 300 400 500 600 700 800 900 1000

In
te

r-
an

no
ta

to
r A

gr
ee

m
en

t (
F)

Size (Sents) of Selection Metric-sorted Subset

Ave KL-divergence
Max KL-divergence

F-complement

Figure 3: Human disagreement plotted against se-
lection metric-sorted document subsets.

kens which are easily identified as being outside an
entity phrase. If we look just at tokens that at least
one of the annotators posits as being part of an en-
tity phrase, we observe a larger effect with a Pear-
son correlation coefficient of−0.120, indicating that
agreement tends to be low when KL-divergence is
high. Figure 2 illustrates this effect even more dra-
matically. Here we plot accuracy against token sub-
sets of size1000, 2000, .., N where tokens are added
to the subsets according to their KL-divergence, se-
lecting those with the highest values first. This
demonstrates clearly that tokens with higher KL-
divergence have lower inter-annotator agreement.

However, as discussed in sections 2.3 and 2.4,
we decided on sentences as the preferred annota-
tion level. Therefore, it is important to explore these
relationships at the sentence level as well. Again,
we start by looking at the Pearson correlation coeffi-
cient between f-score inter-annotator agreement (as
described in section 2.1) and our active learning se-
lection metrics:

Ave KL Max KL 1-F

All Tokens −0.090 −0.145 −0.143
O Removed −0.042 −0.092 −0.101

HereO Removedmeans that sentences are removed
for which the annotators agree that there are no en-
tity phrases (i.e. all tokens are labelled as being
outside an entity phrase). This shows a relation-

ment a numeric representation by assigning1 to tokens on
which the annotators agree and0 to tokens on which they dis-
agree.

149

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 ti
m

e
pe

r t
ok

en

Size (Sents) of Selection Metric-sorted Subset

Ave KL-divergence
Max KL-divergence

F-complement

Figure 4: Annotation time plotted against selection
metric-sorted document subsets.

ship very similar to what we observed at the token
level: a negative correlation indicating that agree-
ment is low when KL-divergence is high. Again,
the effect of selecting informative examples is better
illustrated with a plot. Figure 3 plots f-score agree-
ment against sentence subsets sorted by our sentence
level selection metrics. Lower agreement at the left
of these plots indicates that the more informative ex-
amples according to our selection metrics are more
difficult to annotate.

So, active learning makes the annotation more dif-
ficult. But, this raises a further question:What effect
do more difficult examples have on annotation time?
To investigate this, we once again start by looking
at the Pearson correlation coefficient, this time be-
tween the annotation time and our selection metrics.
However, as our sentence-level selection metrics af-
fect the length of sentences selected, we normalise
sentence-level annotation times by sentence length:

Ave KL Max KL 1-F

All Tokens 0.157 −0.009 0.082
O Removed 0.216 −0.007 0.106

Here we see a small positive correlations for av-
eraged KL-divergence and f-complement indicating
that sentences that score higher according to our se-
lection metrics do generally take longer to annotate.
Again, we can visualise this effect better by plotting
average time against KL-sorted subsets (Figure 4).
This demonstrates that sentences preferred by our
selection metrics generally take longer to annotate.

4 Conclusions and Future Work

We have presented active learning experiments in
a novelNER domain and investigated negative side
effects. We investigated the relationship between
informativity of an example, as determined by se-
lective sampling metrics, and inter-annotator agree-
ment. This effect has been quantified using the Pear-
son correlation coefficient and visualised using plots
that illustrate the difficulty and time-intensiveness of
examples chosen first by selective sampling. These
measurements clearly demonstrate that selectively
sampled examples are in fact more difficult to anno-
tate. And, while sentence length and entities per sen-
tence are somewhat confounding factors, we have
also shown that selective sampling of informative
examples appears to increase the time spent on in-
dividual examples.

High quality annotation is important for building
accurate models and for reusability. While anno-
tation quality suffers for selectively sampled exam-
ples, selective sampling nevertheless provided a dra-
matic cost reduction of 38.5% in a real annotation
experiment, demonstrating the utility of active learn-
ing for bootstrappingNER in a new domain.

In future work, we will perform further investi-
gations of the cost of resolving annotations for se-
lectively sampled examples. And, in related work,
we will use timing information to assess token, en-
tity and sentence cost metrics for annotation. This
should also lead to a better understanding of the re-
lationship between timing information and sentence
length for different selection metrics.

Acknowledgements

The work reported here, including the related de-
velopment of the astronomy bootstrapping corpus
and the active learning tools, were supported by
Edinburgh-Stanford Link Grant (R36759) as part of
the SEER project. We are very grateful for the time
and resources invested in corpus preparation by our
collaborators in the Institute for Astronomy, Univer-
sity of Edinburgh: Rachel Dowsett, Olivia Johnson
and Bob Mann. We are also grateful to Melissa Kro-
nenthal and Jean Carletta for help collecting data.

150

References

Shlomo Argamon-Engelson and Ido Dagan. 1999.
Committee-based sample selection for probabilistic
classifiers.Journal of Artificial Intelligence Research,
11:335–360.

Jason Baldridge and Miles Osborne. 2004. Ensemble-
based active learning for parse selection. InPro-
ceedings of the 5th Conference of the North American
Chapter of the Association for Computational Linguis-
tics.

Markus Becker, Ben Hachey, Beatrice Alex, and Claire
Grover. 2005. Optimising selective sampling for boot-
strapping named entity recognition. InICML-2005
Workshop on Learning with Multiple Views.

Thorsten Brants. 2000. Inter-annotator agreement for a
German newspaper corpus. InProceedings of the 2nd
International Conference on Language Resources and
Evaluation (LREC-2000).

Jean Carletta, Amy Isard, Stephen Isard, Jacqueline C.
Kowtko, Gwyneth Doherty-Sneddon, and Anne H.
Anderson. 1997. The reliability of a dialogue
structure coding scheme.Computational Linguistics,
23(1):13–31.

David. A. Cohn, Zoubin. Ghahramani, and Michael. I.
Jordan. 1995. Active learning with statistical mod-
els. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems,
volume 7, pages 705–712. The MIT Press.

Jenny Finkel, Shipra Dingare, Christopher Manning,
Beatrice Alex Malvina Nissim, and Claire Grover.
2005. Exploring the boundaries: Gene and protein
identification in biomedical text.BMC Bioinformat-
ics. In press.

Rosie Jones, Rayid Ghani, Tom Mitchell, and Ellen
Riloff. 2003. Active learning with multiple view fea-
ture sets. InECML 2003 Workshop on Adaptive Text
Extraction and Mining.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduc-
tion to the bio-entity recognition task at JNLPBA.
In Proceedings of the COLING 2004 International
Joint Workshop on Natural Language Processing in
Biomedicine and its Applications.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D. Manning. 2003. Named entity recognition
with character-level models. InProceedings the Sev-
enth Conference on Natural Language Learning.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn treebank.Computational
Linguistics, 19(2):313–330.

Andrew McCallum and Kamal Nigam. 1998. Employing
EM and pool-based active learning for text classifica-
tion. In Proceedings of the 15th International Confer-
ence on Machine Learning.

Grace Ngai and David Yarowsky. 2000. Rule writing
or annotation: Cost-efficient resource usage for base
noun phrase chunking. InProceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics.

Patricia Robinson, Erica Brown, John Burger, Nancy
Chinchor, Aaron Douthat, Lisa Ferro, and Lynette
Hirschman. 1999. Overview: Information extraction
from broadcast news. InProceedings DARPA Broad-
cast News Workshop.

Erik F. Tjong Kim Sang. 2002. Introduction to
the CoNLL-2002 shared task: Language-independent
named entity recognition. InProceedings of the
2002 Conference on Computational Natural Language
Learning.

H. Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. InComputa-
tional Learning Theory.

Stephanie Strassel, Alexis Mitchell, and Shudong Huang.
2003. Multilingual resources for entity extraction. In
Proceedings of the ACL 2003 Workshop on Multilin-
gual and Mixed-language Named Entity Recognition.

Cynthia A. Thompson, Mary Elaine Califf, and Ray-
mond J. Mooney. 1999. Active learning for natural
language parsing and information extraction. InPro-
ceedings of the 16th International Conference on Ma-
chine Learning.

151

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 152–164, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Introduction to the CoNLL-2005 Shared Task:
Semantic Role Labeling

Xavier Carreras and Lluı́s Màrquez
TALP Research Centre

Technical University of Catalonia (UPC)
{carreras,lluism}@lsi.upc.edu

Abstract

In this paper we describe the CoNLL-
2005 shared task on Semantic Role La-
beling. We introduce the specification and
goals of the task, describe the data sets and
evaluation methods, and present a general
overview of the 19 systems that have con-
tributed to the task, providing a compara-
tive description and results.

1 Introduction

In the few last years there has been an increasing
interest in shallow semantic parsing of natural lan-
guage, which is becoming an important component
in all kind of NLP applications. As a particular case,
Semantic Role Labeling (SRL) is currently a well-
defined task with a substantial body of work and
comparative evaluation. Given a sentence, the task
consists of analyzing the propositions expressed by
some target verbs of the sentence. In particular, for
each target verb all the constituents in the sentence
which fill a semantic role of the verb have to be rec-
ognized. Typical semantic arguments include Agent,
Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc.

Last year, the CoNLL-2004 shared task aimed
at evaluating machine learning SRL systems based
only on partial syntactic information. In (Carreras
and Màrquez, 2004) one may find a detailed review
of the task and also a brief state-of-the-art on SRL
previous to 2004. Ten systems contributed to the
task, which was evaluated using the PropBank cor-
pus (Palmer et al., 2005). The best results were

around 70 in F1 measure. Though not directly com-
parable, these figures are substantially lower than the
best results published up to date using full parsing
as input information (F1 slightly over 79). In addi-
tion to the CoNLL-2004 shared task, another evalua-
tion exercise was conducted in the Senseval-3 work-
shop (Litkowski, 2004). Eight systems relying on
full parsing information were evaluated in that event
using the FrameNet corpus (Fillmore et al., 2001).
From the point of view of learning architectures and
study of feature relevance, it is also worth mention-
ing the following recent works (Punyakanok et al.,
2004; Moschitti, 2004; Xue and Palmer, 2004; Prad-
han et al., 2005a).

Following last year’s initiative, the CoNLL-2005
shared task1 will concern again the recognition of
semantic roles for the English language. Compared
to the shared task of CoNLL-2004, the novelties in-
troduced in the 2005 edition are:

• Aiming at evaluating the contribution of full
parsing in SRL, the complete syntactic trees
given by two alternative parsers have been pro-
vided as input information for the task. The
rest of input information does not vary and cor-
responds to the levels of processing treated in
the previous editions of the CoNLL shared task,
i.e., words, PoS tags, base chunks, clauses, and
named entities.

• The training corpus has been substantially en-
larged. This allows to test the scalability of

1The official CoNLL-2005 shared task web page, in-
cluding data, software and systems’ outputs, is available at
http://www.lsi.upc.edu/∼srlconll.

152

learning-based SRL systems to big datasets and
to compute learning curves to see how much
data is necessary to train. Again, we concen-
trate on the PropBank corpus (Palmer et al.,
2005), which is the Wall Street Journal part
of the Penn TreeBank corpus enriched with
predicate–argument structures.

• In order to test the robustness of the pre-
sented systems, a cross-corpora evaluation is
performed using a fresh test set from the Brown
corpus.

Regarding evaluation, two different settings were
devised depending if the systems use the informa-
tion strictly contained in the training data (closed
challenge) or they make use of external sources
of information and/or tools (open challenge). The
closed setting allows to compare systems under
strict conditions, while the open setting aimed at ex-
ploring the contributions of other sources of infor-
mation and the limits of the current learning-based
systems on the SRL task. At the end, all 19 systems
took part in the closed challenge and none of them
in the open challenge.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general setting of the task. Sec-
tion 3 provides a detailed description of training,
development and test data. Participant systems are
described and compared in section 4. In particular,
information about learning techniques, SRL strate-
gies, and feature development is provided, together
with performance results on the development and
test sets. Finally, section 5 concludes.

2 Task Description

As in the 2004 edition, the goal of the task was to
develop a machine learning system to recognize ar-
guments of verbs in a sentence, and label them with
their semantic role. A verb and its set of arguments
form a proposition in the sentence, and typically, a
sentence contains a number of propositions.

There are two properties that characterize the
structure of the arguments in a proposition. First, ar-
guments do not overlap, and are organized sequen-
tially. Second, an argument may appear split into
a number of non-contiguous phrases. For instance,
in the sentence “[A1 The apple], said John, [C−A1

is on the table]”, the utterance argument (labeled
with type A1) appears split into two phrases. Thus,
there is a set of non-overlapping arguments labeled
with semantic roles associated with each proposi-
tion. The set of arguments of a proposition can be
seen as a chunking of the sentence, in which chunks
are parts of the semantic roles of the proposition
predicate.

In practice, number of target verbs are marked
in a sentence, each governing one proposition. A
system has to recognize and label the arguments of
each target verb. To support the role labeling task,
sentences contain input annotations, that consist of
syntactic information and named entities. Section 3
describes in more detail the annotations of the data.

2.1 Evaluation

Evaluation is performed on a collection of unseen
test sentences, that are marked with target verbs and
contain only predicted input annotations.

A system is evaluated with respect to precision,
recall and the F1 measure of the predicted argu-
ments. Precision (p) is the proportion of arguments
predicted by a system which are correct. Recall (r)
is the proportion of correct arguments which are pre-
dicted by a system. Finally, the F1 measure com-
putes the harmonic mean of precision and recall, and
is the final measure to compare the performance of
systems. It is formulated as: Fβ=1 = 2pr/(p + r).

For an argument to be correctly recognized, the
words spanning the argument as well as its semantic
role have to be correct. 2

As an exceptional case, the verb argument of each
proposition is excluded from the evaluation. This ar-
gument is the lexicalization of the predicate of the
proposition. Most of the time, the verb corresponds
to the target verb of the proposition, which is pro-
vided as input, and only in few cases the verb par-
ticipant spans more words than the target verb. Ex-
cept for non-trivial cases, this situation makes the
verb fairly easy to identify and, since there is one
verb with each proposition, evaluating its recogni-
tion over-estimates the overall performance of a sys-
tem. For this reason, the verb argument is excluded
from evaluation.

2The srl-eval.pl program is the official program to
evaluate the performance of a system. It is available at the
Shared Task web page.

153

And CC * (S* (S* * - (AM-DIS*) (AM-DIS*)
to TO (VP* (S* (S(VP* * - * (AM-PNC*
attract VB *) * (VP* * attract (V*) *
younger JJR (NP* * (NP* * - (A1* *
listeners NNS *) *) *)))) * - *) *)
, , * * * * - * *
Radio NNP (NP* * (NP* (ORG* - (A0* (A0*
Free NNP * * * * - * *
Europe NNP *) * *) *) - *) *)
intersperses VBZ (VP*) * (VP* * intersperse * (V*)
the DT (NP* * (NP(NP* * - * (A1*
latest JJS *) * *) * - * *
in IN (PP*) * (PP* * - * *
Western JJ (NP* * (NP* (MISC*) - * *
rock NN * * * * - * *
groups NNS *) * *)))) * - * *)
. . * *) *) * - * *

Figure 1: An example of an annotated sentence, in columns. Input consists of words (1st column), PoS
tags (2nd), base chunks (3rd), clauses (4th), full syntactic tree (5th) and named entities (6th). The 7th
column marks target verbs, and their propositions are found in remaining columns. According to the
PropBank Frames, for attract (8th), the A0 annotates the attractor, and the A1 the thing attracted; for
intersperse (9th), A0 is the arranger, and A1 the entity interspersed.

2.2 Closed Challenge Setting

The organization provided training, development
and test sets derived from the standard sections of
the Penn TreeBank (Marcus et al., 1993) and Prop-
Bank (Palmer et al., 2005) corpora.

In the closed challenge, systems have to be built
strictly with information contained in the training
sections of the TreeBank and PropBank. Since this
collection contains the gold reference annotations
of both syntactic and predicate-argument structures,
the closed challenge allows: (1) to make use of any
preprocessing system strictly developed within this
setting, and (2) to learn from scratch any annotation
that is contained in the data. To support the former,
the organization provided the output of state-of-the-
art syntactic preprocessors, described in Section 3.

The development set is used to tune the parame-
ters of a system. The gold reference annotations are
also available in this set, but only to evaluate the per-
formance of different parametrizations of a system,
and select the optimal one. Finally, the test set is
used to evaluate the performance of a system. It is
only allowed to use predicted annotations in this set.

Since all systems in this setting have had access to
the same training and development data, the evalua-
tion results on the test obtained by different systems
are comparable in a fair manner.

3 Data

The data consists of sections of the Wall Street Jour-
nal part of the Penn TreeBank (Marcus et al., 1993),
with information on predicate-argument structures
extracted from the PropBank corpus (Palmer et al.,
2005). In this edition of the CoNLL shared task,
we followed the standard partition used in syntactic
parsing: sections 02-21 for training, section 24 for
development, and section 23 for test. In addition, the
test set of the shared task includes three sections of
the Brown corpus (namely, ck01-03). The predicate-
argument annotations of the latter test material were
kindly provided by the PropBank team, and are very
valuable, as they allow to evaluate learning systems
on a portion of data that comes from a different
source than training.

We first describe the annotations related to argu-
ment structures. Then, we describe the preprocess-
ing systems that have been selected to predict the
input part of the data. Figure 1 shows an example of
a fully-annotated sentence.

3.1 PropBank

The Proposition Bank (PropBank) (Palmer et al.,
2005) annotates the Penn TreeBank with verb argu-
ment structure. The semantic roles covered by Prop-
Bank are the following:

154

• Numbered arguments (A0–A5, AA): Argu-
ments defining verb-specific roles. Their se-
mantics depends on the verb and the verb us-
age in a sentence, or verb sense. The most
frequent roles are A0 and A1 and, commonly,
A0 stands for the agent and A1 corresponds to
the patient or theme of the proposition. How-
ever, no consistent generalization can be made
across different verbs or different senses of the
same verb. PropBank takes the definition of
verb senses from VerbNet, and for each verb
and each sense defines the set of possible roles
for that verb usage, called the roleset. The def-
inition of rolesets is provided in the PropBank
Frames files, which is made available for the
shared task as an official resource to develop
systems.

• Adjuncts (AM-): General arguments that any
verb may take optionally. There are 13 types of
adjuncts:

AM-ADV : general-purpose AM-MOD : modal verb
AM-CAU : cause AM-NEG : negation marker
AM-DIR : direction AM-PNC : purpose
AM-DIS : discourse marker AM-PRD : predication
AM-EXT : extent AM-REC : reciprocal
AM-LOC : location AM-TMP : temporal
AM-MNR : manner

• References (R-): Arguments representing ar-
guments realized in other parts of the sentence.
The role of a reference is the same as the role of
the referenced argument. The label is an R- tag
prefixed to the label of the referent, e.g. R-A1.

• Verbs (V): Argument corresponding to the verb
of the proposition. Each proposition has exa-
clty one verb argument.

We used PropBank-1.0. Most predicative verbs
were annotated, although not all of them (for exam-
ple, most of the occurrences of the verb “to have”
and “to be” were not annotated). We applied proce-
dures to check consistency of propositions, looking
for overlapping arguments, and incorrect semantic
role labels. Also, co-referenced arguments were an-
notated as a single item in PropBank, and we au-
tomatically distinguished between the referent and
the reference with simple rules matching pronomi-
nal expressions, which were tagged as R arguments.

Train. Devel. tWSJ tBrown
Sentences 39,832 1,346 2,416 426
Tokens 950,028 32,853 56,684 7,159
Propositions 90,750 3,248 5,267 804
Verbs 3,101 860 982 351
Arguments 239,858 8,346 14,077 2,177
A0 61,440 2,081 3,563 566
A1 84,917 2,994 4,927 676
A2 19,926 673 1,110 147
A3 3,389 114 173 12
A4 2,703 65 102 15
A5 68 2 5 0
AA 14 1 0 0
AM 7 0 0 0
AM-ADV 8,210 279 506 143
AM-CAU 1,208 45 73 8
AM-DIR 1,144 36 85 53
AM-DIS 4,890 202 320 22
AM-EXT 628 28 32 5
AM-LOC 5,907 194 363 85
AM-MNR 6,358 242 344 110
AM-MOD 9,181 317 551 91
AM-NEG 3,225 104 230 50
AM-PNC 2,289 81 115 17
AM-PRD 66 3 5 1
AM-REC 14 0 2 0
AM-TMP 16,346 601 1,087 112
R-A0 4,112 146 224 25
R-A1 2,349 83 156 21
R-A2 291 5 16 0
R-A3 28 0 1 0
R-A4 7 0 1 0
R-AA 2 0 0 0
R-AM-ADV 5 0 2 0
R-AM-CAU 41 3 4 2
R-AM-DIR 1 0 0 0
R-AM-EXT 4 1 1 0
R-AM-LOC 214 9 21 4
R-AM-MNR 143 6 6 2
R-AM-PNC 12 0 0 0
R-AM-TMP 719 31 52 10

Table 1: Counts on the data sets.

A total number of 80 propositions were not compli-
ant with our procedures (one in the Brown files, the
rest in WSJ) and were filtered out from the CoNLL
data sets.

Table 1 provides counts of the number of sen-
tences, tokens, annotated propositions, distinct
verbs, and arguments in the four data sets.

3.2 Preprocessing Systems

In this section we describe the selected processors
that computed input annotations for the SRL sys-
tems. The annotations are: part-of-speech (PoS)
tags, chunks, clauses, full syntactic trees and named
entities. As it has been noted, participants were also

155

allowed to use any processor developed within the
same WSJ partition.

The preprocessors correspond to the following
state-of-the-art systems:

• UPC processors, consisting of:

– PoS tagger: (Giménez and Màrquez,
2003), based on Support Vector Machines,
and trained on WSJ sections 02-21.

– Base Chunker and Clause Recognizer:
(Carreras and Màrquez, 2003), based on
Voted Perceptrons, trained on WSJ sec-
tions 02-21. These two processors form a
coherent partial syntax of a sentence, that
is, chunks and clauses form a partial syn-
tactic tree.

• Full parser of Collins (1999), with ”model 2”.
Predicts WSJ full parses, with information of
the lexical head for each syntactic constituent.
The PoS tags (required by the parser) have been
computed with (Giménez and Màrquez, 2003).

• Full parser of Charniak (2000). Jointly predicts
PoS tags and full parses.

• Named Entities predicted with the Maximum-
Entropy based tagger of Chieu and Ng (2003).
The tagger follows the CoNLL-2003 task set-
ting (Tjong Kim Sang and De Meulder, 2003),
and thus is not developed with WSJ data. How-
ever, we allowed its use because there is no
available named entity recognizer developed
with WSJ data. The reported performance on
the CoNLL-2003 test is F1 = 88.31, with
Prec/Rec. at 88.12/88.51.

Tables 2 and 3 summarize the performance of
the syntactic processors on the development and test
sets. The performance of full parsers on the WSJ
test is lower than that reported in the correspond-
ing papers. The reason is that our evaluation fig-
ures have been computed in a strict manner with re-
spect to punctuation tokens, while the full parsing
community usually does not penalize for punctua-
tion wrongly placed in the tree.3 As it can be ob-

3Before evaluating Collins’, we raised punctuation to the
highest point in the tree, using a script that is available at the
shared task webpage. Otherwise, the performance would have
Prec./Recall figures below 37.

Dev. tWSJ tBrown
UPC PoS-tagger 97.13 97.36 94.73
Charniak (2000) 92.01 92.29 87.89

Table 2: Accuracy (%) of PoS taggers.

served, the performance of all syntactic processors
suffers a substantial loss in the Brown test set. No-
ticeably, the parser of Collins (1999) seems to be the
more robust when moving from WSJ to Brown.

4 A Review of Participant Systems

Nineteen systems participated in the CoNLL-2005
shared task. They approached the task in several
ways, using different learning components and la-
beling strategies. The following subsections briefly
summarize the most important properties of each
system and provide a qualitative comparison be-
tween them, together with a quantitative evaluation
on the development and test sets.

4.1 Learning techniques

Up to 8 different learning algorithms have been ap-
plied to train the learning components of partici-
pant systems. See the “ML-method” column of ta-
ble 4 for a summary of the following information.
Log–linear models and vector-based linear classi-
fiers dominated over the rest. Probably, this is due to
the versatility of the approaches and the availability
of very good software toolkits.

In particular, 8 teams used the Maximum En-
tropy (ME) statistical framework (Che et al., 2005;
Haghighi et al., 2005; Park and Rim, 2005; Tjong
Kim Sang et al., 2005; Sutton and McCallum, 2005;
Tsai et al., 2005; Yi and Palmer, 2005; Venkatapathy
et al., 2005). Support Vector Machines (SVM) were
used by 6 teams. Four of them with the standard
polynomial kernels (Mitsumori et al., 2005; Tjong
Kim Sang et al., 2005; Tsai et al., 2005; Pradhan et
al., 2005b), another one using Gaussian kernels (Oz-
gencil and McCracken, 2005), and a last group using
tree-based kernels specifically designed for the task
(Moschitti et al., 2005). Another team used also a re-
lated learning approach, SNoW, which is a Winnow-
based network of linear separators (Punyakanok et
al., 2005).

Decision Tree learning (DT) was also represented

156

Devel. Test WSJ Test Brown
P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1

UPC Chunker 94.66 93.17 93.91 95.26 94.52 94.89 92.64 90.85 91.73
UPC Clauser 90.38 84.73 87.46 90.93 85.94 88.36 84.21 74.32 78.95
Collins (1999) 85.02 83.55 84.28 85.63 85.20 85.41 82.68 81.33 82.00
Charniak (2000) 87.60 87.38 87.49 88.20 88.30 88.25 80.54 81.15 80.84

Table 3: Results of the syntactic parsers on the development, and WSJ and Brown test sets. Unlike in full
parsing, the figures have been computed on a strict evaluation basis with respect to punctuation.

by Ponzetto and Strube (2005), who used C4.5.
Ensembles of decision trees learned through the
AdaBoost algorithm (AB) were applied by Màrquez
et al. (2005) and Surdeanu and Turmo (2005). Tjong
Kim Sang et al. (2005) applied, among others,
Memory-Based Learning (MBL).

Regarding novel learning paradigms not applied
in previous shared tasks, we find Relevant Vector
Machine (RVM), which is a kernel–based linear dis-
criminant inside the framework of Sparse Bayesian
Learning (Johansson and Nugues, 2005) and Tree
Conditional Random Fields (T-CRF) (Cohn and
Blunsom, 2005), that extend the sequential CRF
model to tree structures. Finally, Lin and Smith
(2005) presented a proposal radically different from
the rest, with very light learning components. Their
approach (Consensus in Pattern Matching, CPM)
contains some elements of Memory-based Learning
and ensemble classification.

From the Machine Learning perspective, system
combination is another interesting component ob-
served in many of the proposals. This fact, which is
a difference from last year shared task, is explained
as an attempt of increasing the robustness and cover-
age of the systems, which are quite dependent on in-
put parsing errors. The different outputs to combine
are obtained by varying input information, chang-
ing learning algorithm, or considering n-best solu-
tion lists. The combination schemes presented in-
clude very simple voting-like combination heuris-
tics, stacking of classifiers, and a global constraint
satisfaction framework modeled with Integer Linear
Programming. Global models trained to re-rank al-
ternative outputs represent a very interesting alter-
native that has been proposed by two systems. All
these issues are reviewed in detail in section 4.2.

4.2 SRL approaches

SRL is a complex task, which may be decomposed
into a number of simpler decisions and annotating
schemes in order to be addressed by learning tech-
niques. Table 4 contains a summary of the main
properties of the 19 systems presented. In this sec-
tion we will explain the contents of that table by
columns (from left-to-right).

One first issue to consider is the input structure
to navigate in order to extract the constituents that
will form labeled arguments. The majority of sys-
tems perform parse tree node labeling, searching
for a one–to–one map between arguments and parse
constituents. This information is summarized in the
“synt” column of Table 4. “col”, “cha”, “upc” stand
for the syntactic parse trees (the latter is partial) pro-
vided as input by the organization. Additionally,
some teams used lists of n-best parsings generated
by available tools (“n-cha” by Charniak parser; “n-
bikel” by Bikel’s implementation of Collins parser).
Interestingly, Yi and Palmer (2005) retrained Rat-
naparkhi’s parser using the WSJ training sections
enriched with semantic information coming from
PropBank annotations. These are referred to as AN
and AM parses. As it can be seen, Charniak parses
were used by most of the systems. Collins parses
were used also in some of the best performing sys-
tems based on combination.

The exceptions to the hierarchical processing are
the systems by Pradhan et al. (2005b) and Mitsumori
et al. (2005), which perform a chunking-based se-
quential tokenization. As for the former, the system
is the same than the one presented in the 2004 edi-
tion. The system by Màrquez et al. (2005) explores
hierarchical syntactic structures but selects, in a pre-
process, a sequence of tokens to perform a sequen-
tial tagging afterwards.

157

ML-method synt pre label embed glob post comb type
punyakanok SNoW n-cha,col x&p i+c defer yes no n-cha+col ac-ILP
haghighi ME n-cha ? i+c dp-prob yes no n-cha re-rank
marquez AB cha,upc seq bio !need no no cha+upc s-join
pradhan SVM cha,col/chunk ? c/bio ? no no cha+col→chunk stack
surdeanu AB cha prun c g-top no yes no –
tsai ME,SVM cha x&p c defer yes no ME+SVM ac-ILP
che ME cha no c g-score no yes no –
moschitti SVM cha prun i+c !need no no no –
tjongkimsang ME,SVM,TBL cha prun i+c !need no yes ME+SVM+TBL s-join
yi ME cha,AN,AM x&p i+c defer no no cha+AN+AM ac-join
ozgencil SVM cha prun i+c g-score no no no –
johansson RVM cha softp i+c ? no no no –
cohn T-CRF col x&p c g-top yes no no –
park ME cha prun i+c ? no no no –
mitsumori SVM chunk no bio !need no no no –
venkatapathy ME col prun i+c frames yes no no –
ponzetto DT col prun c g-top no yes no –
lin CPM cha gt-para i+c !need no no no –
sutton ME n-bikel x&p i+c dp-prob yes no n-bikel re-rank

Table 4: Main properties of the SRL strategies implemented by the participant teams, sorted by F1 per-
formance on the WSJ+Brown test set. synt stands for the syntactic structure explored; pre stands for
pre-processing steps; label stands for the labeling strategy; embed stands for the technique to ensure non-
embedding of arguments; glob stands for global optimization; post stands for post-processing; comb stands
for system output combination, and type stands for the type of combination. Concrete values appearing in
the table are explained in section 4.1. The symbol “?” stands for unknown values not reported by the system
description papers.

In general, the presented systems addressed the
SRL problem by applying different chained pro-
cesses. In Table 4 the column “pre” summarizes pre-
processing. In most of the cases this corresponds to
a pruning procedure to filter out constituents that are
not likely to be arguments. As in feature develop-
ment, the related bibliography has been followed for
pruning. For instance, many systems used the prun-
ing strategy described in (Xue and Palmer, 2004)
(“x&p”) and other systems used the soft pruning
rules described in (Pradhan et al., 2005a) (“softp”).
Remarkably, Park and Rim (2005) parametrize the
pruning procedure and then study the effect of be-
ing more or less aggressive at filtering constituents.
In the case of Màrquez et al. (2005), pre-processing
corresponds to a sequentialization of syntactic hier-
archical structures. As a special case, Lin and Smith
(2005) used the GT-PARA analyzer for converting
parse trees into a flat representation of all predicates
including argument boundaries.

The second stage, reflected in column “label” of
Table 4, is the proper labeling of selected candi-
dates. Most of the systems used a two-step proce-
dure consisting of first identifying arguments (e.g.,

with a binary “null” vs. “non-null” classifier) and
then classifying them. This is referred to as “i+c” in
the table. Some systems address this phase in a sin-
gle classification step by adding a “null” category
to the multiclass problem (referred to as “c’). The
methods performing a sequential tagging use a BIO
tagging scheme (“bio”). As a special case, Mos-
chitti et al. (2005) subdivide the “i+c” strategy into
four phases: after identification, heuristics are ap-
plied to assure compatibility of identified arguments;
and, before classifying arguments into roles, a pre-
classification into core vs. adjunct arguments is per-
formed. Venkatapathy et al. (2005) use three labels
instead of two in the identification phase : “null”,
“mandatory”, and “optional”.

Since arguments in a solution do not embed and
most systems identify arguments as nodes in a hier-
archical structure, non-embedding constraints must
be resolved in order to generate a coherent argu-
ment labeling. The “embed” column of Table 4 ac-
counts for this issue. The majority of systems ap-
plied specific greedy procedures that select a subset
of consistent arguments. The families of heuristics
to do that selection include prioritizing better scored

158

constituents (“g-score”), or selecting the arguments
that are first reached in a top-down exploration (“g-
top”). Some probabilistic systems include the non-
embedding constraints within the dynamic program-
ming inference component, and thus calculate the
most probable coherent labeling (“dp-prob”). The
“defer” value means that this is a combination sys-
tem and that coherence of the individual system pre-
dictions is not forced, but deferred to the later com-
bination step. As a particular case, Venkatapathy et
al. (2005) use PropBank subcategorization frames to
force a coherent solution. Note that tagging-based
systems do not need to check non-embedding con-
straints (“!need” value).

The “glob” column of Table 4 accounts for the lo-
cality/globality of the process used to calculate the
output solution given the argument prediction candi-
dates. Systems with a “yes” value in that column de-
fine some kind of scoring function (possibly proba-
bilistic) that applies to complete candidate solutions,
and then calculate the solution that maximizes the
scoring using an optimization algorithm.

Some systems use some kind of postprocessing to
improve the final output of the system by correct-
ing some systematic errors, or treating some types
of simple adjunct arguments. This information is in-
cluded in the “post” column of Table 4. In most of
the cases, this postprocess is performed on the basis
of simple ad-hoc rules. However, it is worth men-
tioning the work of Tjong Kim Sang et al. (2005)
in which spelling error correction techniques are
adapted for improving the resulting role labeling. In
that system, postprocessing is applied before system
combination.

Most of the best performing systems included a
combination of different base subsystems to increase
robustness of the approach and to gain coverage and
independence from parse errors. Last 2 columns of
Table 4 present this information. In the “comb” col-
umn the source of the combination is reported. Basi-
cally, the alternative outputs to combine can be gen-
erated by different input syntactic structures or n-
best parse candidates, or by applying different learn-
ing algorithms to the same input information.

The type of combination is reported in the last col-
umn. Màrquez et al. (2005) and Tjong Kim Sang
et al. (2005) performed a greedy merging of the ar-
guments of base complete solutions (“s-join”). Yi

and Palmer (2005) did also a greedy merging of ar-
guments but taking into account not complete so-
lutions but all candidate arguments labeled by base
systems (“ac-join”). In a more sophisticated way,
Punyakanok et al. (2005) and Tsai et al. (2005) per-
formed global inference as constraint satisfaction
using Integer Linear Programming, also taking into
account all candidate arguments (“ac-ILP”). It is
worth noting that the generalized inference applied
in those papers allows to include, jointly with the
combination of outputs, a number of linguistically-
motivated constraints to obtain a coherent solution.

Pradhan et al. (2005b) followed a stacking ap-
proach by learning a chunk-based SRL system in-
cluding as features the outputs of two syntax-based
systems. Finally, Haghighi et al. (2005) and Sut-
ton and McCallum (2005) performed a different ap-
proach by learning a re-ranking function as a global
model on top of the base SRL models. Actually,
Haghighi et al. (2005) performed a double selection
step: an inner re-ranking of n-best solutions coming
from the base system on a single tree; and an outer
selection of the final solution among the candidate
solutions coming from n-best parse trees. The re-
ranking approach allows to define global complex
features applying to complete candidate solutions to
train the rankers.

4.3 Features

Looking at the description of the different systems, it
becomes clear that the general type of features used
in this edition is strongly based on previous work on
the SRL task (Gildea and Jurafsky, 2002; Surdeanu
et al., 2003; Pradhan et al., 2005a; Xue and Palmer,
2004). With no exception, all systems have made
intensive use of syntax to extract features. While
most systems work only on the output of a parser
—Charniak’s being the most preferred— some sys-
tems depend on many syntactic parsers. In the latter
situation, either a system is a combination of many
individual systems (each working with a different
parser), or a system extracts features from many dif-
ferent parse trees while exploring the nodes of only
one parse tree. Most systems have also considered
named entities for extracting features.

The main types of features seen in this SRL edi-
tion can be divided into four general categories: (1)
Features characterizing the structure of a candidate

159

sources argument verb arg–verb p
synt ne at aw ab ac ai pp sd v sc rp di ps pv pi sf as

punyakanok cha,col,upc + + h + t + + · + + + c + · + + ·
haghighi cha · + h + p,s · + + + + + t + + · · +
marquez cha,upc + + h + t + · + + + + w,c + + · + ·
pradhan cha,col,upc + + h,c + p,s,t + + · + + + c,t + + + + ·
surdeanu cha + + h,c + p,s + · + + + + w,t + + + · ·
tsai cha,upc + + h + p,s,t · · · + + + w + · · · ·
che cha + + h + · · + · + + + t + + · · ·
moschitti cha · + h + p + + · + + + t + + · + ·
tjongkimsang cha + + · + p,t · + · + + + w,t + + + · ·
yi cha,an,am · + h,c · p,s · + · + + + w + · · + ·
ozgencil cha · + h · p · · · + + + · + + · · ·
johansson cha,upc + + h · · · · · + + + · + + · · ·
cohn col · + h + p,s · + · + + + w + · + + ·
park cha · + h,c · p · · · + + + · + · + · ·
mitsumori upc,cha + + · + t · · + + · + c,t · + · · ·
venkatapathy col + + h + · · · · + · + · + · · · ·
ponzetto col,upc + + h + · + · · + · · w,c,t · · + · ·
lin cha · + h + · · · · + · + w · · · · ·
sutton bik · + h + p,s · · · + · + · + · · · +

Table 5: Main feature types used by the 19 participating systems in the CoNLL-2005 shared task, sorted by
performance on the WSJ+Brown test set. Sources: synt: use of parsers, namely Charniak (cha), Collins
(col), UPC partial parsers (upc), Bikel’s Collins model (bik) and/or argument-enriched parsers (an,am); ne:
use of named entities. On the argument: at: argument type; aw: argument words, namely the head (h)
and/or content words (c); ab: argument boundaries, i.e. form and PoS of first and/or last argument words; ac:
argument context, capturing features of the parent (p) and/or left/right siblings (s), or the tokens surrounding
the argument (t); ai: indicators of the structure of the argument (e,g., on internal constituents, surround-
ing/boundary punctuation, governing category, etc.); pp: specific features for prepositional phrases; sd:
semantic dictionaries. On the verb: v: standard verb features (voice, word/lemma, PoS); sc: subcatego-
rization. On the arg-verb relation: rp: relative position; di: distance, based on words (w), chunks (c) or
the syntactic tree (t); ps: standard path; pv: path variations; pi: scalar indicator variables on the path (of
chunks, clauses, or other phrase types), common ancestor, etc.; sf: syntactic frame (Xue and Palmer, 2004);
On the complete proposition: as: sequence of arguments of a proposition.

argument; (2) Features describing properties of the
target verb predicate; (3) Features that capture the
relation between the verb predicate and the con-
stituent under consideration; and (4) Global features
describing the complete argument labeling of a pred-
icate. The rest of the section describes the most com-
mon feature types in each category. Table 5 summa-
rizes the type of features exploited by systems.

To represent an argument itself, all systems make
use of the syntactic type of the argument. Almost
all teams used the heuristics of Collins (1999) to ex-
tract the head word of the argument, and used fea-
tures that capture the form, lemma and PoS tag of
the head. In the same line, some systems also use
features of the content words of the argument, using
the heuristics of Surdeanu et al. (2003). Very gen-
erally also, many systems extract features from the

first and last words of the argument. Regarding the
syntactic elements surrounding the argument, many
systems working on full trees have considered the
parent and siblings of the argument, capturing their
syntactic type and head word. Differently, other
systems have captured features from the left/right
tokens surrounding the argument, which are typi-
cally words, but can be chunks or general phrases in
systems that sequentialize the task (Màrquez et al.,
2005; Pradhan et al., 2005b; Mitsumori et al., 2005).
Many systems use a variety of indicator features that
capture properties of the argument structure and its
local syntactic annotations. For example, indicators
of the immediate syntactic types that form the argu-
ment, flags raised by punctuation tokens in or nearby
the argument, or the governing category feature of
Gildea and Jurafsky (2002). It is also somewhat gen-

160

eral the use of specific features that apply when the
constituent is a prepositional phrase, such as look-
ing for the head word of the noun phrase within it.
A few systems have also built semantic dictionaries
from training data, that collect words appearing fre-
quently in temporal, locative or other arguments.

To represent the predicate, all systems have used
features codifying the form, lemma, PoS tag and
voice of the verb. It is also of general use the subcat-
egorization feature, capturing the syntactic rule that
expands the parent of the predicate. Some systems
captured statistics related to the frequency of a verb
in training data (not in Table 5).

