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PREFACE

The 2005 Conference on Computational Natural Language Learning (CoNLL-2005) is the ninth in a
series of meetings organized by SIGNLL, the ACL special interest group on natural language learning.
This year’s CoNLL will be held in Ann Arbor, Michigan, on June 29 and 30, in conjunction with the
ACL 2005 conference.

This year we encouraged submissions addressing “deeper linguistic phenomena than have typically
been covered in the past”, a theme reflected in the shared task, and one which will be addressed by our
invited speakers, Mark Johnson and Mark Steedman. The latter talk will be part of what should be a
very interesting joint session with the Workshop on Psychocomputational Models of Human Language
Acquisition organized by William Sakas.

A total of 70 papers were submitted to CoNLL's main session, of which we were able to accept only 19,
making this the most competitive CoNLL meeting to date. We are particularly grateful to our program
committee for their work reviewing this large number of papers on a tight schedule.

In keeping with the unique tradition of CoNLL, we also have a shared task session this year, on semantic
role labeling. This year’s task included use of full syntactic parses, a step beyond the chunk-level
information used in 2004. The shared task was coordinated by Xavier Carreras amd/hguez.
Common training and test data were made available to all participants, who had to build their learning
system and test it on this task. The shared task also achieved a record number of submissions this year,
and these proceedings include system descriptions from each of the 19 participants.

In addition to the program committee and shared task organizers, we are very indebted to the 2005 ACL
conference organizers, in particular Dragomir Radev, Mirella Lapata, Jason Eisner, and Philipp Koehn,
for their help with local arrangements and the publication of the proceedings.

We hope you enjoy this year's meeting!

Ido Dagan and Dan Gildea
May 2005
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Effective use of WordNet semantics via kernel-based learning

Roberto Basili and Marco Cammisa and Alessandro Moschitti

Department of Computer Science
University of Rome "Tor Vergata”, Rome, Italy

{basili,cammisa,moschitti

Abstract

Research on document similarity has
shown that complex representations are
not more accurate than the simplag-of-
words Term clustering, e.g. using latent
semantic indexing, word co-occurrences
or synonym relations using a word ontol-
ogy have been shown not very effective.
In particular, when to extend the similar-
ity function external prior knowledge is
used, e.g. WordNet, the retrieval system
decreases its performance. The critical is-
sues here are methods and conditions to
integrate such knowledge.

In this paper we propose kernel func-
tions to add prior knowledge to learn-
ing algorithms for document classifica-
tion. Such kernels use a term similarity
measure based on the WordNet hierarchy.
The kernel trick is used to implement such
space in a balanced and statistically co-
herent way. Cross-validation results show
the benefit of the approach for the Support
Vector Machines when few training data is
available.

}@info.uniroma2.it

term clustering methods based on corpus term dis-
tributions or on external prior knowledge (e.g. pro-
vided by WordNet) were used to improve the basic
term matching.

An example of statistical clustering is given in
(Bekkerman et al., 2001). A feature selection tech-
nique, which clusters similar features/words, called
the Information Bottleneck (IB), was applied to Text
Categorization (TC). Such cluster based representa-
tion outperformed the simpleag-of-wordson only
one out of the three experimented collections. The
effective use of external prior knowledge is even
more difficult since no attempt has ever been suc-
cessful to improve document retrieval or text classi-
fication accuracy, (e.g. see (Smeaton, 1999; Sussna,
1993; Voorhees, 1993; Voorhees, 1994; Moschitti
and Basili, 2004)).

The main problem of term cluster based represen-
tations seems the unclear nature of the relationship
between the word and the cluster information lev-
els. Even if (semantic) clusters tend to improve the
system recall, simple terms are, on a large scale,
more accurate (e.g. (Moschitti and Basili, 2004)).
To overcome this problem, hybrid spaces containing
terms and clusters were experimented (e.g. (Scott
and Matwin, 1999)) but the results, again, showed
that the mixed statistical distributions of clusters and

1 Introduction terms impact either marginally or even negatively on

The large literature on term clustering, term simthe overall accuracy.

ilarity and weighting schemes shows that docu- In (Moorhees, 1993; Smeaton, 1999), clusters of
ment similarity is a central topic in Information Re-synonymous terms as defined in WordNet (WN)
trieval (IR). The research efforts have mostly bee@Fellbaum, 1998) were used for document retrieval.
directed in enriching the document representatiofhe results showed that the misleading information
by using clusteringtérm generalizationpor adding due to the wrong choice of the local term senses
compoundstérm specificationjs These studies are causes the overall accuracy to decrease. Word sense
based on the assumption that the similarity betweeatisambiguation (WSD) was thus applied beforehand
two documents can be expressed as the similarity bley indexing the documents by means of disam-
tween pairs of matching terms. Following this ideabiguated senses, i.e. synset codes (Smeaton, 1999;