Regarding features related to an argument-verb
pair, almost all systems use the simple feature de-
scribing the relative position between them. To
a lesser degree, systems have computed distances
from one to the other, based on the number of words
or chunks between them, or based on the syntactic
tree. Not surprisingly, all systems have extracted the
path from the argument to the verb. While almost
all systems use the standard path of (Gildea and Ju-
rafsky, 2002), many have explored variations of it.
A common one consists of the path from the argu-
ment to the lowest common ancestor of the verb and
the argument. Another variation is the partial path,
that is built of chunks and clauses only. Indicator
features that capture scalar values of the path are
also common, and concentrate mainly on looking
at the common ancestor, capturing the difference of
clausal levels, or looking for punctuation and other
linguistic elements in the path. In this category, it is
also noticeable the use of the syntactic frame feature,
proposed by Xue and Palmer (2004).

Finally, in this edition two systems apply learn-
ing at a global context (Haghighi et al., 2005; Sut-
ton and McCallum, 2005) and, consequently, they
are able to extract features from a complete labeling
of a predicate. Basically, the central feature in this
context extracts the sequential pattern of predicate
arguments. Then, this pattern can be enriched with
syntactic categories, broken down into role-specific
indicator variables, or conjoined with the predicate
lemma.

Apart from basic feature extraction, combination
of features has also been explored in this edition.
Many of the combinations depart from the manually
selected conjunctions of Xue and Palmer (2004).

4.4 Evaluation

A baseline rate was computed for the task. It
was produced using a system developed in the past
shared task edition by Erik Tjong Kim Sang, from
the University of Amsterdam, The Netherlands. The
baseline processor finds semantic roles based on the
following seven rules:

• Tag target verb and successive particles as V.
• Tag not and n’t in target verb chunk as
AM-NEG.

• Tag modal verbs in target verb chunk as
AM-MOD.

• Tag first NP before target verb as A0.
• Tag first NP after target verb as A1.
• Tag that, which and who before target verb

as R-A0.
• Switch A0 and A1, and R-A0 and R-A1 if the

target verb is part of a passive VP chunk. A
VP chunk is considered in passive voice if it
contains a form of to be and the verb does
not end in ing.

Table 6 presents the overall results obtained by
the nineteen systems plus the baseline, on the de-
velopment and test sets (i.e., Development, Test
WSJ, Test Brown, and Test WSJ+Brown). The sys-
tems are sorted by the performance on the combined
WSJ+Brown test set.

As it can be observed, all systems clearly outper-
formed the baseline. There are seven systems with a
final F1 performance in the 75-78 range, seven more
with performances in the 70-75 range, and five with
a performance between 65 and 70. The best perfor-
mance was obtained by Punyakanok et al. (2005),
which almost reached an F1 at 80 in the WSJ test
set and almost 78 in the combined test. Their results
on the WSJ test equal the best results published so
far on this task and datasets (Pradhan et al., 2005a),
though they are not directly comparable due to a
different setting in defining arguments not perfectly
matching the predicted parse constituents. Since the
evaluation in the shared task setting is more strict,
we believe that the best results obtained in the shared
task represent a new breakthrough in the SRL task.

It is also quite clear that the systems using com-
bination are better than the individuals. It is worth
noting that the first 4 systems are combined. The

161

Development Test WSJ Test Brown Test WSJ+Brown
P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1

punyakanok 80.05 74.83 77.35 82.28 76.78 79.44 73.38 62.93 67.75 81.18 74.92 77.92
haghighi 77.66 75.72 76.68 79.54 77.39 78.45 70.24 65.37 67.71 78.34 75.78 77.04
marquez 78.39 75.53 76.93 79.55 76.45 77.97 70.79 64.35 67.42 78.44 74.83 76.59
pradhan 80.90 75.38 78.04 81.97 73.27 77.37 73.73 61.51 67.07 80.93 71.69 76.03
surdeanu 79.14 71.57 75.17 80.32 72.95 76.46 72.41 59.67 65.42 79.35 71.17 75.04
tsai 81.13 72.42 76.53 82.77 70.90 76.38 73.21 59.49 65.64 81.55 69.37 74.97
che 79.65 71.34 75.27 80.48 72.79 76.44 71.13 59.99 65.09 79.30 71.08 74.97
moschitti 74.95 73.10 74.01 76.55 75.24 75.89 65.92 61.83 63.81 75.19 73.45 74.31
tjongkimsang 76.79 70.01 73.24 79.03 72.03 75.37 70.45 60.13 64.88 77.94 70.44 74.00
yi 75.70 69.99 72.73 77.51 72.97 75.17 67.88 59.03 63.14 76.31 71.10 73.61
ozgencil 73.57 71.87 72.71 74.66 74.21 74.44 65.52 62.93 64.20 73.48 72.70 73.09
johansson 73.40 70.85 72.10 75.46 73.18 74.30 65.17 60.59 62.79 74.13 71.50 72.79
cohn 73.51 68.98 71.17 75.81 70.58 73.10 67.63 60.08 63.63 74.76 69.17 71.86
park 72.68 69.16 70.87 74.69 70.78 72.68 64.58 60.31 62.38 73.35 69.37 71.31
mitsumori 71.68 64.93 68.14 74.15 68.25 71.08 63.24 54.20 58.37 72.77 66.37 69.43
venkatapathy 71.88 64.76 68.14 73.76 65.52 69.40 65.25 55.72 60.11 72.66 64.21 68.17
ponzetto 71.82 61.60 66.32 75.05 64.81 69.56 66.69 52.14 58.52 74.02 63.12 68.13
lin 70.11 61.96 65.78 71.49 64.67 67.91 65.75 52.82 58.58 70.80 63.09 66.72
sutton 64.43 63.11 63.76 68.57 64.99 66.73 62.91 54.85 58.60 67.86 63.63 65.68
baseline 50.00 28.98 36.70 51.13 29.16 37.14 62.66 33.07 43.30 52.58 29.69 37.95

Table 6: Overall precision, recall and F1 rates obtained by the 19 participating systems in the CoNLL-2005
shared task on the development and test sets. Systems sorted by F1 score on the WSJ+Brown test set.

best individual system on the task is that of Sur-
deanu and Turmo (2005), which obtained F1=75.04
on the combined test set, about 3 points below than
the best performing combined system. On the de-
velopment set, that system achieved a performace
of 75.17 (slightly below than the 75.27 reported by
Che et al. (2005) on the same dataset). Accord-
ing to the description papers, we find that other
individual systems, from which the combined sys-
tems are constructed, performed also very well. For
instance, Tsai et al. (2005) report F1=75.76 for a
base system on the development set, Màrquez et al.
(2005) report F1=75.75, Punyakanok et al. (2005)
report F1=74.76, and Haghighi et al. (2005) report
F1=74.52.

The best results in the CoNLL-2005 shared task
are 10 points better than those of last year edition.
This increase in performance should be attributed to
a combination of the following factors: 1) training
sets have been substantially enlarged; 2) predicted
parse trees are available as input information; and 3)
more sophisticated combination schemes have been
implemented. In order to have a more clear idea of
the impact of enriching the syntactic information,
we refer to (Màrquez et al., 2005), who developed
an individual system based only on partial parsing
(“upc” input information). That system performed

F1=73.57 on the development set, which is 2.18
points below the F1=75.75 obtained by the same ar-
chitecture using full parsing, and 4.47 points below
the best performing combined system on the devel-
opment set (Pradhan et al., 2005b).

Comparing the results across development and
WSJ test corpora, we find that, with two exceptions,
all systems experienced a significant increase in per-
formance (normally between 1 and 2 F1 points).
This fact may be attributed to the different levels of
difficulty found across WSJ sections. The linguistic
processors and parsers perform slightly worse in the
development set. As a consequence, the matching
between parse nodes and actual arguments is lower.

Regarding the evaluation using the Brown test
set, all systems experienced a severe drop in perfor-
mance (about 10 F1 points), even though the base-
line on the Brown test set is higher than that of
the WSJ test set. As already said in previous sec-
tions, all the linguistic processors, from PoS tag-
ging to full parsing, showed a much lower perfor-
mance than in the WSJ test set, evincing that their
performance cannot be extrapolated across corpora.
Presumably, this fact is the main responsible of the
performace drop, though we do not discard an ad-
ditional overfitting effect due to the design of spe-
cific features that do not generalize well. More im-

162

portantly, this results impose (again) a severe criti-
cism on the current pipelined architecture for Natu-
ral Language Processing. Error propagation and am-
plification through the chained modules make the fi-
nal output generalize very badly when changing the
domain of application.

5 Conclusion

We have described the CoNLL-2005 shared task
on semantic role labeling. Contrasting with the
CoNLL-2004 edition, the current edition has in-
corporated the use of full syntax as input to the
SRL systems, much larger training sets, and cross-
corpora evaluation. The first two novelties have
most likely contributed to an improvement of re-
sults. The latter has evinced a major drawback of
natural language pipelined architectures.

Nineteen teams have participated to the task, con-
tributing with a variety of learning algorithms, la-
beling strategies, feature design and experimenta-
tion. While, broadly, all systems make use of the
same basic techniques described in existing SRL
literature, some novel aspects have also been ex-
plored. A remarkable aspect, common in the four
top-performing systems and many other, is that
of combining many individual SRL systems, each
working on different syntactic structures. Combin-
ing systems improves robustness, and overcomes
the limitations in coverage that working with a sin-
gle, non-correct syntactic structure imposes. The
best system, presented by Punyakanok et al. (2005),
achieves an F1 at 79.44 on the WSJ test. This per-
formance, of the same order than the best reported
in literature, is still far from the desired behavior of
a natural language analyzer. Furthermore, the per-
formance of such SRL module in a real application
will be about ten points lower, as demonstrated in
the evaluation on the sentences from Brown.

We conclude with two open questions. First, what
semantic knowledge is needed to improve the qual-
ity and performance of SRL systems. Second, be-
yond pipelines, what type of architectures and lan-
guage learning methodology ensures a robust per-
formance of processors.

Acknowledgements
Authors would like to thank the following people and institu-
tions. The PropBank team, and specially Martha Palmer and
Benjamin Snyder, for making available PropBank-1.0 and the
prop-banked Brown files. The Linguistic Data Consortium, for
issuing a free evaluation license for the shared task to use the
TreeBank. Hai Leong Chieu and Hwee Tou Ng, for running
their Named Entity tagger on the task data. Finally, the teams
contributing to the shared task, for their great enthusiasm.

This work has been partially funded by the European Com-

munity (Chil - IP506909; PASCAL - IST-2002-506778) and

the Spanish Ministry of Science and Technology (Aliado,

TIC2002-04447-C02).

References

Xavier Carreras and Lluı́s Màrquez. 2003. Phrase recog-
nition by filtering and ranking with perceptrons. In
Proceedings of RANLP-2003, Borovets, Bulgaria.

Xavier Carreras and Lluı́s Màrquez. 2004. Introduction
to the CoNLL-2004 Shared Task: Semantic Role La-
beling. In Proceedings of CoNLL-2004.

Eugene Charniak. 2000. A maximum-entropy inspired
parser. In Proceedings of NAACL-2000.

Wanxiang Che, Ting Liu, Sheng Li, Yuxuan Hu, and
Huaijun Liu. 2005. Semantic role labeling system
using maximum entropy classifier. In Proceedings of
CoNLL-2005.

Hai Leong Chieu and Hwee Tou Ng. 2003. Named en-
tity recognition with a maximum entropy approach. In
Proceedings of CoNLL-2003, Edmonton, Canada.

Trevor Cohn and Philip Blunsom. 2005. Semantic role
labelling with tree conditional random fields. In Pro-
ceedings of CoNLL-2005.

Michael Collins. 1999. Head-driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Charles J. Fillmore, Charles Wooters, and Collin F.
Baker. 2001. Building a large lexical databank which
provides deep semantics. In Proceedings of the Pa-
cific Asian Conference on Language, Informa tion and
Computation, Hong Kong, China.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28(3):245–288.

Jesús Giménez and Lluı́s Màrquez. 2003. Fast and accu-
rate part-of-speech tagging: The svm approach revis-
ited. In Proceedings of RANLP-2003, Borovets, Bul-
garia.

163

Aria Haghighi, Kristina Toutanova, and Christopher
Manning. 2005. A joint model for semantic role la-
beling. In Proceedings of CoNLL-2005.

Richard Johansson and Pierre Nugues. 2005. Sparse
bayesian classification of predicate arguments. In Pro-
ceedings of CoNLL-2005.

Chi-San Lin and Tony C. Smith. 2005. Semantic role
labeling via consensus in pattern-matching. In Pro-
ceedings of CoNLL-2005.

Ken Litkowski. 2004. Senseval-3 task: Automatic label-
ing of semantic roles. In Proceedings of the Senseval-3
ACL-SIGLEX Workshop.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19.

Lluı́s Màrquez, Pere Comas, Jesús Giménez, and Neus
Català. 2005. Semantic role labeling as sequential
tagging. In Proceedings of CoNLL-2005.

Tomohiro Mitsumori, Masaki Murata, Yasushi Fukuda,
Kouichi Doi, and Hirohumi Doi. 2005. Semantic role
labeling using support vector machines. In Proceed-
ings of CoNLL-2005.

Alessandro Moschitti, Ana-Maria Giuglea, Bonaventura
Coppola, and Roberto Basili. 2005. Hierarchical se-
mantic role labeling. In Proceedings of CoNLL-2005.

Alessandro Moschitti. 2004. A study on convolution
kernel for shallow semantic parsing. In Proceedings
of the 42nd Annual Conference of the Association for
Computational Linguistics (ACL-2004).

Necati Ercan Ozgencil and Nancy McCracken. 2005.
Semantic role labeling using libSVM. In Proceedings
of CoNLL-2005.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1).

Kyung-Mi Park and Hae-Chang Rim. 2005. Maximum
entropy based semantic role labeling. In Proceedings
of CoNLL-2005.

Simone Paolo Ponzetto and Michael Strube. 2005. Se-
mantic role labeling using lexical statistical informa-
tion. In Proceedings of CoNLL-2005.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,
Wayne Ward, James Martin, and Daniel Jurafsky.
2005a. Support vector learning for semantic argu-
ment classification. Machine Learning. Special issue
on Speech and Natural Language Processing. To ap-
pear.

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H.
Martin, and Daniel Jurafsky. 2005b. Semantic role
chunking combining complementary syntactic views.
In Proceedings of CoNLL-2005.

Vasin Punyakanok, Dan Roth, Wen-Tau Yih, and Dav Zi-
mak. 2004. Semantic role labeling via integer lin-
ear programming inference. In Proceedings of the In-
ternational Conference on Computational Linguistics
(COLING).

Vasin Punyakanok, Peter Koomen, Dan Roth, and Wen
tau Yih. 2005. Generalized inference with multi-
ple semantic role labeling systems. In Proceedings of
CoNLL-2005.

Mihai Surdeanu and Jordi Turmo. 2005. Semantic role
labeling using complete syntactic analysis. In Pro-
ceedings of CoNLL-2005.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and
Paul Aarseth. 2003. Using predicate-argument struc-
tures for information extraction. In Proceedings of
ACL 2003, Sapporo, Japan.

Charles Sutton and Andrew McCallum. 2005. Joint
parsing and semantic role labeling. In Proceedings of
CoNLL-2005.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings
of CoNLL-2003.

Erik Tjong Kim Sang, Sander Canisius, Antal van den
Bosch, and Toine Bogers. 2005. Applying spelling er-
ror correction techniques for improving semantic role
labelling. In Proceedings of CoNLL-2005.

Tzong-Han Tsai, Chia-Wei Wu, Yu-Chun Lin, and Wen-
Lian Hsu. 2005. Exploiting full parsing information
to label semantic roles using an ensemble of me and
svm via integer linear programming. In Proceedings
of CoNLL-2005.

Sriram Venkatapathy, Akshar Bharati, and Prashanth
Reddy. 2005. Inferring semantic roles using sub-
categorization frames and maximum entropy model.
In Proceedings of CoNLL-2005.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Szu-ting Yi and Martha Palmer. 2005. The integration of
syntactic parsing and semantic role labeling. In Pro-
ceedings of CoNLL-2005.

164

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 165–168, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Inferring semantic roles using sub-categorization frames and
maximum entropy model

Akshar Bharati, Sriram Venkatapathy and Prashanth Reddy
Language Technologies Research Centre, IIIT - Hyderabad, India.

{sriram,prashanth}@research.iiit.ac.in

Abstract

In this paper, we propose an approach
for inferring semantic role using sub-
categorization frames and maximum
entropy model. Our approach aims to
use the sub-categorization information
of the verb to label the mandatory ar-
guments of the verb in various possi-
ble ways. The ambiguity between the
assignment of roles to mandatory argu-
ments is resolved using the maximum
entropy model. The unlabelled manda-
tory arguments and the optional argu-
ments are labelled directly using the
maximum entropy model such that their
labels are not one among the frame el-
ements of the sub-categorization frame
used. Maximum entropy model is pre-
ferred because of its novel approach
of smoothing. Using this approach,
we obtained an F-measure of 68.14%
on the development set of the data
provided for the CONLL-2005 shared
task. We show that this approach per-
forms well in comparison to an ap-
proach which uses only the maximum
entropy model.

1 Introduction

Semantic role labelling is the task of assigning
appropriate semantic roles to the arguments of
a verb. The semantic role information is impor-
tant for various applications in NLP such as Ma-
chine Translation, Question Answering, Informa-

tion Extraction etc. In general, semantic role in-
formation is useful for sentence understanding.
We submitted our system for closed challenge
at CONLL-2005 shared task. This task encour-
ages participants to use novel machine learning
techniques suited to the task of semantic role la-
belling. Previous approaches on semantic role
labelling can be classified into three categories
(1) Explicit Probabilistic methods (Gildea and
Jurafsky, 2002). (2) General machine learning
algorithms (Pradhan et al., 2003) (Lim et al.,
2004) and (3) Generative model (Thompson et
al., 2003).

Our approach has two stages; first, identifica-
tion whether the argument is mandatory or op-
tional and second, the classification or labelling
of the arguments. In the first stage, the arguments
of a verb are put into three classes, (1) mandatory,
(2) optional or (3) null. Null stands for the fact
that the constituent of the verb in the sentence is
not an semantic argument of the verb. It is used to
rule out the false argument of the verb which were
obtained using the parser. The maximum entropy
based classifier is used to classify the arguments
into one of the above three labels.

After obtaining information about the nature of
the non-null arguments, we proceed in the second
stage to classify the mandatory and optional ar-
guments into their semantic roles. The propbank
sub-categorization frames are used to assign roles
to the mandatory arguments. For example, in the
sentence ”John saw a tree”, the sub-categorization
frame ”A0 v A1” would assign the roles A0 to
John and A1 to tree respectively. After using
all the sub-categorization frames of the verb irre-

165

spective of the verb sense, there could be ambigu-
ity in the assignment of semantic roles to manda-
tory arguments. The unlabelled mandatory argu-
ments and the optional arguments are assigned
the most probable semantic role which is not one
of the frame elements of the sub-categorization
frame using the maximum entropy model. Now,
among all the sequences of roles assigned to the
non-null arguments, the sequence which has the
maximum joint probability is chosen. We ob-
tained an accuracy of 68.14% using our approach.
We also show that our approach performs better
in comparision to an approach with uses a simple
maximum entropy model. In section 4, we will
talk about our approach in greater detail.

This paper is organised as follows, (2) Features,
(3) Maximum entropy model, (4) Description of
our system, (5) Results, (6) Comparison with our
other experiments, (7) Conclusion and (8) Future
work.

2 Features

The following are the features used to train the
maximum entropy classifier for both the argument
identification and argument classification. We
used only simple features for these experiments,
we are planning to use richer features in the near
future.

1. Verb/Predicate.

2. Voice of the verb.

3. Constituent head and Part of Speech tag.

4. Label of the constituent.

5. Relative position of the constituent with re-
spect to the verb.

6. The path of the constituent to the verb
phrase.

7. Preposition of the constituent, NULL if it
doesn’t exist.

3 Maximum entropy model

The maximum entropy approach became the pre-
ferred approach of probabilistic model builders
for its flexibility and its novel approach to
smoothing (Ratnaparakhi, 1999).

Many classification tasks are most naturally
handled by representing the instance to be classi-
fied as a vector of features. We represent features
as binary functions of two arguments, f(a,H),
where ’a’ is the observation or the class and ’H’ is
the history. For example, a feature fi(a, H) is true
if ’a’ is Ram and ’H’ is ’AGENT of a verb’. In a
log linear model, the probability function P (a|H)
with a set of features f1, f2,fj that connects ’a’
to the history ’H’, takes the following form.

P (a|H) =
e
∑

i
λi(a,H)∗fi(a,H)

Z(H)

Here λi’s are weights between negative and
positive infinity that indicate the relative impor-
tance of a feature: the more relevant the feature to
the value of the probability, the higher the abso-
lute value of the associated lambda. Z(H), called
the partition function, is the normalizing constant
(for a fixed H).

4 Description of our system

Our approach labels the semantic roles in two
stages, (1) argument identification and (2) ar-
gument classification. As input to our sys-
tem, we use full syntactic information (Collins,
1999), Named-entities, Verb senses and Propbank
frames. For our experiments, we use Zhang Le’s
Maxent Toolkit 1, and the L-BFGS parameter esti-
mation algorithm with Gaussian prior smoothing
(Chen and Rosenfield, 1999).

4.1 Argument identification

The first task in this stage is to find the candidate
arguments and their boundaries using a parser.
We use Collins parser to infer a list of candidate
arguments for every predicate. The following are
some of the sub-stages in this task.

• Convert the CFG tree given by Collins parser
to a dependency tree.

• Eliminate auxilliary verbs etc.

• Mark the head of relative clause as an argu-
ment of the verb.

1http://www.nlplab.cn/zhangle/maxent toolkit.html

166

• If a verb is modified by another verb, the
syntactic arguments of the superior verb
are considered as shared arguments between
both the verbs.

• If a prepositional phrase attached to a verb
contains more than one noun phrase, attach
the second noun phrase to the verb.

The second task is to filter out the constituents
which are not really the arguments of the pred-
icate. Given our approach towards argument
classification, we also need information about
whether an argument is mandatory or optional.
Hence, in this stage the constituents are marked
using three labels, (1) MANDATORY argument,
(2) OPTIONAL argument and (3) NULL, using a
maximum entropy classifier. For example, a sen-
tence ”John was playing football in the evening”,
”John” is marked MANDATORY, ”football” is
marked MANDATORY and ”in the evening” is
marked OPTIONAL.

For training, the Collins parser is run on the
training data and the syntactic arguments are
identified. Among these arguments, the ones
which do not exist in the propbank annotation of
the training data are marked as null. Among the
remaining arguments, the arguments are marked
as mandatory or optional according to the prop-
bank frame information. Mandatory roles are
those appearing in the propbank frames of the
verb and its sense, the rest are marked as optional.
A propbank frame contains information as illus-
trated by the following example:

If Verb = play, sense = 01,
then the roles A0, A1 are MANDATORY.

4.2 Argument classification

Argument classification is done in two steps. In
the first step, the propbank sub-categorization
frames are used to assign the semantic roles to the
mandatory arguments in the order specified by the
sub-categorization frames. Sometimes, the num-
ber of mandatory arguments of a verb in the sen-
tence may be less than the number of roles which
can be assigned by the sub-categorization frame.
For example, in the sentence

”MAN1 MAN2 V MAN3 OPT1”, roles could
be assigned in the following two possible ways by

the sub-categorization frame ”A0 v A1” of verb
V1.

• A0[MAN1] MAN2 V1 A1[MAN3] OPT1

• MAN1 A0[MAN2] V A1[MAN3] OPT1

In the second step, the task is to label the un-
labelled mandatory arguments and the arguments
which are marked as optional. This is done by
marking these arguments with the most probable
semantic role which is not one of the frame ele-
ments of the sub-categorization frame ”A0 v A1”.
In the above example, the unlabelled mandatory
arguments and the optional arguments cannot be
labelled as either A0 or A1. Hence, after this step,
the following might be the role-labelling for the
sentence ”MAN1 MAN2 V1 MAN3 OPT1”.

• A0[MAN1] AM-TMP[MAN2] V1
A1[MAN3] AM-LOC[OPT1]

• AM-MNC[MAN1] A0[MAN2] V1
A1[MAN3] AM-LOC[OPT1]

The best possible sequence of semantic roles
(R̄) is decided by the taking the product of prob-
abilities of individual assignments. This also dis-
ambiguates the ambiguity in the assignment of
mandatory roles. The individual probabilities are
computed using the maximum entropy model.
For a sequence ~R, the product of the probabilities
is defined as

P (~R) = Π
Ri∈

~R
P (Ri|Argi)

The best sequence of semantic roles R̄ is de-
fined as

R̄ = argmax P (~R)

For training the maximum entropy model, the
outcomes are all the possible semantic roles. The
list of sub-categorization frames for a verb is ob-
tained from the training data using information
about mandatory roles from the propbank. The
propbank sub-categorization frames are also ap-
pended to this list.

We present our results in the next section.

167

Precision Recall Fβ=1

Development 71.88% 64.76% 68.14
Test WSJ 73.76% 65.52% 69.40
Test Brown 65.25% 55.72% 60.11
Test WSJ+Brown 72.66% 64.21% 68.17

Test WSJ Precision Recall Fβ=1

Overall 73.76% 65.52% 69.40
A0 85.17% 73.34% 78.81
A1 74.08% 66.08% 69.86
A2 54.51% 48.47% 51.31
A3 52.54% 35.84% 42.61
A4 71.13% 67.65% 69.35
A5 25.00% 20.00% 22.22
AM-ADV 52.18% 47.23% 49.59
AM-CAU 60.42% 39.73% 47.93
AM-DIR 45.65% 24.71% 32.06
AM-DIS 75.24% 73.12% 74.17
AM-EXT 73.68% 43.75% 54.90
AM-LOC 50.80% 43.53% 46.88
AM-MNR 47.24% 49.71% 48.44
AM-MOD 93.67% 91.29% 92.46
AM-NEG 94.67% 92.61% 93.63
AM-PNC 42.02% 43.48% 42.74
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 74.13% 66.97% 70.37
R-A0 82.27% 80.80% 81.53
R-A1 73.28% 61.54% 66.90
R-A2 75.00% 37.50% 50.00
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 100.00% 57.14% 72.73
R-AM-MNR 25.00% 16.67% 20.00
R-AM-TMP 70.00% 53.85% 60.87
V 97.28% 97.28% 97.28

Table 1: Overall results (top) and detailed results
on the WSJ test (bottom).

5 Results

The results of our approach are presented in table
1.

When we used an approach which uses a sim-
ple maximum entropy model, we obtained an F-
measure of 67.03%. Hence, we show that the
sub-categorization frames help in predicting the
semantic roles of the mandatory arguments, thus
improving the overall performance.

6 Conclusion

In this paper, we propose an approach for in-
ferring semantic role using sub-categorization
frames and maximum entropy model. Using this
approach, we obtained an F-measure of 68.14%

on the development set of the data provided for
the CONLL-2005 shared task.

7 Future work

We have observed that the main limitation of our
system was in argument identification. Currently,
the recall of the arguments inferred from the out-
put of the parser is 75.52% which makes it the up-
per bound of recall of our system. In near future,
we would focus on increasing the upper bound
of recall. In this direction, we would also use
the partial syntactic information. The accuracy
of the first stage of our approach would increase
if we include the mandatory/optional information
for training the parser (Yi and Palmer, 1999).

8 Acknowledgements

We would like to thank Prof. Rajeev Sangal, Dr.
Sushama Bendre and Dr. Dipti Misra Sharma for
guiding us in this project. We would like to thank
Szu-ting for giving some valuable advice.

References

S. Chen and R. Rosenfield. 1999. A gaussian prior for
smoothing maximum entropy models.

M. Collins. 1999. Head driven statistical models for
natural language processing.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles.

Hwang Young Sook Lim, Joon-H and, So-Young Park,
and Hae-Chang Rim. 2004. Semantic role labelling
using maximum entropy model.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,
Wayne Ward, James. H. Martin, and Daniel Juraf-
sky. 2003. Support Vector Learning for Semantic
Argument Classification.

Adwait Ratnaparakhi. 1999. Learning to parse natural
language with maximum entropy models.

Cynthia A. Thompson, Roger Levy, and Christo-
pher D. Manning. 2003. A generative model for
semantic role labelling.

Szu-ting Yi and M. Palmer. 1999. The integration of
syntactic parsing and semantic role labeling.

168

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 169–172, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labelling with
Tree Conditional Random Fields

Trevor Cohn and Philip Blunsom
University of Melbourne, Australia

tacohn@csse.unimelb.edu.au and pcbl@csse.unimelb.ed.au

Abstract

In this paper we apply conditional
random fields (CRFs) to the semantic
role labelling task. We define a random
field over the structure of each sentence’s
syntactic parse tree. For each node
of the tree, the model must predict a
semantic role label, which is interpreted
as the labelling for the corresponding
syntactic constituent. We show how
modelling the task as a tree labelling
problem allows for the use of efficient
CRF inference algorithms, while also
increasing generalisation performance
when compared to the equivalent
maximum entropy classifier. We have
participated in the CoNLL-2005 shared
task closed challenge with full syntactic
information.

1 Introduction

The semantic role labelling task (SRL) involves
identifying which groups of words act as arguments
to a given predicate. These arguments must
be labelled with their role with respect to the
predicate, indicating how the proposition should be
semantically interpreted.

We apply conditional random fields (CRFs) to
the task of SRL proposed by the CoNLL shared
task 2005 (Carreras and Màrquez, 2005). CRFs are
undirected graphical models which define a condi-
tional distribution over labellings given an obser-
vation (Lafferty et al., 2001). These models allow
for the use of very large sets of arbitrary, over-
lapping and non-independent features. CRFs have

been applied with impressive empirical results to the
tasks of named entity recognition (McCallum and
Li, 2003; Cohn et al., 2005), part-of-speech (PoS)
tagging (Lafferty et al., 2001), noun phrase chunk-
ing (Sha and Pereira, 2003) and extraction of table
data (Pinto et al., 2003), among other tasks.

While CRFs have not been used to date for SRL,
their close cousin, the maximum entropy model has
been, with strong generalisation performance (Xue
and Palmer, 2004; Lim et al., 2004). Most CRF
implementations have been specialised to work with
chain structures, where the labels and observations
form a linear sequence. Framing SRL as a linear
tagging task is awkward, as there is no easy model
of adjacency between the candidate constituent
phrases.

Our approach simultaneously performs both con-
stituent selection and labelling, by defining an undi-
rected random field over the parse tree. This allows
the modelling of interactions between parent and
child constituents, and the prediction of an optimal
argument labelling for all constituents in one pass.
The parse tree forms an acyclic graph, meaning that
efficient exact inference in a CRF is possible using
belief propagation.

2 Data

The data used for this task was taken from the
Propbank corpus, which supplements the Penn
Treebank with semantic role annotation. Full details
of the data set are provided in Carreras and Màrquez
(2005).

2.1 Data Representation

From each training instance we derived a tree, using
the parse structure from the Collins parser. The

169

nodes in the trees were relabelled with a semantic
role label indicating how their corresponding syn-
tactic constituent relates to each predicate, as shown
in Figure 1. The role labels are shown as subscripts
in the figure, and both the syntactic categories and
the words at the leaves are shown for clarity only
– these were not included in the tree. Addition-
ally, the dashed lines show those edges which were
pruned, following Xue and Palmer (2004) – only
nodes which are siblings to a node on the path from
the verb to the root are included in the tree. Child
nodes of included prepositional phrase nodes are
also included. This reduces the size of the resultant
tree whilst only very occasionally excluding nodes
which should be labelled as an argument.

The tree nodes were labelled such that only argu-
ment constituents received the argument label while
all argument children were labelled as outside,O.
Where there were parse errors, such that no con-
stituent exactly covered the token span of an argu-
ment, the smaller subsumed constituents were all
given the argument label.

We experimented with two alternative labelling
strategies: labelling a constituent’s children with a
new ‘inside’ label, and labelling the children with
the parent’s argument label. In the figure, the IN and
NP children of the PP would be affected by these
changes, both receiving either the insideI label or
AM-LOClabel under the respective strategies. The
inside strategy performed nearly identically to the
standard (outside) strategy, indicating that either the
model cannot reliably predict the inside argument,
or that knowing that the children of a given node are
inside an argument is not particularly useful in pre-
dicting its label. The second (duplication) strategy
performed extremely poorly. While this allowed the
internal argument nodes to influence their ancestor
towards a particular labelling, it also dramatically
increased the number of nodes given an argument
label. This lead to spurious over-prediction of argu-
ments.

The model is used for decoding by predicting the
maximum probability argument label assignment to
each of the unlabelled trees. When these predic-
tions were inconsistent, and one argument subsumed
another, the node closest to the root of the tree was
deemed to take precedence over its descendants.

3 Model

We define a CRF over the labellingy given the
observation treex as:

p(y|x) =
1

Z(x)
exp

∑
c∈C

∑
k

λkfk(c,yc,x)

whereC is the set of cliques in the observation tree,
λk are the model’s parameters andfk(·) is the fea-
ture function which maps a clique labelling to a vec-
tor of scalar values. The functionZ(·) is the nor-
malising function, which ensures thatp is a valid
probability distribution. This can be restated as:

p(y|x) =
1

Z(x)
exp

 ∑
v∈C1

∑
k

λkgk(v,yv,x)

+
∑

u,v∈C2

∑
j

λjhj(u, v,yu,yv,x)


whereC1 are the vertices in the graph andC2 are
the maximal cliques in the graph, consisting of all
(parent, child)pairs. The feature function has been
split into g andh, each dealing with one and two
node cliques respectively.

Preliminary experimentation without any
pair-wise features (h), was used to mimic a
simple maximum entropy classifier. This model
performed considerably worse than the model
with the pair-wise features, indicating that the
added complexity of modelling the parent-child
interactions provides for more accurate modelling
of the data.

The log-likelihood of the training sample was
optimised using limited memory variable metric
(LMVM), a gradient based technique. This required
the repeated calculation of the log-likelihood and
its derivative, which in turn required the use of
dynamic programming to calculate the marginal
probability of each possible labelling of every clique
using the sum-product algorithm (Pearl, 1988).

4 Features

As the conditional random field is conditioned on
the observation, it allows feature functions to be
defined over any part of the observation. The tree
structure requires that features incorporate either a
node labelling or the labelling of a parent and its

170

S

NP NP VP

DT NN NN NN JJ NN V NP PP

CD NNS NP

DT NNP

IN

The luxury auto maker last year sold 1,214 cars in the US

O

A0

A1 AM-LOCV

AM-TMP O

O O

Figure 1: Syntax tree labelled for semantic roles with respect to the predicatesell. The subscripts show the
role labels, and the dotted and dashed edges are those which are pruned from the tree.

child. We have defined node and pairwise clique fea-
tures using data local to the corresponding syntactic
node(s), as well as some features on the predicate
itself.

Each feature type has been made into binary fea-
ture functionsg andh by combining(feature type,
value) pairs with a label, or label pair, where this
combination was seen at least once in the training
data. The following feature types were employed,
most of which were inspired by previous works:

Basic features: {Head word, head PoS, phrase
syntactic category, phrase path, position rel-
ative to the predicate, surface distance to the
predicate, predicate lemma, predicate token,
predicate voice, predicate sub-categorisation,
syntactic frame}. These features are common
to many SRL systems and are described in Xue
and Palmer (2004).

Context features{Head word of first NP in prepo-
sition phrase, left and right sibling head words
and syntactic categories, first and last word
in phrase yield and their PoS, parent syntactic
category and head word}. These features are
described in Pradhan et al. (2005).

Common ancestor of the verbThe syntactic cate-
gory of the deepest shared ancestor of both the
verb and node.

Feature conjunctionsThe following features were
conjoined:{ predicate lemma + syntactic cate-
gory, predicate lemma + relative position, syn-
tactic category + first word of the phrase}.

Default feature This feature is always on, which
allows the classifier to model the prior prob-
ability distribution over the possible argument
labels.

Joint features These features were only defined
over pair-wise cliques:{whether the parent
and child head words do not match, parent syn-
tactic category + and child syntactic category,
parent relative position + child relative posi-
tion, parent relative position + child relative
position + predicate PoS + predicate lemma}.

5 Experimental Results

The model was trained on the full training set
after removing unparsable sentences, yielding
90,388 predicates and 1,971,985 binary features. A
Gaussian prior was used to regularise the model,
with varianceσ2 = 1. Training was performed on
a 20 node PowerPC cluster, consuming a total of
62Gb of RAM and taking approximately 15 hours.
Decoding required only 3Gb of RAM and about 5
minutes for the 3,228 predicates in the development
set. Results are shown in Table 1.

171

Precision Recall Fβ=1

Development 73.51% 68.98% 71.17
Test WSJ 75.81% 70.58% 73.10
Test Brown 67.63% 60.08% 63.63
Test WSJ+Brown 74.76% 69.17% 71.86

Test WSJ Precision Recall Fβ=1

Overall 75.81% 70.58% 73.10
A0 82.21% 79.48% 80.82
A1 74.56% 71.26% 72.87
A2 63.93% 56.85% 60.18
A3 63.95% 54.34% 58.75
A4 68.69% 66.67% 67.66
A5 0.00% 0.00% 0.00
AM-ADV 54.73% 48.02% 51.16
AM-CAU 75.61% 42.47% 54.39
AM-DIR 54.17% 30.59% 39.10
AM-DIS 77.74% 73.12% 75.36
AM-EXT 65.00% 40.62% 50.00
AM-LOC 60.67% 54.82% 57.60
AM-MNR 54.66% 49.42% 51.91
AM-MOD 98.34% 96.55% 97.44
AM-NEG 99.10% 96.09% 97.57
AM-PNC 49.47% 40.87% 44.76
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 77.20% 68.54% 72.61
R-A0 87.78% 86.61% 87.19
R-A1 82.39% 75.00% 78.52
R-A2 0.00% 0.00% 0.00
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 71.05% 51.92% 60.00
V 98.73% 98.63% 98.68

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

6 Conclusion

Conditional random fields proved useful in mod-
elling the semantic structure of text when provided
with a parse tree. Our novel use of a tree structure
derived from the syntactic parse, allowed for parent-
child interactions to be accurately modelled, which
provided an improvement over a standard maximum
entropy classifier. In addition, the parse constituent
structure proved quite appropriate to the task, more
so than modelling the data as a sequence of words or
chunks, as has been done in previous approaches.

Acknowledgements

We would both like to thank our research super-
visor Steven Bird for his comments and feedback
on this work. The research undertaken for this
paper was supported by an Australian Postgraduate
Award scholarship, a Melbourne Research Scholar-
ship and a Melbourne University Postgraduate Over-
seas Research Experience Scholarship.

References
Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to

the CoNLL-2005 Shared Task: Semantic Role Labeling. In
Proceedings of the CoNLL-2005.

Trevor Cohn, Andrew Smith, and Miles Osborne. 2005. Scal-
ing conditional random fields using error correcting codes.
In Proceedings of the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics. To appear.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labelling sequence data. InProceedings of the
18th International Conference on Machine Learning, pages
282–289.

Joon-Ho Lim, Young-Sook Hwang, So-Young Park, and Hae-
Chang Rim. 2004. Semantic role labeling using maximum
entropy model. InProceedings of the CoNLL-2004 Shared
Task.

Andrew McCallum and Wei Li. 2003. Early results for named
entity recognition with conditional random fields, feature
induction and web-enhanced lexicons. InProceedings of
the 7th Conference on Natural Language Learning, pages
188–191.

Judea Pearl. 1988.Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.

David Pinto, Andrew McCallum, Xing Wei, and Bruce Croft.
2003. Table extraction using conditional random fields.
In Proceedings of the Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 235–242.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne
Ward, James Martin, and Daniel Jurafsky. 2005. Sup-
port vector learning for semantic argument classification. In
To appear in Machine Learning journal, Special issue on
Speech and Natural Language Processing.

Fei Sha and Fernando Pereira. 2003. Shallow parsing with con-
ditional random fields. InProceedings of the Human Lan-
guage Technology Conference and North American Chap-
ter of the Association for Computational Linguistics, pages
213–220.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. InProceedings of EMNLP.

172

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 173–176, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A Joint Model for Semantic Role Labeling

Aria Haghighi
Dept of Computer Science

Stanford University
Stanford, CA, 94305
aria42@stanford.edu

Kristina Toutanova
Dept of Computer Science

Stanford University
Stanford, CA, 94305

kristina@cs.stanford.edu

Christopher D. Manning
Dept of Computer Science

Stanford University
Stanford, CA, 94305

manning@cs.stanford.edu

Abstract

We present a semantic role labeling sys-
tem submitted to the closed track of the
CoNLL-2005 shared task. The system, in-
troduced in (Toutanova et al., 2005), im-
plements a joint model that captures de-
pendencies among arguments of a predi-
cate using log-linear models in a discrimi-
native re-ranking framework. We also de-
scribe experiments aimed at increasing the
robustness of the system in the presence
of syntactic parse errors. Our final system
achieves F1-Measures of 76.68 and 78.45
on the development and the WSJ portion
of the test set, respectively.