1
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Sussna, 1993; Voorhees, 1993; Voorhees, 199dmount of training documents, we experimented our
Moschitti and Basili, 2004). However, even themodel in poor training conditions (e.g. less equal
state-of-the-art methods for WSD did not improvehan 20 documents for each category). The improve-
the accuracy because of the inherent noise introaents in the accuracy, observed on the classification
duced by the disambiguation mistakes. The abow the well known Reuters and 20 NewsGroups cor-
studies suggest that term clusters decrease the ppera, show that our document similarity model is
cision of the system as they force weakly related orery promising for general IR tasks: unlike previous
unrelated (in case of disambiguation errors) terms tattempts, it makes sense of the adoption of semantic
give a contribution in the similarity function. The external resources (i.e. WN) in IR.
successful introduction of prior external knowledge Section 2 introduces the WordNet-based term
relies on the solution of the above problem. similarity. Section 3 defines the new document simi-
In this paper, a model to introduce the semantitarity measure, the kernel function and its use within
lexical knowledge contained in the WN hierarchySVMs. Section 4 presents the comparative results
in a supervised text classification task has been prbetween the traditional linear and the WN-based
posed. Intuitively, the main idea is that the docukernels within SVMs. In Section 5 comparative dis-
mentsd are represented through the set of all pairsussion against the related IR literature is carried
in the vocabulary ¢,¢ > V x V originating by out. Finally Section 6 derives the conclusions.
the termst € d and all the words’ € V, e.g. the o
WN nouns. When the similarity between two docu-2 Term similarity based on general
ments is evaluated, their matching pairs are used to knowledge
account for the final score. The weight given to eachn IR, any similarity metric in the vector space mod-
term pair is proportional to the similarity that the twoels is driven by lexical matching. When small train-
terms have in WN. Thus, the tertwf the first docu- ing material is available, few words can be effec-
ment contributes to the document similarity accordtively used and the resulting document similarity
ing to its relatedness with any of the terms of thenetrics may be inaccurate. Semantic generaliza-
second document and the prior external knowledgépns overcome data sparseness problems as con-
provided by WN, quantifies the single term to terntributions from different but semantically similar
relatedness. Such approach has two advantages: \{@yds are made available.
we obtain a well defined space which supports the Methods for the induction of semantically in-
similarity between terms of different surface formsspired word clusters have been widely used in lan-
based on external knowledge and (b) we avoid tguage modeling and lexical acquisition tasks (e.qg.
explicitly define term or sense clusters which in{Clark and Weir, 2002)). The resource employed
evitably introduce noise. in most works is WordNet (Fellbaum, 1998) which
The class of spaces which embeds the above paontains three subhierarchies: for nouns, verbs and
information may be composed y(|V'|?) dimen- adjectives. Each hierarchy represents lexicalized
sions. If we consider only the WN nouns (aboutoncepts (or senses) organized according toign ”
10%), our space contains aboud'® dimensions a-kind-of’ relation. A concepts is described by
which is not manageable by most of the learning ak set of wordssyn(s) called synset. The words
gorithms. Kernel methods, can solve this problem as € syn(s) are synonyms according to the sense
they allow us to use an implicit space representation
in the learning algorithms. Among them Support For example, the wordie, argumentationlogi-
Vector Machines (SVMs) (Vapnik, 1995) are kernekal argumentndline of reasoninglescribe a synset
based learners which achieve high accuracy in preghich expresses the methodical process of logical
ence of many irrelevant features. This is another inreasoning (e.g. I"can’t follow your line of reason-
portant property as selection of the informative pairsng”). Each word/term may be lexically related to
is left to the SVM learning. more than one synset depending on its senses. The
Moreover, as we believe that the prior knowledgevord line is also a member of the syndigte, divid-
in TC is not so useful when there is a sufficiening line, demarcatiorandcontrast as aine denotes
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also a conceptual separation (e.ghere is a nar- generalizations for at least one sersef the word
row line between sanity and insariltyThe Wordnet w;, i.e. S; = {s € S|s; € 5,u; € syn(s;)}. The
noun hierarchy is a direct acyclic grapim which  CD of u; andus is:

the edges establish thirectisa relations between 0 iff S1 NSy = ()

two synsets. h NV
CD(uy,ug) = ma$seslms22i:0gu(s))l Q)
2.1 The Conceptual Density Otﬂrwise

The automatic use of WordNet for NLP and IR taskgyhere:

has proved to be very complex. First, how the topo- o g, N g, is the set of WN shared generalizations
logical distance among senses is related to their cor- (i e the common hypernyms) of andus
responding conceptual distance is unclear. The per-
vasive lexical ambiguity is also problematic as it im-
pacts on the measure of conceptual distances be-
tween word pairs. Second, the approximation of a
set of concepts by means of their generalization in
the hierarchy implies a conceptual loss that affects
the target IR (or NLP) tasks. For examplaack

and white are colors but are alsachess pieceand

this impacts on the similarity score that should be
used in IR applications. Methods to solve the above _
problems attempt to map a priori the terms to spe- h— { [logu2] iff “(g)f 1 2)
cific generalizations levels, i.e. tutsin the hier- 2 otherwise

archy (e.g. (Li and Abe, 1998; Resnik, 1997)), and
use corpus statistics for weighting the resulting map-
pings. For several tasks (e.g. in TC) this is unsatis-
factory: different contexts of the same corpus (e.g.
documents) may require different generalizations of
the same word as they independently impact on the
document similarity.

On the contrary, the&Conceptual Density{C' D) CD models the semantic distance as the density
(Agirre and Rigau, 1996) is a flexible semantic simiof the generalizations € S; N S2. Suchdensityis
larity which depends on the generalizations of worthe ratio between the number of nodes of itheal
senses not referring to any fixed level of the hiertree and|s|. The ideal tree should (a) link the two
archy. TheC'D defines a metrics according to thesenses/nodes; and sy with the minimal number
topological structure of WordNet and can be seensf edges (isa-relations) and (b) maintain the same
ingly applied to two or more words. The measurdranching factorlgf) observed irs. In other words,
formalized hereafter adapt to word pairs a more gefthis tree provides the minimal number of nodes (and
eral definition given in (Basili et al., 2004). isa-relations) sufficient to conneg¢t andss accord-

We denote bys the set of nodes of the hierarchying to the topological structure af For example, if
rooted in the synset, i.e. {c € S|cisa s}, whereS 5 has abf of 2 the ideal tree connects the two senses
is the set of WN synsets. By definitiofs € S,s €  with a single node (their father). If thef is 1.5, to
5. CD makes a guess about the proximity of theeplicate it, the ideal tree must contain 4 nodes, i.e.
sensess; ands», of two wordsu; andus, accord- the grandfather which hask# of 1 and the father
ing to the information expressed by the minimal subwhich hasbf of 2 for an average of 1.5. Whesf is
hierarchy,s, that includes them. Lef; be the set of 1 the Eq. 1 degenerates to the inverse of the number

— _ _of nodes in the path between andss, i.e. the sim-
As only the 1% of its nodes own more than one parent in

the graph, most of the techniques assume the hierarchy to b@(l:le proximity measure used in (Siolas and d’Alch
tree, and treat the few exception heuristically. Buc, 2000).

e 1(5) is the average number of children per node
(i.e. the branching factor) in the sub-hierarchy
5. 11(5) depends on WordNet and in some cases
its value can approach 1.

e h is the depth of thadeal, i.e. maximally
dense,tree with enough leaves to cover the
two sensess; andss, according to an average
branching factor ofi(s). This value is actually
estimated by:

When u(s)=1, h ensures a tree with at least 2
nodes to coveg; andss (height = 2).

e |5| is the number of nodes in the sub-hierarchy
s. This value is statically measured on WN and
it is a negative bias for the higher level general-
izations (i.e. largeg).



It is worth noting that for each pat'D(u;,u2) sler, 1999). Hereafter, we report such definition. Let
determines the similarity according tbe closest X, Xy, .., X,, be separable metric spaces,c X
lexical senses, so € s: theremaining sensesof a structure andd = xq,...,x,, its parts, where
andus are irrelevant, with a resulting semantic dis«; € X; Vi = 1,..,m. Let R be a relation on
ambiguation side effect”’ D has been successfully the setX x X x .. x X,,, such thatR(Z, =) is "true”
applied to semantic tagging ((Basili et al., 2004))if & are the parts of x. We indicate witR—! () the
As the WN hierarchies for other POS classes (i.eset{Z : R(Z,z)}. Given two objects andy € X
verb and adjectives) have topological properties ditheir similarity K’ (x, y) is defined as:
ferent from the noun hyponimy network, their se- m
mantics is not suitably captured by Eq._ 1. Inthis gz ) = Z Z HKZ_(%%) (4)
paper, Eq. 1 has thus been only applied to noun FER-1(z) FeR-1(y)i=1
pairs. As the high number of such pairs increases _ _
the computational complexity of the target learn- If X defines the document set (i.e) = X),
ing algorithm, efficient approaches are needed. THdX1 the vocabulary of the target document corpus
next section describes how kernel methods can mak&1 = V), it follows that: 2 = d (a document)y’ =

practical the use of the Conceptual Density in Text1 = w € V (@word whichiis a part of the document
Categorization. d) and R~1(d) defines the set of words in the doc-

umentd. As H?il K,(a:“yz) = Kl(xbyl), then

3 AV\_/or(_jNet Kernel for document Ki(z1,y1) = K(wi,ws) = (AMA2) x o(wi,ws),
similarity ie. Eq. 3.

Term similarities are used to design document simi- The above equation can be used in support vector
larities which are the core functions of most TC alimachines as illustrated by the next section.
gorithms. The term similarity proposed in Eq. 1 _
is valid for all term pairs of a target vocabulary and>-2  SUPport Vector Machines and Kernel
has two main advantages: (1) the relatedness of each Methods
term occurring in the first document can be comGiven the vector space iR”7 and a set of positive
puted againsall terms in the second document, i.eand negative points, SVMs classify vectors accord-
all different pairs of similar (not just identical) to- ing to a separating hyperplang(z) = &-2+b = 0,
kens can contribute and (2) if we use all term paiwherer and& € R”7 andb € R are learned by apply-
contributions in the document similarity we obtain ang theStructural Risk Minimization principlé/ap-
measure consistent with the term probability distrinik, 1995). From the kernel theory we have that:
butions, i.e. the sum of all term contributions does
not penalize or emphasize arbitrarily any subset aff (z) = ( > ahfh) Ftb= Y apdpdth=