1 Introduction

It is evident that there are strong statistical patterns
in the syntactic realization and ordering of the argu-
ments of verbs; for instance, if an active predicate
has an A0 argument it is very likely to come before
an A1 argument. Our model aims to capture such de-
pendencies among the labels of nodes in a syntactic
parse tree.

However, building such a model is computation-
ally expensive. Since the space of possible joint la-
belings is exponential in the number of parse tree
nodes, a model cannot exhaustively consider these
labelings unless it makes strong independence as-
sumptions. To overcome this problem, we adopt
a discriminative re-ranking approach reminiscent of
(Collins, 2000). We use a local model, which la-
bels arguments independently, to generate a smaller
number of likely joint labelings. These candidate la-
belings are in turn input to a joint model which can

use global features and re-score the candidates. Both
the local and global re-ranking models are log-linear
(maximum entropy) models.

In the following sections, we briefly describe our
local and joint models and the system architecture
for combining them. We list the features used by our
models, with an emphasis on new features, and com-
pare the performance of a local and a joint model on
the CoNLL shared task. We also study an approach
to increasing the robustness of the semantic role la-
beling system to syntactic parser errors, by consid-
ering multiple parse trees generated by a statistical
parser.

2 Local Models

Our local model labels nodes in a parse tree inde-
pendently. We decompose the probability over la-
bels (all argument labels plus NONE), into a product
of the probability over ARG and NONE, and a prob-
ability over argument labels given that a node is an
ARG. This can be seen as chaining an identification
and a classification model. The identification model
classifies each phrase as either an argument or non-
argument and our classification model labels each
potential argument with a specific argument label.
The two models use the same features.

Previous research (Gildea and Jurafsky, 2002;
Pradhan et al., 2004; Carreras and Màrquez, 2004)
has identified many useful features for local iden-
tification and classification. Below we list the fea-
tures and hand-picked conjunctions of features used
in our local models. The ones denoted with asterisks
(*) were not present in (Toutanova et al., 2005). Al-
though most of these features have been described in
previous work, some features, described in the next
section, are – to our knowledge – novel.

173

• Phrase-Type Syntactic category of node
• Predicate Lemma Stemmed target verb
• Path Sequence of phrase types between the predicate and

node, with ↑, ↓ to indicate direction
• Position Before or after predicate
• Voice Voice of predicate
• Head-Word of Phrase
• Head-POS POS tag of head word
• Sub-Cat CFG expansion of predicate’s parent
• First/Last Word
• Left/Right Sister Phrase-Type
• Left/Right Sister Head-Word/Head-POS
• Parent Phrase-Type
• Parent POS/Head-Word
• Ordinal Tree Distance Phrase-type concatenated with the

length of the Path feature
• Node-LCA Partial Path Path from the node to the lowest

common ancestor of the predicate and the node
• PP Parent Head-Word If the parent of the node is a PP, the

parent’s head-word
• PP NP Head-Word/Head-POS For a PP, retrieve the head-

word /head-POS of its rightmost NP
• Temporal Keywords* Is the head of the node a temporal

word e.g ‘February’ or ‘afternoon’
• Missing subject* Is the predicate missing a subject in

the“standard” location
• Projected path* Path from the maximal extended projection

of the predicate to the node
• Predicate Lemma & Path
• Predicate Lemma & Head-Word
• Predicate Lemma & Phrase-Type
• Voice & Position
• Predicate Lemma & PP Parent Head-Word
• Path & Missing subject*

• Projected path & Missing subject*

2.1 Additional Local Features

We found that a large source of errors for A0 and A1
stemmed from cases such as those illustrated in Fig-
ure 1, where arguments were dislocated by raising
or controlling verbs. Here, the predicate, expected,
does not have a subject in the typical position – in-
dicated by the empty NP – since the auxiliary is has
raised the subject to its current position. In order to
capture this class of examples, we use a binary fea-
ture, Missing Subject, indicating whether the pred-
icate is “missing” its subject, and use this feature in
conjunction with the Path feature, so that we learn
typical paths to raised subjects conditioned on the
absence of the subject in its typical position.

In the particular case of Figure 1, there is an-
other instance of an argument being quite far from

S
PPPPP

�����

NPi-A1
a

a
a

!
!

!

the trade gap

VP
PPPP

����

is S
PPPP

����

NPi-A1

-NONE-

VP
H

HH
�

��

expected VP
Q

Q
�

�

to widen

Figure 1: Example of displaced arguments

its predicate. The predicate widen shares the trade
gap with expect as a A1 argument. However, as ex-
pect is a raising verb, widen’s subject is not in its
typical position either, and we should expect to find
it in the same positions as expected’s subject. This
indicates it may be useful to use the path relative to
expected to find arguments for widen. In general,
to identify certain arguments of predicates embed-
ded in auxiliary and infinitival VPs we expect it to
be helpful to take the path from the maximum ex-
tended projection of the predicate – the highest VP
in the chain of VP’s dominating the predicate. We
introduce a new path feature, Projected Path, which
takes the path from the maximal extended projec-
tion to an argument node. This feature applies only
when the argument is not dominated by the maxi-
mal projection, (e.g., direct objects). These features
also handle other cases of discontinuous and non-
local dependencies, such as those arising due to con-
troller verbs. For a local model, these new features
and their conjunctions improved F1-Measure from
73.80 to 74.52 on the development set. Notably, the
F1-Measure of A0 increased from 81.02 to 83.08.

3 Joint Model

Our joint model, in contrast to the local model, col-
lectively scores a labeling of all nodes in the parse
tree. The model is trained to re-rank a set of N likely
labelings according to the local model. We find the
exact top N consistent1 most likely local model la-
belings using a simple dynamic program described
in (Toutanova et al., 2005).

1A labeling is consistent if satisfies the constraint that argu-
ment phrases do not overlap.

174

S

NP1-A1

Crude oil prices

VP

VBD-V

fell

PP1-A3

TO

to

NP

$27.80

PP2-A4

FROM

from

NP

$37.80

NP2-AM-TMP

yesterday

Figure 2: An example tree with semantic role annotations.

Most of the features we use are described in more
detail in (Toutanova et al., 2005). Here we briefly
describe these features and introduce several new
joint features (denoted by *). A labeling L of all
nodes in the parse tree specifies a candidate argu-
ment frame – the sequence of all nodes labeled with
a non-NONE label according to L. The joint model
features operate on candidate argument frames, and
look at the labels and internal features of the candi-
date arguments. We introduce them in the context
of the example in Figure 2. The candidate argument
frame corresponding to the correct labeling for the
tree is: [NP1-A1,VBD-V,PP1-A3,PP2-A4,NP2-AM-TMP].

• Core arguments label sequence: The sequence
of labels of core arguments concatenated with
the predicate voice. Example: [voice:active:
A1,V,A3,A4] A back-off feature which substitutes
specific argument labels with a generic argument
(A) label is also included.

• Flattened core arguments label sequence*:
Same as the previous but merging consecutive
equal labels.

• Core arguments label and annotated phrase
type sequence: The sequence of labels of core
arguments together with annotated phrase types.
Phrase types are annotated with the head word for
PP nodes, and with the head POS tag for S and VP
nodes. Example: [voice:active: NP-A1,V,PP-to-
A3,PP-from-A4]. A back-off to generic A labels
is also included. Also a variant that adds the pred-
icate stem.

• Repeated core argument labels with phrase
types: Annotated phrase types for nodes with
the same core argument label. This feature cap-
tures, for example, the tendency of WHNP refer-
ring phrases to occur as the second phrase having
the same label as a preceding NP phrase.

• Repeated core argument labels with phrase

types and sister/adjacency information*: Sim-
ilar to the previous feature, but also indicates
whether all repeated arguments are sisters in the
parse tree, or whether all repeated arguments are
adjacent in terms of word spans. These features
can provide robustness to parser errors, making it
more likely to label adjacent phrases incorrectly
split by the parser with the same label.

4 Combining Local and Joint Models

It is useful to combine the joint model score with
a local model score, because the local model has
been trained using all negative examples, whereas
the joint model has been trained only on likely
argument frames . Our final score is given by
a mixture of the local and joint model’s log-
probabilities: scoreSRL(L|t) = α score`(L|t) +
scoreJ(L|t), where score`(L|t) is the local score of
L, scoreJ(L|t) is the corresponding joint score, and
α is a tunable parameter. We search among the top
N candidate labelings proposed by the local model,
for the labeling that maximizes the final score.

5 Increasing Robustness to Parser Errors

It is apparent that role labeling is very sensitive to the
correctness of the given parse tree. If an argument
does not correspond to a constituent in a parse tree,
our model will not be able to consider the correct
phrase.

One way to address this problem is to utilize alter-
native parses. Recent releases of the Charniak parser
(Charniak, 2000) have included an option to provide
the top k parses of a given sentence according to
the probability model of the parser. We use these
alternative parses as follow: Suppose t1, . . . , tk are
trees for sentence s with given probabilities P (ti|s)
by the parser. Then for a fixed predicate v, let Li

175

Precision Recall Fβ=1

Development 77.66% 75.72% 76.68
Test WSJ 79.54% 77.39% 78.45
Test Brown 70.24% 65.37% 67.71
Test WSJ+Brown 78.34% 75.78% 77.04

Test WSJ Precision Recall Fβ=1

Overall 79.54% 77.39% 78.45
A0 88.32% 88.30% 88.31
A1 78.61% 78.40% 78.51
A2 72.55% 68.11% 70.26
A3 73.08% 54.91% 62.71
A4 77.42% 70.59% 73.85
A5 100.00% 80.00% 88.89
AM-ADV 58.20% 51.19% 54.47
AM-CAU 63.93% 53.42% 58.21
AM-DIR 52.56% 48.24% 50.31
AM-DIS 76.56% 80.62% 78.54
AM-EXT 73.68% 43.75% 54.90
AM-LOC 61.52% 55.92% 58.59
AM-MNR 58.33% 56.98% 57.65
AM-MOD 97.85% 99.09% 98.47
AM-NEG 97.41% 98.26% 97.84
AM-PNC 49.50% 43.48% 46.30
AM-PRD 100.00% 20.00% 33.33
AM-REC 0.00% 0.00% 0.00
AM-TMP 74.85% 67.34% 70.90
R-A0 92.63% 89.73% 91.16
R-A1 81.53% 82.05% 81.79
R-A2 61.54% 50.00% 55.17
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 85.71% 57.14% 68.57
R-AM-MNR 28.57% 33.33% 30.77
R-AM-TMP 61.54% 76.92% 68.38

V 97.32% 97.32% 97.32

Table 1: Overall results (top) and detailed results
on the WSJ test (bottom) on the closed track of the
CoNLL shared task.

denote the best joint labeling of tree ti, with score
scoreSRL(Li|ti) according to our final joint model.
Then we choose the labeling L which maximizes:

arg max
i∈{1,...,k}

β log P (ti|S) + scoreSRL(Li|ti) (1)

Considering top k = 5 parse trees using this al-
gorithm resulted in up to 0.4 absolute increase in
F-Measure. In future work, we plan to experiment
with better ways to combine information from mul-
tiple parse trees.

6 Experiments and Results

For our final results we used a joint model with α =
1.5 (local model weight), β = 1 (parse tree log-
probability weight) , N = 15 (candidate labelings
from the local model to consider) , and k = 5 (num-
ber of alternative parses). The whole training set for
the CoNLL-2005 task was used to train the mod-
els. It takes about 2 hours to train a local identifi-
cation model, 40 minutes to train a local classifica-
tion model, and 7 hours to train a joint re-ranking
model.2

In Table 1, we present our final development and
test results using this model. The percentage of
perfectly labeled propositions for the three sets is
55.11% (development), 56.52% (test), and 37.06%
(Brown test). The improvement achieved by the
joint model relative to the local model is about 2
points absolute in F-Measure, similar to the im-
provement when gold-standard syntactic parses are
used (Toutanova et al., 2005). The relative error re-
duction is much lower for automatic parses, possi-
bly due to a lower upper bound on performance. It
is clear from the drop in performance from the WSJ
to Brown test set that our learned model’s features
do not generalize very well to related domains.

References

Xavier Carreras and Lluı́s Màrquez. 2004. Introduction
to the CoNLL-2004 shared task: Semantic role label-
ing. In Proceedings of CoNLL-2004.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of NAACL, pages 132–139.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In Proceedings of ICML-2000.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28(3):245–288.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James
Martin, and Dan Jurafsky. 2004. Shallow semantic
parsing using support vector machines. In Proceed-
ings of HLT/NAACL-2004.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2005. Joint learning improves semantic role
labeling. In Proceedings of ACL-2005.

2On a 3.6GHz machine with 4GB of RAM.

176

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 177–180, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Sparse Bayesian Classification of Predicate Arguments

Richard Johansson and Pierre Nugues
LUCAS, Department of Computer Science, Lund University

Box 118
SE-221 00 Lund, Sweden

{richard, pierre}@cs.lth.se

Abstract

We present an application of Sparse
Bayesian Learning to the task of semantic
role labeling, and we demonstrate that this
method produces smaller classifiers than
the popular Support Vector approach.

We describe the classification strategy and
the features used by the classifier. In par-
ticular, the contribution of six parse tree
path features is investigated.

1 Introduction

Generalized linear classifiers, in particular Support
Vector Machines (SVMs), have recently been suc-
cessfully applied to the task of semantic role iden-
tification and classification (Pradhan et al., 2005),
inter alia.

Although the SVM approach has a number of
properties that make it attractive (above all, excel-
lent software packages exist), it also has drawbacks.
First, the resulting classifier is slow since it makes
heavy use of kernel function evaluations. This is
especially the case in the presence of noise (since
each misclassified example has to be stored as a
bound support vector). The number of support vec-
tors typically grows with the number of training ex-
amples. Although there exist optimization methods
that speed up the computations, the main drawback
of the SVM approach is still the classification speed.

Another point is that it is necessary to tune the
parameters (typicallyC andγ). This makes it nec-
essary to train repeatedly using cross-validation to
find the best combination of parameter values.

Also, the output of the decision function of the
SVM is not probabilistic. There are methods to map
the decision function onto a probability output using
the sigmoid function, but they are considered some-
what ad-hoc (see (Tipping, 2001) for a discussion).

In this paper, we apply a recent learning
paradigm, namelySparse Bayesian learning, or
more specifically theRelevance Vectorlearning
method, to the problem of role classification. Its
principal advantages compared to the SVM ap-
proach are:

• It typically utilizes fewer examples compared
to the SVM, which makes the classifier faster.

• It uses noC parameter, which reduces the need
for cross-validation.

• The decision function is adapted for probabilis-
tic output.

• Arbitrary basis functions can be used.

Its significant drawback is that the training pro-
cedure relies heavily on dense linear algebra, and is
thus difficult to scale up to large training sets and
may be prone to numerical difficulties.

For a description of the task and the data, see (Car-
reras and Màrquez, 2005).

2 Sparse Bayesian Learning and the
Relevance Vector Machine

The Sparse Bayesian method is described in detail in
(Tipping, 2001). Like other generalized linear learn-
ing methods, the resulting binary classifier has the
form

signf(x) = sign
m∑

i=1

αifi(x) + b

177

where thefi are basis functions. Training the
model then consists of finding a suitableα =
(b, α1, . . . , αm) given a data set(X,Y).

Analogous with the SVM approach, we can let
fi(x) = k(x, xi), wherexi is an example from the
training set andk a function. We have then arrived
at theRelevance Vector Machine(RVM). There are
however no restrictions on the functionk (such as
Mercer’s condition for SVM). We use the Gaussian
kernelk(x, y) = exp(−γ‖x − y‖2) throughout this
work.

We first model the probability of a positive ex-
ample as a sigmoid applied tof(x). This can be
used to write the likelihood functionP (Y |X,α).
Instead of a conventional ML approach (maximiz-
ing the likelihood with respect toα, which would
give an overfit model), we now adopt a Bayesian
approach and encode the model preferences using
priors onα. For eachαi, we introduce a parame-
ter si and assume thatαi ∈ N(0, s−1

i) (i.e. Gaus-
sian). This is in effect an “Occam penalty” that en-
codes our preference for sparse models. We should
finally specify the distributions of thesi. However,
we make the simplifying assumption that their dis-
tribution is flat (noninformative).

We now find the maximum of themarginal likeli-
hood, or “evidence”, with respect tos, that is

p(Y |X, s) =
∫

P (Y |X,α)p(α|s)dα.

This integral is not tractable, hence we approximate
the integrand using a Gaussian centered at the mode
of the integrand (Laplace’s approximation). The
marginal likelihood can then be differentiated with
respect tos, and maximized using iterative methods
such as gradient descent.

The algorithm thus proceeds iteratively as fol-
lows: First maximize the penalized likelihood func-
tion P (Y |X,α)p(α|s) with respect toα (for ex-
ample via the Newton-Raphson method), then up-
date the parameterssi. This goes on until a con-
vergence criterion is met, for example that thesi

changes are small enough. During iteration, thesi

parameters for redundant examples tend to infinity.
They (and the corresponding columns of the kernel
matrix) are then removed from the model. This is
necessary because of numerical stability and also re-
duces the training time considerably.

We implemented the RVM training method using
the ATLAS (Whaley et al., 2000) implementation
of the BLAS and LAPACK standard linear algebra
APIs. To make the algorithm scale up, we used a
working-set strategy that used the results of partial
solutions to train the final classifier. Our implemen-
tation is based on the original description of the al-
gorithm (Tipping, 2001) rather than the greedy opti-
mized version (Tipping and Faul, 2003), since pre-
liminary experiments suggested a decrease in clas-
sification accuracy. Our current implementation can
handle training sets up to about 30000 examples.

We used the conventional one-versus-one method
for multiclass classification. Although the Sparse
Bayesian paradigm is theoretically not limited to bi-
nary classifiers, this is of little use in practice, since
the size of the Hessian matrix (used while maximiz-
ing the likelihood and updatings) grows with the
number of classes.

3 System Description

Like previous systems for semantic role identifica-
tion and classification, we used an approach based
on classification of nodes in the constituent tree.
To simplify training, we used the soft-prune ap-
proach as described in (Pradhan et al., 2005), which
means that before classification, the nodes were fil-
tered through a binary classifier that classifies them
as having a semantic role or not (NON-NULL or
NULL). The NULL nodes missed by the filter were
included in the training set for the final classifier.

Since our current implementation of the RVM
training algorithm does not scale up to large training
sets, training on the whole PropBank was infeasible.
We instead trained the multiclass classifier on sec-
tions 15 – 18, and used an SVM for the soft-pruning
classifier, which was then trained on the remaining
sections. The excellent LIBSVM (Chang and Lin,
2001) package was used to train the SVM.

The features used by the classifiers can be
grouped into predicate and node features. Of the
node features, we here pay most attention to the
parse tree path features.

3.1 Predicate Features

We used the following predicate features, all of
which first appeared in (Gildea and Jurafsky, 2002).

178

• Predicate lemma.

• Subcategorization frame.

• Voice.

3.2 Node Features

• Head wordandhead POS. Like most previous
work, we used the head rules of Collins to ex-
tract this feature.

• Position. A binary feature that describes if the
node is before or after the predicate token.

• Phrase type(PT), that is the label of the con-
stituent.

• Named entity. Type of the first contained NE.

• Governing category. As in (Gildea and Juraf-
sky, 2002), this was used to distinguish subjects
from objects. For an NP, this is either S or VP.

• Path features. (See next subsection.)

For prepositional phrases, we attached the prepo-
sition to the PT and replaced head word and head
POS with those of the first contained NP.

3.3 Parse Tree Path Features

Previous studies have shown that the parse tree path
feature, used by almost all systems since (Gildea and
Jurafsky, 2002), is salient for argument identifica-
tion. However, it is extremely sparse (which makes
the system learn slowly) and is dependent on the
quality of the parse tree. We therefore investigated
the contribution of the following features in order
to come up with a combination of path features that
leads to a robust system that generalizes well.

• Constituent tree path. As in (Gildea and Ju-
rafsky, 2002), this feature represents the path
(consisting of step directions and PTs of the
nodes traversed) from the node to the predicate,
for example NP↑VP↓VB for a typical object.
Removing the direction (as in (Pradhan et al.,
2005)) improved neither precision nor recall.

• Partial path. To reduce sparsity, we introduced
a partial path feature (as in (Pradhan et al.,
2005)), which consists of the path from the
node to the lowest common ancestor.

• Dependency tree path. We believe that la-
beled dependency paths provide more informa-
tion about grammatical functions (and, implic-
itly, semantic relationships) than the raw con-
stituent structure. Since the grammatical func-
tions are not directly available from the parse
trees, we investigated two approximations of
dependency arc labels: first, the POSs of the
head tokens; secondly, the PTs of the head node
and its immediate parent (such labels were used
in (Ahn et al., 2004)).

• Shallow path. Since the UPC shallow parsers
were expected to be more robust than the full
parsers, we used a shallow path feature. We
first built a parse tree using clause and chunk
bracketing, and the shallow path feature was
then constructed like the constituent tree path.

• Subpaths. All subpaths of the constituent path.

We used the parse trees from Charniak’s parser to
derive all paths except for the shallow path.

4 Results

4.1 Comparison with SVM

The binary classifiers that comprise the one-versus-
one multiclass classifier were 89% – 98% smaller
when using RVM compared to SVM. However, the
performance dropped by about 2 percent. The rea-
son for the drop is possibly that the classifier uses a
number of features with extremely sparse distribu-
tions (two word features and three path features).

4.2 Path Feature Contributions

To estimate the contribution of each path feature, we
measured the difference in performance between a
system that used all six features and one where one
of the features had been removed. Table 2 shows
the results for each of the six features. For the final
system, we used the dependency tree path with PT
pairs, the shallow path, and the partial path.

4.3 Final System Results

The results of the complete system on the test sets
are shown in Table 1. The smaller training set (as
mentioned above, we used only sections 15 – 18

179

Precision Recall Fβ=1

Development 73.40% 70.85% 72.10
Test WSJ 75.46% 73.18% 74.30
Test Brown 65.17% 60.59% 62.79
Test WSJ+Brown 74.13% 71.50% 72.79

Test WSJ Precision Recall Fβ=1

Overall 75.46% 73.18% 74.30
A0 84.56% 85.18% 84.87
A1 73.40% 73.35% 73.37
A2 61.99% 57.30% 59.55
A3 71.43% 46.24% 56.14
A4 72.53% 64.71% 68.39
A5 100.00% 40.00% 57.14
AM-ADV 58.13% 51.58% 54.66
AM-CAU 70.59% 49.32% 58.06
AM-DIR 59.62% 36.47% 45.26
AM-DIS 81.79% 71.56% 76.33
AM-EXT 72.22% 40.62% 52.00
AM-LOC 54.05% 55.10% 54.57
AM-MNR 54.33% 52.91% 53.61
AM-MOD 98.52% 96.73% 97.62
AM-NEG 96.96% 96.96% 96.96
AM-PNC 36.75% 37.39% 37.07
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 76.00% 70.19% 72.98
R-A0 83.33% 84.82% 84.07
R-A1 68.75% 70.51% 69.62
R-A2 57.14% 25.00% 34.78
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 92.31% 57.14% 70.59
R-AM-MNR 40.00% 33.33% 36.36
R-AM-TMP 75.00% 69.23% 72.00
V 98.82% 98.82% 98.82

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

for the role classifier) causes the result to be signifi-
cantly lower than state of the art (F-measure of 79.4,
reported in (Pradhan et al., 2005)).

5 Conclusion and Future Work

We have provided an application of Relevance Vec-
tor Machines to a large-scale NLP task. The re-
sulting classifiers are drastically smaller that those
produced by the SV training methods. On the other
hand, the classification accuracy is lower, probably
because of the use of lexicalized features.

The results on the Brown test set shows that the
genre has a significant impact on the performance.

An evaluation of the contribution of six parse tree

P R Fβ=1

Const. tree -0.2% -0.6% -0.4
Partial -0.4% +0.4% 0
Dep. w/ POSs -0.1% -0.4% -0.3
Dep. w/ PT pairs +0.4% +0.4% +0.4
Shallow -0.1% +0.4% +0.1
Const. subpaths -10.9% +2.5% -4.5

Table 2: Contribution of path features

path features suggests that dependency tree paths are
more useful for semantic role labeling than the tra-
ditional constituent tree path.

In the future, we will investigate if it is possible
to incorporate theγ parameter into the probability
model, thus eliminating the need for cross-validation
completely. In addition, the training algorithm will
need to be redesigned to scale up to larger training
sets. The learning paradigm is still young and op-
timized methods (such as for SVM) have yet to ap-
pear. One possible direction is the greedy method
described in (Tipping and Faul, 2003).

References
David Ahn, Sisay Fissaha, Valentin Jijkoun, and Maarten

de Rijke. 2004. The university of Amsterdam at
Senseval-3: Semantic roles and logic forms. InPro-
ceedings of SENSEVAL-3.

Xavier Carreras and Lluís Màrquez. 2005. Introduction
to the CoNLL-2005 Shared Task: Semantic Role La-
beling. InProceedings of CoNLL-2005.

Chih-Chung Chang and Chih-Jen Lin, 2001.LIBSVM: a
library for support vector machines.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles.Computational Linguistics,
28(3):245–288.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,
Wayne Ward, James Martin, and Dan Jurafsky. 2005.
Support vector learning for semantic argument classi-
fication. Machine Learning. To appear.

Michael E. Tipping and Anita Faul. 2003. Fast marginal
likelihood maximisation for sparse bayesian models.
In 9th International Workshop on AI and Statistics.

Michael E. Tipping. 2001. Sparse bayesian learning
and the relevance vector machine.Journal of Machine
Learning Research, 1:211 – 244.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.
2000. Automated empirical optimizations of software
and the ATLAS project.

180

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 181–184, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Generalized Inference with Multiple Semantic Role Labeling Systems

Peter Koomen Vasin Punyakanok Dan Roth Wen-tau Yih
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{pkoomen2,punyakan,danr,yih}@uiuc.edu

Abstract

We present an approach to semantic role
labeling (SRL) that takes the output of
multiple argument classifiers and com-
bines them into a coherent predicate-
argument output by solving an optimiza-
tion problem. The optimization stage,
which is solved via integer linear pro-
gramming, takes into account both the rec-
ommendation of the classifiers and a set
of problem specific constraints, and is thus
used both to clean the classification results
and to ensure structural integrity of the fi-
nal role labeling. We illustrate a signifi-
cant improvement in overall SRL perfor-
mance through this inference.

1 SRL System Architecture

Our SRL system consists of four stages:prun-
ing, argument identification, argument classifica-
tion, andinference. In particular, the goal of pruning
and argument identification is to identify argument
candidates for a given verb predicate. The system
only classifies the argument candidates into their
types during the argument classification stage. Lin-
guistic and structural constraints are incorporated
in the inference stage to resolve inconsistent global
predictions. The inference stage can take as its input
the output of the argument classification of a single
system or of multiple systems. We explain the infer-
ence for multiple systems in Sec. 2.

1.1 Pruning

Only the constituents in the parse tree are considered
as argument candidates. In addition, our system ex-

ploits the heuristic introduced by (Xue and Palmer,
2004) to filter out very unlikely constituents. The
heuristic is a recursive process starting from the verb
whose arguments are to be identified. It first returns
the siblings of the verb; then it moves to the parent of
the verb, and collects the siblings again. The process
goes on until it reaches the root. In addition, if a con-
stituent is aPP (propositional phrase), its children
are also collected. Candidates consisting of only a
single punctuation mark are not considered.

This heuristic works well with the correct parse
trees. However, one of the errors by automatic
parsers is due to incorrectPP attachment leading to
missing arguments. To attempt to fix this, we con-
sider as arguments the combination of any consec-
utive NP andPP, and the split ofNP andPP inside
theNP that was chosen by the previous heuristics.

1.2 Argument Identification

The argument identification stage utilizes binary
classification to identify whether a candidate is an
argument or not. We train and apply the binary clas-
sifiers on the constituents supplied by the pruning
stage. Most of the features used in our system are
standard features, which include

• Predicate and POS tag of predicateindicate the lemma
of the predicate and its POS tag.

• Voice indicates tbe voice of the predicate.

• Phrase typeof the constituent.

• Head word and POS tag of the head wordinclude head
word and its POS tag of the constituent. We use rules
introduced by (Collins, 1999) to extract this feature.

• First and last words and POS tagsof the constituent.

• Two POS tags before and afterthe constituent.

• Position feature describes if the constituent is before or
after the predicate relative to the position in the sentence.

181

• Path records the traversal path in the parse tree from the
predicate to the constituent.

• Subcategorizationfeature describes the phrase structure
around the predicate’s parent. It records the immediate
structure in the parse tree that expands to its parent.

• Verb classfeature is the class of the active predicate de-
scribed in PropBank Frames.

• Lengthsof the target constituent, in the numbers of words
and chunks separately.

• Chunk tells if the target argument is, embeds, overlaps,
or is embedded in a chunk with its type.

• Chunk pattern length feature counts the number of
chunks from the predicate to the argument.

• Clause relative positionis the position of the target word
relative to the predicate in the pseudo-parse tree con-
structed only from clause constituent. There are four
configurations—target constituent and predicate share the
same parent, target constituent parent is an ancestor of
predicate, predicate parent is an ancestor of target word,
or otherwise.

• Clause coveragedescribes how much of the local clause
(from the predicate) is covered by the argument. It is
round to the multiples of1/4.

1.3 Argument Classification

This stage assigns the final argument labels to the ar-
gument candidates supplied from the previous stage.
A multi-class classifier is trained to classify the
types of the arguments supplied by the argument
identification stage. To reduce the excessive candi-
dates mistakenly output by the previous stage, the
classifier can also classify the argument asNULL
(“not an argument”) to discard the argument.

The features used here are the same as those used
in the argument identification stage with the follow-
ing additional features.

• Syntactic frame describes the sequential pattern of the
noun phrases and the predicate in the sentence. This is
the feature introduced by (Xue and Palmer, 2004).

• Propositional phrase headis the head of the first phrase
after the preposition insidePP.

• NEG and MOD feature indicate if the argument is a
baseline for AM-NEG or AM-MOD. The rules of the
NEG andMOD features are used in a baseline SRL sys-
tem developed by Erik Tjong Kim Sang (Carreras and
Màrquez, 2004).

• NE indicates if the target argument is, embeds, overlaps,
or is embedded in a named-entity along with its type.

1.4 Inference

The purpose of this stage is to incorporate some
prior linguistic and structural knowledge, such as
“arguments do not overlap” or “each verb takes at

most one argument of each type.” This knowledge is
used to resolve any inconsistencies of argument clas-
sification in order to generate final legitimate pre-
dictions. We use the inference process introduced
by (Punyakanok et al., 2004). The process is formu-
lated as an integer linear programming (ILP) prob-
lem that takes as inputs the confidences over each
type of the arguments supplied by the argument clas-
sifier. The output is the optimal solution that maxi-
mizes the linear sum of the confidence scores (e.g.,
the conditional probabilities estimated by the argu-
ment classifier), subject to the constraints that en-
code the domain knowledge.

Formally speaking, the argument classifier at-
tempts to assign labels to a set of arguments,S1:M ,
indexed from 1 toM . Each argumentSi can take
any label from a set of argument labels,P, and the
indexed set of arguments can take a set of labels,
c1:M ∈ PM . If we assume that the argument classi-
fier returns an estimated conditional probability dis-
tribution,Prob(Si = ci), then, given a sentence, the
inference procedure seeks an global assignment that
maximizes the following objective function,

ĉ1:M = argmax
c1:M∈PM

M∑

i=1

Prob(Si = ci),

subject to linguistic and structural constraints. In
other words, this objective function reflects the ex-
pected number of correct argument predictions, sub-
ject to the constraints. The constraints are encoded
as the followings.

• No overlapping or embedding arguments.

• No duplicate argument classes for A0-A5.

• Exactly one V argument per predicate considered.

• If there is C-V, then there has to be a V-A1-CV pattern.

• If there is an R-arg argument, then there has to be anarg
argument.

• If there is a C-arg argument, there must be anarg argu-
ment; moreover, the C-arg argument must occur afterarg.

• Given the predicate, some argument types are illegal (e.g.
predicate ‘stalk’ can take only A0 or A1). The illegal
types may consist of A0-A5 and their corresponding C-
arg and R-arg arguments. For each predicate, we look
for the minimum value ofi such that the class Ai is men-
tioned in its frame file as well as its maximum valuej.
All argument types Ak such thatk < i or k > j are
considered illegal.

182

2 Inference with Multiple SRL Systems

The inference process allows a natural way to com-
bine the outputs from multiple argument classi-
fiers. Specifically, givenk argument classifiers
which perform classification onk argument sets,
{S1, . . . , Sk}. The inference process aims to opti-
mize the objective function:

ĉ1:N = argmax
c1:N∈PN

N∑

i=1

Prob(Si = ci),

whereS1:N =
⋃k

i=1
Si, and

Prob(Si = ci) =
1

k

k∑

j=1

Probj(S
i = ci),

whereProbj is the probability output by systemj.
Note that all systems may not output with the

same set of argument candidates due to the pruning
and argument identification. For the systems that do
not output for any candidate, we assign the proba-
bility with a prior to thisphantomcandidate. In par-
ticular, the probability of theNULL class is set to be
0.6 based on empirical tests, and the probabilities of
the other classes are set proportionally to their oc-
currence frequencies in the training data.

For example, Figure 1 shows the two candidate
sets for a fragment of a sentence, “..., traders say,
unable tocool the selling panic in both stocks and
futures.” In this example, system A has two argu-
ment candidates,a1 = “traders” anda4 = “the sell-
ing panic in both stocks and futures”; system B has
three argument candidates,b1 = “traders”,b2 = “the
selling panic”, andb3 = “in both stocks and fu-
tures”. The phantom candidates are created fora2,
a3, andb4 of which probability is set to the prior.

Specifically for this implementation, we first train
two SRL systems that use Collins’ parser and Char-
niak’s parser respectively. In fact, these two parsers
have noticeably different output. In evaluation, we
run the system that was trained with Charniak’s
parser 5 times with the top-5 parse trees output by
Charniak’s parser1. Together we have six different
outputs per predicate. Per each parse tree output, we
ran the first three stages, namely pruning, argument

1The top parse tree were from the official output by CoNLL.
The 2nd-5th parse trees were output by Charniak’s parser.

cool

1

b1

b4

a4

a2

2b 3b

a3

..., traders say, unable to the selling panic in both stocks and futures.

a

Figure 1: Two SRL systems’ output (a1, a4, b1, b2,
andb3), and phantom candidates (a2, a3, andb4).

identification, and argument classification. Then a
joint inference stage is used to resolve the incon-
sistency of the output of argument classification in
these systems.

3 Learning and Evaluation

The learning algorithm used is a variation of the
Winnow update rule incorporated in SNoW (Roth,
1998; Roth and Yih, 2002), a multi-class classi-
fier that is tailored for large scale learning tasks.
SNoW learns a sparse network of linear functions,
in which the targets (argument border predictions
or argument type predictions, in this case) are rep-
resented as linear functions over a common feature
space. It improves the basic Winnow multiplicative
update rule with a regularization term, which has the
effect of trying to separate the data with a large mar-
gin separator (Grove and Roth, 2001; Hang et al.,
2002) and voted (averaged) weight vector (Freund
and Schapire, 1999).

Softmax function (Bishop, 1995) is used to con-
vert raw activation to conditional probabilities. If
there aren classes and the raw activation of classi

is acti, the posterior estimation for classi is

Prob(i) =
eacti

∑
1≤j≤n eactj

.

In summary, training used both full and partial
syntactic information as described in Section 1. In
training, SNoW’s default parameters were used with
the exception of the separator thickness 1.5, the use
of average weight vector, and 5 training cycles. The
parameters are optimized on the development set.

Training for each system took about 6 hours. The
evaluation on both test sets which included running

183

Precision Recall Fβ=1

Development 80.05% 74.83% 77.35
Test WSJ 82.28% 76.78% 79.44
Test Brown 73.38% 62.93% 67.75
Test WSJ+Brown 81.18% 74.92% 77.92

Test WSJ Precision Recall Fβ=1

Overall 82.28% 76.78% 79.44
A0 88.22% 87.88% 88.05
A1 82.25% 77.69% 79.91
A2 78.27% 60.36% 68.16
A3 82.73% 52.60% 64.31
A4 83.91% 71.57% 77.25
A5 0.00% 0.00% 0.00
AM-ADV 63.82% 56.13% 59.73
AM-CAU 64.15% 46.58% 53.97
AM-DIR 57.89% 38.82% 46.48
AM-DIS 75.44% 80.62% 77.95
AM-EXT 68.18% 46.88% 55.56
AM-LOC 66.67% 55.10% 60.33
AM-MNR 66.79% 53.20% 59.22
AM-MOD 96.11% 98.73% 97.40
AM-NEG 97.40% 97.83% 97.61
AM-PNC 60.00% 36.52% 45.41
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 78.16% 76.72% 77.44
R-A0 89.72% 85.71% 87.67
R-A1 70.00% 76.28% 73.01
R-A2 85.71% 37.50% 52.17
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 85.71% 57.14% 68.57
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 72.34% 65.38% 68.69
V 98.92% 97.10% 98.00

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

with all six different parse trees (assumed already
given) and the joint inference took about 4.5 hours.

Precision Recall Fβ=1

Charniak-1 75.40% 74.13% 74.76
Charniak-2 74.21% 73.06% 73.63
Charniak-3 73.52% 72.31% 72.91
Charniak-4 74.29% 72.92% 73.60
Charniak-5 72.57% 71.40% 71.98
Collins 73.89% 70.11% 71.95
Joint inference 80.05% 74.83% 77.35

Table 2: The results of individual systems and the
result with joint inference on the development set.

Overall results on the development and test sets
are shown in Table 1. Table 2 shows the results of

individual systems and the improvement gained by
the joint inference on the development set.

4 Conclusions

We present an implementation of SRL system which
composed of four stages—1) pruning, 2) argument
identification, 3) argument classification, and 4) in-
ference. The inference provides a natural way to
take the output of multiple argument classifiers and
combines them into a coherent predicate-argument
output. Significant improvement in overall SRL per-
formance through this inference is illustrated.

Acknowledgments

We are grateful to Dash Optimization for the free
academic use of Xpress-MP. This research is sup-
ported by ARDA’s AQUAINT Program, DOI’s Re-
flex program, and an ONR MURI Award.

References
C. Bishop, 1995. Neural Networks for Pattern Recognition,

chapter 6.4: Modelling conditional distributions, page 215.
Oxford University Press.

X. Carreras and L. M̀arquez. 2004. Introduction to the conll-
2004 shared tasks: Semantic role labeling. InProc. of
CoNLL-2004.

M. Collins. 1999. Head-driven Statistical Models for Natural
Language Parsing.Ph.D. thesis, Computer Science Depart-
ment, University of Pennsylvenia, Philadelphia.

Y. Freund and R. Schapire. 1999. Large margin classifica-
tion using the perceptron algorithm.Machine Learning,
37(3):277–296.

A. Grove and D. Roth. 2001. Linear concepts and hidden vari-
ables.Machine Learning, 42(1/2):123–141.

T. Hang, F. Damerau, and D. Johnson. 2002. Text chunking
based on a generalization of winnow.Journal of Machine
Learning Research, 2:615–637.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2004. Seman-
tic role labeling via integer linear programming inference. In
Proc. of COLING-2004.

D. Roth and W. Yih. 2002. Probabilistic reasoning for entity &
relation recognition. InProc. of COLING-2002, pages 835–
841.

D. Roth. 1998. Learning to resolve natural language ambigui-
ties: A unified approach. InProc. of AAAI, pages 806–813.

N. Xue and M. Palmer. 2004. Calibrating features for semantic
role labeling. InProc. of the EMNLP-2004, pages 88–94,
Barcelona, Spain.

184

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 185–188, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling via Consensus in Pattern-Matching

Chi-San (Althon) Lin Tony C. Smith
Department of Computer Science Department of Computer Science

Waikato University Waikato University

Hamilton, New Zealand Hamilton, New Zealand
cl123@cs.waikato.ac.nz tcs@cs.waikato.ac.nz

Abstract

This paper describes a system for semantic

role labeling for the CoNLL2005 Shared

task. We divide the task into two sub-tasks:

boundary recognition by a general tree-

based predicate-argument recognition algo-

rithm to convert a parse tree into a flat rep-

resentation of all predicates and their

related boundaries, and role labeling by a

consensus model using a pattern-matching

framework to find suitable roles for core

constituents and adjuncts. We describe the

system architecture and report results for

the CoNLL2005 development dataset.

1 Introduction

Semantic role labeling is to find all arguments for

all predicates in a sentence, and classify them by

semantic roles such as A0, A1, AM-TMP and so

on. The performance of semantic role labeling can

play a key role in Natural Language Processing

applications, such as Information Extraction, Ques-

tion Answering, and Summarization (Pradhan et al.,

2004).

Most existing systems separate semantic role la-

beling into two sub-problems, boundary recogni-

tion and role classification, and use feature-based

models to address both (Carreras et al., 2004). Our

strategy is to develop a boundary analyzer by a

general tree-based predicate-argument recognition

algorithm (GT-PARA) for boundary recognition,

and a pattern-matching model for role classifica-

tion. The only information used in our system is

Charniak’s annotation with words, which contains

all useful syntactic annotations. Five features,

which are Headword, Phrase type, Voice, Target

verb, and Preposition (of the first word), and a Pat-

tern set, which includes numbers and types of roles

in a pattern, are used for the pattern-matching ap-

proach. We develop a Pattern Database, trained by

Wall Street Journal section 02 to 21, as our knowl-

edge/Data base. The system outline is described in

the following section.

2 System Description

An overview of the system architecture is shown in

Figure 1. The input is a full parse tree for each

sentence. We convert a sentence with words, and

Charniak’s information into a parsed tree as the

input of GT-PARA. GT-PARA then converts the

parse tree into a flat representation with all predi-

cates and arguments expressed in [GPLVR] for-

mat; where

G: Grammatical function – 5 denotes subject, 3

object, and 2 others;

P: Phrase type of this boundary – 00 denotes ADJP,

01 ADVP, 02 NP, 03 PP, 04 S, 05 SBAR, 06

SBARQ, 07 SINV, 08 SQ, 09 VP, 10 WHADVP,

11 WHNP, 12 WHPP, and 13 Others

L: Distance (and position) of the argument with

respect to the predicate that follows

V: Voice of the predicate, 0: active 1: passive

R: Distance (and position) of the argument

with respect to the preceding predicate (n.b.

L and R are mutually exclusive).

An example of the output of GT-PARA is

shown in Figure 2. There is one predicate “take”

in the sample input sentence. There are 4 argu-

ments for that predicate, denoted as “302110”,

“AM-MOD”, “203011”, and “302012” respec-

tively. “302110” symbolizes the NP Object of

distance 1 prior to the passive predicate. “203011”

symbolizes an undefined PP argument (which

185

means it can be a core argument or an adjunct)

with distance 1 after the passive predicate. And

“302012” symbolizes a NP Object with distance 2

after the passive predicate.

For all boundaries extracted by GT-PARA, we

simply denote all boundaries with noun phrases

(NP) or similar phrases, such as WHNP, SBAR,

and so on, as core pattern candidates and all

boundaries with prepositional phrases (PP), ADJP,

ADVP, or similar phrases, such as WHADJP,

WHADVP, and so on, as adjunct candidates. But

there is no exact rule for defining a core role or an

adjunct explicitly in a boundary span, for example,

given a sentence where

(1) P1 is done by P2. (P1 and P2 are two groups of

words or phrases)

We can guess P1 might be labeled with “A1”, and

P2 with ”A0” if there is no further feature informa-

tion. But if the ”head word” feature of P2 is

“hour”, for example, P2 can be labeled with “AM-

TMP” instead. Because there are some uncertain-

ties between core roles and adjuncts before label-

ing, we use the Member Generator (in Figure 1) to

create all possible combinations, called members,

from the output of GT-PARA by changing ANs

(Core Role Candidates) into AMs (Adjunct Candi-

dates), or AMs into ANs, except core candidates

before predicates. All possible combinations

(members) for the example in Figure 1 are

M1: [AN1, AM-MOD, V, AM1<points>(from), AN2]

(original)

M2: [AN1 AM-MOD V AN3 (from) AN2]

(change AM1 as AN3)

M3: [AN1 AM-MOD V AM1<point>(from)

AM2<week>] (change AN2 as AM2)

M4: [AN1 AM-MOD V AN3<point>(from)

AM2<week>]

(change AM1 as AN3 and one AN2 as AM2)

The output from the Member Generator is

passed to the Role Classifier, which finds all pos-

sible roles for each member with suitable core

roles and adjuncts according to a Database built up

by training data, in which each predicate has dif-

ferent patterns associated with it, each pattern has

different semantic roles, and each role has the fol-

lowing format.

Role {Phrase type} < Head Word> (preposition)

There is an additional Boolean voice for a predi-

cate to show if the predicate is passive or active (0:

denotes active, 1: denotes passive). Each pattern

includes a count on the number of the same pat-

terns learned from the training data (denoted as

“[statistical figure]”). For example, eight patterns

for a predicate lemma “take” are
1. [30] A0{NP}<buyers> V{VP}<take>-0

A1{NP}<stake>

2. [1] A0{NP}<U.S.> V{VP}<take>-0 A1{NP}<%>

A2{PP}<Canada>(from) AM-

ADV{ADVP}<up>(up)

3. [2] A0{NP}<Confidence> V{VP}<take>-0

A1{NP}<dive> AM-ADV{SBAR}< figures>(if)

4. [1] A1{NP}<it> AM-MOD{VP}<could>

V{VP}<take>-0 A2{NP}<place> AM-

TMP{NP}<today> AM-LOC{PP}<Express>(at)

5. [1] AM-TMP{NP}< week> A0{NP}<government>

V{VP}<take>-0 A1{NP}<bills> AM-

DIR{PP}<to>(to)

6. [3] A1{NP}<cells> V{VP}<take>-1

A2{PP}<tissue>(from)

7. [6] A1{NP}<action> V{VP}<take>-1

8. [1] AM-TMP{ADVP}<far> A1{NP}<festivities>

V{VP}<take>-1 AM-EXT{PP}<entirely>

A0{NP}<eating>(by)

Role Classifier consists of two parts, AN classi-

fier and AM classifier, which process core argu-

Figure 1: System Architecture

Words POS Full Tree Syntax Predicate Boundaries

The DT (S1(S(NP(NP* - (302110*

economy NN * - *

's POS *) - *

temperature NN *) - *)

will MD (VP* - (AM-MOD*)

be AUX (VP* - *

taken VBN (VP* take (V*V)

from IN (PP* - (203011*

several JJ (NP* - *

vantage NN * - *

points NNS *)) - *)

this DT (NP* - (302012*

week NN *) - *)

. . *)) - *

 Figure 2: Illustration of an output of GT-PARA of a sen-

tence, ”The economy ’s temperature will be taken from several

vantage points this week.”

186

ments and adjuncts respectively. AN classifier

finds a suitable core pattern for labeled core pattern

candidates in each member generated by Member

Generator according to

(1) the same numbers of core roles

(2) the same prepositions for each core role

(3) the same phrase types for each core role

(4) the same voice (active or passive)

AM classifier finds a suitable adjunct role for

any labeled adjunct candidate in each member

generated by Member Generator according to

(1) the same Head Word

(2) the same Phrase type

(3) the highest statistical probability learned from

the training data

The followings are the results for each member

after Role Classification
M1: [AN1, AM-MOD, V, AM1<points>(from), AN2]

(no pattern applied)

M2: [AN1 AM-MOD V AN1 (from) AN2] (no pattern

applied)

M3: [A1 AM-MOD V AM1<point>(from) AM-

TMP<week>] (ANs by pattern 7, AM-TMP by pattern

5) [stat: 6]

M4: [A1 AM-MOD V A2 (from) AM-TMP<week>]

(ANs by pattern 6, AM-TMP by pattern 5) [stat: 3]

Decision-making in the Consensus component

(see Figure 1) handles the final selection by select-

ing the highest score using the following formula.

Scorek = (α1* Rk + α2* Vk + α3* Sk) for each Xk

(k=1 .. K, generated by Member Generator and

Role Classifier), where

Rk : numbers of all roles being labeled

Vk : votes of a pattern with the same roles

Sk : statistical figure learned from trained data

Xk : different pattern by Member General and

Role Classifier

α1 ,α2 ,and α3 are weights (α1 >>α2 >>α3) used

to rank the relative contribution of Rk , Vk , and Sk.

Empirical studies led to the use of a so-called Max-

labeled-role Heuristic to derive suitable values for

these weights.

The final consensus decision for role classifica-

tion is determined by calculating

There are 3 roles labeled in M3, which are AN1

as A1, AM-MOD, AM2 as AM-TMP respectively.

And there are 4 roles labeled in M4, which are

AN1 as A1, AM-MOD, AN3 as A2, and AM2 as

AM-TMP respectively. Consensus scores for M3,

and M4 are

(α1* 3 + α2* 1 + α3* 6) , and

(α1* 4 + α2* 1 + α3* 3).

So the pattern [A1 AM-MOD V A2(from) AM-

TMP<week>] in M4 applied by Pattern 6 and Pat-

tern 5 is selected due to the most roles labeled.

3 Data and Evaluation

We extracted patterns from the training data (WSJ

Section 02 to 21) to build up a pattern database.

Table 1 reveals sparseness of the pattern database.

Twenty-six percent of predicates contain only one

pattern, and fifteen two patterns. Seventy-five per-

cents of predicates contain no more than 10 pat-

terns.

No 1 2 3 4 5 5-10 11-50 51-100 >100

% 26 15 10 7 5 13 20 4 2

A % 26 40 50 57 62 75 94 98 100
Table 1: Statistical figures on the number of patterns

collected from training, WSJ Section 02-21

The evaluation software, srl-eval.pl, is available

from CoNLL2005 Shared Task
1
, which is the offi-

cial script for evaluation of CoNLL-2005 Shared

Task systems. In order to test boundary perform-

ance of GT-PARA, we simply convert all correct

propositional arguments into A0s, except AM-

MOD and AM-NEG for both the training dataset

(WSJ Sections 15-18) and the development dataset

(WSJ Section 24).

4 Experimental Results

The results of classification on the development,

and test data of the CoNLL2005 shared task are

outlined in Table 2. The overall results on the De-

velopment, Test-WSJ, Test-Brown, and Test-

WSJ+Brown datasets for F-score are 65.78, 67.91,

58.58 and 66.72 respectively, which are moderate

compared to the best result reported in

CoNLL2004 Shared Task (Carreras et al., 2004)

using partial trees and the result in (Pradhan et al.,

2004). The results for boundary recognition via

GT-PARA are summarized in Table 3.

1 http://www.lsi.upc.edu/~srlconll/soft.html

 K

Consensus = Max Scorek
 k=1

187

 Precision Recall Fβ=1

Development(WSJ24) 70.11% 61.96% 65.78
Test WSJ 71.49% 64.67% 67.91
Test Brown 65.75% 52.82% 58.58
Test WSJ + Brown 70.80% 63.09% 66.72

Test WSJ Precision Recall Fβ=1

Overall 71.49% 64.67% 67.91

A0 81.74% 81.53% 81.64

A1 71.61% 69.54% 70.56

A2 63.73% 40.36% 49.42

A3 68.60% 34.10% 45.56

A4 33.93% 18.63% 24.05

A5 0.00% 0.00% 0.00

AA 0.00% 0.00% 0.00

AM-ADV 36.26% 31.82% 33.89

AM-CAU 52.00% 35.62% 42.28

AM-DIR 20.11% 42.35% 27.27

AM-DIS 73.91% 63.75% 68.46

AM-EXT 12.90% 12.50% 12.70

AM-LOC 60.80% 33.33% 43.06

AM-MNR 43.57% 30.52% 35.90

AM-MOD 99.21% 90.93% 94.89

AM-NEG 96.38% 92.61% 94.46

AM-PNC 13.69% 31.30% 19.05

AM-PRD 0.00% 0.00% 0.00

AM-REC 0.00% 0.00% 0.00

AM-TMP 71.62% 54.55% 61.93

R-A0 93.37% 69.20% 79.49

R-A1 82.24% 56.41% 66.92

R-A2 100.00% 25.00% 40.00

R-A3 0.00% 0.00% 0.00

R-A4 0.00% 0.00% 0.00

R-AM-ADV 0.00% 0.00% 0.00

R-AM-CAU 0.00% 0.00% 0.00

R-AM-EXT 0.00% 0.00% 0.00

R-AM-LOC 0.00% 0.00% 0.00

R-AM-MNR 0.00% 0.00% 0.00

R-AM-TMP 0.00% 0.00% 0.00

V 97.34% 95.25% 96.29

Table 2: Overall results (top) and detailed results

on the WSJ test (bottom), obtained by the system.

The overall performance (F1: 76.43) on the WSJ

Section 24 is not as good as on the WSJ Section 21

(F1: 85.78). The poor performance for the devel-

opment was caused by more parser errors in the

WSJ Section 24. Most parser errors are brought on

by continuous phrases with commas and/or quota-

tion marks.

One interesting fact is that when we tested our

system using the data in CoNLL2004 shared task,

we found the result with the train data WSJ 15-18

on the WSJ 21 is 73.48 shown in Table 4, which

increases about 7 points in the F1 score, compared

to WSJ 24 shown in Table 2. We found the label-

ing accuracy for WSJ 24 is 87.73, which is close to

89.30 for WSJ Section 21. But the results of

boundary recognition in Table 3 for the two data

are 9.14 points different, which leads to the better

performance in WSJ Section 21. Boundary recog-

nition as mentioned in CoNLL004 does play a very

important role in this system as well.

 Precision Recall Fβ=1

WSJ 15-18 87.23% 83.98% 85.57

WSJ 21 86.89% 84.70% 85.78

WSJ 24 78.88% 74.12% 76.43

Table 3: Boundary Recognition results by GT-PARA

on WSJ 15-18, WSJ 21 and WSJ 24 sets

WSJ 21 Precision Recall Fβ=1

Overall 78.06% 69.41% 73.48

Table 4: System results by the training data WSJ 15-18

on the WSJ Section 21

5 Conclusion

We have described a semantic role labeling archi-

tecture via consensus in a pattern-matching system.

The pattern-matching system is based on linear

pattern matching utilising statistical consensus for

decision-making. A General Tree-based Predicate-

Argument Boundary Recognition Algorithm (GT-

PARA) handles the conversion process, turning a

parse tree into a flat representation with all predi-

cates and their arguments labeled with some useful

features, such as phrase types. Label accuracy of

Consensus model for role classification is stable

but performance results of GT-PARA vary on dif-

ferent datasets, which is the key role for the overall

results. Although the results seem moderate on

test data, this system offers a decidedly different

approach to the problem of semantic role labeling.

References

Xavier Carreras, Lluís Màrquez and Grzegorz Chrupała.

2004. Hierarchical Recognition of Propositional Ar-

guments with Perceptrons. In Proceeding of

CoNLL’2004 Shared Task.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., Juraf-

sky, D. 2004. " Shallow Semantic Parsing using Sup-

port Vector Machines ", in Proceedings of

HLT/NAACL-2004, Boston, MA.

188

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 189–192, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Lableing System using Maximum Entropy Classifier ∗

Ting Liu, Wanxiang Che, Sheng Li, Yuxuan Hu and Huaijun Liu
Information Retrieval Lab

School of Computer Science and Technology
Harbin Institute of Technology

China, 150001
{tliu, car, ls, yxhu, hjliu}@ir.hit.edu.cn

Abstract

A maximum entropy classifier is used in
our semantic role labeling system, which
takes syntactic constituents as the labeling
units. The maximum entropy classifier is
trained to identify and classify the predi-
cates’ semantic arguments together. Only
the constituents with the largest probabil-
ity among embedding ones are kept. Af-
ter predicting all arguments which have
matching constituents in full parsing trees,
a simple rule-based post-processing is ap-
plied to correct the arguments which have
no matching constituents in these trees.
Some useful features and their combina-
tions are evaluated.

1 Introduction

The semantic role labeling (SRL) is to assign syn-
tactic constituents with semantic roles (arguments)
of predicates (most frequently verbs) in sentences.
A semantic role is the relationship that a syntactic
constituent has with a predicate. Typical semantic
arguments include Agent, Patient, Instrument, etc.
and also adjunctive arguments indicating Locative,
Temporal, Manner, Cause, etc. It can be used in
lots of natural language processing application sys-
tems in which some kind of semantic interpretation
is needed, such as question and answering, informa-
tion extraction, machine translation, paraphrasing,
and so on.

∗This research was supported by National Natural Science
Foundation of China via grant 60435020

Last year, CoNLL-2004 hold a semantic role la-
beling shared task (Carreras and Màrquez, 2004)
to test the participant systems’ performance based
on shallow syntactic parser results. In 2005, SRL
shared task is continued (Carreras and Màrquez,
2005), because it is a complex task and now it is
far from desired performance.

In our SRL system, we select maximum en-
tropy (Berger et al., 1996) as a classifier to im-
plement the semantic role labeling system. Dif-
ferent from the best classifier reported in litera-
tures (Pradhan et al., 2005) – support vector ma-
chines (SVMs) (Vapnik, 1995), it is much eas-
ier for maximum entropy classifier to handle the
multi-class classification problem without additional
post-processing steps. The classifier is much faster
than training SVMs classifiers. In addition, max-
imum entropy classifier can be tuned to minimize
over-fitting by adjusting gaussian prior. Xue and
Palmer (2004; 2005) and Kwon et al. (2004) have
applied the maximum entropy classifier to semantic
role labeling task successfully.

In the following sections, we will describe our
system and report our results on development and
test sets.

2 System Description

2.1 Constituent-by-Constituent

We use syntactic constituent as the unit of labeling.
However, it is impossible for each argument to find
its matching constituent in all auto parsing trees. Ac-
cording to statistics, about 10% arguments have no
matching constituents in the training set of 245,353

189

constituents. The top five arguments with no match-
ing constituents are shown in Table 1. Here, Char-
niak parser got 10.08% no matching arguments and
Collins parser got 11.89%.

Table 1: The top five arguments with no matching
constituents.

Args Cha parser Col parser Both
AM-MOD 9179 9205 9153

A1 5496 7273 3822
AM-NEG 3200 3217 3185
AM-DIS 1451 1482 1404

A0 1416 2811 925

Therefore, we can see that Charniak parser got a
better result than Collins parser in the task of SRL.
So we use the full analysis results created by Char-
niak parser as our classifier’s inputs. Assume that
we could label all AM-MOD and AM-NEG arguments
correctly with simple post processing rules, the up-
per bound of performance could achieve about 95%
recall.

At the same time, we can see that for some ar-
guments, both parsers got lots of no matchings such
as AM-MOD, AM-NEG, and so on. After analyzing
the training data, we can recognize that the perfor-
mance of these arguments can improve a lot after
using some simple post processing rules only, how-
ever other arguments’ no matching are caused pri-
marily by parsing errors. The comparison between
using and not using post processing rules is shown
in Section 3.2.

Because of the high speed and no affection in the
number of classes with efficiency of maximum en-
tropy classifier, we just use one stage to label all ar-
guments of predicates. It means that the “NULL”
tag of constituents is regarded as a class like “ArgN”
and “ArgM”.

2.2 Features

The following features, which we refer to as the
basic features modified lightly from Pradhan et
al. (2005), are provided in the shared task data for
each constituent.

• Predicate lemma
• Path: The syntactic path through the parse tree from the

parse constituent to the predicate.
• Phrase type

• Position: The position of the constituent with respect to
its predicate. It has two values, “before” and “after”,
for the predicate. For the situation of “cover”, we use
a heuristic rule to ignore all of them because there is no
chance for them to become an argument of the predicate.

• Voice: Whether the predicate is realized as an active or
passive construction. We use a simple rule to recognize
passive voiced predicates which are labeled with part of
speech – VBN and sequences with AUX.

• Head word stem: The stemming result of the con-
stituent’s syntactic head. A rule based stemming algo-
rithm (Porter, 1980) is used. Collins Ph.D thesis (Collins,
1999)[Appendix. A] describs some rules to identify the
head word of a constituent. Especially for prepositional
phrase (PP) constituent, the normal head words are not
very discriminative. So we use the last noun in the PP
replacing the traditional head word.

• Sub-categorization

We also use the following additional features.

• Predicate POS
• Predicate suffix: The suffix of the predicate. Here, we

use the last 3 characters as the feature.
• Named entity: The named entity’s type in the constituent

if it ends with a named entity. There are four types: LOC,
ORG, PER and MISC.

• Path length: The length of the path between a constituent
and its predicate.

• Partial path: The part of the path from the constituent
to the lowest common ancestor of the predicate and the
constituent.

• Clause layer: The number of clauses on the path between
a constituent and its predicate.

• Head word POS
• Last word stem: The stemming result of the last word of

the constituent.
• Last word POS

We also use some combinations of the above fea-
tures to build some combinational features. Lots of
combinational features which were supposed to con-
tribute the SRL task of added one by one. At the
same time, we removed ones which made the per-
formance decrease in practical experiments. At last,
we keep the following combinations:

• Position + Voice
• Path length + Clause layer
• Predicate + Path
• Path + Position + Voice
• Path + Position + Voice + Predicate
• Head word stem + Predicate
• Head word stem + Predicate + Path
• Head word stem + Phrase
• Clause layer + Position + Predicate

All of the features and their combinations are used
without feature filtering strategy.

190

2.3 Classifier

Le Zhang’s Maximum Entropy Modeling Toolkit 1,
and the L-BFGS parameter estimation algorithm
with gaussian prior smoothing (Chen and Rosenfeld,
1999) are used as the maximum entropy classifier.
We set gaussian prior to be 2 and use 1,000 itera-
tions in the toolkit to get an optimal result through
some comparative experiments.

2.4 No Embedding

The system described above might label two con-
stituents even if one embeds in another, which is not
allowed by the SRL rule. So we keep only one ar-
gument when more arguments embedding happens.
Because it is easy for maximum entropy classifier to
output each prediction’s probability, we can label the
constituent which has the largest probability among
the embedding ones.

2.5 Post Processing Stage

After labeling the arguments which are matched
with constituents exactly, we have to handle the ar-
guments, such as AM-MOD, AM-NEG and AM-DIS,
which have few matching with the constituents de-
scribed in Section 2.1. So a post processing is given
by using some simply rules:

• Tag target verb and successive particles as V.
• Tag “not” and “n’t” in target verb chunk as AM-NEG.
• Tag modal verbs in target verb chunk, such as words with

POS of “MD”, “going to”, and so on, as AM-MOD.
• Tag the words with POS of “CC” and “RB” at the start of

a clause which include the target verb as AM-DIS.

3 Experiments

3.1 Data and Evaluation Metrics

The data provided for the shared task is a part of
PropBank corpus. It consists of the sections from
the Wall Street Journal part of Penn Treebank. Sec-
tions 02-21 are training sets, and Section 24 is devel-
opment set. The results are evaluated for precision,
recall and Fβ=1 numbers using the srl-eval.pl script
provided by the shared task organizers.

3.2 Post Processing

After using post processing rules, the final Fβ=1 is
improved from 71.02% to 75.27%.

1http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html

3.3 Performance Curve
Because the training corpus is substantially en-
larged, this allows us to test the scalability of
learning-based SRL systems to large data set and
compute learning curves to see how many data are
necessary to train. We divide the training set, 20
sections Penn Treebank into 5 parts with 4 sections
in each part. There are about 8,000 sentences in each
part. Figure 1 shows the change of performance as
a function of training set size. When all of training
data are used, we get the best system performance as
described in Section 3.4.

Figure 1: Our SRL system performance curve (of
Fβ=1) effecting of the training set size.

We can see that as the training set becomes larger
and larger, so does the performance of SRL system.
However, the rate of increase slackens. So we can
say that at present state, the larger training data has
favorable effect on the improvement of SRL system
performance.

3.4 Best System Results
In all the experiments, all of the features and their
combinations described above are used in our sys-
tem. Table 2 presents our best system performance
on the development and test sets.

From the test results, we can see that our system
gets much worse performance on Brown corpus than
WSJ corpus. The reason is easy to be understood
for the dropping of automatic syntactic parser per-
formance on new corpus but WSJ corpus.

The training time on PIV 2.4G CPU and 1G Mem
machine is about 20 hours on all 20 sections, 39,832-

191

Precision Recall Fβ=1

Development 79.65% 71.34% 75.27
Test WSJ 80.48% 72.79% 76.44
Test Brown 71.13% 59.99% 65.09
Test WSJ+Brown 79.30% 71.08% 74.97

Test WSJ Precision Recall Fβ=1

Overall 80.48% 72.79% 76.44
A0 88.14% 83.61% 85.81
A1 79.62% 72.88% 76.10
A2 73.67% 65.05% 69.09
A3 76.03% 53.18% 62.59
A4 78.02% 69.61% 73.58
A5 100.00% 40.00% 57.14
AM-ADV 59.85% 48.02% 53.29
AM-CAU 68.18% 41.10% 51.28
AM-DIR 56.60% 35.29% 43.48
AM-DIS 76.32% 72.50% 74.36
AM-EXT 83.33% 46.88% 60.00
AM-LOC 65.31% 52.89% 58.45
AM-MNR 58.28% 51.16% 54.49
AM-MOD 98.52% 96.37% 97.43
AM-NEG 97.79% 96.09% 96.93
AM-PNC 43.68% 33.04% 37.62
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 78.38% 66.70% 72.07
R-A0 81.70% 85.71% 83.66
R-A1 77.62% 71.15% 74.25
R-A2 60.00% 37.50% 46.15
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 83.33% 47.62% 60.61
R-AM-MNR 66.67% 33.33% 44.44
R-AM-TMP 77.27% 65.38% 70.83
V 98.71% 98.71% 98.71

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

sentences training set with 1,000 iterations and more
than 1.5 million samples and 2 million features.
The predicting time is about 160 seconds on 1,346-
sentences development set.

4 Conclusions

We have described a maximum entropy classifier
is our semantic role labeling system, which takes
syntactic constituents as the labeling units. The
fast training speed of the maximum entropy clas-
sifier allows us just use one stage of arguments
identification and classification to build the system.
Some useful features and their combinations are
evaluated. Only the constituents with the largest

probability among embedding ones are kept. Af-
ter predicting all arguments which have matching
constituents in full parsing trees, a simple rule-
based post-processing is applied to correct the ar-
guments which have no matching constituents. The
constituent-based method depends much on the syn-
tactic parsing performance. The comparison be-
tween WSJ and Brown test sets results fully demon-
strates the point of view.

References
Adam L. Berger, Stephen A. Della Pietra, and Vincent J.

Della Pietra. 1996. A maximum entropy approach to
natural language processing. Computational Linguis-
tics, 22(1):39–71.

Xavier Carreras and Lluı́s Màrquez. 2004. Introduction
to the conll-2004 shared task: Semantic role labeling.
In Proceedings of CoNLL-2004, pages 89–97, Boston,
MA, USA.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction
to the CoNLL-2005 Shared Task: Semantic Role La-
beling. In Proceedings of CoNLL-2005.

Stanley F. Chen and Ronald Rosenfeld. 1999. A gaussian
prior for smoothing maximum entropy models. Tech-
nical Report CMU-CS-99-108.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Pennsyl-
vania University.

Namhee Kwon, Michael Fleischman, and Eduard Hovy.
2004. Framenet-based semantic parsing using maxi-
mum entropy models. In Proc. Coling 2004.

Martin Porter. 1980. An algorithm for suffix stripping.
Program, 14(3).

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005.
Support vector learning for semantic argument classi-
fication. Machine Learning Journal.

Vladamir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag, Berlin.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proc. EMNLP
2004.

Nianwen Xue and Martha Palmer. 2005. Automatic se-
mantic role labeling for chinese verbs. In Proc. IJCAI
2005.

192

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 193–196, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling as Sequential Tagging

Lluı́s Màrquez, Pere Comas, Jesús Giménez and Neus Català
TALP Research Centre

Technical University of Catalonia (UPC)
{lluism,pcomas,jgimenez,ncatala}@lsi.upc.edu

Abstract

In this paper we present a semantic role
labeling system submitted to the CoNLL-
2005 shared task. The system makes
use of partial and full syntactic informa-
tion and converts the task into a sequen-
tial BIO-tagging. As a result, the label-
ing architecture is very simple . Build-
ing on a state-of-the-art set of features, a
binary classifier for each label is trained
using AdaBoost with fixed depth decision
trees. The final system, which combines
the outputs of two base systems performed
F1=76.59 on the official test set. Addi-
tionally, we provide results comparing the
system when using partial vs. full parsing
input information.

1 Goals and System Architecture

The goal of our work is twofold. On the one hand,
we want to test whether it is possible to implement
a competitive SRL system by reducing the task to a
sequential tagging. On the other hand, we want to
investigate the effect of replacing partial parsing in-
formation by full parsing. For that, we built two dif-
ferent individual systems with a shared sequential
strategy but using UPC chunks-clauses, and Char-
niak’s parses, respectively. We will refer to those
systems as PPUPC and FPCHA, hereinafter.

Both partial and full parsing annotations provided
as input information are of hierarchical nature. Our
system navigates through these syntactic structures

in order to select a subset of constituents organized
sequentially (i.e., non embedding). Propositions are
treated independently, that is, each target verb gen-
erates a sequence of tokens to be annotated. We call
this pre-processing step sequentialization.

The sequential tokens are selected by exploring
the sentence spans or regions defined by the clause
boundaries1. The top-most syntactic constituents
falling inside these regions are selected as tokens.
Note that this strategy is independent of the input
syntactic annotation explored, provided it contains
clause boundaries. It happens that, in the case of
full parses, this node selection strategy is equivalent
to the pruning process defined by Xue and Palmer
(2004), which selects sibling nodes along the path of
ancestors from the verb predicate to the root of the
tree2. Due to this pruning stage, the upper-bound re-
call figures are 95.67% for PPUPC and 90.32% for
FPCHA. These values give F1 performance upper
bounds of 97.79 and 94.91, respectively, assuming
perfect predictors (100% precision).

The nodes selected are labeled with B-I-O tags
depending if they are at the beginning, inside, or out-
side of a verb argument. There is a total of 37 argu-
ment types, which amount to 37*2+1=75 labels.

Regarding the learning algorithm, we used gen-
eralized AdaBoost with real-valued weak classifiers,
which constructs an ensemble of decision trees of
fixed depth (Schapire and Singer, 1999). We con-
sidered a one-vs-all decomposition into binary prob-

1Regions to the right of the target verb corresponding to an-
cestor clauses are omitted in the case of partial parsing.

2With the unique exception of the exploration inside sibling
PP constituents proposed by (Xue and Palmer, 2004).

193

lems to address multi-class classification.
AdaBoost binary classifiers are used for labeling

test sequences in a left-to-right tagging scheme us-
ing a recurrent sliding window approach with infor-
mation about the tag assigned to the preceding to-
ken. This tagging module ensures some basic con-
straints, e.g., BIO correct structure, arguments do
not cross clause boundaries nor base chunk bound-
aries, A0-A5 arguments not present in PropBank
frames for a certain verb are not allowed, etc. We
also tried beam search on top of the classifiers’ pre-
dictions to find the sequence of labels with highest
sentence-level probability (as a summation of indi-
vidual predictions). But the results did not improve
the basic greedy tagging.

Regarding feature representation, we used all
input information sources, with the exception of
verb senses and Collins’ parser. We did not con-
tribute with significantly original features. Instead,
we borrowed most of them from the existing liter-
ature (Gildea and Jurafsky, 2002; Carreras et al.,
2004; Xue and Palmer, 2004). Broadly speaking, we
considered features belonging to four categories3:

(1) On the verb predicate:

• Form; Lemma; POS tag; Chunk type and Type of
verb phrase in which verb is included: single-word or
multi-word; Verb voice: active, passive, copulative, in-
finitive, or progressive; Binary flag indicating if the verb
is a start/end of a clause.

• Subcategorization, i.e., the phrase structure rule expand-
ing the verb parent node.

(2) On the focus constituent:

• Type; Head: extracted using common head-word rules;
if the first element is a PP chunk, then the head of the first
NP is extracted;

• First and last words and POS tags of the constituent.

• POS sequence: if it is less than 5 tags long; 2/3/4-grams
of the POS sequence.

• Bag-of-words of nouns, adjectives, and adverbs in the
constituent.

• TOP sequence: sequence of types of the top-most syn-
tactic elements in the constituent (if it is less than 5 ele-
ments long); in the case of full parsing this corresponds to
the right-hand side of the rule expanding the constituent
node; 2/3/4-grams of the TOP sequence.

• Governing category as described in (Gildea and Juraf-
sky, 2002).

3Features extracted from partial parsing and Named Enti-
ties are common to PPUPC and FPCHA models, while features
coming from Charniak parse trees are implemented exclusively
in the FPCHA model.

• NamedEnt, indicating if the constituent embeds or
strictly-matches a named entity along with its type.

• TMP, indicating if the constituent embeds or strictly
matches a temporal keyword (extracted from AM-TMP ar-
guments of the training set).

(3) Context of the focus constituent:

• Previous and following words and POS tags of the con-
stituent.

• The same features characterizing focus constituents are
extracted for the two previous and following tokens,
provided they are inside the clause boundaries of the cod-
ified region.

(4) Relation between predicate and constituent:

• Relative position; Distance in words and chunks; Level
of embedding with respect to the constituent: in number
of clauses.

• Constituent path as described in (Gildea and Jurafsky,
2002); All 3/4/5-grams of path constituents beginning at
the verb predicate or ending at the constituent.

• Partial parsing path as described in (Carreras et al.,
2004); All 3/4/5-grams of path elements beginning at the
verb predicate or ending at the constituent.

• Syntactic frame as described by Xue and Palmer (2004)

2 Experimental Setting and Results

We trained the classification models using the com-
plete training set (sections from 02 to 21). Once con-
verted into one sequence per target predicate, the re-
sulting set amounts 1,049,049 training examples in
the PPUPC model and 828,811 training examples in
the FPCHA model. The average number of labels per
argument is 2.071 and 1.068, respectively. This fact
makes “I” labels very rare in the FPCHA model.

When running AdaBoost, we selected as weak
rules decision trees of fixed depth 4 (i.e., each branch
may represent a conjunction of at most 4 basic fea-
tures) and trained a classification model per label for
up to 2,000 rounds.

We applied some simplifications to keep training
times and memory requirements inside admissible
bounds. First, we discarded all the argument la-
bels that occur very infrequently and trained only
the 41 most frequent labels in the case of PPUPC

and the 35 most frequent in the case of FPCHA.
The remaining labels where joined in a new label
“other” in training and converted into “O” when-
ever the SRL system assigns a “other” label dur-
ing testing. Second, we performed a simple fre-
quency filtering by discarding those features occur-
ring less than 15 times in the training set. As an

194

exception, the frequency threshold for the features
referring to the verb predicate was set to 3. The final
number of features we worked with is 105,175 in the
case of PPUPC and 80,742 in the case of FPCHA.

Training with these very large data and feature
sets becomes an issue. Fortunately, we could split
the computation among six machines in a Linux
cluster. Using our current implementation combin-
ing Perl and C++ we could train the complete mod-
els in about 2 days using memory requirements be-
tween 1.5GB and 2GB. Testing with the ensembles
of 2,000 decision trees per label is also not very effi-
cient, though the resulting speed is admissible, e.g.,
the development set is tagged in about 30 minutes
using a standard PC.

The overall results obtained by our individual
PPUPC and FPCHA SRL systems are presented in ta-
ble 1, with the best results in boldface. As expected,
the FPCHA system significantly outperformed the
PPUPC system, though the results of the later can
be considered competitive. This fact is against the
belief, expressed as one of the conclusions of the
CoNLL-2004 shared task, that full-parsing systems
are about 10 F1 points over partial-parsing systems.
In this case, we obtain a performance difference of
2.18 points in favor of FPCHA.

Apart from resulting performance, there are addi-
tional advantages when using the FPCHA approach.
Due to the coarser granularity of sequence tokens,
FPCHA sequences are shorter. There are 21% less
training examples and a much lower quantity of “I”
tags to predict (the mapping between syntactic con-
stituents and arguments is mostly one-to-one). As
a consequence, FPCHA classifiers train faster with
less memory requirements, and achieve competitive
results (near the optimal) with much less rounds of
boosting. See figure 1. Also related to the token
granularity, the number of completely correct out-
puts is 4.13 points higher in FPCHA, showing that
the resulting labelings are structurally better than
those of PPUPC.

Interestingly, the PPUPC and FPCHA systems
make quite different argument predictions. For in-
stance, FPCHA is better at recognizing A0 and A1
arguments since parse constituents corresponding to
these arguments tend to be mostly correct. Compar-
atively, PPUPC is better at recognizing A2-A4 argu-
ments since they are further from the verb predicate

 64

 66

 68

 70

 72

 74

 76

 78

 200 400 600 800 1000 1200 1400 1600 1800 2000

O
ve

ra
ll

F
1

Number of rounds

PP-upc
FP-cha

PP best
FP-cha best

Figure 1: Overall F1 performance of individual sys-
tems on the development set with respect to the num-
ber of learning rounds

Perfect props Precision Recall Fβ=1

PPUPC 47.38% 76.86% 70.55% 73.57
FPCHA 51.51% 78.08% 73.54% 75.75
Combined 51.39% 78.39% 75.53% 76.93

Table 1: Overall results of the individual systems on
the development set.

and tend to accumulate more parsing errors, while
the fine granularity of the PPUPC sequences still al-
low to capture them4. Another interesting observa-
tion is that the precision of both systems is much
higher than the recall.

The previous two facts suggest that combining the
outputs of the two systems may lead to a significant
improvement. We experimented with a greedy com-
bination scheme for joining the maximum number of
arguments from both solutions in order to increase
coverage and, hopefully, recall. It proceeds depart-
ing from an empty solution by: First, adding all the
arguments from FPCHA in which this method per-
forms best; Second, adding all the arguments from
PPUPC in which this method performs best; and
Third, making another loop through the two meth-
ods adding the arguments not considered in the first
loop. At each step, we require that the added argu-
ments do not overlap/embed with arguments in the
current solution and also that they do not introduce
repetitions of A0-A5 arguments. The results on the

4As an example, the F1 performance of PPUPC on A0 and
A2 arguments is 79.79 and 65.10, respectively. The perfor-
mance of FPCHA on the same arguments is 84.03 and 62.36.

195

Precision Recall Fβ=1

Development 78.39% 75.53% 76.93
Test WSJ 79.55% 76.45% 77.97
Test Brown 70.79% 64.35% 67.42
Test WSJ+Brown 78.44% 74.83% 76.59

Test WSJ Precision Recall Fβ=1

Overall 79.55% 76.45% 77.97
A0 87.11% 86.28% 86.69
A1 79.60% 76.72% 78.13
A2 69.18% 67.75% 68.46
A3 76.38% 56.07% 64.67
A4 79.78% 69.61% 74.35
A5 0.00% 0.00% 0.00
AM-ADV 59.15% 52.37% 55.56
AM-CAU 73.68% 57.53% 64.62
AM-DIR 71.43% 35.29% 47.24
AM-DIS 77.14% 75.94% 76.54
AM-EXT 63.64% 43.75% 51.85
AM-LOC 62.74% 54.27% 58.20
AM-MNR 54.33% 52.91% 53.61
AM-MOD 96.16% 95.46% 95.81
AM-NEG 99.13% 98.70% 98.91
AM-PNC 53.49% 40.00% 45.77
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 77.68% 78.75% 78.21
R-A0 86.84% 88.39% 87.61
R-A1 75.32% 76.28% 75.80
R-A2 54.55% 37.50% 44.44
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 69.81% 71.15% 70.48
V 99.16% 99.16% 99.16

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

development set (presented in table 1) confirm our
expectations, since a performance increase of 1.18
points over the best individual system was observed,
mainly caused by recall improvement. The final sys-
tem we presented at the shared task performs exactly
this solution merging procedure. When applied on
the WSJ test set, the combination scheme seems to
generalize well, since an improvement is observed
with respect to the development set. See the offi-
cial results of our system, which are presented in ta-
ble 2. Also from that table, it is worth noting that the
F1 performance drops by more than 9 points when
tested on the Brown test set, indicating that the re-
sults obtained on the WSJ corpora do not generalize

well to corpora with other genres. The study of the
sources of this lower performance deserves further
investigation, though we do not believe that it is at-
tributable to the greedy combination scheme.

3 Conclusions

We have presented a simple SRL system submit-
ted to the CoNLL-2005 shared task, which treats
the SRL problem as a sequence tagging task (us-
ing a BIO tagging scheme). Given the simplic-
ity of the approach, we believe that the results are
very good and competitive compared to the state-
of-the-art. We also provided a comparison between
two SRL systems sharing the same architecture, but
build on partial vs. full parsing, respectively. Al-
though the full parsing approach obtains better re-
sults and has some implementation advantages, the
partial parsing system shows also a quite competi-
tive performance. The results on the development
set differ in 2.18 points, but the outputs generated
by the two systems are significantly different. The
final system, which scored F1=76.59 in the official
test set, is a combination of both individual systems
aiming at increasing coverage and recall.

Acknowledgements

This research has been partially supported by the
European Commission (CHIL project, IP-506909).
Jesús Giménez is a research fellow from the Span-
ish Ministry of Science and Technology (ALIADO
project, TIC2002-04447-C02). We would like to
thank also Xavier Carreras for providing us with
many software components and Mihai Surdeanu for
fruitful discussions on the problem and feature engi-
neering.

References
X. Carreras, L. Màrquez, and G. Chrupała. 2004. Hierarchical

recognition of propositional arguments with perceptrons. In
Proceedings of CoNLL-2004.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics, 28(3):245–288.

R. E. Schapire and Y. Singer. 1999. Improved Boosting Algo-
rithms Using Confidence-rated Predictions. Machine Learn-
ing, 37(3).

N. Xue and M. Palmer. 2004. Calibrating features for semantic
role labeling. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP).

196

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 197–200, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling Using Support Vector Machines

Tomohiro Mitsumori
�
, Masaki Murata

�
, Yasushi Fukuda

�

Kouichi Doi
�
, and Hirohumi Doi

�
�
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama-cho, Ikoma-shi, Nara, 630-0101, Japan�
mitsumor,doy � @is.naist.jp, doi@cl-sciences.co.jp�

National Institute of Information and Communications Technology

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan

murata@nict.go.jp�
Sony-Kihara Research Center Inc.