terms. The next section presents more formally the h=1.1 h=1.1
above idea.
and(dp) - ¢(d) + b= apK(dp,d)+b
3.1 Asemanticvector space h=1.1 h=1.1 5)
Given two documentd, andd, € D (the document- \yhere 4 is a classifying document antj are all the
set) we define their similarity as: [ training instances, projected ifand ), respec-
K(dy,ds) = Z (AMA2) X o(wy,w) (3) tively. The productK (d,dy,) =<¢(d) - ¢(dp)> is
wy €dy,warEdo the Semantic WN-based Kern@ K') function asso-
where\; and )\, are the weights of the words (fea-ciated with the mapping.
tures)w; and w, in the documentgl; andd,, re- Eg. 5 shows that to evaluate the separating hy-

spectively andr is a term similarity function, e.g. perplane inR”7 we do not need to evaluate the entire
the conceptual density defined in Section 2. Teectorx;, or Z. Actually, we do not know even the
prove that Eq. 3 is a valid kernel is enough tanapping¢ and the number of dimensions, As
show that it is a specialization of the general defiit is sufficient to computek'(d,dy,), we can carry
nition of convolution kernels formalized in (Haus-out the learning with Eq. 3 in thR", avoiding to

4



use the explicit representation in tR& space. The for verbs and capture the similarity between verbs
real advantage is that we can consider only the wo@hd some nouns, e.do drive (via the noundrive)
pairs associated with non-zero weight, i.e. we cahas a common synset wigarkway
use a sparse vector computation. Additionally, to For the evaluations, we applied a careful SVM
have a uniform score across different document sizparameterization: a preliminary investigation sug-
the kernel function can be normalized as followsgested that the trade-off (between the training-set er-
SK(d,dy) ror and margin, i.ec option in SVM-light) parame-

V/SK(dy,dy)-SK (dz,d2) L .

ter optimizes theg’; measure for values in the range
4 Experiments [0.02,0.32. We noted also that the cost-factor pa-

The use of WordNet (WN) in the term similarity fameter (i.e.j option) is not critical, i.e. a value of
function introduces a prior knowledge whose impact0 always optimizes the accuracy. The feature se-
on the Semantic KerneB() should be experimen- lection techniques and the weighting schemes were
tally assessed. The main goal is to compare the tradlOt @pplied in our experiments as they cannot be ac-
tional Vector Space Model kernel agairs&k, both curately estimated from the small available training
within the Support Vector learning algorithm. data.

The high complexity of theSK limits the size The classification performance was evaluated by
of the experiments that we can carry out in a feaneans of thé”; measurefor the single category and
sible time. Moreover, we are not interested to largie MicroAverage for the final classifier pool (Yang,
collections of training documents as in these traint999). Given the high computational complexity of
ing conditions the simpléag-of-wordsmodels are 5K we selected 8 categories from the 20Nd 8
in general very effective, i.e. they seems to moddfom the Reuters corpds
well the document similarity needed by the learning To derive statistically significant results with few
algorithms. Thus, we carried out the experiment§faining documents, for each corpus, we randomly
on small subsets of the 20NewsGrotig@ONG) selected 10 different samples from the 8 categories.
and theReuters-21578corpora to simulate critical We trained the classifiers on one sample, parameter-

learning conditions. ized on a second sample and derived the measures
on the other 8. By rotating the training sample we
4.1 Experimental set-up obtained 80 different measures for each model. The

For the experiments, we used the SvMmsSizeofthesamplesrangesfrom 24 to 160 documents

light software (Joachims, 1999) (available afleéPending on the target experiment.
svmlight.joachims.org ) with the default linear L
kernel on the token space (adopted as the baseliﬁ'e12 Cross validation results
evaluations). For theSK evaluation we imple- TheSK (Eq. 3) was compared with the linear kernel
mented the Eq. 3 witlr(-,-) = CD(-,-) (Eq. 1) Which obtained the best; measure in (Joachims,
inside SVM-light. As Eq. 1 is only defined for 1999). Table 1 reports the first comparative results
nouns, a part of speech (POS) tagger has been prefgr 8 categories of 20NG on 40 training documents.
ously applied. However, also verbs, adjectives anf@ihe results are expressed as Meanand theStd.
numerical features were included in the pair spac®ev.over 80 runs. Thé" are reported in Column 2
For these tokens &D = 0 is assigned to pairs for the linear kernel, i.ebow, in Column 3 forSK
made by different strings. As the POS-tagger couldithout applying POS information and in Column 4
introduce errors, in a second experiment, any tokef—,———— )

. . . We used all the values from 0.02 to 0.32 with step 0.02.
with a successful look-up in the WN noun hierarchy 5F, assigns equal importance to Precisirand RecallR,
was considered in the kernel. This approximatione. F, = 252,

has the benefit to retrieve useful information even °We selected the 8 most different categories (in terms of
their content) i.e. Atheism Computer GraphicsMisc Forsale

2pAvailable at www.ai.mit.edu/peoplefjrennie/ Autos Sport BaseballMedicing Talk Religionsand Talk Poli-
20Newsgroups/ . tics.