1-14-10 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan

yasu@krc.sony.co.jp

Abstract

In this paper, we describe our systems for
the CoNLL-2005 shared task. The aim of
the task is semantic role labeling using a
machine-learning algorithm. We apply the
Support Vector Machines to the task. We
added new features based on full parses
and manually categorized words. We also
report on system performance and what
effect the newly added features had.

1 Introduction

The CoNLL-2005 shared task (Carreras and
Màrquez, 2005) concerns the recognition of au-
tomatic semantic roles for the English language.
Given a sentence, the task consists of analyzing the
propositions expressed by various target verbs of the
sentence. The semantic roles of constituents of the
sentence are extracted for each target verb. There
are semantic arguments such as Agent, Patient, and
Instrument and also adjuncts such as Locative and
Temporal. We performed the semantic role labeling
using Support Vector Machines (SVMs). Systems
that used SVMs achieved good performance in the
CoNLL-2004 shared task, and we added data on full
parses to it. We prepared a feature used by the full
parses, and we also categorized words that appeared
in the training set and added them as features. Here,
we report on systems for automatically labeling se-
mantic roles in a closed challenge in the CoNLL-
2005 shared task.

This paper is arranged as follows. Section 2 de-
scribes the SVMs. Our system is described Sec-

tion 3, where we also describe methods of data rep-
resentation, feature coding, and the parameters of
SVMs. The experimental results and conclusion are
presented in Sections 4 and 5.

2 Support Vector Machines

SVMs are one of the binary classifiers based on
the maximum margin strategy introduced by Vap-
nik (Vapnik, 1995). This algorithm has achieved
good performance in many classification tasks, e.g.
named entity recognition and document classifica-
tion. There are some advantages to SVMs in that
(i) they have high generalization performance inde-
pendent of the dimensions of the feature vectors and
(ii) learning with a combination of multiple features
is possible by using the polynomial kernel func-
tion (Yamada and Matsumoto, 2003). SVMs were
used in the CoNLL-2004 shred task and achieved
good performance (Hacioglu et al., 2004) (Kyung-
Mi Park and Rim, 2004). We used YamCha (Yet
Another Multipurpose Chunk Annotator) 1 (Kudo
and Matsumoto, 2001), which is a general purpose
SVM-based chunker. We also used TinySVM2 as a
package for SVMs.

3 System Description

3.1 Data Representation

We changed the representation of original data ac-
cording to Hacioglu et al. (Hacioglu et al., 2004) in
our system.

1http://chasen.org/˜ taku/software/yamcha/
2http://chasen.org/˜ taku/software/TinySVM/

197

� Bracketed representation of roles was con-
verted into IOB2 representation (Ramhsaw and
Marcus, 1995) (Sang and Veenstra, 1999).

� Word-by-word was changed to the phrase-by-
phrase method (Hacioglu et al., 2004).

Word tokens were collapsed into base phrase (BP)
tokens. The BP headwords were rightmost words.
Verb phrases were not collapsed because some in-
cluded more the one predicate.

3.2 Feature Coding

We prepared the training and development set by us-
ing files corresponding to: words, predicated partial
parsing (part-of-speech, base chunks), predicate full
parsing trees (Charniak models), and named entities.
We will describe feature extraction according to Fig.
1. Figure 1 shows an example of an annotated sen-
tence.

1st Words (Bag of Words): All words appearing in
the training data.

2nd Part of Speech (POS) Tags

3rd Base Phrase Tags: Partial parses (chunks +
clauses) predicted with UPC processors.

4th Named Entities

5th Token Depth : This means the degree of depth
from a predicate (see Fig. 2). We used full
parses predicted by the Charniak parser. In this
figure, the depth of paid , which is a predicate,

is zero and the depth of April is -2.

6th Words of Predicate

7th Position of Tokens: The position of the current
word from the predicate. This has three value
of “before”, “after”, and “-” (for the predicate).

8th Phrase Distance on Flat Path: This means the
distance from the current token to the predi-
cate as a number of the phrase on flat path.
For example, the phrase distance of “April” is
4, because two “NP” and one “PP” exist from
“paid”(predicate) to “April” (see 3rd column in
Fig.1).

Table 1: Five most frequently categorized BP head-
words appearing in training set.

Class Examples
Person he, I, people, investors, we
Organization company, Corp., Inc., companies, group
Time year, years, time, yesterday, months
Location Francisco, York, California, city, America
Number %, million, billion, number, quarter
Money price, prices, cents, money, dollars

9th Flat Path: This means the path from the current
word to the predicate as a chain of the phrases.
The chain begins from the BP of the current
word to the BP of the predicate.

10th Semantic Class : We collected the most fre-
quently occurring 1,000 BP headwords appear-
ing in the training set and tried to manually
classified. The five classes (person, organiza-
tion, time, location, number and money) were
relatively easy to classify. In the 1,000 words,
the 343 words could be classified into the five
classes. Remainder could not be classified. The
details are listed in Table 1.

Preceding class: The class (e.g. B-A0 or I-A1) of
the token(s) preceding the current token. The
number of preceding tokens is dependent on the
window size. In this paper, the left context con-
sidered is two.

���

��

����	
�

��

�

�	��

���

����

��

��
��

���

	

��

��	��

�� �

��

�����

��

�
 �

�

�

�

�

�

�
�

�

�

�

��

��

�����

Figure 2: Parsing results obtained with Charniak
parser and token depth.

3.3 Machine learning with YamCha

YamCha (Kudo and Matsumoto, 2001) is a general
purpose SVM-based chunker. After inputting the
training and test data, YamCha converts them for

198

������������	���
�	

��������� �
	���
���������
��������������
���������
��������� �!�����"��#$�����%�
&������ ����'������ �����������
(*)�+ ,-(.-/1032 4 5 6�798;:!+�<�=�>�+?/A@B0323C DE2 / .-/!FG5
H =$IJ6�7!K�8�030 L /10M2 4 5 6�798;:!+�<�=�>�+?/A@B0323C DE2 =�>�N�7!K$O P�79Q�O =�KRL /!FG5
6�7$O S DE.M,T.-/!DE2 4 5 6�798 / 5T/ / .-/!D
<
O U�+ VW, .-/1032 4 X 6�798Y7�< QZ+�> @[DE23C 032 / .-/!F\@
H +$K�QZ] 030M^_L /10M2 4 X 6�798Y7�< QZ+�> @[DE23C 032 IJ=�K�+�8 L /!F\@
7 ,-(.-/1032 4 X 6�798Y7�< QZ+�> X_DE23C 032 / L /!F\@
]�)!7!>�+ 030 L /10M2 4 X 6�798Y7�< QZ+�> X_DE23C 032 / L /!F\@
O K L 0 .-/12*2 4 @ 6�798Y7�< QZ+�> `_DE23C 0323C 2*2 / .-/!Fbac/�(3aJ2
FE6!>
O d 030M2T.-/1032 4 X 6�798Y7�< QZ+�> efDE23C 0323C 2*23C 0M2 Q�O IJ+ L /!Fbac/�(3a\2
g g 4 4 /A@T6�798Y7�< QZ+�> e DE23C 0323C 2*23C 0M23C 4 / 4

H =$IJ6�7!K�8�030 .-/1032 4 5 6�798;:!+�<�=�>�+?/A@B0323C DE2 =�>�N�7!K$O P�79Q�O =�K�.-/!FG5
6�7$O S DE.M,T.-/!DE2 4 5 6�798 / 5T/ / .-/!D
H +$K�QZ] 030M^T.-/1032 4 X 6�798Y7�< QZ+�> @[DE23C 032 IJ=�K�+�8 .-/!F\@
]�)!7!>�+ 030 .-/1032 4 X 6�798Y7�< QZ+�> X_DE23C 032 / L /!F\@
O K L 0 .-/12*2 4 @ 6�798Y7�< QZ+�> `_DE23C 0323C 2*2 / .-/!Fbac/�(3aJ2
FE6!>
O d 030M2T.-/1032 4 X 6�798Y7�< QZ+�> efDE23C 0323C 2*23C 0M2 Q�O IJ+ L /!Fbac/�(3a\2
g g 4 4 /A@T6�798Y7�< QZ+�> e DE23C 0323C 2*23C 0M23C 4 / 4

Figure 1: Example annotated sentence. Input features are words (1st), POS tags (2nd), base phrase chunks
(3rd), named entities (4th), token depth (5th), predicate (6th), position of tokens (7th), phrase distance (8th),
flat paths (9th), semantic classes (10th), argument classes (11th).

the SVM. The YamCha format for an example sen-
tence is shown in Fig. 1. Input features are writ-
ten in each column as words (1st), POS tags (2nd),
base phrase chunks (3rd), named entities (4th), token
depth (5th), predicate (6th), the position of tokens
(7th), the phrase distance (8th), flat paths (9th), se-
mantic classes (10th), and argument classes (11th).
The boxed area in Fig. 1 shows the elements of
feature vectors for the current word, in this case
“share”. The information from the two preceding
and two following tokens is used for each vector.

3.4 Parameters of SVM
� Degree of polynomial kernel (natural number):

We can only use a polynomial kernel in Yam-
Cha. In this paper, we adopted the degree of
two.

� Range of window (integer): The SVM can use
the information on tokens surrounding the to-
ken of interest as illustrated in Fig. 1. In this
paper, we adopted the range from the left two
tokens to the right two tokens.

� Method of solving a multi-class problem: We
adopted the one-vs.-rest method. The BIO
class is learned as (B vs. other), (I vs. other),
and (O vs. other).

� Cost of constraint violation (floating number):
There is a trade-off between the training error
and the soft margin for the hyper plane. We
adopted a default value (1.0).

4 Results

4.1 Data

The data provided for the shared task consisted of
sections from the Wall Street Journal (WSJ) part of
Penn TreeBank II. The training set was WSJ Sec-
tions 02-21, the development set was Section 24, and
the test set was Section 23 with the addition of fresh
sentences. Our experiments were carried out using
Sections 15-18 for the training set, because the en-
tire file was too large to learn.

4.2 Experiments

Our final results for the CoNLL-2005 shared task are
listed in Table 2. Our system achieved 74.15% pre-
cision, 68.25% recall and 71.08 F hbi � on the overall
results of Test WSJ. Table 3 lists the effects of the
token-depth and semantic-class features. The token-
depth feature had a larger effect than that for the se-
mantic class.

199

Precision Recall F ��� �
Development 71.68% 64.93% 68.14
Test WSJ 74.15% 68.25% 71.08
Test Brown 63.24% 54.20% 58.37
Test WSJ+Brown 72.77% 66.37% 69.43

Test WSJ Precision Recall F ��� �
Overall 74.15% 68.25% 71.08
A0 81.38% 76.93% 79.09
A1 73.16% 70.87% 72.00
A2 64.53% 59.01% 61.65
A3 61.16% 42.77% 50.34
A4 68.18% 58.82% 63.16
A5 100.00% 80.00% 88.89
AM-ADV 55.09% 43.87% 48.84
AM-CAU 60.00% 28.77% 38.89
AM-DIR 45.10% 27.06% 33.82
AM-DIS 72.70% 69.06% 70.83
AM-EXT 70.59% 37.50% 48.98
AM-LOC 55.62% 50.41% 52.89
AM-MNR 51.40% 42.73% 46.67
AM-MOD 97.04% 95.28% 96.15
AM-NEG 96.92% 95.65% 96.28
AM-PNC 56.00% 36.52% 44.21
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 73.39% 62.93% 67.76
R-A0 81.31% 71.88% 76.30
R-A1 59.69% 49.36% 54.04
R-A2 60.00% 18.75% 28.57
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 85.71% 28.57% 42.86
R-AM-MNR 100.00% 16.67% 28.57
R-AM-TMP 72.34% 65.38% 68.69
V 97.55% 96.05% 96.80

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

5 Conclusion

This paper reported on semantic role labeling using
SVMs. Systems that used SVMs achieved good per-
formance in the CoNLL-2004 shared task, and we
added data on full parses to it. We applied a token-
depth feature to SVM learning and it had a large ef-
fect. We also added a semantic-class feature and it
had a small effect. Some classes were similar to the
named entities, e.g., the PERSON or LOCATION
of the named entities. Our semantic class feature
also included not only proper names but also com-
mon words. For example, “he” and “she” also in-
cluded the PERSON semantic class. Furthermore,
we added a time, number, and money class. The

Table 3: Effects Token Depth (TD) and Semantic
Class (SC) had on feature development set.

Precision Recall F ��� �
Without DF and SC 68.07% 59.71% 63.62
With DF 71.36% 64.13% 67.55
With DF and SC 71.68% 64.93% 68.14

semantic class feature was manually categorized on
the most frequently occurring 1,000 words in the
training set. More effort of the categorization may
improve the performance of our system.

References

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction
to the CoNLL-2005 Shared Task: Semantic Role La-
beling . In Proceedings of CoNLL-2005.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James H.
Martin, and Daniel Jurafskey. 2004. Semantic Role
Labeling by Tagging Syntactic Chunks. In Proceed-
ings of Conference on Computational Natural Lan-
guage Learning (CoNLL-2004) Shared Task on Se-
mantic Role Labeling.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
Support Vector Machines. In Proceedings of Second
Meeting of North American Chapter of the Association
for Computational Linguistics (NAACL), pages 192–
199.

Young-Sook Hwang Kyung-Mi Park and Hae-Chang
Rim. 2004. Semantic Role Labeling by Tagging Syn-
tactic Chunks. In Proceedings of the Conference on
Computational Natural Language Learning (CoNLL-
2004) Shared Task on Semantic Role Labeling.

Lance E. Ramhsaw and Mitchell P. Marcus. 1995. Text
Chunking Using Transformation Based Learning . In
Proceedings of the 3rd ACL Workshop on Very Large
Corpora, pages 82–94.

Erik F. T. J. Sang and John Veenstra. 1999. Representing
Text Chunks. In Proceedings of EACL!G99, pages 173–
179.

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with Support Vector Machines .
In Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pages 195–206.

200

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 201–204, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Hierarchical Semantic Role Labeling

Alessandro Moschitti¦

moschitti@info.uniroma2.it

¦ DISP - University of Rome “Tor Vergata”, Rome, Italy
† ITC-Irst, ‡ DIT - University of Trento, Povo, Trento, Italy

Ana-Maria Giuglea¦

ana-maria.giuglea@topex.ro
Bonaventura Coppola†‡

coppolab@itc.it
Roberto Basili¦

basili@info.uniroma2.it

Abstract

We present a four-step hierarchical SRL
strategy which generalizes the classical
two-level approach (boundary detection
and classification). To achieve this, we
have split the classification step by group-
ing together roles which share linguistic
properties (e.g. Core Roles versus Ad-
juncts). The results show that the non-
optimized hierarchical approach is com-
putationally more efficient than the tradi-
tional systems and it preserves their accu-
racy.

1 Introduction

For accomplishing the CoNLL 2005 Shared Task
on Semantic Role Labeling (Carreras and Màrquez,
2005), we capitalized on our experience on the se-
mantic shallow parsing by extending our system,
widely experimented on PropBank and FrameNet
(Giuglea and Moschitti, 2004) data, with a two-
step boundary detection and a hierarchical argument
classification strategy.

Currently, the system can work in both basic and
enhanced configuration. Given the parse tree of an
input sentence, the basic system applies (1) a bound-
ary classifier to select the nodes associated with cor-
rect arguments and (2) a multi-class labeler to assign
the role type. For such models, we used some of the
linear (e.g. (Gildea and Jurasfky, 2002; Pradhan et
al., 2005)) and structural (Moschitti, 2004) features
developed in previous studies.

In the enhanced configuration, the boundary an-
notation is subdivided in two steps: a first pass in
which we label argument boundary and a second
pass in which we apply a simple heuristic to elimi-
nate the argument overlaps. We have also tried some
strategies to learn such heuristics automatically. In
order to do this we used a tree kernel to classify the
subtrees associated with correct predicate argument
structures (see (Moschitti et al., 2005)). The ratio-
nale behind such an attempt was to exploit the cor-
relation among potential arguments.

Also, the role labeler is divided into two steps:
(1) we assign to the arguments one out of four possi-
ble class labels:Core Roles, Adjuncts, Continuation
ArgumentsandCo-referring Arguments, and (2) in
each of the above class we apply the set of its spe-
cific classifiers, e.g. A0,..,A5 within the Core Role
class. As such grouping is relatively new, the tradi-
tional features may not be sufficient to characterize
each class. Thus, to generate a large set of features
automatically, we again applied tree kernels.

Since our SRL system exploits the PropBank for-
malism for internal data representation, we devel-
oped ad-hoc procedures to convert back and forth
to the CoNLL Shared Task format. This conversion
step gave us useful information about the amount
and the nature of the parsing errors. Also, we could
measure the frequency of the mismatches between
syntax and role annotation.

In the remainder of this paper, Section 2 describes
the basic system configuration whereas Section 3 il-
lustrates its enhanced properties and the hierarchical
structure. Section 4 describes the experimental set-
ting and the results. Finally, Section 5 summarizes

201

our conclusions.

2 The Basic Semantic Role Labeler

In the last years, several machine learning ap-
proaches have been developed for automatic role la-
beling, e.g. (Gildea and Jurasfky, 2002; Pradhan
et al., 2005). Their common characteristic is the
adoption of flat feature representations for predicate-
argument structures. Our basic system is similar to
the one proposed in (Pradhan et al., 2005) and it is
described hereafter.

We divided the predicate argument labeling in two
subtasks: (a) the detection of the arguments related
to a target, i.e. all the compounding words of such
argument, and (b) the classification of the argument
type, e.g.A0 or AM. To learn both tasks we used the
following algorithm:

1. Given a sentence from thetraining-set, generate
a full syntactic parse-tree;
2. LetP andA be respectively the set of predicates
and the set of parse-tree nodes (i.e. the potential ar-
guments);
3. For each pair<p, a> ∈ P ×A:

- extract the feature representation set,Fp,a;
- if the subtree rooted ina covers exactly the

words of one argument ofp, put Fp,a in T+

(positive examples), otherwise put it inT−

(negative examples).

We trained the SVM boundary classifier onT+ and
T− sets and the role labeleri on theT+

i
, i.e. its pos-

itive examples andT−i , i.e. its negative examples,
whereT+ = T+

i ∪ T−i , according to the ONE-vs.-
ALL scheme. To implement the multi-class clas-
sifiers we select the argument associated with the
maximum among the SVM scores.

To represent theFp,a pairs we used the following
features:
- the Phrase Type, Predicate Word, Head Word,
Governing Category, PositionandVoicedefined in
(Gildea and Jurasfky, 2002);
- the Partial Path, Compressed Path, No Direction
Path, Constituent Tree Distance, Head Word POS,
First and Last Word/POS in Constituent, SubCate-
gorizationandHead Word of Prepositional Phrases
proposed in (Pradhan et al., 2005); and
- theSyntactic Framedesigned in (Xue and Palmer,
2004).

Figure 1:Architecture of the Hierarchical Semantic Role La-

beler.

3 Hierarchical Semantic Role Labeler

Having two phases for argument labeling provides
two main advantages: (1) the efficiency is increased
as the negative boundary examples, which are al-
most all parse-tree nodes, are used with one clas-
sifier only (i.e. the boundary classifier), and (2) as
arguments share common features that do not occur
in the non-arguments, a preliminary classification
between arguments and non-arguments advantages
the boundary detection of roles with fewer training
examples (e.g.A4). Moreover, it may be simpler
to classify the type of roles when the not-argument
nodes are absent.

Following this idea, we generalized the above two
level strategy to a four-step role labeling by group-
ing together the arguments sharing similar proper-
ties. Figure 1, shows the hierarchy employed for ar-
gument classification:

During the first phase, we select the parse tree
nodes which are likely predicate arguments. An
SVM with moderately high recall is applied for such
purpose.

In the second phase, a simple heuristic which se-
lects non-overlappingnodes from those derived in
the previous step is applied. Two nodesn1 andn2

do not overlap ifn1 is not ancestor ofn2 and vicev-
ersa. Our heuristic simply eliminates the nodes that
cause the highest number of overlaps. We have also
studied how to train an overlap resolver by means of
tree kernels; the promising approach and results can
be found in (Moschitti et al., 2005).

In the third phase, we classify the detected argu-
ments in the following four classes: AX, i.e.Core

202

Arguments, AM, i.e. Adjuncts, CX, i.e. Continua-
tion Argumentsand RX, i.e. theCo-referring Argu-
ments. The above classification relies on linguistic
reasons. For exampleCore argumentsclass contains
the arguments specific to the verb frames whileAd-
junct Argumentsclass contains arguments that are
shared across all verb frames.

In the fourth phase, we classify the members
within the classes of the previous level, e.g.A0 vs.
A1, ...,A5.

4 The Experiments
We experimented our approach with the CoNLL
2005 Shared Task standard dataset, i.e. the Pen-
nTree Bank, where sections from 02 to 21 are used
as training set, Section 24 as development set (Dev)
and Section 23 as the test set (WSJ). Additionally,
the Brown corpus’ sentences were also used as the
test set (Brown). As input for our feature extractor
we used only the Charniak’s parses with their POSs.

The evaluations were carried out with the SVM-
light-TK software (Moschitti, 2004) available at
http://ai-nlp.info.uniroma2.it/moschitti/

which encodes the tree kernels in the SVM-light
software (Joachims, 1999). We used the default
polynomial kernel (degree=3) for the linear feature
representations and the tree kernels for the structural
feature processing.

As our feature extraction module was designed
to work on the PropBank project annotation format
(i.e. theprop.txt index file), we needed to generate
it from the CoNLL data. Each PropBank annota-
tion refers to a parse tree node which exactly cov-
ers the target argument but when using automatic
parses such node may not exist. For example, on
the CoNLL Charniak’s parses, (sections 02-21 and
24), we discovered that this problem affects 10,293
out of the 241,121 arguments (4.3%) and 9,741 sen-
tences out of 87,257 (11.5%). We have found out
that most of the errors are due to wrong parsing at-
tachments. This observation suggests that the capa-
bility of discriminating between correct and incor-
rect parse trees is a key issue in the boundary de-
tection phase and it must be properly taken into ac-
count.

4.1 Basic System Evaluation
For the boundary classifier we used a SVM with
the polynomial kernel of degree 3. We set the reg-

ularization parameter,c , to 1 and the cost factor,
j to 7 (to have a slightly higher recall). To re-
duce the learning time, we applied a simple heuristic
which removes the nodes covering the target predi-
cate node. From the initial 4,683,777 nodes (of sec-
tions 02-21), the heuristic removed 1,503,100 nodes
with a loss of 2.6% of the total arguments. How-
ever, as we started the experiments in late, we used
only the 992,819 nodes from the sections 02-08. The
classifier took about two days and half to converge
on a 64 bits machine (2.4 GHz and 4Gb Ram).

The multiclassifier was built with 52 binary ar-
gument classifiers. Their training on all arguments
from sec 02-21, (i.e. 242,957), required about a half
day on a machine with 8 processors (32 bits, 1.7
GHz and overll 4Gb Ram).

We run the role multiclassifier on the output of the
boundary classifier. The results on the Dev, WSJ and
Brown test data are shown in Table 1. Note that, the
overlapping nodes cause the generation of overlap-
ping constituents in the sentence annotation. This
prevents us to use the CoNLL evaluator. Thus, we
used the overlap resolution algorithm also for the ba-
sic system.

4.2 Hierarchical Role Labeling Evaluation

As the first two phases of the hierarchical labeler are
identical to the basic system, we focused on the last
two phases. We carried out our studies over the Gold
Standard boundaries in the presence of arguments
that do not have aperfect-coveringnode in the Char-
niak trees.

To accomplish the third phase, we re-organized
the flat arguments into the AX, AM, CX and RX
classes and we built a single multi-classifier. For
the fourth phase, we built a multi-classifier for each
of the above classes: only the examples related to
the target class were used, e.g. the AX mutliclas-
sifier was designed with the A0,..,A5 ONE-vs-ALL
binary classifiers.

In rows 2 and 3, Table 2 shows the numbers of
training and development set instances. Row 4 con-
tains theF1 of the binary classifiers of the third
phase whereas Row 5 reports theF1 of the result-
ing multi-classifier. Row 6 presents theF1s of the
multi-classifiers of the fourth phase.

Row 7 illustrates theF1 measure of the fourth
phase classifier applied to the third phase output. Fi-

203

Precision Recall Fβ=1

Development 74.95% 73.10% 74.01
Test WSJ 76.55% 75.24% 75.89
Test Brown 65.92% 61.83% 63.81
Test WSJ+Brown 75.19% 73.45% 74.31

Test WSJ Precision Recall Fβ=1

Overall 76.55% 75.24% 75.89
A0 81.05% 84.37% 82.67
A1 77.21% 74.12% 75.63
A2 67.02% 68.11% 67.56
A3 69.63% 54.34% 61.04
A4 74.75% 72.55% 73.63
A5 100.00% 40.00% 57.14
AM-ADV 55.23% 55.34% 55.28
AM-CAU 66.07% 50.68% 57.36
AM-DIR 50.62% 48.24% 49.40
AM-DIS 77.71% 78.44% 78.07
AM-EXT 68.00% 53.12% 59.65
AM-LOC 59.02% 63.09% 60.99
AM-MNR 67.67% 52.33% 59.02
AM-MOD 98.65% 92.56% 95.51
AM-NEG 97.37% 96.52% 96.94
AM-PNC 42.28% 45.22% 43.70
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 81.90% 74.52% 78.03
R-A0 79.50% 84.82% 82.07
R-A1 62.23% 75.00% 68.02
R-A2 100.00% 31.25% 47.62
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 100.00% 100.00% 100.00
R-AM-LOC 85.71% 85.71% 85.71
R-AM-MNR 22.22% 33.33% 26.67
R-AM-TMP 67.69% 84.62% 75.21
V 97.34% 97.30% 97.32

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

nally, in Row 8, we report theF1 of the basic system
on the gold boundary nodes. We note that the basic
system shows a slightly higherF1 but is less compu-
tational efficient than the hierarchical approach.

5 Final Remarks

In this paper we analyzed the impact of a hierarchi-
cal categorization on the semantic role labeling task.
The results show that such approach produces an ac-
curacy similar to the flat systems with a higher ef-
ficiency. Moreover, some preliminary experiments
show that each node of the hierarchy requires differ-
ent features to optimize the associated multiclassi-
fier. For example, we found that the SCF tree kernel
(Moschitti, 2004) improves the AX multiclassifier

AX AM CX RX
train. examples 172,457 59,473 2,954 7,928
devel. examples 5,930 2,132 105 284
Phase III: binary class. 97.29 97.35 70.86 93.15
Phase III 95.99
Phase IV 92.50 85.88 91.43 91.55
Phase III & IV 88.15
Basic System 88.61

Table 2: Hierarchical Semantic Role Labeler Results

whereas the PAF tree kernel seems more suited for
the classification within the other classes, e.g. AM.

Future work on the optimization of each phase is
needed to study the potential accuracy limits of the
proposed hierarchical approach.

Acknowledgements
We wish to thank Daniele Pighin for his valuable
support in the development of the SRL system.

References
Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling. Inpro-
ceedings of CoNLL’05.

Daniel Gildea and Daniel Jurasfky. 2002. Automatic labeling
of semantic roles.Computational Linguistic.

Ana-Maria Giuglea and Alessandro Moschitti. 2004. Knowl-
edge Discovering using FrameNet, VerbNet and PropBank.
In proceedings of the Workshop on Ontology and Knowledge
Discovering at ECML’04, Pisa, Italy.

T. Joachims. 1999. Making large-scale SVM learning practical.
In B. Scḧolkopf, C. Burges, and A. Smola, editors,Advances
in Kernel Methods - Support Vector Learning.

Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin,
and Roberto Basili. 2005. Engineering of syntactic features
for shallow semantic parsing. Inproceedings of the Feature
Engineering Workshop at ACL’05, Ann Arbor, USA.

Alessandro Moschitti. 2004. A study on convolution kernel
for shallow semantic parsing. Inproceedings of ACL-2004,
Barcelona, Spain.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin, and Daniel Jurafsky. 2005. Support vector
learning for semantic argument classification.to appear in
Machine Learning Journal.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. InProceedings of EMNLP’04,
Barcelona, Spain.

204

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 205–208, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling using libSVM

Necati Ercan Ozgencil Nancy McCracken

Center for Natural Language Processing Center for Natural Language Processing

School of Engineering and Computer Science School of Information Studies

Syracuse University Syracuse University
neozgenc@ecs.syr.edu njm@ecs.syr.edu

Abstract

We describe a system for the CoNLL-

2005 shared task of Semantic Role Label-

ing. The system implements a two-layer

architecture to first identify the arguments

and then to label them for each predicate.

The components are implemented as

SVM classifiers using libSVM. Features

were adapted and tuned for the system,

including a reduced set for the identifier

classifier. Experiments were conducted to

find kernel parameters for the Radial Ba-

sis Function (RBF) kernel. An algorithm

was defined to combine the results of the

argument labeling classifier according to

the constraints of the argument labeling

problem.

1 Introduction and Strategy

The Semantic Role Labeling (SRL) problem has

been the topic of the both the CoNLL-2004 and the

CoNLL-2005 Shared Tasks (Carreras and

Màrquez, 2005). The SRL system described here

depends on a full syntactic parse from the Charniak

parser, and investigates aspects of using Support

Vector Machines (SVMs) as the machine learning

technique for the SRL problem, using the libSVM

package.

In common with many other systems, this sys-

tem uses the two-level strategy of first identifying

which phrases can be arguments to predicates in

general, and then labeling the arguments according

to that predicate. The argument identification

phase is a binary classifier that decides whether

each constituent in the full syntax tree of the sen-

tence is a potential argument. These potential ar-

guments are passed into the argument labeling

classifier, which uses binary classifiers for each

label to decide if that label should be given to that

argument. A post-processing phase picks the best

labeling that satisfies the constraints of labeling the

predicate arguments.

For overall classification strategy and for

suggestions of features, we are indebted to the

work of Pradhan et al (2005) and to the work of

many authors in both the CoNLL-2004 shared task

and the similar semantic roles task of Senseval-3.

We used the results of their experiments with

features, and worked primarily on features for the

identifying classifier and with the constraint

satisfaction problem on the final argument output.

2 System Description

2.1 Input Data

In this system, we chose to use full syntax trees

from the Charniak parser, as the constituents of

those trees more accurately represented argument

phrases in the training data at the time of the data

release. Within each sentence, we first map the

predicate to a constituent in the syntax tree. In the

cases that the predicate is not represented by a con-

stituent, we found that these were verb phrases of

length two or more, where the first word was the

main verb (carry out, gotten away, served up, etc.).

In these cases, we used the first word constituent as

the representation of the predicate, for purposes of

computing other features that depended on a rela-

tive position in the syntax tree.

205

We next identify every constituent in the tree as

a potential argument, and label the training data

accordingly. Although approximately 97% of the

arguments in the training data directly matched

constituents in the Charniak tree, only 91.3% of the

arguments in the development set match constitu-

ents. Examination of the sentences with incorrect

parses show that almost all of these are due to

some form of incorrect attachment, e.g. preposi-

tional attachment, of the parser. Heuristics can be

derived to correct constituents with quotes, but this

only affected a small fraction of a percent of the

incorrect arguments. Experiments with corrections

to the punctuation in the Collins parses were also

unsuccessful in identifying additional constituents.

Our recall results on the development directory are

bounded by the 91.3% alignment figure.

We also did not use the the partial syntax,

named entities or the verb senses in the

development data.

2.2 Learning Components: SVM classifiers

For our system, we chose to use libSVM, an open

source SVM package (Chang and Lin, 2001).

In the SRL problem, the features are nominal,

and we followed the standard practice of represent-

ing a nominal feature with n discrete values as n

binary features. Many of the features in the SRL

problem can take on a large number of values, for

example, the head word of a constituent may take

on as many values as there are different words pre-

sent in the training set, and these large number of

features can cause substantial performance issues.

The libSVM package has several kernel func-

tions available, and we chose to use the radial basis

functions (RBF). For the argument labeling prob-

lem, we used the binary classifiers in libSVM, with

probability estimates of how well the label fits the

distribution. These are normally combined using

the “one-against-one” approach into a multi-class

classifier. Instead, we combined the binary classi-

fiers in our own post-processing phase to get a la-

beling satisfying the constraints of the problem.

2.3 The Identifier Classifier Features

One aspect of our work was to use fewer features

for the identifier classifier than the basic feature set

from (Gildea and Jurafsky, 2002). The intuition

behind the reduction is that whether a constituent

in the tree is an argument depends primarily on the

structure and is independent of the lexical items of

the predicate and headword. This reduced feature

set is:

Phrase Type: The phrase label of the argument.

Position: Whether the phrase is before or after

the predicate.

Voice: Whether the predicate is in active or

passive voice. Passive voice is recognized if a past

participle verb is preceded by a form of the verb

“be” within 3 words.

Sub-categorization: The phrase labels of the

children of the predicate’s parent in the syntax tree.

Short Path: The path from the parent of the

argument position in the syntax tree to the parent

of the predicate.

The first four features are standard, and the short

path feature is defined as a shorter version of the

standard path feature that does not use the

argument phrase type on one end of the path, nor

the predicate type on the other end.

The use of this reduced set of features was

confirmed experimentally by comparing the effect

of this reduced feature set on the F-measure of the

identifier classifier, compared to feature sets that

also added the predicate, the head word and the

path features, as normally defined.

 Reduced + Pred + Head + Path

F-measure 81.51 81.31 72.60 81.19

Table 1: Additional features reduce F-measure for the

identifier classifier.

2.4 Using the Identifier Classifier for Train-

ing and Testing

Theoretically, the input for training the identifier

classifier is that, for each predicate, all constituents

in the syntax tree are training instances, labeled

true if it is any argument of that predicate, and

false otherwise. However, this leads to too many

negative (false) instances for the training. To cor-

rect this, we experimented with two filters for

negative instances. The first filter is simply a ran-

dom filter; we randomly select a percentage of ar-

guments for each argument label. Experiments

with the percentage showed that 30% yielded the

best F-measure for the identifier classifier.

The second filter is based on phrase labels from

the syntax tree. The intent of this filter was to re-

move one word constituents of a phrase type that

was never used. We selected only those phrase

206

labels whose frequency in the training was higher

than a threshold. Experiments showed that the best

threshold was 0.01, which resulted in approxi-

mately 86% negative training instances.

However, in the final experimentation, compari-

son of these two filters showed that the random

filter was best for F-measure results of the identi-

fier classifier.

The final set of experiments for the identifier

classifier was to fine tune the RBF kernel training

parameters, C and gamma. Although we followed

the standard grid strategy of finding the best pa-

rameters, unlike the built-in grid program of

libSVM with its accuracy measure, we judged the

results based on the more standard F-measure of

the classifier. The final values are that C = 2 and

gamma = 0.125.

The final result of the identifier classifier trained

on the first 10 directories of the training set is:

Precision: 78.27% Recall: 89.01%

(F-measure: 83.47)

Training on more directories did not substan-

tially improve these precision and recall figures.

2.5 Labeling Classifier Features

The following is a list of the features used in the

labeling classifiers.

Predicate: The predicate lemma from the

training file.

Path: The syntactic path through the parse tree

from the argument constituent to the predicate.

Head Word: The head word of the argument

constituent, calculated in the standard way, but

also stemmed. Applying stemming reduces the

number of unique values of this feature

substantially, 62% in one directory of training data.

Phrase Type, Position, Voice, and Sub-
categorization: as in the identifier classifier.

In addition, we experimented with the following

features, but did not find that they increased the

labeling classifier scores.

Head Word POS: the part of speech tag of the

head word of the argument constituent.

Temporal Cue Words: These words were

compiled by hand from ArgM-TMP phrases in the

training data.

Governing Category: The phrase label of the

parent of the argument.

Grammatical Rule: The generalization of the

subcategorization feature to show the phrase labels

of the children of the node that is the lowest parent

of all arguments of the predicate.

In the case of the temporal cue words, we

noticed that using our definition of this feature

increased the number of false positives for the

ARGM-TMP label; we guess that our temporal cue

words included too many words that occured in

other labels. Due to lack of time, we were not

able to more fully pursue these features.

2.6 Using the Labeling Classifier for Train-

ing and Testing

Our strategy for using the labeling classifier is

that in the testing, we pass only those arguments to

the labeling classifier that have been marked as

true by the identifier classifier. Therefore, for

training the labeling classifier, instances were con-

stituents that were given argument labels in the

training set, i.e. there were no “null” training ex-

amples.

For the labeling classifier, we also found the

best parameters for the RBF kernel of the classi-

fier. For this, we used the grid program of libSVM

that uses the multi-class classifier, using the accu-

racy measure to tune the parameters, since this

combines the precision of the binary classifiers for

each label. The final values are that C = 0.5 and

gamma = 0.5.

In order to show the contribution of the labeling

classifier to the entire system, a final test was done

on the development set, but passing it the correct

arguments. We tested this with a labeling classi-

fier trained on 10 directories and one trained on 20

directories, showing the final F-measure:

10 directories: 83.27

20 directories: 84.51

2.7 Post-processing the classifier labels

The final part of our system was to use the results

of the binary classifiers for each argument label to

produce a final labeling subject to the labeling con-

straints.

For each predicate, the constraints are: two con-

stituents cannot have the same argument label, a

constituent cannot have more than one label, if two

constituents have (different) labels, they cannot

have any overlap, and finally, no argument can

overlap the predicate.

207

 Precision Recall Fβ=1

Development 73.57% 71.87% 72.71

Test WSJ 74.66% 74.21% 74.44

Test Brown 65.52% 62.93% 64.20

Test WSJ+Brown 73.48% 72.70% 73.09

Test WSJ Precision Recall Fβ=1

Overall 74.66% 74.21% 74.44

A0 83.59% 85.07% 84.32
A1 77.00% 74.35% 75.65
A2 66.97% 66.85% 66.91
A3 66.88% 60.69% 63.64
A4 77.66% 71.57% 74.49
A5 80.00% 80.00% 80.00
AM-ADV 55.13% 50.99% 52.98
AM-CAU 52.17% 49.32% 50.70
AM-DIR 27.43% 56.47% 36.92
AM-DIS 73.04% 72.81% 72.93
AM-EXT 57.69% 46.88% 51.72
AM-LOC 50.00% 49.59% 49.79
AM-MNR 54.00% 54.94% 54.47
AM-MOD 92.02% 94.19% 93.09
AM-NEG 96.05% 95.22% 95.63
AM-PNC 35.07% 40.87% 37.75
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 68.69% 63.57% 66.03
R-A0 77.61% 89.73% 83.23
R-A1 71.95% 75.64% 73.75
R-A2 87.50% 43.75% 58.33
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 66.67% 85.71% 75.00
R-AM-MNR 8.33% 16.67% 11.11
R-AM-TMP 66.67% 88.46% 76.03

V 97.32% 97.32% 97.32

Table 2: Overall results (top) and detailed results on the

WSJ test (bottom).

To achieve these constraints, we used the prob-

abilities produced by libSVM for each of the bi-

nary argument label classifiers. We produced a

constraint satisfaction module that uses a greedy

algorithm that uses probabilities from the matrix of

potential labeling for each constituent and label.

The algorithm iteratively chooses a label for a node

with the highest probability and removes any po-

tential labeling that would violate constraints with

that chosen label. It continues to choose labels for

nodes until all probabilities in the matrix are lower

than a threshold, determined by experiments to be

.3. In the future, it is our intent to replace this

greedy algorithm with a dynamic optimization al-

gorithm.

3 Experimental Results

3.1 Final System and Results

The final system used an identifier classifier

trained on (the first) 10 directories, in approxi-

mately 7 hours, and a labeling classifier trained on

20 directories, in approximately 23 hours. Testing

took approximately 3.3 seconds per sentence.

As a further test of the final system, we trained

both the identifier classifier and the labeling classi-

fier on the first 10 directories and used the second

10 directories as development tests. Here are some

of the results, showing the alignment and F-

measure on each directory, compared to 24.

Directory: 12 14 16 18 20 24

Alignment 95.7 96.1 95.9 96.5 95.9 91.3

F-measure 80.4 79.6 79.0 80.5 79.7 71.1

Table 3: Using additional directories for testing

Finally, we note that we did not correctly antici-

pate the final notation for the predicates in the test

set for two word verbs. Our system assumed that

two word verbs would be given a start and an end,

whereas the test set gives just the one word predi-

cate.

References

Xavier Carreras and Lluìs Màrquez, 2005. Introduction

to the CoNLL-2005 Shared Task: Semantic Role

Labeling, Proceedings of CoNLL-2005.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM :

a library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Daniel Gildea and Daniel Jurafsky, 2002. Automatic

Labeling of Semantic Roles. Computational Linguis-

tics 28(3):245-288.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,

Wayne Ward, James H. Martin, and Daniel Jurafsky,

2005. Support Vector Learning for Semantic Argu-

ment Classification, To appear in Machine Learning

journal, Special issue on Speech and Natural Lan-

guage Processing.