3The Apeé split available at kdd.ics.uci.edu/ "We selected the 8 largest categories, Aequisition Earn,
databases/reuters21578/reuters21578.html . Crude Grain, Interest Money-fx TradeandWheat



for SK with the use of POS informatio(<-POS). [ Category | bow | SK SK-POS |
Atheism 2955108 | 32.0£16.3 | 25.2617.2

The last row shows the MicroAverage perfo_rmance Comp.Graph | 39.2020.7 | 39.3:20.8 | 20.3:21.8
for the above three models on all 8 categories. We wmisc.Forsale | 61.3+17.7 | 51.3+18.7 | 49.5-20.4

note thatS K improvesbow of 3%, i.e. 34.3% vs. éutOSB ) gg%ggz gg-&gg-g ii-gﬁg-g
0 . ; .| Sport.Baseb. . . . . . :
31.5% and that th_e POS information reduces the im: o vied 2614172 | 1850174 | 16.6L17.2
provement ofS K, i.e. 33.5% vs. 34.3%. Talk.Relig. 23.5+11.6 | 28.4+-19.0 | 27.6+17.0
To verify the hypothesis that WN information is | Talk.Polit. 28.3t17.5 | 30.74155 | 30.3t14.3

MicroAvg. I | 31.554.8 | 34.3t5.8 | 33.5£6.4

useful in low training data conditions we repeated
the evaluation over the 8 categories of Reuters withable 1:Performance of the linear and Semantic Kernel with
samples of 24 and 160 documents, respectively. Tl training documents over 8 categories of 20NewsGroups col-
results reported in Table 2 shows that (1) aggiid  lection.

improvesbow (41.7% - 37.2% = 4.5%) and (2) as

the number of documents increases the improvemengategory 24 docs 160 docs
decreases (77.9% - 75.9% = 2%). It is worth noting_ g(;waﬂs . [ gg(aﬂg - ZZI’?ﬂ 6 1 gfzﬂ -
- . cq. . . ) ) . . . )
that the standard deviations terjd_ tg assume hlgh'Vilcrude 34156 | 35457 | 64.0020.6 | 62.0L16.7
ues. In general, the use of 10 disjoint training/testingearn 64.0£10.0 | 64.7410.3 | 91.3+5.5 | 90.4+5.1

fold lidati hich insist " d Interest | 23.9429.9 | 24.9+28.6 | 67.2+12.9 | 59.8+12.6
old cross validation which InSIStS on the Same dOCU-yoney-fx | 36.14-34.3 | 39.2£29.5 | 69.1£11.9 | 67.4+:13.3
ment set. However, this does not affect thudent | Trade 9.84+21.2 | 10.3+17.9 | 57.1+23.8 | 60.14+15.4
confidence test over the differences between the MizVheat | 8.6+19.7 | 13.3:26.3 | 23.9£24.8 | 31.2:23.0
: Mic.Avg. | 37.2£5.9 | 41.746.0 | 75.9F11.0 | 77.9£5.7
croAverage ofS K andbowsince the former has a
higher accuracy at 99% confidence level. Table 2:Performance of the linear and Semantic Kernel with
The above findings confirm th&tK” outperforms 40 and 160 training documents over 8 categories of the Reuters
the bag-of-wordskernel in critical learning condi- corpus.
tions as the semantic contribution of teé&” recov-
ers useful information. To complete this study we 540
carried out experiments with samples of different  sio |
size, i.e. 3, 5, 10, 15 and 20 documents for each 0| ‘ ‘
category. Figures 1 and 2 show the learning curve§ oo |7 o
for 20NG and Reuters corpora. Each point refers tog ‘ ‘
the average on 80 samples.
As expected the improvement provided By

Micro-Av

i —e—bow

. . . 3 i
decreases when more training data is available. : S Skpos
However, the improvements are not negligible yet.  *°}” A
: : . 200 ‘ ‘ ‘ ‘ ‘
The SK model (without POS information) pre- » w0 o 100 10 w0 160

serves about 2-3% of improvement with 160 training # Training Documents

docume_nts' _The matching aIIO_W?d betw_een no_urF:igure 1: MicroAverage F; of SVMs usingbow, SK and
verb pairs still captures semantic information whicls K-POS kernels over the 8 categories of 20NewsGroups.
is useful for topic detection. In particular, during

the similarity estimation, each word activa&s05

pairs on average. This is particularly useful to in- The important outcome is that’” converges to a
SVMs. _ _ _ Table 2). This shows that the word similarity pro-

Finally, we carried out some experiments withjided by WN is still consistent and, although in the
160 Reuters documents by discarding the stringorst case, slightly effective for TC: the evidence
matching fromSK. Only words having different js that a suitable balancing between lexical ambigu-
surface forms were allowed to give contributions tGty and topical relatedness is captured by the SVM
the Eq. 3. learning.