208

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 209–212, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Maximum Entropy based Semantic Role Labeling

Kyung-Mi Park and Hae-Chang Rim
Department of Computer Science & Engineering, Korea University

5-ka, Anam-dong, SeongBuk-gu, SEOUL, 136-701, KOREA
{kmpark, rim}@nlp.korea.ac.kr

1 Introduction

The semantic role labeling (SRL) refers to finding
the semantic relation (e.g. Agent, Patient, etc.) be-
tween a predicate and syntactic constituents in the
sentences. Especially, with the argument informa-
tion of the predicate, we can derive the predicate-
argument structures, which are useful for the appli-
cations such as automatic information extraction. As
previous work on the SRL, there have been many
machine learning approaches. (Gildea and Jurafsky,
2002; Pradhan et al., 2003; Lim et al., 2004).

In this paper, we present a two-phase SRL method
based on a maximum entropy (ME) model. We first
identify parse constituents that represent valid se-
mantic arguments of a given predicate, and then as-
sign appropriate semantic roles to the the identified
parse constituents. In the two-phase SRL method,
the performance of the argument identification phase
is very important, because the argument classifica-
tion is performed on the region identified at the iden-
tification phase. In this study, in order to improve the
performance of identification, we try to incorporate
clause boundary restriction and tree distance restric-
tion into pre-processing of the identification phase.

Since features for identifying arguments are dif-
ferent from features for classifying a role, we need
to determine different feature sets appropriate for the
tasks. We determine final feature sets for each phase
with experiments. We participate in the closed chal-
lenge of the CoNLL-2005 shared task and report re-
sults on both development and test sets. A detailed
description of the task, data and related work can be
found in Carreras and Màrquez (2005).

2 System Description

In this section, we describe our system that iden-
tifies and classifies semantic arguments. First, we
explain pre-processing of the identification phase.
Next, we describe features employed. Finally, we
explain classifiers used in each phase.

2.1 Pre-processing

We thought that the occurrence of most semantic
arguments are sensitive to the boundary of the im-
mediate clause or the upper clauses of a predicate.
Also, we assumed that they exist in the uniform dis-
tance on the parse tree from the predicate’s parent
node (called Pp) to the parse constituent’s parent
node (called Pc). Therefore, for identifying seman-
tic arguments, we do not need to examine all parse
constituents in a parse tree. In this study, we use
the clause boundary restriction and the tree distance
restriction, and they can provide useful information
for spotting the probable search space which include
semantic arguments.

In Figure 1 and Table 1, we show an example of
applying the tree distance restriction. We show the
distance between Pp=VP and the nonterminals of a
parse tree in Figure 1. For example, NP2:d=3 means
3 times downward movement through the parse tree
from Pp=VP to Pc=NP2. NP4 does not have the dis-
tance from Pp because we allow to move only up-
ward or only downward through the tree from Pp to
Pc. In Table 1, we indicate all 14 argument can-
didates that correspond to tree distance restriction
(d≤3). Only 2 of the 14 argument candidates are
actually served to semantic arguments (NP4, PP).

209

Figure 1: Distance between Pp=VP and Pc.

distance direction Pc argument candidates
d=1 UP S NP4

d=0 - VP PP
d=1 DOWN PP IN, NP3

d=2 DOWN NP3 NP1, CONJP, NP2

d=3 DOWN NP1 JJ, NNS, NN
d=3 DOWN CONJP RB, IN
d=3 DOWN NP2 NNS, NN

Table 1: Probable argument candidates (d≤3).

2.2 Features

The following features describe properties of the
verb predicate. These featues are shared by all the
parse constituents in the tree.

• pred lex: this is the predicate itself.

• pred POS: this is POS of the predicate.

• pred phr: this is the syntactic category of Pp.

• pred type: this represents the predicate usage
such as to-infinitive form, the verb predicate of
a main clause, and otherwise.

• voice: this is a binary feature identifying
whether the predicate is active or passive.

• sub cat: this is the phrase structure rule ex-
panding the predicate’s parent node in the tree.

• pt+pl: this is a conjoined feature of pred type
and pred lex. Because the maximum entropy
model assumes the independence of features,
we need to conjoin the coherent features.

The following features characterize the internal
structure of a argument candidate. These features
change with the constituent under consideration.

• head lex: this is the headword of the argument
candidate. We extracts the headword by using
the Collins’s headword rules.

• head POS: this is POS of the headword.

• head phr: this is the syntactic category of Pc.

• cont lex: this is the content word of the argu-
ment candidate. We extracts the content word
by using the head table of the chunklink.pl 1.

• cont POS: this is POS of the content word.

• gov: this is the governing category introduced
by Gildea and Jurafsky (2002).

The following features capture the relations be-
tween the verb predicate and the constituent.

• path: this is the syntactic path through the parse
tree from the parse constituent to the predicate.

• pos: this is a binary feature identifying whether
the constituent is before or after the predicate.

• pos+clau: this, conjoined with pos, indicates
whether the constituent is located in the imme-
diate clause, in the first upper clause, in the sec-
ond upper clause, or in the third upper clause.

• pos+VP, pos+NP, pos+SBAR: these are nu-
meric features representing the number of the
specific chunk types between the constituent
and the predicate.

• pos+CC, pos+comma, pos+colon, pos+quote:
these are numeric features representing the
number of the specific POS types between the
constituent and the predicate .

• pl+hl (pred lex + head lex), pl+cl (pred lex +
cont lex), v+gov (voice + gov).

2.3 Classifier

The ME classifier for the identification phase clas-
sifies each parse constituent into one of the follow-
ing classes: ARG class or NON-ARG class. The ME
classifier for the classification phase classifies the
identified argument into one of the pre-defined se-
mantic roles (e.g. A0, A1, AM-ADV, AM-CAU, etc.).

1http://pi0657.kub.nl/s̃abine/chunklink/chunklink 2-2-
2000 for conll.pl

210

#exa. %can. #can. %arg. Fβ=1

no restriction
All1 3,709,080 - 233,394 96.06 79.37
All2 2,579,278 - 233,004 95.90 79.52
All3 1,598,726 100.00 231,120 95.13 79.92

restriction on clause boundary
1/0 1,303,596 81.54 222,238 91.47 78.97
1/1 1,370,760 85.74 223,571 92.02 79.14
2/0 1,403,630 87.80 228,891 94.21 79.66
2/1 1,470,794 92.00 230,224 94.76 79.89
3/0 1,439,755 90.06 229,548 94.48 79.63
3/1 1,506,919 94.26 230,881 95.03 79.79

restriction on tree distance
6/1 804,413 50.32 226,875 93.38 80.17
6/2 936,021 58.55 227,637 93.69 79.94
7/1 842,453 52.70 228,129 93.90 80.44
7/2 974,061 60.93 228,891 94.21 80.03
8/1 871,541 54.51 228,795 94.17 80.24
8/2 1,003,149 62.75 229,557 94.48 80.04

restriction on clause boundary & tree distance
2/1,7/1 786,951 49.22 227,523 93.65 80.12
2/1,8/1 803,040 50.23 228,081 93.88 80.11
3/1,7/1 800,740 50.09 227,947 93.82 80.28
3/1,8/1 822,225 51.43 228,599 94.09 80.06

Table 2: Different ways of reducing candidates.

3 Experiments

To test the proposed method, we have experimented
with CoNLL-2005 datasets (Wall Street sections 02-
21 as training set, Charniak’ trees). The results have
been evaluated by using the srl-eval.pl script pro-
vided by the shared task organizers. For building
classifiers, we utilized the Zhang le’s MaxEnt toolkit
2, and the L-BFGS parameter estimation algorithm
with Gaussian Prior smoothing.

Table 2 shows the different ways of reducing the
number of argument candidates. The 2nd and 3rd
columns (#can., %can.) indicate the number of ar-
gument candidates and the percentage of argument
candidates that satisfy each restriction on the train-
ing set. The 4th and 5th columns (#arg., %arg.)
indicate the number of correct arguments and the
percentage of correct arguments that satisfy each re-
striction on the training set. The last column (Fβ=1)
indicates the performance of the identification task
on the development set by applying each restriction.

In no restriction, All1 extracts candidates from all
the nonterminals’s child nodes of a tree. All2 fil-
ter the nonterminals which include at least one non-

2http://www.nlplab.cn/zhangle/maxent toolkit.html

Prec. Recall Fβ=1 Accu.
All 82.57 78.41 80.44 86.00
All-(pred lex) 82.80 77.78 80.21 84.93
All-(pred POS) 83.40 76.72 79.92 85.95
All-(pred phr) 83.11 77.57 80.24 85.87
All-(pred type) 82.76 77.91 80.26 85.99
All-(voice) 82.87 77.88 80.30 85.88
All-(sub cat) 82.48 77.68 80.00 84.88
All-(pt+pl) 83.20 77.40 80.20 85.62
All-(head lex) 82.58 77.87 80.16 85.61
All-(head POS) 82.66 77.88 80.20 85.89
All-(head phr) 83.52 76.82 80.03 85.81
All-(cont lex) 82.57 77.87 80.15 85.64
All-(cont POS) 82.65 77.92 80.22 86.09
All-(gov) 82.69 78.34 80.46 85.91
All-(path) 78.39 67.96 72.80 85.69
All-(pos) 82.70 77.74 80.14 85.85
All-(pos+clau) 82.94 78.34 80.57 86.19
All-(pos+VP) 82.69 77.87 80.20 85.87
All-(pos+NP) 82.78 77.69 80.15 85.77
All-(pos+SBAR) 82.51 78.00 80.19 85.83
All-(pos+CC) 82.84 78.10 80.40 85.70
All-(pos+comma) 82.78 77.69 80.15 85.70
All-(pos+colon) 82.67 77.96 80.25 85.72
All-(pos+quote) 82.63 77.98 80.24 85.66
All-(pl+hl) 82.62 77.71 80.09 84.98
All-(pl+cl) 82.72 77.79 80.18 85.24
All-(v+gov) 82.93 77.81 80.29 85.85

Prec. Recall Fβ=1 Accu.
Iden. 82.56 78.72 80.59 -
clas. - - - 87.16
Iden.+Clas. 72.68 69.16 70.87 -

Table 3: Performance of various feature combina-
tions (top) and performance of each phase (bottom).

terminal child 3. All3 filter the nonterminals which
include at least one nonterminal child and have dis-
tance from Pp. We use All3 as a baseline.

In restriction on clause boundary, for example,
2/0 means that the left search boundary for identi-
fying the argument is set to the left boundary of the
second upper clause, and the right search boundary
is set to the right boundary of the immediate clause.

In restriction on tree distance, for example, 7/1
means that it is possible to move up to 7 times up-
ward (d≤7) through the parse tree from Pp to Pc, and
it is possible to move up to once downward (d≤1)
through the parse tree from Pp to Pc.

In clause boundary & tree distance, for example,
3/1,7/1 means the case when we use both the clause
boundary (3/1) and the tree distance (7/1).

3We ignore the nonterminals that have only pre-terminal
children (e.g. in Figure 1, NP1, CONJP, NP2).

211

Precision Recall Fβ=1

Development 72.68% 69.16% 70.87
Test WSJ 74.69% 70.78% 72.68
Test Brown 64.58% 60.31% 62.38
Test WSJ+Brown 73.35% 69.37% 71.31

Test WSJ Precision Recall Fβ=1

Overall 74.69% 70.78% 72.68
A0 85.02% 81.53% 83.24
A1 73.98% 72.25% 73.11
A2 63.20% 57.57% 60.25
A3 62.96% 49.13% 55.19
A4 73.40% 67.65% 70.41
A5 100.00% 40.00% 57.14
AM-ADV 56.73% 50.00% 53.15
AM-CAU 70.21% 45.21% 55.00
AM-DIR 46.48% 38.82% 42.31
AM-DIS 70.95% 65.62% 68.18
AM-EXT 87.50% 43.75% 58.33
AM-LOC 44.09% 46.28% 45.16
AM-MNR 55.56% 52.33% 53.89
AM-MOD 97.59% 95.64% 96.61
AM-NEG 96.05% 95.22% 95.63
AM-PNC 40.68% 41.74% 41.20
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 70.11% 61.73% 65.66
R-A0 84.68% 83.93% 84.30
R-A1 73.33% 70.51% 71.90
R-A2 50.00% 31.25% 38.46
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 85.71% 57.14% 68.57
R-AM-MNR 16.67% 16.67% 16.67
R-AM-TMP 72.50% 55.77% 63.04
V 97.32% 97.32% 97.32

Table 4: Overall results (top) and detailed results on
the WSJ test (bottom).

Precision Recall Fβ=1

one-phase 71.94 68.70 70.29
two-phase 72.68 69.16 70.87

Table 5: Performance of one-phase vs. two-phase.

According to the experimental results, we use
7/1 tree distance restriction for all following ex-
periments. By applying the restriction, we can re-
move about 47.3% (%can.=52.70%) of total argu-
ment candidates as compared with All3. 93.90%
(%arg.) corresponds to the upper bound on recall.

In order to estimate the relative contribution of
each feature, we measure performance of each phase
on the development set by leaving out one feature at

a time, as shown in the top of Table 3. Precision,
Recall, and Fβ=1 represent the performance of the
identification task, and Accuracy represent the per-
formance of the classification task only with 100%
correct argument identification respectively. All rep-
resents the performance of the experiment when all
26 features introduced by section 2.2 are considered.
Finally, for identification, we use 24 features except
gov and pos+clau, and obtain an Fβ=1 of 80.59%, as
shown in the bottom of Table 3. Also, for classifica-
tion, we use 23 features except pred type, cont POS,
and pos+clau, and obtain an Accuracy of 87.16%.

Table 4 presents our best system performance on
the development set, and the performance of the
same system on the test set. Table 5 shows the
performance on the development set using the one-
phase method and the two-phase method respec-
tively. The one-phase method is implemented by in-
corporating the identification into the classification.
one-phase shows the performance of the experiment
when 25 features except pos+clau are used. Exper-
imental results show that the two-phase method is
better than the one-phase method in our evaluation.

4 Conclusion

We have presented a two-phase SRL method based
on a ME model. In the two-phase method, in order to
improve the performance of identification that dom-
inate the overall performance, we have performed
pre-processing. Experimental results show that our
system obtains an Fβ=1 of 72.68% on the WSJ test
and that the introduction of pre-processing improves
the performance, as compared with the case when
all parse constituents are considered.

References
Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling. Pro-
ceedings of CoNLL-2005.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic Labeling
of Semantic Roles. Computational Linguistics.

Joon-Ho Lim, Young-Sook Hwang, So-Young Park and Hae-
Chang Rim. 2004. Semantic Role Labeling using Maximum
Entropy Model. Proceedings of CoNLL.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne
Ward, James H. Martin and Daniel Jurafsky. 2003. Shallow
Semantic Parsing Using Support Vector Machines. Techni-
cal Report, TR-CSLR-2003-03.

212

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 213–216, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling Using Lexical Statistical Information

Simone Paolo PonzettoandMichael Strube
EML Research gGmbH

Schloss-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

http://www.eml-research.de/nlp/

Abstract

Our system for semantic role labeling is
multi-stage in nature, being based on tree
pruning techniques, statistical methods for
lexicalised feature encoding, and a C4.5
decision tree classifier. We use both shal-
low and deep syntactic information from
automatically generated chunks and parse
trees, and develop a model for learning
the semantic arguments of predicates as a
multi-class decision problem. We evalu-
ate the performance on a set of relatively
‘cheap’ features and report an F1 score of
68.13% on the overall test set.

1 Introduction

This paper presents a system for the CoNLL 2005
Semantic Role Labeling shared task (Carreras &
Màrquez, 2005), which is based on the current re-
lease of the English PropBank data (Palmer et al.,
2005). For the 2005 edition of the shared task are
available both syntactic and semantic information.
Accordingly, we make use of both clausal, chunk
and deep syntactic (tree structure) features, named
entity information, as well as statistical representa-
tions for lexical item encoding.

The set of features and their encoding reflect the
necessity of limiting the complexity and dimension-
ality of the input space. They also provide the clas-
sifier with enough information. We explore here the
use of a minimal set of compact features for seman-
tic role prediction, and show that a feature-based

statistical encoding of lexicalised features such as
predicates, head words, local contexts and PoS by
means of probability distributions provides an effi-
cient way of representing the data, with the feature
vectors having a small dimensionality and allowing
to abstract from single words.

2 System description

2.1 Preprocessing

During preprocessing the predicates’ semantic argu-
ments are mapped to the nodes in the parse trees, a
set of hand-crafted shallow tree pruning rules are ap-
plied, probability distributions for feature represen-
tation are generated from training data1, and feature
vectors are extracted. Those are finally fed into the
classifier for semantic role classification.

2.1.1 Tree node mapping of semantic
arguments and named entities

Following Gildea & Jurafsky (2002), (i) labels
matching more than one constituent due to non-
branching nodes are taken as labels of higher con-
stituents, (ii) in cases of labels with no correspond-
ing parse constituent, these are assigned to the par-
tial match given by the constituent spanning the
shortest portion of the sentence beginning at the la-
bel’s span left boundary and lying entirely within it.
We drop the role or named entity label if such suit-
able constituent could not be found2.

1All other processing steps assume a uniform treatment of
both training and test data.

2The percentage of roles for which no valid tree node could
be found amounts to 3% for the training and 7% for the devel-
opment set. These results are compatible with the performance
of the employed parser (Collins, 1999).

213

2.1.2 Tree pruning

The tagged trees are further processed by applying
the following pruning rules:

• All punctuation nodes are removed. This is for
removing punctuation information, as well as
for aligning spans of the syntactic nodes with
PropBank constituents3.

• If a node is unary branching and its daughter is
also unary branching, the daughter is removed.
This allows to remove redundant nodes span-
ning the same tokens in the sentence.

• If a node has only preterminal children, these
are removed. This allows to internally collapse
base phrases such as base NPs.

Tree pruning was carried out in order to reduce the
number of nodes from which features were to be ex-
tracted later. This limits the number of candidate
constituents for role labeling, and removes redun-
dant information produced by the pipeline of previ-
ous components (i.e. PoS tags of preterminal labels),
as well as the sparseness and fragmentation of the
input data. These simple rules reduce the number
of constituents given by the parser output by 38.4%
on the training set, and by 38.7% on the develop-
ment set, at the cost of limiting the coverage of the
system by removing approximately 2% of the tar-
get role labeled constituents. On the development
set, the number of constituents remaining on top of
pruning is 81,193 of which 7,558 are semantic ar-
guments, with a performance upper-bound of 90.6%
F1.

2.1.3 Features

Given the pruned tree structures, we traverse the tree
bottom-up left-to-right. For each non-terminal node
whose span does not overlap the predicate we extract
the following features:

Phrase type: the syntactic category of the con-
stituent (NP, PP, ADVP, etc.). In order to reduce
the number of phrase labels, we retained only

3We noted during prototyping that in many cases no tree
node fully matching a role constituent could be found, as the
latter did not include punctuation tokens, whereas in Collins’
trees the punctuation terminals are included within the preced-
ing phrases. This precludesa priori the output to align to the
gold standard PropBank annotation and we use therefore prun-
ing as a recovery strategy.

those labels which account for at least 0.1% of
the overall available semantic arguments in the
training data. We replace the label for every
phrase type category below this threshold with
a genericUNKlabel. This reduces the number
of labels from 72 to 18.

Position: the position of the constituent with re-
spect to the target predicate (before or after).

Adjacency: whether the right (if before) or left (if
after) boundary of the constituent isadjacent,
non-adjacent or inside the predicate’s chunk.

Clause: whether the constituent belongs to the
clause of the predicate or not.

Proposition size: measures relative to the proposi-
tion size, such as (i) the number of constituents
and (ii) predicates in the proposition.

Constituent size: measures relative to the con-
stituent size, namely (i) the number of tokens
and (ii) subconstituents (viz., non-leaf rooted
subtrees) of the constituent.

Predicate: the predicate lemma, represented as the
probability distributionP (r|p) of the predicate
p of taking one of the availabler semantic
roles. For unseen predicates we assume a uni-
form distribution.

Voice: whether the predicate is inactive or passive
form. Passive voice is identified if the predi-
cate’s PoS tag isVBNand either it follows a
form of to be or to get, or it does not belong to
a VP chunk, or is immediately preceded by an
NP chunk.

Head word: the head word of the constituent,
represented as the probability distribution
P (r|hw) of the head wordhw of heading a
phrase filling one of the availabler seman-
tic roles. For unseen words we back off on a
phrasal model by using the probability distri-
butionP (r|pt) of the phrase typept of filling a
semantic slotr.

Head word PoS: the PoS of the head word of the
constituent, similarly represented as the proba-
bility distributionP (r|pos) of a PoSpos of be-
longing to a constituent filling one of the avail-
abler semantic roles.

Local lexical context: the words in the constituent
other than the head word, represented as the

214

averaged probability distributions of eachi-
th non-head wordwi of occurring in one
of the available r semantic roles, namely
1

m

∑
m

i=1
P (r|wi) for m non-head words in the

constituent. For each unseen word we back off
by using the probability distributionP (r|posi)
of the PoSposi of filling a semantic roler4.

Named entities: the label of the named entity
which spans the same words as the constituent,
as well as the label of the largest named en-
tity embedded within the constituent. Both val-
ues are set toNULL if such labels could not be
found.

Path: the number of intervening NPB, NP, VP, VP-
A, PP, PP-A, S, S-A and SBAR nodes along the
path from the constituent to the predicate.

Distance: the distance from the target predicate,
measured as (i) the number of nodes from the
constituent to the lowest node in the tree dom-
inating both the constituent and the predicate,
(ii) the number of nodes from the predicate to
the former common dominating node5, (iii) the
number of chunks between the base phrase of
the constituent’s head and the predicate chunk,
(iv) the number of tokens between the head of
the constituent and the predicate.

2.2 Classifier

We used the YaDT6 implementation of the C4.5 de-
cision tree algorithm (Quinlan, 1993). Parameter
selection (99% pruning confidence, at least 10 in-
stances per leaf node) was carried out by performing
10-fold cross-validation on the development set.

Data preprocessing and feature vector generation
took approximately 2.5 hours (training set, including
probability distribution generation), 5 minutes (de-
velopment) and 7 minutes (test) on a 2GHz Opteron

4This feature was introduced as the information provided by
lexical heads does not seem to suffice in many cases. This is
shown by head word ambiguities, such asLOC and TMPar-
guments occurring in similar prepositional syntactic configu-
rations — i.e. the prepositionin, which can be head of both
AM-TMPand AM-LOCconstituents, as inin October and in
New York. The idea is therefore to look at the words in the con-
stituents other than the head, and build up an overall constituent
representation, thus making use of statistical lexical information
for role disambiguation.

5These distance measures along the tree path between the
constituent and the predicate were kept separate, in order to in-
directly includeembedding level information into the model.

6
http://www.di.unipi.it/˜ruggieri/software.html

dual processor server with 2GB memory7. Training
time was of approximately 17 minutes. The final
system was trained using all of the available training
data from sections 2–21 of the Penn TreeBank. This
amounts to 2,250,887 input constituents of which
10% are non-NULL examples. Interestingly, during
prototyping we first limited ourselves to training and
drawing probability distributions for feature repre-
sentation from sections 15–18 only. This yielded
a very low performance (57.23% F1, development
set). A substantial performance increase was given
by still training on sections 15–18, but using the
probability distributions generated from sections 2–
21 (64.43% F1, development set). This suggests that
the system is only marginally sensitive to the train-
ing dataset size, but pivotally relies on taking proba-
bility distributions from a large amount of data.

In order to make the task easier and overcome the
uneven role class distribution, we limited the learner
to classify only those 16 roles accounting for at least
0.5% of the total number of semantic arguments in
the training data8.

2.3 Post-processing

As our system does not build an overall sen-
tence contextual representation, it systematically
produced errors such as embedded role labeling. In
particular, since no embedding is observed for the
semantic arguments of predicates, in case of (multi-
ple) embeddings the classifier output was automat-
ically post-processed to retain only the largest em-
bedding constituent. Evaluation on the development
set has shown that this does not significantly im-
prove performance, still it provides a much more
‘sane’ output. Besides, we make use of a simple
technique for avoiding multipleA0 or A1 role as-
signments within the same proposition, based on
constituent position and predicate voice. In case of
multipleA0 labels, if the predicate is in active form,
the secondA0 occurrence is replaced withA1, else
we replace the first occurrence. Similarly, in case of
multipleA1 labels, if the predicate is in active form,
the firstA1 occurrence is replaced withA0, else we

7We used only a single CPU at runtime, since the implemen-
tation is not parallelised.

8These include numbered arguments (A0 to A4), adjuncts
(ADV, DIS , LOC, MNR, MOD, NEG, PNC, TMP), and references
(R-A0 andR-A1).

215

Precision Recall Fβ=1

Development 71.82% 61.60% 66.32
Test WSJ 75.05% 64.81% 69.56
Test Brown 66.69% 52.14% 58.52
Test WSJ+Brown 74.02% 63.12% 68.13

Test WSJ Precision Recall Fβ=1

Overall 75.05% 64.81% 69.56
A0 78.52% 72.52% 75.40
A1 75.53% 65.39% 70.10
A2 62.28% 52.07% 56.72
A3 63.81% 38.73% 48.20
A4 73.03% 63.73% 68.06
A5 0.00% 0.00% 0.00
AM-ADV 60.00% 42.69% 49.88
AM-CAU 0.00% 0.00% 0.00
AM-DIR 0.00% 0.00% 0.00
AM-DIS 75.97% 73.12% 74.52
AM-EXT 0.00% 0.00% 0.00
AM-LOC 54.09% 47.38% 50.51
AM-MNR 58.67% 46.22% 51.71
AM-MOD 97.43% 96.37% 96.90
AM-NEG 97.78% 95.65% 96.70
AM-PNC 42.17% 30.43% 35.35
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 75.41% 71.11% 73.20
R-A0 82.09% 73.66% 77.65
R-A1 72.03% 66.03% 68.90
R-A2 0.00% 0.00% 0.00
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 0.00% 0.00% 0.00
V 98.63% 98.63% 98.63

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

replace the second occurrence.

3 Results

Table 1 shows the results on the test set. Problems
are inherently related with the skewed distribution of
role classes, so that roles which have a limited num-
ber of occurrences are harder to classify correctly.
This explains the performance gap on theA0 and
A1 roles on one hand, and theA2, A3, A4, AM- ar-
guments on the other.

One advantage of using a decision tree learning
algorithm is that it outputs a model which includes a
feature ranking, since the most informative features
are those close to the root of the tree. In the present

case, the most informative features were both dis-
tance/position metrics (distance and adjacency) and
lexicalized features (head word and predicate).

4 Conclusion

Semantic role labeling is a difficult task, and accord-
ingly, how to achieve an accurate and robust perfor-
mance is still an open question. In our work we
used a limited set of syntactic tree based distance
and size metrics coupled with raw lexical statistics,
and showed that such ‘lazy learning’ configuration
can still achieve a reasonable performance.

We concentrated on reducing the complexity
given by the number and dimensionality of the in-
stances to be classified during learning. This is the
core motivation behind performing tree pruning and
statistical feature encoding. This also helped us to
avoid the use of sparse features such as the explicit
path in the parse tree between the candidate con-
stituent and the predicate, and the predicate’s sub-
categorization rule (cf. e.g. Pradhan et al. (2004)).

Future work will concentrate on benchmarking
this approach within alternative architectures (i.e.
two-phase with filtering) and different learning
schemes (i.e. vector-based methods such as Support
Vector Machines and Artificial Neural Networks).

Acknowledgements: This work has been funded
by the Klaus Tschira Foundation, Heidelberg, Ger-
many. The first author has been supported by a KTF
grant (09.003.2004).

References
Carreras, Xavier & Llúıs Màrquez (2005). Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling. InPro-
ceedings of CoNLL-2005.

Collins, Michael (1999).Head-driven statistical models for nat-
ural language parsing, (Ph.D. thesis). Philadelphia, Penn.,
USA: University of Pennsylvania.

Gildea, Daniel & Daniel Jurafsky (2002). Automatic labeling of
semantic roles.Computational Linguistics, 28(3):245–288.

Palmer, Martha, Dan Gildea & Paul Kingsbury (2005). The
proposition bank: An annotated corpus of semantic roles.
Computational Linguistics, 31(1):71–105.

Pradhan, Sameer, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin & Daniel Jurafsky (2004). Support vec-
tor learning for semantic argument classification.Journal
of Machine Learning, Special issue on Speech and Natural
Language Processing. To appear.

Quinlan, J. Ross (1993).C4.5: programs for machine learn-
ing. San Francisco, Cal., USA: Morgan Kaufmann Publish-
ers Inc.

216

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 217–220, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Chunking Combining Complementary Syntactic Views

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H. Martin and Daniel Jurafsky†

Center for Spoken Language Research, University of Colorado, Boulder, CO 80303
†Department of Linguistics, Stanford University, Stanford, CA 94305

{spradhan,hacioglu,whw,martin}@cslr.colorado.edu, jurafsky@stanford.edu

Abstract

This paper describes a semantic role la-
beling system that uses features derived
from different syntactic views, and com-
bines them within a phrase-based chunk-
ing paradigm. For an input sentence, syn-
tactic constituent structure parses are gen-
erated by a Charniak parser and a Collins
parser. Semantic role labels are assigned
to the constituents of each parse using
Support Vector Machine classifiers. The
resulting semantic role labels are con-
verted to an IOB representation. These
IOB representations are used as additional
features, along with flat syntactic chunks,
by a chunking SVM classifier that pro-
duces the final SRL output. This strategy
for combining features from three differ-
ent syntactic views gives a significant im-
provement in performance over roles pro-
duced by using any one of the syntactic
views individually.

1 Introduction

The task of Semantic Role Labeling (SRL) involves
tagging groups of words in a sentence with the se-
mantic roles that they play with respect to a particu-
lar predicate in that sentence. Our approach is to use
supervised machine learning classifiers to produce
the role labels based on features extracted from the
input. This approach is neutral to the particular set
of labels used, and will learn to tag input according

to the annotated data that it is trained on. The task
reported on here is to produce PropBank (Kingsbury
and Palmer, 2002) labels, given the features pro-
vided for the CoNLL-2005 closed task (Carreras and
Màrquez, 2005).

We have previously reported on using SVM clas-
sifiers for semantic role labeling. In this work, we
formulate the semantic labeling problem as a multi-
class classification problem using Support Vector
Machine (SVM) classifiers. Some of these systems
use features based on syntactic constituents pro-
duced by a Charniak parser (Pradhan et al., 2003;
Pradhan et al., 2004) and others use only a flat syn-
tactic representation produced by a syntactic chun-
ker (Hacioglu et al., 2003; Hacioglu and Ward,
2003; Hacioglu, 2004; Hacioglu et al., 2004). The
latter approach lacks the information provided by
the hierarchical syntactic structure, and the former
imposes a limitation that the possible candidate roles
should be one of the nodes already present in the
syntax tree. We found that, while the chunk based
systems are very efficient and robust, the systems
that use features based on full syntactic parses are
generally more accurate. Analysis of the source
of errors for the parse constituent based systems
showed that incorrect parses were a major source
of error. The syntactic parser did not produce any
constituent that corresponded to the correct segmen-
tation for the semantic argument. In Pradhan et al.
(2005), we reported on a first attempt to overcome
this problem by combining semantic role labels pro-
duced from different syntactic parses. The hope is
that the syntactic parsers will make different errors,
and that combining their outputs will improve on

217

either system alone. This initial attempt used fea-
tures from a Charniak parser, a Minipar parser and a
chunk based parser. It did show some improvement
from the combination, but the method for combin-
ing the information was heuristic and sub-optimal.
In this paper, we report on what we believe is an im-
proved framework for combining information from
different syntactic views. Our goal is to preserve the
robustness and flexibility of the segmentation of the
phrase-based chunker, but to take advantage of fea-
tures from full syntactic parses. We also want to
combine features from different syntactic parses to
gain additional robustness. To this end, we use fea-
tures generated from a Charniak parser and a Collins
parser, as supplied for the CoNLL-2005 closed task.

2 System Description

We again formulate the semantic labeling problem
as a multi-class classification problem using Sup-
port Vector Machine (SVM) classifiers. TinySVM1

along with YamCha2 (Kudo and Matsumoto, 2000;
Kudo and Matsumoto, 2001) are used to implement
the system. Using what is known as the ONE VS

ALL classification strategy, n binary classifiers are
trained, where n is number of semantic classes in-
cluding a NULL class.

The general framework is to train separate seman-
tic role labeling systems for each of the parse tree
views, and then to use the role arguments output by
these systems as additional features in a semantic
role classifier using a flat syntactic view. The con-
stituent based classifiers walk a syntactic parse tree
and classify each node as NULL (no role) or as one
of the set of semantic roles. Chunk based systems
classify each base phrase as being the B(eginning)
of a semantic role, I(nside) a semantic role, or
O(utside) any semantic role (ie. NULL). This
is referred to as an IOB representation (Ramshaw
and Marcus, 1995). The constituent level roles are
mapped to the IOB representation used by the chun-
ker. The IOB tags are then used as features for a
separate base-phase semantic role labeler (chunker),
in addition to the standard set of features used by
the chunker. An n-fold cross-validation paradigm
is used to train the constituent based role classifiers

1
http://chasen.org/˜taku/software/TinySVM/

2
http://chasen.org/˜taku/software/yamcha/

and the chunk based classifier.
For the system reported here, two full syntactic

parsers were used, a Charniak parser and a Collins
parser. Features were extracted by first generating
the Collins and Charniak syntax trees from the word-
by-word decomposed trees in the CoNLL data. The
chunking system for combining all features was
trained using a 4-fold paradigm. In each fold, sepa-
rate SVM classifiers were trained for the Collins and
Charniak parses using 75% of the training data. That
is, one system assigned role labels to the nodes in
Charniak based trees and a separate system assigned
roles to nodes in Collins based trees. The other 25%
of the training data was then labeled by each of the
systems. Iterating this process 4 times created the
training set for the chunker. After the chunker was
trained, the Charniak and Collins based semantic la-
belers were then retrained using all of the training
data.

Two pieces of the system have problems scaling
to large training sets – the final chunk based clas-
sifier and the NULL VS NON-NULL classifier for
the parse tree syntactic views. Two techniques were
used to reduce the amount of training data – active
sampling and NULL filtering. The active sampling
process was performed as follows. We first train
a system using 10k seed examples from the train-
ing set. We then labeled an additional block of data
using this system. Any sentences containing an er-
ror were added to the seed training set. The sys-
tem was retrained and the procedure repeated until
there were no misclassified sentences remaining in
the training data. The set of examples produced by
this procedure was used to train the final NULL VS

NON-NULL classifier. The same procedure was car-
ried out for the chunking system. After both these
were trained, we tagged the training data using them
and removed all most likely NULLs from the data.

Table 1 lists the features used in the constituent
based systems. They are a combination of features
introduced by Gildea and Jurafsky (2002), ones pro-
posed in Pradhan et al. (2004), Surdeanu et al.
(2003) and the syntactic-frame feature proposed in
(Xue and Palmer, 2004). These features are ex-
tracted from the parse tree being labeled. In addition
to the features extracted from the parse tree being
labeled, five features were extracted from the other
parse tree (phrase, head word, head word POS, path

218

PREDICATE LEMMA

PATH: Path from the constituent to the predicate in the parse tree.
POSITION: Whether the constituent is before or after the predicate.
PREDICATE SUB-CATEGORIZATION

HEAD WORD: Head word of the constituent.
HEAD WORD POS: POS of the head word
NAMED ENTITIES IN CONSTITUENTS: Person, Organization, Location
and Miscellaneous.
PARTIAL PATH: Path from the constituent to the lowest common ancestor
of the predicate and the constituent.
HEAD WORD OF PP: Head of PP replaced by head word of NP inside it,
and PP replaced by PP-preposition
FIRST AND LAST WORD/POS IN CONSTITUENT

ORDINAL CONSTITUENT POSITION

CONSTITUENT TREE DISTANCE

CONSTITUENT RELATIVE FEATURES: Nine features representing
the phrase type, head word and head word part of speech of the
parent, and left and right siblings of the constituent.
SYNTACTIC FRAME

CONTENT WORD FEATURES: Content word, its POS and named entities
in the content word
CLAUSE-BASED PATH VARIATIONS:
I. Replacing all the nodes in a path other than clause nodes with an “*”.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD
becomes NP↑S↑*S↑*↑*↓VBD
II. Retaining only the clause nodes in the path, which for the above
example would produce NP↑S↑S↓VBD,
III. Adding a binary feature that indicates whether the constituent
is in the same clause as the predicate,
IV. collapsing the nodes between S nodes which gives NP↑S↑NP↑VP↓VBD.
PATH N-GRAMS: This feature decomposes a path into a series of trigrams.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD becomes:
NP↑S↑VP, S↑VP↑SBAR, VP↑SBAR↑NP, SBAR↑NP↑VP, etc. We
used the first ten trigrams as ten features. Shorter paths were padded
with nulls.
SINGLE CHARACTER PHRASE TAGS: Each phrase category is clustered
to a category defined by the first character of the phrase label.
PREDICATE CONTEXT: Two words and two word POS around the
predicate and including the predicate were added as ten new features.
PUNCTUATION: Punctuation before and after the constituent were
added as two new features.
FEATURE CONTEXT: Features for argument bearing constituents
were added as features to the constituent being classified.

Table 1: Features used by the constituent-based sys-
tem

and predicate sub-categorization). So for example,
when assigning labels to constituents in a Charniak
parse, all of the features in Table 1 were extracted
from the Charniak tree, and in addition phrase, head
word, head word POS, path and sub-categorization
were extracted from the Collins tree. We have pre-
viously determined that using different sets of fea-
tures for each argument (role) achieves better results
than using the same set of features for all argument
classes. A simple feature selection was implemented
by adding features one by one to an initial set of
features and selecting those that contribute signifi-
cantly to the performance. As described in Pradhan
et al. (2004), we post-process lattices of n-best de-
cision using a trigram language model of argument
sequences.

Table 2 lists the features used by the chunker.
These are the same set of features that were used

in the CoNLL-2004 semantic role labeling task by
Hacioglu, et al. (2004) with the addition of the two
semantic argument (IOB) features. For each token
(base phrase) to be tagged, a set of features is created
from a fixed size context that surrounds each token.
In addition to the features in Table 2, it also uses pre-
vious semantic tags that have already been assigned
to the tokens contained in the linguistic context. A
5-token sliding window is used for the context.

SVMs were trained for begin (B) and inside (I)
classes of all arguments and an outside (O) class.

WORDS

PREDICATE LEMMAS

PART OF SPEECH TAGS

BP POSITIONS: The position of a token in a BP using the IOB2
representation (e.g. B-NP, I-NP, O, etc.)
CLAUSE TAGS: The tags that mark token positions in a sentence
with respect to clauses.
NAMED ENTITIES: The IOB tags of named entities.
TOKEN POSITION: The position of the phrase with respect to
the predicate. It has three values as “before”, “after” and “-” (for
the predicate)
PATH: It defines a flat path between the token and the predicate
HIERARCHICAL PATH: Since we have the syntax tree for the sentences,
we also use the hierarchical path from the phrase being classified to the
base phrase containing the predicate.
CLAUSE BRACKET PATTERNS

CLAUSE POSITION: A binary feature that identifies whether the
token is inside or outside the clause containing the predicate
HEADWORD SUFFIXES: suffixes of headwords of length 2, 3 and 4.
DISTANCE: Distance of the token from the predicate as a number
of base phrases, and the distance as the number of VP chunks.
LENGTH: the number of words in a token.
PREDICATE POS TAG: the part of speech category of the predicate
PREDICATE FREQUENCY: Frequent or rare using a threshold of 3.
PREDICATE BP CONTEXT: The chain of BPs centered at the predicate
within a window of size -2/+2.
PREDICATE POS CONTEXT: POS tags of words immediately preceding
and following the predicate.
PREDICATE ARGUMENT FRAMES: Left and right core argument patterns
around the predicate.
DYNAMIC CLASS CONTEXT: Hypotheses generated for two preceeding
phrases.
NUMBER OF PREDICATES: This is the number of predicates in
the sentence.
CHARNIAK-BASED SEMANTIC IOB TAG: This is the IOB tag generated
using the tagger trained on Charniak trees
COLLINS-BASED SEMANTIC IOB TAG: This is the IOB tag generated
using the tagger trained on Collins’ trees

Table 2: Features used by phrase-based chunker.

3 Experimental Results

Table 3 shows the results obtained on the WSJ de-
velopment set (Section 24), the WSJ test set (Section
23) and the Brown test set (Section ck/01-03)

4 Acknowledgments

This research was partially supported by the ARDA
AQUAINT program via contract OCG4423B and
by the NSF via grants IS-9978025 and ITR/HCI

219

Precision Recall Fβ=1

Development 80.90% 75.38% 78.04
Test WSJ 81.97% 73.27% 77.37
Test Brown 73.73% 61.51% 67.07
Test WSJ+Brown 80.93% 71.69% 76.03

Test WSJ Precision Recall Fβ=1

Overall 81.97% 73.27% 77.37
A0 91.39% 82.23% 86.57
A1 79.80% 76.23% 77.97
A2 68.61% 62.61% 65.47
A3 73.95% 50.87% 60.27
A4 78.65% 68.63% 73.30
A5 75.00% 60.00% 66.67
AM-ADV 61.64% 46.05% 52.71
AM-CAU 76.19% 43.84% 55.65
AM-DIR 53.33% 37.65% 44.14
AM-DIS 80.56% 63.44% 70.98
AM-EXT 100.00% 46.88% 63.83
AM-LOC 64.48% 51.52% 57.27
AM-MNR 62.90% 45.35% 52.70
AM-MOD 98.64% 92.38% 95.41
AM-NEG 98.21% 95.65% 96.92
AM-PNC 56.67% 44.35% 49.76
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 83.37% 71.94% 77.23
R-A0 94.29% 88.39% 91.24
R-A1 85.93% 74.36% 79.73
R-A2 100.00% 37.50% 54.55
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 90.00% 42.86% 58.06
R-AM-MNR 66.67% 33.33% 44.44
R-AM-TMP 75.00% 40.38% 52.50
V 98.86% 98.86% 98.86

Table 3: Overall results (top) and detailed results on
the WSJ test (bottom).

0086132. Computer time was provided by NSF
ARI Grant #CDA-9601817, NSF MRI Grant #CNS-
0420873, NASA AIST grant #NAG2-1646, DOE
SciDAC grant #DE-FG02-04ER63870, NSF spon-
sorship of the National Center for Atmospheric Re-
search, and a grant from the IBM Shared University
Research (SUR) program.

Special thanks to Matthew Woitaszek, Theron Vo-
ran and the other administrative team of the Hemi-
sphere and Occam Beowulf clusters. Without these
the training would never be possible.

References
Xavier Carreras and Lluı́s Màrquez. 2005. n Introduction to the CoNLL-2005

Shared Task: Semantic Role Labeling. In Proceedings of CoNLL-2005.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles.
Computational Linguistics, 28(3):245–288.

Kadri Hacioglu and Wayne Ward. 2003. Target word detection and semantic
role chunking using support vector machines. In Proceedings of the Human
Language Technology Conference, Edmonton, Canada.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James Martin, and Dan Jurafsky.
2003. Shallow semantic parsing using support vector machines. Technical
Report TR-CSLR-2003-1, Center for Spoken Language Research, Boulder,
Colorado.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James Martin, and Daniel Ju-
rafsky. 2004. Semantic role labeling by tagging syntactic chunks. In Pro-
ceedings of the 8th Conference on CoNLL-2004, Shared Task – Semantic Role
Labeling.

Kadri Hacioglu. 2004. A lightweight semantic chunking model based on tagging.
In Proceedings of the Human Language Technology Conference /North Amer-
ican chapter of the Association of Computational Linguistics (HLT/NAACL),
Boston, MA.

Paul Kingsbury and Martha Palmer. 2002. From Treebank to PropBank. In
Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC-2002), Las Palmas, Canary Islands, Spain.

Taku Kudo and Yuji Matsumoto. 2000. Use of support vector learning for chunk
identification. In Proceedings of the 4th Conference on CoNLL-2000 and
LLL-2000, pages 142–144.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with support vector machines.
In Proceedings of the 2nd Meeting of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL-2001).

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James Martin, and Dan Jurafsky.
2003. Semantic role parsing: Adding semantic structure to unstructured text.
In Proceedings of the International Conference on Data Mining (ICDM 2003),
Melbourne, Florida.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky.
2004. Shallow semantic parsing using support vector machines. In Proceed-
ings of the Human Language Technology Conference/North American chapter
of the Association of Computational Linguistics (HLT/NAACL), Boston, MA.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky.
2005. Semantic role labeling using different syntactic views. In Proceedings
of the Association for Computational Linguistics 43rd annual meeting (ACL-
2005), Ann Arbor, MI.

L. A. Ramshaw and M. P. Marcus. 1995. Text chunking using transformation-
based learning. In Proceedings of the Third Annual Workshop on Very Large
Corpora, pages 82–94. ACL.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul Aarseth. 2003. Us-
ing predicate-argument structures for information extraction. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics,
Sapporo, Japan.

Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role
labeling. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Barcelona, Spain.

220

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 221–224, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling Using Complete Syntactic Analysis

Mihai Surdeanu
Technical University of Catalunya
surdeanu@lsi.upc.edu

Jordi Turmo
Technical University of Catalunya

turmo@lsi.upc.edu

Abstract

In this paper we introduce a semantic role
labeling system constructed on top of the
full syntactic analysis of text. The la-
beling problem is modeled using a rich
set of lexical, syntactic, and semantic at-
tributes and learned using one-versus-all
AdaBoost classifiers.

Our results indicate that even a simple ap-
proach that assumes that each semantic ar-
gument maps into exactly one syntactic
phrase obtains encouraging performance,
surpassing the best system that uses par-
tial syntax by almost 6%.

1 Introduction

Most current semantic role labeling (SRL) ap-
proaches can be classified in one of two classes:
approaches that take advantage of complete syntac-
tic analysis of text, pioneered by (Gildea and Juraf-
sky, 2002), and approaches that use partial syntac-
tic analysis, championed by the previous CoNLL
shared task evaluations (Carreras and Màrquez,
2004).

However, to the authors’ knowledge, a clear anal-
ysis of the benefits of using full syntactic analysis
versus partial analysis is not yet available. On one
hand, the additional information provided by com-
plete syntax should intuitively be useful. But, on
the other hand, the state-of-the-art of full parsing
is known to be less robust and perform worse than
the tools used for partial syntactic analysis, which

would decrease the quality of the information pro-
vided. The work presented in this paper contributes
to this analysis by introducing a model that is en-
tirely based on the full syntactic analysis of text,
generated by a real-world parser.

2 System Description

2.1 Mapping Arguments to Syntactic
Constituents

Our approach maps each argument label to one syn-
tactic constituent, using a strategy similar to (Sur-
deanu et al., 2003). Using a bottom-up approach,
we map each argument to the first phrase that has the
exact same boundaries and climb as high as possible
in the syntactic tree across unary production chains.

Unfortunately, this one-to-one mapping between
semantic arguments and syntactic constituents is not
always possible. One semantic argument may be
mapped to many syntactic constituents due to: (a)
intrinsic differences between the syntactic and se-
mantic representations, and (b) incorrect syntactic
structure. Figure 1 illustrates each one of these sit-
uations: Figure 1 (a) shows a sentence where each
semantic argument correctly maps to one syntac-
tic constituent; Figure 1 (b) illustrates the situation
where one semantic argument correctly maps to two
syntactic constituents; and Figure 1 (c) shows a one-
to-many mapping caused by an incorrect syntactic
structure: argument A0 maps to two phrases, the ter-
minal “by” and the noun phrase “Robert Goldberg”,
due to the incorrect attachment of the last preposi-
tional phrase, “at the University of California”.

Using the above observations, we separate one-

221

rising consumer prices

VBG NN NNS

NP

P A1

developed by Robert Goldberg at the University of California

NP

PPNP

NP

PP

VP

P A0 AM−LOC

The luxury auto maker last year sold 1,214 cars in the U.S.

PPNP

VPNPNP

S

A0 A1PAM−TMP AM−LOC

(b)(a) (c)

Figure 1: Mapping semantic arguments to syntactic constituents: (a) correct one–to-one mapping; (b) correct
one-to-many mapping; (c) one-to-many mapping due to incorrect syntax.

(a) (b) (c)
Training 96.06% 2.49% 1.45%
Development 91.36% 4.83% 3.81%

Table 1: Distribution of semantic arguments accord-
ing to their mapping to syntactic constituents ob-
tained with the Charniak parser: (a) one-to-one, (b)
one-to-many, all syntactic constituents have same
parent, (c) one-to-many, syntactic constituents have
different parents.

to-many mappings in two classes: (a) when the syn-
tactic constituents mapped to the semantic argument
have the same parent (Figure 1 (b)) the mapping is
correct and/or could theoretically be learned by a
sequential SRL strategy, and (b) when the syntac-
tic constituents mapped to the same argument have
different parents, the mapping is generally caused
by incorrect syntax. Such cases are very hard to be
learned due to the irregularities of the parser errors.

Table 1 shows the distribution of semantic argu-
ments into one of the above classes, using the syn-
tactic trees provided by the Charniak parser. For the
results reported in this paper, we model only one-
to-one mappings between semantic arguments and
syntactic constituents. A subset of the one-to-many
mappings are addressed with a simple heuristic, de-
scribed in Section 2.4.

2.2 Features

The features incorporated in the proposed model
are inspired from the work of (Gildea and Juraf-
sky, 2002; Surdeanu et al., 2003; Pradhan et al.,
2005; Collins, 1999) and can be classified into five
classes: (a) features that capture the internal struc-
ture of the candidate argument, (b) features extracted

The syntactic label of the candidate constituent.
The constituent head word, suffixes of length 2, 3, and 4,
lemma, and POS tag.
The constituent content word, suffixes of length 2, 3, and
4, lemma, POS tag, and NE label. Content words, which
add informative lexicalized information different from
the head word, were detected using the heuristics
of (Surdeanu et al., 2003).
The first and last constituent words and their POS tags.
NE labels included in the candidate phrase.
Binary features to indicate the presence of temporal cue
words, i.e. words that appear often in AM-TMP phrases
in training.
For each TreeBank syntactic label we added a feature to
indicate the number of such labels included in the
candidate phrase.
The sequence of syntactic labels of the constituent
immediate children.

Table 2: Argument structure features

The phrase label, head word and POS tag of the
constituent parent, left sibling, and right sibling.

Table 3: Argument context features

from the argument context, (c) features that describe
properties of the target predicate, (d) features gener-
ated from the predicate context, and (e) features that
model the distance between the predicate and the ar-
gument. These five feature sets are listed in Tables 2,
3, 4, 5, and 6.

2.3 Classifier

The classifiers used in this paper were devel-
oped using AdaBoost with confidence rated predic-
tions (Schapire and Singer, 1999). AdaBoost com-
bines many simple base classifiers or rules (in our
case decision trees of depth 3) into a single strong
classifier using a weighted-voted scheme. Each base
classifier is learned sequentially from weighted ex-
amples and the weights are dynamically adjusted ev-
ery learning iteration based on the behavior of the

222

The predicate word and lemma.
The predicate voice. We currently distinguish five voice
types: active, passive, copulative, infinitive, and progressive.
A binary feature to indicate if the predicate is frequent - i.e.
it appears more than twice in the training partition - or not.

Table 4: Predicate structure features

Sub-categorization rule, i.e. the phrase structure rule that
expands the predicate immediate parent, e.g.
NP→ VBG NN NNS for the predicate in Figure 1 (b).

Table 5: Predicate context features

The path in the syntactic tree between the argument phrase
and the predicate as a chain of syntactic labels along with
the traversal direction (up or down).
The length of the above syntactic path.
The number of clauses (S* phrases) in the path.
The number of verb phrases (VP) in the path.
The subsumption count, i.e. the difference between the
depths in the syntactic tree of the argument and predicate
constituents. This value is 0 if the two phrases share the
same parent.
The governing category, which indicates if NP
arguments are dominated by a sentence (typical for
subjects) or a verb phrase (typical for objects).
We generalize syntactic paths with more than 3
elements using two templates:
(a) Arg ↑ Ancestor ↓ Ni ↓ Pred, where Arg is the
argument label, Pred is the predicate label, Ancestor
is the label of the common ancestor, and Ni is instantiated
with all the labels between Pred and Ancestor in
the full path; and
(b) Arg ↑ Ni ↑ Ancestor ↓ Pred, where Ni is
instantiated with all the labels between Arg and
Ancestor in the full path.
The surface distance between the predicate and the
argument phrases encoded as: the number of tokens, verb
terminals (VB*), commas, and coordinations (CC) between
the argument and predicate phrases, and a binary feature to
indicate if the two constituents are adjacent.
A binary feature to indicate if the argument starts with a
predicate particle, i.e. a token seen with the RP* POS
tag and directly attached to the predicate in training.

Table 6: Predicate-argument distance features

previously learned rules.
We trained one-vs-all classifiers for the top 24

most common arguments in training (including
R-A* and C-A*). For simplicity we do not la-
bel predicates. Following the strategy proposed
by (Carreras et al., 2004) we select training exam-
ples (both positive and negative) only from: (a) the
first S* phrase that includes the predicate, or (b)
from phrases that appear to the left of the predicate
in the sentence. More than 98% of the arguments
fall into one of these classes.

At prediction time the classifiers are combined us-

ing a simple greedy technique that iteratively assigns
to each predicate the argument classified with the
highest confidence. For each predicate we consider
as candidates all AM attributes, but only numbered
attributes indicated in the corresponding PropBank
frame.

2.4 Argument Expansion Heuristics

We address arguments that should map to more
than one terminal phrase with the following post-
processing heuristic: if an argument is mapped to
one terminal phrase, its boundaries are extended
to the right to include all terminal phrases that are
not already labeled as other arguments for the same
predicate. For example, after the system tags “con-
sumer” as the beginning of an A1 argument in Fig-
ure 1, this heuristic extends the right boundary of
the A1 argument to include the following terminal,
“prices”.

To handle inconsistencies in the treatment of
quotes in parsing we added a second heuristic: argu-
ments are expanded to include preceding/following
quotes if the corresponding pairing quote is already
included in the argument constituent.

3 Evaluation

3.1 Data

We trained our system using positive examples ex-
tracted from all training data available. Due to mem-
ory limitations on our development machines we
used only the first 500,000 negative examples. In the
experiments reported in this paper we used the syn-
tactic trees generated by the Charniak parser. The
results were evaluated for precision, recall, and F1

using the scoring script provided by the task orga-
nizers.

3.2 Results and Discussion

Table 7 presents the results obtained by our system.
On the WSJ data, our results surpass with almost 6%
the results obtained by the best SRL system that used
partial syntax in the CoNLL 2004 shared task eval-
uation (Hacioglu et al., 2004). Even though these
numbers are not directly comparable (this year’s
shared task offers more training data), we consider
these results encouraging given the simplicity of
our system (we essentially model only one-to-one

223

Precision Recall Fβ=1

Development 79.14% 71.57% 75.17
Test WSJ 80.32% 72.95% 76.46
Test Brown 72.41% 59.67% 65.42
Test WSJ+Brown 79.35% 71.17% 75.04

Test WSJ Precision Recall Fβ=1

Overall 80.32% 72.95% 76.46
A0 87.09% 85.21% 86.14
A1 79.80% 72.23% 75.83
A2 74.74% 58.38% 65.55
A3 83.04% 53.76% 65.26
A4 77.42% 70.59% 73.85
A5 0.00% 0.00% 0.00
AM-ADV 57.82% 46.05% 51.27
AM-CAU 49.38% 54.79% 51.95
AM-DIR 62.96% 40.00% 48.92
AM-DIS 72.19% 76.25% 74.16
AM-EXT 60.87% 43.75% 50.91
AM-LOC 64.19% 52.34% 57.66
AM-MNR 63.90% 44.77% 52.65
AM-MOD 98.09% 93.28% 95.63
AM-NEG 96.15% 97.83% 96.98
AM-PNC 55.22% 32.17% 40.66
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 79.17% 73.41% 76.18
R-A0 84.85% 87.50% 86.15
R-A1 75.00% 71.15% 73.03
R-A2 60.00% 37.50% 46.15
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 68.00% 80.95% 73.91
R-AM-MNR 30.00% 50.00% 37.50
R-AM-TMP 60.81% 86.54% 71.43
V 0.00% 0.00% 0.00

Table 7: Overall results (top) and detailed results on
the WSJ test (bottom).

mappings between semantic arguments and syntac-
tic constituents). Only 0.14% out of the 75.17% F
measure obtained on the development partition are
attributed to the argument expansion heuristics in-
troduced in Section 2.4.

4 Conclusions

This paper describes a semantic role labeling sys-
tem constructed on top of the complete syntactic
analysis of text. We model semantic arguments that
map into exactly one syntactic phrase (about 90%
of all semantic arguments in the development set)
using a rich set of lexical, syntactic, and semantic
attributes. We trained AdaBoost one-versus-all clas-

sifiers for the 24 most common argument types. Ar-
guments that map to more than one syntactic con-
stituent are expanded with a simple heuristic in a
post-processing step.

Our results surpass with almost 6% the results ob-
tained by best SRL system that used partial syntax in
the CoNLL 2004 shared task evaluation. Although
the two evaluations are not directly comparable due
to differences in training set size, the current results
are encouraging given the simplicity of our proposed
system.

5 Acknowledgements

This research has been partially funded by the Euro-
pean Union project “Computers in the Human Inter-
action Loop” (CHIL - IP506909). Mihai Surdeanu is
a research fellow within the Ramón y Cajal program
of the Spanish Ministry of Education and Science.

We would also like to thank Lluı́s Màrquez and
Xavi Carreras for the help with the AdaBoost classi-
fier, for providing the set of temporal cue words, and
for the many motivating discussions.

References
X. Carreras and L. Màrquez. 2004. Introduction to the CoNLL-

2004 shared task: Semantic role labeling. In Proceedings of
CoNLL 2004 Shared Task.

X. Carreras, L. Màrquez, and G. Chrupała. 2004. Hierarchical
recognition of propositional arguments with perceptrons. In
Proceedings of CoNLL 2004 Shared Task.

M. Collins. 1999. Head-Driven Statistical Models for Natural
Language Parsing. PhD Dissertation, University of Penn-
sylvania.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics, 28(3).

K. Hacioglu, S. Pradhan, W. Ward, J. H. Martin, and D. Ju-
rafsky. 2004. Semantic role labeling by tagging syntactic
chunks. In Proceedings of CoNLL 2004 Shared Task.

S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin,
and D. Jurafsky. 2005. Support vector learning for semantic
argument classification. To appear in Journal of Machine
Learning.

R. E. Schapire and Y. Singer. 1999. Improved boosting algo-
rithms using confidence-rated predictions. Machine Learn-
ing, 37(3).

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. 2003.
Using predicate-argument structures for information extrac-
tion. In Proceedings of ACL 2003.

224

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 225–228, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Joint Parsing and Semantic Role Labeling

Charles Sutton and Andrew McCallum
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

{casutton,mccallum }@cs.umass.edu

Abstract

A striking feature of human syntactic pro-
cessing is that it iscontext-dependent, that
is, it seems to take into account seman-
tic information from the discourse con-
text and world knowledge. In this paper,
we attempt to use this insight to bridge
the gap between SRL results from gold
parses and from automatically-generated
parses. To do this, we jointly perform
parsing and semantic role labeling, using
a probabilistic SRL system to rerank the
results of a probabilistic parser. Our cur-
rent results are negative, because a locally-
trained SRL model can return inaccurate
probability estimates.

1 Introduction

Although much effort has gone into developing
statistical parsing models and they have improved
steadily over the years, in many applications that
use parse trees errors made by the parser are a ma-
jor source of errors in the final output. A promising
approach to this problem is to perform both pars-
ing and the higher-level task in a single,joint prob-
abilistic model. This not only allows uncertainty
about the parser output to be carried upward, such
as through ank-best list, but also allows informa-
tion from higher-level processing to improve pars-
ing. For example, Miller et al. (2000) showed that
performing parsing and information extraction in a
joint model improves performance on both tasks. In
particular, one suspects that attachment decisions,
which are both notoriously hard and extremely im-
portant for semantic analysis, could benefit greatly
from input from higher-level semantic analysis.

The recent interest in semantic role labeling pro-
vides an opportunity to explore how higher-level se-
mantic information can inform syntactic parsing. In

previous work, it has been shown that SRL systems
that use full parse information perform better than
those that use shallow parse information, but that
machine-generated parses still perform much worse
than human-corrected gold parses.

The goal of this investigation is to narrow the gap
between SRL results from gold parses and from au-
tomatic parses. We aim to do this by jointly perform-
ing parsing and semantic role labeling in a single
probabilistic model. In both parsing and SRL, state-
of-the-art systems are probabilistic; therefore, their
predictions can be combined in a principled way by
multiplying probabilities. In this paper, we rerank
thek-best parse trees from a probabilistic parser us-
ing an SRL system. We compare two reranking ap-
proaches, one that linearly weights the log proba-
bilities, and the other that learns a reranker over
parse trees and SRL frames in the manner of Collins
(2000).

Currently, neither method performs better than
simply selecting the top predicted parse tree. We
discuss some of the reasons for this; one reason be-
ing that the ranking over parse trees induced by the
semantic role labeling score is unreliable, because
the model is trained locally.

2 Base SRL System

Our approach to joint parsing and SRL begins with
a base SRL system, which uses a standard architec-
ture from the literature. Our base SRL system is a
cascade of maximum-entropy classifiers which se-
lect the semantic argument label for each constituent
of a full parse tree. As in other systems, we use
three stages: pruning, identification, and classifica-
tion. First, inpruning, we use a deterministic pre-
processing procedure introduced by Xue and Palmer
(2004) to prune many constituents which are almost
certainly not arguments. Second, inidentification,
a binary MaxEnt classifier is used to prune remain-
ing constituents which are predicted to be null with

225

Base features[GJ02]
Path to predicate
Constituent type
Head word
Position
Predicate
Head POS [SHWA03]
All conjunctions of above

Table 1: Features used in base identification classi-
fier.

high probability. Finally, inclassification, a multi-
class MaxEnt classifier is used to predict the argu-
ment type of the remaining constituents. This clas-
sifer also has the option to output NULL .

It can happen that the returned semantic argu-
ments overlap, because the local classifiers take no
global constraints into account. This is undesirable,
because no overlaps occur in the gold semantic an-
notations. We resolve overlaps using a simple recur-
sive algorithm. For each parent node that overlaps
with one of its descendents, we check which pre-
dicted probability is greater: that the parent has its
locally-predicted argument label and all its descen-
dants are null, or that the descendants have their op-
timal labeling, and the parent is null. This algorithm
returns the non-overlapping assignment with glob-
ally highest confidence. Overlaps are uncommon,
however; they occurred only 68 times on the 1346
sentences in the development set.

We train the classifiers on PropBank sections 02–
21. If a true semantic argument fails to match
any bracketing in the parse tree, then it is ignored.
Both the identification and classification models are
trained using gold parse trees. All of our features are
standard features for this task that have been used
in previous work, and are listed in Tables 1 and 2.
We use the maximum-entropy implementation in the
Mallet toolkit (McCallum, 2002) with a Gaussian
prior on parameters.

3 Reranking Parse Trees Using SRL
Information

Here we give the general framework for the rerank-
ing methods that we present in the next section. We
write a joint probability model over semantic frames
F and parse treest given a sentencex as

p(F, t|x) = p(F |t,x)p(t|x), (1)

where p(t|x) is given by a standard probabilistic
parsing model, andp(F |t,x) is given by the base-
line SRL model described previously.

Base features[GJ02]
Head word
Constituent type
Position
Predicate
Voice
Head POS [SHWA03]
From [PWHMJ04]
Parent Head POS
First word / POS
Last word / POS
Sibling constituent type / head word / head POS
Conjunctions[XP03]
Voice & Position
Predicate & Head word
Predicate & Constituent type

Table 2: Features used in baseline labeling classifier.

Parse Trees Used SRL F1
Gold 77.1
1-best 63.9
Reranked by gold parse F1 68.1
Reranked by gold frame F1 74.2
Simple SRL combination(α = 0.5) 56.9
Chosen using trained reranker 63.6

Table 3: Comparison of Overall SRL F1 on devel-
opment set by the type of parse trees used.

In this paper, we choose(F ∗, t∗) to approximately
maximize the probabilityp(F, t|x) using a reranking
approach. To do the reranking, we generate a list of
k-best parse trees for a sentence, and for each pre-
dicted tree, we predict the best frame using the base
SRL model. This results in a list{(F i, ti)} of parse
tree / SRL frame pairs, from which the reranker
chooses. Thus, our different reranking methods vary
only in which parse tree is selected; given a parse
tree, the frame is always chosen using the best pre-
diction from the base model.

The k-best list of parses is generated using Dan
Bikel’s (2004) implementation of Michael Collins’
parsing model. The parser is trained on sections 2–
21 of the WSJ Treebank, which does not overlap
with the development or test sets. Thek-best list is
generated in Bikel’s implementation by essentially
turning off dynamic programming and doing very
aggressive beam search. We gather a maximum of
500 best parses, but the limit is not usually reached
using feasible beam widths. The mean number of
parses per sentence is 176.

4 Results and Discussion

In this section we present results on several rerank-
ing methods for joint parsing and semantic role la-

226

beling. Table 3 compares F1 on the development set
of our different reranking methods. The first four
rows in Table 3 are baseline systems. We present
baselines using gold trees (row 1 in Table 3) and
predicted trees (row 2). As shown in previous work,
gold trees perform much better than predicted trees.

We also report two cheating baselines to explore
the maximum possible performance of a reranking
system. First, we report SRL performance of ceil-
ing parse trees (row 3), i.e., if the parse tree from the
k-best list is chosen to be closest to the gold tree.
This is the best expected performance of a parse
reranking approach that maximizes parse F1. Sec-
ond, we report SRL performance where the parse
tree is selected to maximize SRL F1, computing
using the gold frame (row 4). There is a signifi-
cant gap both between parse-F1-reranked trees and
SRL-F1-reranked trees, which shows promise for
joint reranking. However, the gap between SRL-
F1-reranked trees and gold parse trees indicates that
reranking of parse lists cannot by itself completely
close the gap in SRL performance between gold and
predicted parse trees.

4.1 Reranking based on score combination

Equation 1 suggests a straightforward method for
reranking: simply pick the parse tree from thek-best
list that maximizesp(F, t|x), in other words, add the
log probabilities from the parser and the base SRL
system. More generally, we consider weighting the
individual probabilities as

s(F, t) = p(F |t,x)1−αp(t|x)α. (2)

Such a weighted combination is often used in the
speech community to combine acoustic and lan-
guage models.

This reranking method performs poorly, however.
No choice ofα performs better thanα = 1, i.e.,
choosing the 1-best predicted parse tree. Indeed, the
more weight given to the SRL score, the worse the
combined system performs. The problem is that of-
ten a bad parse tree has many nodes which are obvi-
ously not constituents: thusp(F |t,x) for such a bad
tree is very high, and therefore not reliable. As more
weight is given to the SRL score, the unlabeled re-
call drops, from 55% whenα = 0 to 71% when
α = 1. Most of the decrease in F1 is due to the drop
in unlabeled recall.

4.2 Training a reranker using global features

One potential solution to this problem is to add
features of the entire frame, for example, to vote

against predicted frames that are missing key argu-
ments. But such features depend globally on the en-
tire frame, and cannot be represented by local clas-
sifiers. One way to train these global features is to
learn a linear classifier that selects a parse / frame
pair from the ranked list, in the manner of Collins
(2000). Reranking has previously been applied to
semantic role labeling by Toutanova et al. (2005),
from which we use several features. The difference
between this paper and Toutanova et al. is that in-
stead of rerankingk-best SRL frames of a single
parse tree, we are reranking 1-best SRL frames from
thek-best parse trees.

Because of the the computational expense of
training onk-best parse tree lists for each of 30,000
sentences, we train the reranker only on sections 15–
18 of the Treebank (the same subset used in previ-
ous CoNLL competitions). We train the reranker
using LogLoss, rather than the boosting loss used
by Collins. We also restrict the reranker to consider
only the top 25 parse trees.

This globally-trained reranker uses all of the fea-
tures from the local model, and the following global
features: (a)sequence features, i.e., the linear se-
quence of argument labels in the sentence (e.g.
A0_V_A1), (b) the log probability of the parse tree,
(c) has-argfeatures, that is, for each argument type
a binary feature indicating whether it appears in the
frame, (d) the conjunction of the predicate and has-
arg feature, and (e) the number of nodes in the tree
classified as each argument type.

The results of this system on the development set
are given in Table 3 (row 6). Although this performs
better than the score combination method, it is still
no better than simply taking the 1-best parse tree.
This may be due to the limited training set we used
in the reranking model. A base SRL model trained
only on sections 15–18 has 61.26 F1, so in com-
parison, reranking provides a modest improvement.
This system is the one that we submitted as our offi-
cial submission. The results on the test sets are given
in Table 4.

5 Summing over parse trees

In this section, we sketch a different approach to
joint SRL and parsing that does not use rerank-
ing at all. Maximizing over parse trees can mean
that poor parse trees can be selected if their se-
mantic labeling has an erroneously high score. But
we are not actually interested in selecting a good
parse tree; all we want is a good semantic frame.
This means that we should select the semantic frame

227

Precision Recall Fβ=1

Development 64.43% 63.11% 63.76
Test WSJ 68.57% 64.99% 66.73
Test Brown 62.91% 54.85% 58.60
Test WSJ+Brown 67.86% 63.63% 65.68

Test WSJ Precision Recall Fβ=1

Overall 68.57% 64.99% 66.73
A0 69.47% 74.35% 71.83
A1 66.90% 64.91% 65.89
A2 64.42% 61.17% 62.75
A3 62.14% 50.29% 55.59
A4 72.73% 70.59% 71.64
A5 50.00% 20.00% 28.57
AM-ADV 55.90% 49.60% 52.57
AM-CAU 76.60% 49.32% 60.00
AM-DIR 57.89% 38.82% 46.48
AM-DIS 79.73% 73.75% 76.62
AM-EXT 66.67% 43.75% 52.83
AM-LOC 50.26% 53.17% 51.67
AM-MNR 54.32% 51.16% 52.69
AM-MOD 98.50% 95.46% 96.96
AM-NEG 98.20% 94.78% 96.46
AM-PNC 46.08% 40.87% 43.32
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 72.15% 67.43% 69.71
R-A0 0.00% 0.00% 0.00
R-A1 0.00% 0.00% 0.00
R-A2 0.00% 0.00% 0.00
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-TMP 0.00% 0.00% 0.00
V 99.21% 86.24% 92.27

Table 4: Overall results (top) and detailed results on
the WSJ test (bottom).

that maximizes the posterior probability:p(F |x) =∑
t p(F |t,x)p(t|x). That is, we should besum-

mingover the parse trees instead of maximizing over
them. The practical advantage of this approach is
that even if one seemingly-good parse tree does not
have a constituent for a semantic argument, many
other parse trees in thek-best list might, and all
are considered when computingF ∗. Also, no sin-
gle parse tree need have constituents for all ofF ∗;
because it sums over all parse trees, it can mix and
match constituents between different trees. The op-
timal frameF ∗ can be computed by anO(N3) pars-
ing algorithm if appropriate independence assump-
tions are made onp(F |x). This requires designing
an SRL model that is independent of the bracketing
derived from any particular parse tree. Initial experi-
ments performed poorly because the marginal model
p(F |x) was inadequate. Detailed exploration is left
for future work.

6 Conclusion and Related Work

In this paper, we have considered several methods
for reranking parse trees using information from se-
mantic role labeling. So far, we have not been
able to show improvement over selecting the 1-best
parse tree. Gildea and Jurafsky (Gildea and Jurafsky,
2002) also report results on reranking parses using
an SRL system, with negative results. In this paper,
we confirm these results with a MaxEnt-trained SRL
model, and we extend them to show that weighting
the probabilities does not help either.

Our results with Collins-style reranking are too
preliminary to draw definite conclusions, but the po-
tential improvement does not appear to be great. In
future work, we will explore the max-sum approach,
which has promise to avoid the pitfalls of max-max
reranking approaches.

Acknowledgements
This work was supported in part by the Center for Intelligent
Information Retrieval, in part by National Science Foundation
under NSF grants #IIS-0326249 ond #IIS-0427594, and in part
by the Defense Advanced Research Projec ts Agency (DARPA),
through the Department of the Interior, NBC, Acquisition Ser-
vices Division, under contract number NBCHD030010. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not necessarily
reflect those of the sponsor.

References
Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model.

Computational Linguistics.

Michael Collins. 2000. Discriminative reranking for natu-
ral language parsing. InProc. 17th International Conf. on
Machine Learning, pages 175–182. Morgan Kaufmann, San
Francisco, CA.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of
semantic roles.Computational Linguistics, 28(3):245–288.

Andrew Kachites McCallum. 2002. Mallet: A machine learn-
ing for language toolkit.http://mallet.cs.umass.
edu .

Scott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.
Weischedel. 2000. A novel use of statistical parsing to ex-
tract information from text. InANLP 2000, pages 226–233.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul
Aarseth. 2003. Using predicate-argument structures for in-
formation extraction. InACL-2003.

Kristina Toutanova, Aria Haghighi, and Christopher D. Man-
ning. 2005. Joint learning improves semantic role labeling.
In ACL 2005.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. InProceedings of 2004 Confer-
ence on Empirical Methods in Natural Language Process-
ing.

228

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 229–232, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Applying spelling error correction techniques
for improving semantic role labelling

Erik Tjong Kim Sang
Informatics Institute

University of Amsterdam, Kruislaan 403
NL-1098 SJ Amsterdam, The Netherlands

erikt@science.uva.nl

Sander Canisius, Antal van den Bosch, Toine Bogers
ILK / Computational Linguistics and AI

Tilburg University, P.O. Box 90153,
NL-5000 LE Tilburg, The Netherlands

{S.V.M.Canisius,Antal.vdnBosch,
A.M.Bogers}@uvt.nl

1 Introduction

This paper describes our approach to the CoNLL-
2005 shared task: semantic role labelling. We do
many of the obvious things that can be found in the
other submissions as well. We use syntactic trees
for deriving instances, partly at the constituent level
and partly at the word level. On both levels we edit
the data down to only the predicted positive cases
of verb-constituent or verb-word pairs exhibiting a
verb-argument relation, and we train two next-level
classifiers that assign the appropriate labels to the
positively classified cases. Each classifier is trained
on data in which the features have been selected to
optimize generalization performance on the particu-
lar task. We apply different machine learning algo-
rithms and combine their predictions.

As a novel addition, we designed an automatically
trained post-processing module that attempts to cor-
rect some of the errors made by the base system.
To this purpose we borrowed Levenshtein-distance-
based correction, a method from spelling error cor-
rection to repair mistakes in sequences of labels. We
adapted the method to our needs and applied it for
improving semantic role labelling output. This pa-
per presents the results of our approach.

2 Data and features

The CoNLL-2005 shared task data sets provide sen-
tences in which predicate–argument relations have
been annotated, as well as a number of extra anno-
tations like named entities and full syntactic parses
(Carreras and M̀arquez, 2005). We have used the
parses for generating machine learning instances for
pairs of predicates and syntactic phrases. In princi-
ple each phrase can have a relation with each verb
in the same sentence. However, in order to keep

the number of instances at a reasonable number, we
have only built instances for verb–phrase pairs when
the phrase parent is an ancestor of the verb (400,128
training instances). A reasonable number of ar-
guments are individual words; these do not match
with phrase boundaries. In order to be able to label
these, we have also generated instances for all pairs
of verbs and individual words using the same con-
straint (another 542,217 instances). The parent node
constraint makes certain that embedded arguments,
which do not occur in these data sets, cannot be pre-
dicted by our approach.

Instances which are associated with verb–
argument pairs receive the label of the argument as
class while others in principle receive a NULL class.
In an estimated 10% of the cases, the phrase bound-
aries assigned by the parser are different from those
in the argument annotation. In case of a mismatch,
we have always used the argument label of the first
word of a phrase as the class of the corresponding
instance. By doing this we attempt to keep the posi-
tional information of the lost argument in the train-
ing data. Both the parser phrase boundary errors as
well as the parent node constraint restrict the num-
ber of phrases we can identify. The maximum recall
score attainable with our phrases is 84.64% for the
development data set.

We have experimentally evaluated 30 features
based on the previous work in semantic role la-
belling (Gildea and Jurafsky, 2002; Pradhan et al.,
2004; Xue and Palmer, 2004):

• Lexical features (5): predicate (verb), first
phrase word, last phrase word and words im-
mediately before and after the phrase.

• Syntactic features (14): part-of-speech tags
(POS) of: first phrase word, last phrase word,

229

word immediately before phrase and word im-
mediately after phrase; syntactic paths from
word to verb: all paths, only paths for words
before verb and only paths for words after verb;
phrase label, label of phrase parent, subcate-
gorisation of verb parent, predicate frame from
PropBank, voice, head preposition for preposi-
tional phrases and same parents flag.

• Semantic features (2): named entity tag for
first phrase word and last phrase word.

• Positional features (3): position of the phrase
with respect to the verb: left/right, distance in
words and distance in parent nodes.

• Combination features (6): predicate + phrase
label, predicate + first phrase word, predicate
+ last phrase word, predicate + first phrase
POS, predicate + last phrase POS and voice +
left/right.

The output of two parsers was available. We have
briefly experimented with the Collins parses includ-
ing the available punctuation corrections but found
that our approach reached a better performance with
the Charniak parses. We report only on the results
obtained with the Charniak parses.

3 Approach

This section gives a brief overview of the three main
components of our approach: machine learning, au-
tomatic feature selection and post-processing by a
novel procedure designed to clean up the classifier
output by correcting obvious misclassifications.

3.1 Machine learning

The core machine learning technique employed, is
memory-based learning, a supervised inductive al-
gorithm for learning classification tasks based on the
k-nn algorithm. We use the TiMBL system (Daele-
mans et al., 2003), version 5.0.0, patch-2 with uni-
form feature weighting and random tiebreaking (op-
tions: -w 0 -R 911). We have also evaluated two al-
ternative learning techniques. First, Maximum En-
tropy Models, for which we employed Zhang Le’s
Maximum Entropy Toolkit, version 20041229 with
default parameters. Second, Support Vector Ma-
chines for which we used Taku Kudo’s YamCha
(Kudo and Matsumoto, 2003), with one-versus-all
voting and option -V which enabled us to ignore pre-
dicted classes with negative distances.

3.2 Feature selection

In previous research, we have found that memory-
based learning is rather sensitive to the chosen fea-
tures. In particular, irrelevant or redundant fea-
tures may lead to reduced performance. In order
to minimise the effects of this sensitivity, we have
employed bi-directional hill-climbing (Caruana and
Freitag, 1994) for finding the features that were most
suited for this task. This process starts with an empty
feature set, examines the effect of adding or remov-
ing one feature and then starts a new iteration with
the set associated with the best performance.

3.3 Automatic post-processing

Certain misclassifications by the semantic role-
labelling system described so far lead to unlikely and
impossible relation assignments, such as assigning
two indirect objects to a verb where only one is pos-
sible. Our proposed classifier has no mechanism to
detect these errors. One solution is to devise a post-
processing step that transforms the resulting role as-
signments until they meet certain basic constraints,
such as the rule that each verb may have only sin-
gle instances of the different roles assigned in one
sentence (Van den Bosch et al., 2004).

We propose an alternative automatically-trained
post-processing method which corrects unlikely role
assignments either by deleting them or by replacing
them with a more likely one. We do not do this by
knowledge-based constraint satisfaction, but rather
by adopting a method for error correction based on
Levenshtein distance (Levenshtein, 1965), or edit
distance, as used commonly in spelling error correc-
tion. Levenshtein distance is a dynamically com-
puted distance between two strings, accounting for
the number of deletions, insertions, and substitu-
tions needed to transform the one string into the
other. Levenshtein-based error correction typically
matches a new, possibly incorrect, string to a trusted
lexicon of assumedly correct strings, finds the lex-
icon string with the smallest Levenshtein distance
to the new string, and replaces the new string with
the lexicon string as its likely correction. We imple-
mented a roughly similar procedure. First, we gener-
ated a lexicon of semantic role labelling patterns of
A0–A5 arguments of verbs on the basis of the entire
training corpus and the PropBank verb frames. This

230

lexicon contains entries such asabandon A0 V A1,
andcategorize A1 V A2 – a total of 43,033 variable-
length role labelling patterns.

Next, given a new test sentence, we consider all
of its verbs and their respective predicted role la-
bellings, and compare each with the lexicon, search-
ing the role labelling pattern with the same verb at
the smallest Levenshtein distance (in case of an un-
known verb we search in the entire lexicon). For
example, in a test sentence the patternemphasize A0
V A1 A0 is predicted. One closest lexicon item is
found at Levenshtein distance 1, namelyemphasize
A0 V A1, representing a deletion of the finalA0. We
then use the nearest-neighbour pattern in the lexicon
to correct the likely error, and apply all deletions
and substitutions needed to correct the current pat-
tern according to the nearest-neighbour pattern from
the trusted lexicon. We do not apply insertions, since
the post-processor module does not have the infor-
mation to decide which constituent or word would
receive the inserted label. In case of multiple possi-
ble deletions (e.g. in deleting one out of twoA1s in
emphasize A0 V A1 A1), we always delete the argu-
ment furthest from the verb.

4 Results

In order to perform the optimisation of the seman-
tic role labelling process in a reasonable amount of
time, we have divided it in four separate tasks: prun-
ing the data for individual words and the data for
phrases, and labelling of these two data sets. Prun-
ing amounts to deciding which instances correspond
with verb-argument pairs and which do not. This
resulted in a considerable reduction of the two data
sets: 47% for the phrase data and 80% for the word
data. The remaining instances are assumed to de-
fine verb-argument pairs and the labelling tasks as-
sign labels to them. We have performed a sepa-
rate feature selection process in combination with
the memory-based learner for each of the four tasks.
First we selected the best feature set based on task
accuracy. As soon as a working module for each of
the tasks was available, we performed an extra fea-
ture selection process for each of the modules, opti-
mising overall system Fβ=1 while keeping the other
three modules fixed.