80.0

The latter methods are even more problematic in
TC (Moschitti and Basili, 2004). Word senses tend
to systematically correlate with the positive exam-
ples of a category. Different categories are better
characterized by different words rather than differ-
ent senses. Patterns of lexical co-occurrences in the
training data seem to suffice for automatic disam-
biguation. (Scott and Matwin, 1999) use WN senses
‘ ‘ ‘ ‘ to replace simple words without word sense disam-
20 40 60 80 100 120 140 160 biguation and small improvements are derived only

#Training ocuments for a small corpus. The scale and assessment pro-
Figure 2:MicroAverageF; of SVMs usinghow andSK over  Vided in (Moschitti and Basili, 2004) (3 corpora us-
the 8 categories of the Reuters corpus. ing cross-validation techniques) showed that even
the accurate disambiguation of WN senses (about
5 Related Work 80% accuracy on nouns) did not improve TC.
The IR studies in this area focus on the term similar- In (Siolas and d’Alch Buc, 2000) was proposed
ity models to embed statistical and external knowlan approach similar to the one presented in this ar-
edge in document similarity. ticle. A term proximity function is used to design

In (Kontostathis and Pottenger, 2002)aent Se- a kernel able to semantically smooth the similarity
mantic Indexinganalysis was used for term cluster-between two document terms. Such semantic ker-
ing. Such approach assumes that valugsin the nel was designed as a combination of the Radial Ba-
transformed term-term matrix represents the simsis Function (RBF) kernel with the term proximity
larity (> 0) and anti-similarity between termisand matrix. Entries in this matrix are inversely propor-
j. By extension, a negative value represents an antienal to the length of the WN hierarchy path link-
similarity between andj enabling both positive and ing the two terms. The performance, measured over
negative clusters of terms. Evaluation of query exthe 20NewsGroups corpus, showed an improvement
pansion techniques showed that positive clusters cafi 2% over thebag-of-words Three main differ-
improve Recall of about 18% for ti&ISl collection, ences exist with respect to our approach. First, the
2.9% for MED and 3.4% forCRAN Furthermore, term proximity does not fully capture the WN topo-
the negative clusters, when used to prune the residgical information. Equidistant terms receive the
set, improve the precision. same similarity irrespectively from their generaliza-

The use of external semantic knowledge seenton level. For exampleSkyand Location (direct
to be more problematic in IR. In (Smeaton, 1999)hyponyms ofEntity) receive a similarity score equal
the impact of semantic ambiguity on IR is studto knife andgun (hyponyms ofweaporn. More ac-
ied. A WN-based semantic similarity function be-curate measures have been widely discussed in lit-
tween noun pairs is used to improve indexing andrature, e.g. (Resnik, 1997). Second, the kernel-
document-query matching. However, the WSD albasedC' D similarity is an elegant combination of
gorithm had a performance ranging between 6Qexicalized and semantic information. In (Siolas and
70%, and this made the overall semantic similaritg’Alch Buc, 2000) the combination of weighting
not effective. schemes, the RBF kernel and the proximitry matrix

Other studies using semantic information for im-has a much less clear interpretation. Finally, (Siolas
proving IR were carried out in (Sussna, 1993) andnd d’Alch Buc, 2000) selected only 200 features
(Voorhees, 1993; Voorhees, 1994). Word semamia Mutual Information statistics. In this way rare
tic information was here used for text indexing andr non statistically significant terms are neglected
guery expansion, respectively. In (Moorhees, 1994yhile being source of often relevant contributions in
it is shown that semantic information derived di-the SK space modeled over WN.
rectly from WN without a priori WSD produces Other important work on semantic kernel for re-
poor results. trieval has been developed in (Cristianini et al.,
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2002; Kandola et al., 2002). Two methods for in-Stephen Clark and David Weir. 2002. Class-based probability
ferring semantic similarity from a corpus were pro- estimation using a semantic hierarch@omput. Linguist.

4. In the first ! ¢ i q 28(2):187-206.
posed. In the nirst a sysiem of equations were ‘Rl'ello Cristianini, John Shawe-Taylor, and Huma Lodhi. 2002.

rived from the dual relation between word-similarity Latent semantic kernelsJ. Intell. Inf. Syst. 18(2-3):127—
based on document-similarity and viceversa. The 152.

equilibrium point was used to derive the Semantighrlstlane Fellbaum. 1998WordNet: An Electronic Lexical
Database MIT Press.

S|mlle_1r|ty m?asure' The second _methOd models SB. Haussler. 1999. Convolution kernels on discrete struc-
mantic relations by means of a diffusion process on tures. Technical report ucs-crl-99-10, University of Califor-
a graph defined by lexicon and co-occurrence in- NiaSanta Cruz.