The effect of the features on the overall perfor-

Words Phrases
Features prune label prune label
predicate -0.04 +0.05 -0.25 -0.52
first word +0.38 +0.16 -0.17 +1.14
last word – – -0.01 +1.12
previous word -0.06 +0.02 -0.05 +0.74
next word -0.04 -0.08 +0.44 -0.16
part-of-speech first word -0.01 -0.02 -0.07 -0.11
part-of-speech last word – – -0.14 -0.45
previous part-of-speech -0.12 -0.06 +0.22 -1.14
next part-of-speech -0.08 -0.12 -0.01 -0.21
all paths +0.42 +0.10 +0.84 +0.75
path before verb +0.00 -0.02 +0.00 +0.27
path after verb -0.01 -0.01 -0.01 -0.06
phrase label -0.01 -0.02 +0.13 -0.02
parent label +0.03 -0.02 -0.03 +0.00
voice +0.02 -0.04 -0.04 +1.85
subcategorisation -0.01 +0.00 -0.02 +0.03
PropBank frame -0.12 -0.03 -0.16 +1.04
PP head +0.00 +0.00 -0.06 +0.08
same parents -0.02 -0.01 +0.03 -0.05
named entity first word +0.00 +0.00 +0.05 -0.11
named entity last word – – -0.04 -0.12
absolute position +0.00 +0.00 +0.00 -0.02
distance in words +0.34 +0.04 +0.16 -0.96
distance in parents -0.02 -0.02 +0.06 -0.04
predicate + label -0.05 -0.07 -0.22 -0.47
predicate + first word -0.05 +0.00 +0.13 +0.97
predicate + last word – – -0.03 +0.08
predicate + first POS -0.05 -0.06 -0.20 -0.50
predicate + last POS – – -0.13 -0.40
voice + position +0.02 -0.04 -0.05 -0.04

Table 1: Effect of adding a feature to the best feature
sets when memory-based learning is applied to the
development set (overall Fβ=1). The process con-
sisted of four tasks: pruning data sets for individual
words and phrases, and labelling these two data sets.
Selected features are shown inbold. Unfortunately,
we have not been able to use all promising features.

mance can be found in Table 1. One feature (syntac-
tic path) was selected in all four tasks but in general
different features were required for optimal perfor-
mance in the four tasks. Changing the feature set
had the largest effect when labelling the phrase data.
We have applied the two other learners, Maximum
Entropy Models and Support Vector Machines to the
two labelling tasks, while using the same features as
the memory-based learner. The performance of the
three systems on the development data can be found
in Table 3. Since the systems performed differently
we have also evaluated the performance of a com-
bined system which always chose the majority class
assigned to an instance and the class of the strongest
system (SVM) in case of a three-way tie. The com-
bined system performed slightly better than the best

231

Precision Recall Fβ=1

Development 76.79% 70.01% 73.24
Test WSJ 79.03% 72.03% 75.37
Test Brown 70.45% 60.13% 64.88
Test WSJ+Brown 77.94% 70.44% 74.00

Test WSJ Precision Recall Fβ=1

Overall 79.03% 72.03% 75.37
A0 85.65% 81.73% 83.64
A1 76.97% 71.89% 74.34
A2 71.07% 58.20% 63.99
A3 69.29% 50.87% 58.67
A4 75.56% 66.67% 70.83
A5 100.00% 40.00% 57.14
AM-ADV 64.36% 51.38% 57.14
AM-CAU 75.56% 46.58% 57.63
AM-DIR 48.98% 28.24% 35.82
AM-DIS 81.88% 79.06% 80.45
AM-EXT 87.50% 43.75% 58.33
AM-LOC 62.50% 50.96% 56.15
AM-MNR 64.52% 52.33% 57.78
AM-MOD 96.76% 97.64% 97.20
AM-NEG 97.38% 96.96% 97.17
AM-PNC 45.98% 34.78% 39.60
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 80.52% 70.75% 75.32
R-A0 81.47% 84.38% 82.89
R-A1 74.00% 71.15% 72.55
R-A2 60.00% 37.50% 46.15
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 100.00% 100.00% 100.00
R-AM-LOC 86.67% 61.90% 72.22
R-AM-MNR 33.33% 33.33% 33.33
R-AM-TMP 64.41% 73.08% 68.47
V 97.36% 97.36% 97.36

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

individual system.

5 Conclusion

We have presented a machine learning approach to
semantic role labelling based on full parses. We
have split the process in four separate tasks: prun-
ing the data bases of word-based and phrase-based
examples down to only the positive verb-argument
cases, and labelling the two positively classified data
sets. A novel automatic post-processing procedure
based on spelling correction, comparing to a trusted
lexicon of verb-argument patterns from the training
material, was able to achieve a performance increase
by correcting unlikely role assignments.

Learning algorithm Precision Recall Fβ=1

without post-processing:
Maximum Entropy Models 70.78% 70.03% 70.40
Memory-Based Learning 70.70% 69.85% 70.27
Support Vector Machines 75.07% 69.15% 71.98
including post-processing:
Maximum Entropy Models 74.06% 69.84% 71.89
Memory-Based Learning 73.84% 69.88% 71.80
Support Vector Machines 77.75% 69.11% 73.17
Combination 76.79% 70.01% 73.24

Table 3: Effect of the choice of machine learning
algorithm, the application of Levenshtein-distance-
based post-processing and the use of system combi-
nation on the performance obtained for the develop-
ment data set.

Acknowledgements

This research was funded by NWO, the Netherlands
Organisation for Scientific Research, and by Senter-
Novem IOP-MMI.

References
X. Carreras and L. M̀arquez. 2005. Introduction to the CoNLL-

2005 Shared Task: Semantic Role Labeling. InProceedings
of CoNLL-2005. Ann Arbor, MI, USA.

R. Caruana and D. Freitag. 1994. Greedy attribute selection.
In Proceedings of the Eleventh International Conference on
Machine Learning, pages 28–36, New Brunswick, NJ, USA.
Morgan Kaufman.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. 2003. TiMBL: Tilburg memory based learner, ver-
sion 5.0, reference guide. ILK Technical Report 03-10,
Tilburg University.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles.Computational Linguistics, 28(3):245–288.

T. Kudo and Y. Matsumoto. 2003. Fast methods for kernel-
based text analysis. InProceedings of ACL-2003. Sapporo,
Japan.

V. Levenshtein. 1965. Binary codes capable of correcting
deletions, insertions and reversals.Doklady Akademii Nauk
SSSR, 163(4):845–848.

S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky.
2004. Shallow semantic parsing using support vector ma-
chines. InProceedings of the HLT/NAACL 2004. Boston,
MA.

A. van den Bosch, S. Canisius, W. Daelemans, I Hendrickx,
and E. Tjong Kim Sang. 2004. Memory-based semantic
role labeling: Optimizing features, algorithm, and output. In
Proceedings of the CoNLL-2004, Boston, MA, USA.

N. Xue and M. Palmer. 2004. Calibrating features for semantic
role labeling. InProceedings of EMNLP-2004. Barcelona,
Spain.

232

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 233–236, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Exploiting Full Parsing Information to Label Semantic Roles Using an
Ensemble of ME and SVM via Integer Linear Programming

Tzong-Han Tsai, Chia-Wei Wu, Yu-Chun Lin, Wen-Lian Hsu

Institute of Information Science
Academia Sinica

Taipei 115, Taiwan
{thtsai, cwwu, sbb, hsu}@iis.sinica.edu.tw

Abstract

In this paper, we propose a method that
exploits full parsing information by repre-
senting it as features of argument classifi-
cation models and as constraints in integer
linear learning programs. In addition, to
take advantage of SVM-based and Maxi-
mum Entropy-based argument classifica-
tion models, we incorporate their scoring
matrices, and use the combined matrix in
the above-mentioned integer linear pro-
grams. The experimental results show that
full parsing information not only in-
creases the F-score of argument classifi-
cation models by 0.7%, but also
effectively removes all labeling inconsis-
tencies, which increases the F-score by
0.64%. The ensemble of SVM and ME
also boosts the F-score by 0.77%. Our
system achieves an F-score of 76.53% in
the development set and 76.38% in Test
WSJ.

1 Introduction

The Semantic Role Labeling problem can be for-
mulated as a sentence tagging problem. A sentence
can be represented as a sequence of words, as
phrases (chunks), or as a parsing tree. The basic
units of a sentence are words, phrases, and con-
stituents in these representations, respectively..
Pradhan et al. (2004) established that Constituent-
by-Constituent (C-by-C) is better than Phrase-by-
Phrase (P-by-P), which is better than Word-by-
Word (W-by-W). This is probably because the

boundaries of the constituents coincide with the
arguments; therefore, C-by-C has the highest ar-
gument identification F-score among the three ap-
proaches.

In addition, a full parsing tree also provides
richer syntactic information than a sequence of
chunks or words. Pradhan et al. (2004) compared
the seven most common features as well as several
features related to the target constituent’s parent
and sibling constituents. Their experimental results
show that using other constituents’ information
increases the F-score by 6%. Punyakanok et al.
(2004) represent full parsing information as con-
straints in integer linear programs. Their experi-
mental results show that using such information
increases the argument classification accuracy by
1%.

In this paper, we not only add more full parsing
features to argument classification models, but also
represent full parsing information as constraints in
integer linear programs (ILP) to resolve label in-
consistencies. We also build an ensemble of two
argument classification models: Maximum Entropy
and SVM by combining their argument classifica-
tion results and applying them to the above-
mentioned ILPs.

2 System Architecture

Our SRL system is comprised of four stages: prun-
ing, argument classification, classification model
incorporation, and integer linear programming.
This section describes how we build these stages,
including the features used in training the argu-
ment classification models.

2.1 Pruning

233

When the full parsing tree of a sentence is avail-
able, only the constituents in the tree are consid-
ered as argument candidates. In CoNLL-2005, full
parsing trees are provided by two full parsers: the
Collins parser (Collins, 1999) and the Charniak
parser (Charniak, 2000). According to Punyakanok
et al. (2005), the boundary agreement of Charniak
is higher than that of Collins; therefore, we choose
the Charniak parser’s results. However, there are
two million nodes on the full parsing trees in the
training corpus, which makes the training time of
machine learning algorithms extremely long. Be-
sides, noisy information from unrelated parts of a
sentence could also affect the training of machine
learning models. Therefore, our system exploits the
heuristic rules introduced by Xue and Palmer
(2004) to filter out simple constituents that are
unlikely to be arguments. Applying pruning heuris-
tics to the output of Charniak’s parser effectively
eliminates 61% of the training data and 61.3% of
the development data, while still achieves 93% and
85.5% coverage of the correct arguments in the
training and development sets, respectively.

2.2 Argument Classification

This stage assigns the final labels to the candidates
derived in Section 2.1. A multi-class classifier is
trained to classify the types of the arguments sup-
plied by the pruning stage. In addition, to reduce
the number of excess candidates mistakenly output
by the previous stage, these candidates can be la-
beled as null (meaning “not an argument”). The
features used in this stage are as follows.

Basic Features

• Predicate – The predicate lemma.
• Path – The syntactic path through the

parsing tree from the parse constituent be-
ing classified to the predicate.

• Constituent Type
• Position – Whether the phrase is located

before or after the predicate.
• Voice – passive: if the predicate has a POS

tag VBN, and its chunk is not a VP, or it is
preceded by a form of “to be” or “to get”
within its chunk; otherwise, it is active.

• Head Word – calculated using the head
word table described by Collins (1999).

• Head POS – The POS of the Head Word.

• Sub-categorization – The phrase structure
rule that expands the predicate’s parent
node in the parsing tree.

• First and Last Word/POS
• Named Entities – LOC, ORG, PER, and

MISC.
• Level – The level in the parsing tree.

Combination Features

• Predicate Distance Combination
• Predicate Phrase Type Combination
• Head Word and Predicate Combination
• Voice Position Combination

Context Features

• Context Word/POS – The two words pre-
ceding and the two words following the
target phrase, as well as their correspond-
ing POSs.

• Context Chunk Type – The two chunks
preceding and the two chunks following
the target phrase.

Full Parsing Features

We believe that information from related constitu-
ents in the full parsing tree helps in labeling the
target constituent. Denote the target constituent by
t. The following features are the most common
baseline features of t’s parent and sibling constitu-
ents. For example, Parent/ Left Sibling/ Right Sib-
ling Path denotes t’s parents’, left sibling’s, and
right sibling’s Path features.

• Parent / Left Sibling / Right Sibling
Path

• Parent / Left Sibling / Right Sibling
Constituent Type

• Parent / Left Sibling / Right Sibling Po-
sition

• Parent / Left Sibling / Right Sibling
Head Word

• Parent / Left Sibling / Right Sibling
Head POS

• Head of PP parent – If the parent is a PP,
then the head of this PP is also used as a
feature.

Argument Classification Models

234

We use all the features of the SVM-based and ME-
based argument classification models. All SVM
classifiers are realized using SVM-Light with a
polynomial kernel of degree 2. The ME-based
model is implemented based on Zhang’s MaxEnt
toolkit1 and L-BFGS (Nocedal and Wright, 1999)
method to perform parameter estimation.

2.3 Classification Model Incorporation

We now explain how we incorporate the SVM-
based and ME-based argument classification mod-
els. After argument classification, we acquire two
scoring matrices, PME and PSVM, respectively. In-
corporation of these two models is realized by
weighted summation of PME and PSVM as follows:

P’ = wMEPME + wSVMPSVM
We use P’ for the objective coefficients of the

ILP described in Section 2.4.

2.4 Integer Linear Programming (ILP)

To represent full parsing information as features,
there are still several syntactic constraints on a
parsing tree in the SRL problem. For example, on a
path of the parsing tree, there can be only one con-
stituent annotated as a non-null argument. How-
ever, it is difficult to encode this constraint in the
argument classification models. Therefore, we ap-
ply integer linear programming to resolve inconsis-
tencies produced in the argument classification
stage.

According to Punyakanok et al. (2004), given a
set of constituents, S, and a set of semantic role
labels, A, the SRL problem can be formulated as
an ILP as follows:

Let zia be the indicator variable that represents
whether or not an argument, a, is assigned to any
Si ∈ S; and let pia = score(Si = a). The scoring ma-
trix P composed of all pia is calculated by the ar-
gument classification models. The goal of this ILP
is to find a set of assignments for all zia that maxi-
mizes the following function:

∑∑
∈ ∈S AiS a

iaia zp .

Each Si∈ S should have one of these argument
types, or no type (null). Therefore, we have

∑
∈

=
Aa

iaz 1 .

Next, we show how to transform the constraints in

1 http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html

the filter function into linear equalities or inequali-
ties, and use them in this ILP.
Constraint I: No overlapping or embedding
For arguments Sj1 , . . . , Sjk on the same path in a
full parsing tree, only one argument can be as-
signed to an argument type. Thus, at least k − 1
arguments will be null, which is represented by φ
in the following linear equality:

∑
=

−≥
k

i
j k
i

1

1z φ .

Constraint II: No duplicate argument classes
Within the same sentence, A0-A5 cannot appear
more than once. The inequality for A0 is therefore:

∑
=

≤
k

i
iz

1
A0 1.

Constraint III: R-XXX arguments
The linear inequalities that represent A0 and its
reference type R-A0 are:

∑
=

−≥∈∀
k

i
mi zzMm

1
A0RA0:},...,1{ .

Constraint IV: C-XXX arguments
The continued argument XXX has to occur before
C-XXX. The linear inequalities for A0 are:

∑
−

=
−≥∈∀

1

1
A0CA0:},...,2{

m

i
mj zzMm

i
.

Constraint V: Illegal arguments
For each verb, we look up its allowed roles. This
constraint is represented by summing all the corre-
sponding indicator variables to 0.

3 Experiment Results

3.1 Data and Evaluation Metrics

The data, which is part of the PropBank corpus,
consists of sections from the Wall Street Journal
part of the Penn Treebank. All experiments were
carried out using Section 2 to Section 21 for train-
ing, Section 24 for development, and Section 23
for testing. Unlike CoNLL-2004, part of the Brown
corpus is also included in the test set.

3.2 Results

Table 1 shows that our system makes little differ-
ence to the development set and Test WSJ. How-
ever, due to the intrinsic difference between the
WSJ and Brown corpora, our system performs bet-
ter on Test WSJ than on Test Brown.

235

Precision Recall Fβ=1

Development 81.13% 72.42% 76.53
Test WSJ 82.77% 70.90% 76.38
Test Brown 73.21% 59.49% 65.64
Test WSJ+Brown 81.55% 69.37% 74.97

Test WSJ Precision Recall Fβ=1

Overall 82.77% 70.90% 76.38
A0 88.25% 84.93% 86.56
A1 82.21% 72.21% 76.89
A2 74.68% 52.34% 61.55
A3 78.30% 47.98% 59.50
A4 84.29% 57.84% 68.60
A5 100.00% 60.00% 75.00
AM-ADV 64.19% 47.83% 54.81
AM-CAU 70.00% 38.36% 49.56
AM-DIR 38.20% 40.00% 39.08
AM-DIS 83.33% 71.88% 77.18
AM-EXT 86.67% 40.62% 55.32
AM-LOC 63.71% 41.60% 50.33
AM-MNR 63.36% 48.26% 54.79
AM-MOD 98.00% 97.64% 97.82
AM-NEG 99.53% 92.61% 95.95
AM-PNC 44.44% 17.39% 25.00
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 83.21% 61.09% 70.45
R-A0 91.08% 86.61% 88.79
R-A1 79.49% 79.49% 79.49
R-A2 87.50% 43.75% 58.33
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 25.00% 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 92.31% 57.14% 70.59
R-AM-MNR 25.00% 16.67% 20.00
R-AM-TMP 72.73% 61.54% 66.67
V 97.32% 97.32% 97.32

Table 1. Overall results (top) and detailed results
on the WSJ test (bottom).

Precision Recall Fβ=1

ME w/o parsing 77.28% 70.55% 73.76%
ME 78.19% 71.08% 74.46%
ME with ILP 79.57% 71.11% 75.10%
SVM 79.88% 72.03% 75.76%
Hybrid 81.13% 72.42% 76.53%

Table 2. Results of all configurations on the devel-
opment set.

From Table 2, we can see that the model with
full parsing features outperforms the model with-
out the features in all three performance matrices.
After applying ILP, the performance is improved
further. We also observe that SVM slightly outper-

forms ME. However, the hybrid argument classifi-
cation model achieves the best results in all three
metrics.

4 Conclusion

In this paper, we add more full parsing features to
argument classification models, and represent full
parsing information as constraints in ILPs to re-
solve labeling inconsistencies. We also integrate
two argument classification models, ME and SVM,
by combining their argument classification results
and applying them to the above-mentioned ILPs.
The results show full parsing information increases
the total F-score by 1.34%. The ensemble of SVM
and ME also boosts the F-score by 0.77%. Finally,
our system achieves an F-score of 76.53% in the
development set and 76.38% in Test WSJ.

Acknowledgement
We are indebted to Wen Shong Lin and Prof. Fu
Chang for their invaluable advice in data pruning,
which greatly speeds up the training of our ma-
chine learning models.

References
X. Carreras and L. Màrquez. 2005. Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling.
In Proceedings of the CoNLL-2005.

E. Charniak. 2000. A Maximum-Entropy-Inspired
Parser. Proceedings of the NAACL-2000.

M. J. Collins. 1999. Head-driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

J. Nocedal and S. J. Wright. 1999. Numerical Optimiza-
tion, Springer.

S. Pradhan, K. Hacioglu, V. Kruglery, W. Ward,J. H.
Martin, and D. Jurafsky. 2004. Support Vector
Learning for Semantic Argument Classification.
Journal of Machine Learning.

V. Punyakanok, D. Roth, and W. Yih. 2005. The Neces-
sity of Syntactic Parsing for Semantic Role Labeling.
In Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI-05).

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2004.
Semantic Role Labeling via Integer Linear Pro-
gramming Inference. In Proceedings of the 20th In-
ternational Conference on Computational Linguistics
(COLING-04).

N. Xue and M. Palmer. 2004. Calibrating Features for
Semantic Role Labeling. In Proceedings of the
EMNLP 2004.

236

Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 237–240, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

The Integration of SyntacticParsing and SemanticRoleLabeling

Szu-tingYi
Universityof Pennsylvania

3330WalnutStreet
Philadelphia,PA 19104USA

szuting@linc.cis.upenn.edu

Martha Palmer
Universityof Pennsylvania

3330WalnutStreet
Philadelphia,PA 19104USA

mpalmer@linc.cis.upenn.edu

Abstract

This paper describesa system for the
CoNLL-2005 SharedTask on Semantic
Role Labeling. We trained two parsers
with the training corpusin which the se-
mantic argumentinformation is attached
to theconstituentlabels,we thenusedthe
resulting parsetreesas the input of the
pipelinedSRL system.We presentour re-
sults of combiningthe output of various
SRLsystemsusingdifferentparsers.

1 Intr oduction

Semanticparsing,identifyingandclassifyingthese-
manticentitiesin context andtherelationsbetween
them,potentiallyhasgreatimpactonits downstream
applications,suchas text summarization,question
answering,andmachinetranslation.As a result,se-
manticparsingcould be an importantintermediate
stepfor naturallanguagecomprehension.In thispa-
per, we investigatethetaskof SemanticRoleLabel-
ing (SRL): Givena verbin a sentence,thegoalis to
locatethe constituentswhich areargumentsof the
verb, and assignthem appropriatesemanticroles,
suchas,Agent,Patient,andTheme.

Previous SRL systemshave explored the effects
of usingdifferentlexical features,andexperimented
on different machinelearning algorithms.(Gildea
andPalmer, 2002;Pradhanetal.,2005;Punyakanok
et al., 2004)However, theseSRL systemsgenerally
extract featuresfrom sentencesprocessedby a syn-
tactic parseror other shallow parsingcomponents,

suchasachunkerandaclauseidentifier. As aresult,
the performanceof the SRL systemsreliesheavily
on thosesyntax-analysistools.

In orderto improve thefundamentalperformance
of an SRL system,we trainedparserswith training
datacontainingnot only syntacticconstituentinfor-
mationbut alsosemanticargumentinformation.The
new parsersgeneratemorecorrectconstituentsthan
that trainedon puresyntacticinformation. Because
thenew parsergeneratedifferentconstituentsthana
puresyntacticparser, wealsoexplorethepossibility
of combiningtheoutputof severalparserswith the
helpof avotingpost-processingcomponent.

This paper is organizedas follows: Section 2
demonstratesthe componentsof our SRL system.
Weelaboratetheimportanceof traininganew parser
andoutlineourapproachin Section3 andSection4.
Finally, Section5 reportsanddiscussestheresults.

2 SemanticRoleLabeling: the
Ar chitecture

OurSRLsystemhas5 phases:Parsing,Pruning,Ar-
gumentIdentification,ArgumentClassification,and
PostProcessing.The ArgumentIdentificationand
Classificationcomponentsaretrainedwith Sec02-
21of thePennTreebankcorpus.

2.1 Parsing

Previous SRL systemsusuallyusea puresyntactic
parser, suchas(Charniak,2000; Collins, 1999), to
retrievepossibleconstituents.Oncetheboundaryof
a constituentis defined,thereis no way to change
it in later phases.Thereforethe quality of the syn-
tactic parserhasa major impact on the final per-

237

formanceof an SRL system,andthe percentageof
correctconstituentsthat is generatedby thesyntac-
tic parseralsodefinesthe recall upperboundof an
SRLsystem.In orderto attackthisproblem,in addi-
tion to Charniak’s parser(Charniak,2000),our sys-
tem combinetwo parserwhich aretrainedon both
syntacticconstituentinformationandsemanticargu-
mentinformation.(SeeSection3)

2.2 Pruning

Given a parsetree,a pruningcomponentfilters out
the constituentswhich are unlikely to be semantic
argumentsin orderto facilitatethetrainingof theAr-
gumentIdentificationcomponent.Our systemuses
the heuristicrules introducedby (Xue andPalmer,
2004).Theheuristicsfirst spottheverbandthenex-
tractall thesisternodesalongtheverbspineof the
parsetree.We expandthecoverageby alsoextract-
ing all the immediatechildrenof an S, ADVP, PP
andNP node.This stagegenerallyprunesoff about
80% of the constituentsgiven by a parser. For our
newly trainedparsers,we also extract constituents
which have a secondaryconstituentlabel indicating
theconstituentin questionis anargument.

2.3 Ar gument Identification and Classification

We have asour ArgumentIdentificationcomponent
a binary maximum-entropy classifierto determine
whether a constituentis an argument or not. If
a constituentis taggedas an argument,the Argu-
ment Classificationcomponent,which is a multi-
classmaximum-entropy classifier, would assignit
a semanticrole. The implementationof both the
ArgumentIdentificationand Classificationcompo-
nentsmakesuseof theMallet package1.

The lexical featureswe use to train thesetwo
componentsaretakenfrom(XueandPalmer, 2004).

We trained the ArgumentIdentificationcompo-
nent with the following single features: the path
from the constituentto the verb, the head word of
the constituentand its POS tag, and the distance
betweenthe verb and the constituent,and feature
combinations: theverbandthephrasaltypeof the
constituent,theverbandtheheadword of thecon-
stituent.If theparentnodeof theconstituentis a PP
node,thenwe alsoincludetheheadword of thePP

1http://mallet.cs.umass.edu

nodeandthefeaturecombinationof theverbandthe
headwordof thePPnode.

In addition to the featureslisted above, the Ar-
gumentClassificationcomponentalsocontainsthe
following features: the verb, the first and the last
content word of the constituent,the phrasal type
of the left sibling and the parentnode,voice (pas-
siveor active),position of theconstituentrelative to
theverb,thesubcategorizationframe, andthesyn-
tactic frame which describesthesequentialpattern
of thenounphrasesandtheverbin thesentence.

2.4 PostProcessing

Thepostprocessingcomponentmergesadjacentdis-
continuousargumentsand marks the R-arguments
basedon thecontentwordandphrasetypeof thear-
gument. Also it filters out argumentsaccordingto
thefollowing constraints:

1. Therearenooverlappingarguments.

2. Thereareno repeatingcorearguments.

In orderto combinethedifferentsystems,wealso
includea voting scheme.Thealgorithmis straight-
forward: SupposethereareN participatingsystems,
we pick argumentswith N votes,N-1 votes..., and
finally 1 vote. The way to breaka tie is basedon
the confidencelevel of the argumentgiven by the
system. Whenever we pick an argument,we need
to checkwhetherthis argumentconflictswith pre-
viously selectedargumentsbasedon theconstraints
describedabove.

3 Training a Parser with Semantic
Ar gument Inf ormation

A good start is always important,especiallyfor a
successfulSRLsystem.Insteadof passively accept-
ing candidateconstituentsfrom the upstreamsyn-
tactic parser, an SRL systemneedsto interactwith
theparserin orderto obtainimprovedperformance.
Thismotivatedourfirst attemptwhich is to integrate
syntacticparsingand semanticparsingas a single
step,andhopefully asa resultwe would be ableto
discardthe SRL pipeline. The idea is to augment
thePennTreebank(Marcuset al., 1994)constituent
labelswith the semanticrole labelsfrom the Prop-
Bank(Palmeretal.,2005),andgeneratearich train-
ing corpus. For example, if an NP is also an ar-

238

gumentARG0 of a verb in the given sentence,we
changethe constituentlabel NP into NP-ARG0. A
parserthereforeis trainedon this new corpusand
shouldbeableto serveasanSRLsystematthesame
timeaspredictingaparse.

However, this ideal approachis not feasible.
Giventhefactthattherearemany differentsemantic
role labelsandthesameconstituentcanbedifferent
argumentsof differentverbsin the samesentence,
thenumberof constituentlabelswill soongrow out
of controlandmaketheparsertrainingcomputation-
ally infeasible.Not to mentionthatanchorverb in-
formationhasnot yet beenaddedto theconstituent
label, and generaldatasparseness.As a compro-
mise,we decidedto integrateonly ArgumentIden-
tification with syntacticparsing. We generatedthe
training corpusby simply markingthe constituents
whicharealsosemanticarguments.

4 Parsing Experiments

We trained a maximum-entropy parser based
on (Ratnaparkhi, 1999)usingthe OpenNLPpack-
age2. We startedour experimentswith this specific
parsingimplementationbecauseof its excellentflex-
ibility that allows us to testdifferent features.Be-
sides,thisparsercontainsfour clearparsetreebuild-
ing stages:TAG, CHUNK, BUILD, and CHECK.
This parsingstructureoffersusan isolatedworking
environmentfor eachstagethathelpsusconfinenec-
essaryimplementationmodificationsandtracedown
implementationerrors.

4.1 Data Preparation

Following standardpractice,we useSec02-21 of
thePennTreebankandthePropBankasour training
corpus. The constituentlabelsdefinedin the Penn
Treebankconsistof a primarylabelandseveralsec-
ondarylabels.A primarylabelrepresentsthemajor
syntacticfunctioncarriedby theconstituent,for in-
stance,NP indicatesa nounphraseandPPindicates
a prepositionalphrase.A secondarylabel, starting
with ”-”, representseitheragrammaticalfunctionof
a constituentor a semanticfunction of an adjunct.
For example,NP-SBJmeansthe noun phraseis a
surfacesubjectof thesentence;PP-LOCmeansthe
prepositionalphraseis a location.Althoughthesec-

2http://sourceforge.net/projects/opennlp/

ondarylabelsgive us much to encourageinforma-
tion, becauseof datasparsenessproblemandtrain-
ing efficiency, we strippedoff all the secondaryla-
belsfrom thePennTreebank.

After strippingoff the secondarylabelsfrom the
PennTreebank,we augmentthe constituentlabels
with the semanticargumentinformation from the
PropBank. We adoptedfour different labels,-AN,
-ANC, -AM, and -AMC. If the constituentin the
PennTreebankis a core argument,which means
theconstituenthasoneof thelabelsof ARG0-5and
ARGA in thePropBank,we attach-AN to thecon-
stituentlabel.Thelabel-ANC meanstheconstituent
is a discontinuouscore argument. Similarly, -AM
indicatesan adjunct-like argument,ARGM, and -
AMC indicatesadiscontinuousARM.

For example,the sentencefrom Sec02, [ARG0
The luxury auto maker] [ARGM-TMP last year]
sold [ARG1 1,214 cars] [ARGM-LOC in the U.S.],
would appearin the following format in our train-
ing corpus: (S (NP-AN (DT The) (NN luxury) (NN
auto) (NN maker)) (NP-AM (JJ last) (NN year))
(VP (VBD sold) (NP-AN (CD 1,214) (NNS cars))
(PP -AM (IN in) (NP (DT the) (NNP U.S.)))))

4.2 The 2 Differ ent Parsers

Since the core argumentsand the ARGMs in the
PropBankloosely correspondto the complements
andadjunctsin the linguisticsliterature,we arein-
terestedin investigating their individual effect on
parsingperformance.We trainedtwo parsers.An
AN-parserwas trainedon the PennTreebankcor-
pusaugmentedwith two semanticargumentlabels:
-AN, and-ANC. AnotherAM -parserwastrainedon
labels-AM, and-AMC.

5 Resultsand Discussion

Table 1 shows the resultsafter combiningvarious
SRL systemsusingdifferentparsers.In orderto ex-
ploretheeffectsof combining,we includetheover-
all performanceon thedevelopmentdatasetof indi-
vidualSRLsystemsin Table2.

The performanceof Semantic Role Labeling
(SRL) is determinedby the quality of the syntactic
informationprovided to the system. In this paper,
we investigate that for the SRL task whetherit is
moresuitableto usea parsertrainedwith datacon-

239

Precision Recall F�����

Development 75.70% 69.99% 72.73
TestWSJ 77.51% 72.97% 75.17
TestBrown 67.88% 59.03% 63.14
TestWSJ+Brown 76.31% 71.10% 73.61

TestWSJ Precision Recall F�����

Overall 77.51% 72.97% 75.17
A0 85.14% 77.32% 81.04
A1 77.61% 75.16% 76.37
A2 68.18% 62.16% 65.03
A3 66.91% 52.60% 58.90
A4 77.08% 72.55% 74.75
A5 100.00% 40.00% 57.14
AM-ADV 59.73% 51.58% 55.36
AM-CAU 67.86% 52.05% 58.91
AM-DIR 65.67% 51.76% 57.89
AM-DIS 80.39% 76.88% 78.59
AM-EXT 78.95% 46.88% 58.82
AM-LOC 57.43% 55.37% 56.38
AM-MNR 54.37% 56.10% 55.22
AM-MOD 96.64% 94.01% 95.31
AM-NEG 96.88% 94.35% 95.59
AM-PNC 41.38% 41.74% 41.56
AM-PRD 50.00% 20.00% 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 77.13% 74.15% 75.61
R-A0 86.82% 85.27% 86.04
R-A1 67.72% 82.05% 74.20
R-A2 46.15% 37.50% 41.38
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 0.00% 0.00% 0.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 100.00% 42.86% 60.00
R-AM-MNR 33.33% 33.33% 33.33
R-AM-TMP 78.57% 63.46% 70.21
R-C-A1 0.00% 0.00% 0.00
V 97.35% 95.54% 96.44

Table1: Overall results(top)anddetailedresultson
theWSJtest(bottom).

taining both syntacticbracketing and semanticar-
gumentboundaryinformationthana puresyntactic
one.

The resultsof the SRL systemsusing the AM-
or AN- parsersarenot significantlybetterthanthat
usingthe Charniak’s parser. This might dueto the
simple training mechanismof the baseparsingal-
gorithmwhich theAM- andAN- parsersexploit. It
alsosuggestsour futurework to applytheapproach
to moresophisticatedparsingframeworks. By then,
We show that we can boost the final performance
by combiningdifferentSRL systemsusingdifferent
parsers,giventhat thecombinationalgorithmis ca-

Precision Recall F�����

AN-parser 71.31% 63.68% 67.28
AM-parser 74.09% 65.11% 69.31
Charniak 76.31% 64.62% 69.98
All 3 combined 75.70% 69.99% 72.73

Table2: Overall resultson the developmentsetof
individualSRLsystems.

pableof maintainingthe quality of the final argu-
ments.

6 Acknowledgments

We thankTom Morton for providing detailedexpla-
nationfor any of ourparsingrelatedinquiries.

References

EugeneCharniak.2000. A Maximum-Entropy-Inspired
Parser. In Proceedings of NAACL-2000.

MichaelCollins. 1999. Head-DrivenStatisticalModels
for NaturalLanguageParsing.PhD Dissertation, Uni-
versityof Pennsylvania.

Daniel Gildea and Martha Palmer. 2002. The Neces-
sity of Parsingfor PredicateArgumentRecognition.
In Proceedings of ACL 2002,Philadelphia,USA.

Mitchell Marcus,GraceKim, Mary AnnMarcinkiewicz,
etal. 1994.ThePennTreebank:AnnotatingPredicate
ArgumentStructure.In Proceedings of ARPA Speech
and Natural Language Workshop.

MarthaPalmer, Dan Gildea,andPaul Kingsbury. 2005.
The PropositionBank: An AnnotatedCorpusof Se-
manticRoles.Computational Linguistics, 31(1).

Pradhan,S.,Hacioglu,K., Krugler, V., Ward,W., Martin,
J.,andJurafsky, D. 2005.SupportVectorLearningfor
SemanticArgumentClassification.To appearin Ma-
chine Learning journal, Specialissueon Speechand
NaturalLanguageProcessing.

V. Punyakanok,D. Roth, W. Yih, andD. Zimak. 2004.
SemanticRole Labelingvia Integer Linear Program-
ming Inference.In Proceedings of COLING.

Adwait Ratnaparkhi. 1999. Learningto ParseNatural
Languagewith Maximum Entropy Models. Machine
Learning, 34,151–175.

NianwenXue and Martha Palmer. 2004. Calibrating
Featuresfor SemanticRoleLabeling. In Proceedings
of EMNLP.

240

Author Index

Alex, Beatrice,144

Baldridge, Jason,96
Basili, Roberto,1, 201
Becker, Markus,144
Bergsma, Shane,88
Bharati, Akshar,165
Blume, Matthias,25
Blunsom, Philip,169
Bogers, Toine,229
Bontcheva, Kalina,72
Byrnes, John,25

Cammisa, Marco,1
Canisius, Sander,229
Carreras, Xavier ,152
Catal̀a, Neus,193
Che, Wanxiang,189
Cherry, Colin,88
Chow, Edmond,25
Cohn, Trevor,169
Comas, Pere,193
Coppola, Bonaventura,201
Cunningham, Hamish,72

Daelemans, Walter,80
De Roeck, Anne,48
Doi, Hirohumi,197
Doi, Kouichi, 197

Fleischman, Michael,104
Freitag, Dayne,25, 128
Fukuda, Yasushi,197

Garthwaite, Paul H.,48
Ge, Ruifang,9
Giménez, Jeśus,193
Giuglea, Ana-Maria,201
Gliozzo, Alfio,56

Goldwater, Sharon,112

Hachey, Ben,144
Hacioglu, Kadri,217
Haghighi, Aria,173
Hearst, Marti,17
Hsu, Wen-Lian,233
Hu, Yuxuan,189

Johansson, Richard,177
Johnson, Mark,112
Jurafsky, Daniel,217

Kapadia, Sadik,25
Kondrak, Grzegorz,40
Koomen, Peter,181

Lascarides, Alex,96
Li, Huifeng,33
Li, Sheng,189
Li, Wei, 33
Li, Xin, 64
Li, Yaoyong,72
Lin, Chi-San,185
Lin, Yu-Chun,233
Liu, Huaijun,189
Liu, Ting, 189

Mackay, Wesley,40
Manning, Christopher,173
Marciniak, Tomasz,136
Màrquez, Llúıs,152, 193
Martin, James H.,217
McCallum, Andrew,225
McCracken, Nancy,205
Mitsumori, Tomohiro,197
Mooney, Raymond,9
Moschitti, Alessandro,1, 201
Murata, Masaki,197

241

Nakov, Preslav,17
Niu, Cheng,33
Nugues, Pierre,177

Ozgencil, Necati Ercan,205

Palmer, Martha,237
Park, Kyung-Mi,209
Ponzetto, Simone Paolo,213
Pradhan, Sameer,217
Punyakanok, Vasin,181

Reddy, Prashanth,165
Rim, Hae-Chang,209
Rohwer, Richard,25
Roth, Dan,64, 181
Roy, Deb,104

Sarkar, Avik,48
Smith, Tony C.,185
Srihari, Rohini K.,33
Strapparava, Carlo,56
Stroppa, Nicolas,120
Strube, Michael,136, 213
Surdeanu, Mihai,221
Sutton, Charles,225

Tjong Kim Sang, Erik,229
Toutanova, Kristina,173
Tsai, Tzong-Han,233
Turmo, Jordi,221

van den Bosch, Antal,80, 229
Venkatapathy, Sriram,165

Wang, Zhiqiang,25
Ward, Wayne,217
Wu, Chia-Wei,233

Yi, Szu-ting,237
Yih, Wen-tau,181
Yvon, François,120

	Program
	Effective use of WordNet Semantics via Kernel-Based Learning
	A Statistical Semantic Parser that Integrates Syntax and Semantics
	Search Engine Statistics Beyond the n-gram: Application to Noun Compound Bracketing
	New Experiments in Distributional Representations of Synonymy
	Word Independent Context Pair Classification Model for Word Sense Disambiguation
	Computing Word Similarity and Identifying Cognates with Pair Hidden Markov Models
	A Bayesian Mixture Model for Term Re-occurrence and Burstiness
	Domain Kernels for Text Categorization
	Discriminative Training of Clustering Functions: Theory and Experiments with Entity Identification
	Using Uneven Margins SVM and Perceptron for Information Extraction
	Improving Sequence Segmentation Learning by Predicting Trigrams
	An Expectation Maximization Approach to Pronoun Resolution
	Probabilistic Head-Driven Parsing for Discourse Structure
	Intentional Context in Situated Natural Language Learning
	Representational Bias in Unsupervised Learning of Syllable Structure
	An Analogical Learner for Morphological Analysis
	Morphology Induction from Term Clusters
	Beyond the Pipeline: Discrete Optimization in NLP
	Investigating the Effects of Selective Sampling on the Annotation Task
	Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling
	Inferring Semantic Roles Using Sub-categorization Frames and Maximum Entropy Model
	Semantic Role Labelling with Tree Conditional Random Fields
	A Joint Model for Semantic Role Labeling
	Sparse Bayesian Classification of Predicate Arguments
	Generalized Inference with Multiple Semantic Role Labeling Systems
	Semantic Role Labeling via Consensus in Pattern-Matching
	Semantic Role Labeling System Using Maximum Entropy Classifier
	Semantic Role Labeling as Sequential Tagging
	Semantic Role Labeling Using Support Vector Machines
	Hierarchical Semantic Role Labeling
	Semantic Role Labeling Using libSVM
	Maximum Entropy Based Semantic Role Labeling
	Semantic Role Labeling Using Lexical Statistical Information
	Semantic Role Chunking Combining Complementary Syntactic Views
	Semantic Role Labeling Using Complete Syntactic Analysis
	Joint Parsing and Semantic Role Labeling
	Applying Spelling Error Correction Techniques for Improving Semantic Role Labelling
	Exploiting Full Parsing Information to Label Semantic Roles Using an Ensemble of ME and SVM via Integer Linear Programming
	The Integration of Syntactic Parsing and Semantic Role Labeling