. . : . Thomas Hofmann. 2000. Learning probabilistic models of
formation. The major difference with our approach the web. InResearch and Development in Information Re-

is the use of a different source of prior knowledge. trieval.
Similar techniques were also applied in (HofmannT. Joachims. 1999. Making large-scale SVM learning practical.
2000) to derive a Fisher kernel based on a latent class!" B Sciolkopt, C. Burges, and A. Smola, editofdvances

.. . in Kernel Methods - Support Vector Learning
decomposition of the term-document matrix. J. Kandola, J. Shawe-Taylor, and N. Cristianini. 2002. Learn-

ing semantic similarity. IINIPS’02) - MIT Press.
A. Kontostathis and W. Pottenger. 2002. Improving retrieval
The introduction of semantic prior knowledge in performance with positive and negative equivalence classes

. - . f terms.
IR has always been an interesting subject as the®
y 9 J kI'—ﬁsmg Li and Naoki Abe. 1998. Generalizing case frames using

examined literature suggests. In this paper, We 3 thesaurus and the mdl principl€omputational Linguis-
used the conceptual density function on the Word- tics, 23(3).

Net (WN) hierarchy to define a document similarAlessandro Moschitti and Roberto Basili. 2004. Complex
it tri A dinal defined i linguistic features for text classification: a comprehensive
Ity metric. ccordingly, we derned a semantic study. InProceedings of ECIR’Q45underland, UK.

kernel to train Support Vector Machine classifiersp, resnik. 1997. Selectional preference and sense disambigua-
Cross-validation experiments over 8 categories of tion. In Proceedings of ACL Siglex Workshop on Tagging

. i i i ? -
20NewsGroups and Reuters over multiple samples L%Xtto‘r']‘"tfg'é‘;x'ca' Semantics, Why, What and How?, Wash

have shown that in poor training data conditions, thgam scott and Stan Matwin. 1999. Feature engineering for
WN prior knowledge can be effectively used to im- text classification. IrProceedings of ICML'99Bled, SL.

prove (up to 4.5 absolute percent points, i.e. 10%) Morgag_Kf‘“fma;rlllP“b'iShzfz'l iag Fraggi(;sgo,sus. et
eorges osiolas an orence C uc. . Supportvector
the TC accuracy.

- machines based on a semantic kernel for text categorization.
These promising results enable a number of future In Proceedings of IJCNN'QGEEE Computer Society.

researches: (1) larger scale experiments with diffefan F. Smeaton. 1999. Using NLP or NLP resources for in-

. T formation retrieval tasks. INatural language information
ent measures and semantic similarity models (e.g. retrieval, Kluwer Academic Publishers, Dordrecht, NL.

(Resnik, 1997)); (2) improvement of the overall efy. sussna. 1993. Word sense disambiguation for free-text in-
ficiency by exploring feature selection methods over dexing using a massive semantic network CIKIM'93,.

the SK, and (3) the extension of the semantic simY- Vapnik. 1995. The Nature of Statistical Learning Theory

6 Conclusions

S . . s Springer.

llarity by a general (!'e' non binary) application OfEIIen M. Voorhees. 1993. Using wordnet to disambiguate word

the conceptual density model. senses for text retrieval. IRroceedings SIGIR'9Pitts-
burgh, PA, USA.
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Abstract

We introduce a learning semantic parser,
Sci1SSOR that maps natural-language sen-
tences to a detailed, formal, meaning-
representation language. It first uses
an integrated statistical parser to pro-
duce a semantically augmented parse tree,
in which each non-terminal node has
both a syntactic and a semantic label.
A compositional-semantics procedure is
then used to map the augmented parse
tree into a final meaning representation.
We evaluate the system in two domains,
a natural-language database interface and
an interpreter for coaching instructions in
robotic soccer. We present experimental
results demonstrating thatc&SsoR pro-
duces more accurate semantic representa-
tions than several previous approaches.

Introduction

robotic soccer developed for the RoboCup Coach
Competition, in which Al researchers compete to
provide effective instructions to a coachable team of
agents in a simulated soccer domain (et al., 2003).

We present an approach based on a statisti-
cal parser that generatessamantically augmented
parse tree(SAPT), in which each internal node in-
cludes both a syntactic and semantic label. We aug-
ment Collins’ head-driven model 2 (Collins, 1997)
to incorporate a semantic label on each internal
node. By integrating syntactic and semantic inter-
pretation into a single statistical model and finding
the globally most likely parse, an accurate combined
syntactic/semantic analysis can be obtained. Once a
SAPT is generated, an additional step is required to
translate it into a final formaeaning representa-
tion (MR).

Our approach is implemented in a system called
SCISSOR (Semantic Composition that Integrates
Syntax and Semantics to get Optimal Representa-
tions). Training the system requires sentences an-
notated with both gold-standard SAPT’s and MR’s.
We present experimental results on corpora for both

Most recent work in learning for semantic parsingde€ography-database querying and Robocup coach-
has focused on “shallow” analysis suchsesnan- ing demonstrating that@3ssorproduces more ac-

tic role labeling(Gildea and Jurafsky, 2002). In this curate semantic representations than several previ-
paper, we address the more ambitious task of lear@uUs approaches based on symbolic learning (Tang
ing to map sentences to a complete formalaning- and Mooney, 2001; Kate et al., 2005).

representation languagéMRL). We consider two

MRL's that can be directly used to perform useful2 Target MRL's

complex tasks. The first is a Prolog-based language

used in a previously-developed corpus of queries /e used two MRLSs in our experimentsLANG and

a database on U.S. geography (Zelle and Moone§GEOQUERY. They capture the meaning of linguistic
1996). The second MRL is a coaching language fantterances in their domain in a formal language.

9
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S-bowner

2.1 CLANG: theRoboCup Coach Language

RoboCup {ww. r obocup. org) is an interna-

tional Al research initiative using robotic soccer NP-player VP-bowner
as its primary domain. In the Coach Competition,
teams of agents compete on a simulated soccer fiel
and receive advice from a team coach in a formal
language called CANG. In CLANG, tactics and our player 3 has t‘he La”
behaviors are expressed in terms of if-then rulesgigyre 1: An SAPT for a simple CANG sentence.
As described in (et al., 2003), its grammar consis Function: BULOMR(N, K)

of 37 non-terminal symbols and 133 productions.nput: The root nodeV of a SAPT;

PRP$-teamNN-player CD-unum VB-bowner P-null

DT-null NN-null

Below is a sample rule with its English gloss: predicate-argument knowledgk, for the MRL.
Notation: X s is the MR of nodeX.
((bpos (penalty-area our)) Output: Nup ‘
(do (pl ayer-except our {4}) C; :=theith child node ofN,1 < i< n

Cr = GETSEMANTICHEAD(N) // see Section 3
(pos (half our)))) Chyn = BUILDMR(Ch, K)
“ i for each other child’; where: # h
If the ball is in our penalty_area, all our players Cirvrn = BUILDMR(C), K)
except player 4 should stay in our half” COMPOSEMR(Ch,, > Cinsr»> K) /I se€ Section 3
Nur = Chyp

Figure 2: Computing an MR from a SAPT.
2.2 GEOQUERY. aDB Query Language

GEOQUERY is a logical query language for a smallyf jis children. Syntactic structure provides infor-

database of U.S. geography containing about 8QQation of how the parts should be composed. Am-
facts. This domain was originally chosen to teshiqjities arise in both syntactic structure and the se-
corpus-based semantic parsing due to the avafjantic interpretation of words and phrases. By in-
ability of a hand-built natural-language interfaceteqrating syntax and semantics in a single statistical
GEOBASE, supplied with Turbo Prolog 2.0 (Borland parser that produces an SAPT, we can use both se-
International, 1988). The BOQUERY language mantic information to resolve syntactic ambiguities

consists of Prolog queries augmented with severgj,q syntactic information to resolve semantic ambi-
meta-predicates (Zelle and Mooney, 1996). Belo‘@uities.

is a sample query with its English gloss: In a SAPT, each internal node in the parse tree

answer (A count (B, (city(B),loc(B,C), isannotated with a semantic label. Figure 1 shows
const (C, countryid(usa))),A)) the SAPT for a simple sentence in the ANG do-
“How many cities are there in the US?” main. The semantic labels which are shown after
dashes areonceptsn the domain. Somégype con-
ceptsdo not take arguments, likeeam and unum
(uniform number). Some concepts, which we refer
to aspredicates take an ordered list of arguments,
This section describes our basic framework for sdike playerandbowner(ball owner). The predicate-
mantic parsing, which is based on a fairly stanargument knowledgek, specifies, for each predi-
dard approach to compositional semantics (Juragate, the semantic constraints on its arguments. Con-
sky and Martin, 2000). First, a statistical parseftraints are specified in terms of the concepts that
is used to construct a SAPT that captures the séan fill each argument, such pkayerteam unum)
mantic interpretation of individual words and theandbowne(player). A special semantic labelull
basic predicate-argument structure of the sentendg.used for nodes that do not correspond to any con-
Next, a recursive procedure is used to compositioré€pt in the domain.
ally construct an MR for each node in the SAPT Figure 2 shows the basic algorithm for build-
from the semantic label of the node and the MR’éng an MR from an SAPT. Figure 3 illustrates the

3 Semantic Parsing Framework
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NB-owner(player(our.2)) compositionality exceptions. Due to space limita-

tions, we do not present the straightforward tech-
nigues we used to handle them.

N7-player(our,2) N3-bowner()
N5-team N4-player(_,_) N6-unum N1-bowner( ) N2=null 4 Corpus Annotation
null null . . . L
‘ L This section discusses how sentences for training
our player has the al

Scissor were manually annotated with SAPT's.
Figure 3: MR’s constructed for each SAPT Node. Sentences were parsed by Collins’ head-driven
model 2 (Bikel, 2004) (trained on sections 02-21
construction of the MR for the SAPT in Figure 1.of the WSJ Penn Treebank) to generate an initial
Nodes are numbered in the order in which the corsyntactic parse tree. The trees were then manually

struction of their MR’s are completed. The firstcorrected and each node augmented with a semantic
step, GTSEMANTICHEAD, determines which of a |gpel.

node’s children is itsemantic headbased on hav-  First, semantic labels for individual words, called

ing a matching semantic label. In the example, nodgsmantic tagsare added to the POS nodes in the
N3 is determined to be the semantic head of thgee The tagull is used for words that have no cor-
sentence, since its semantic labd@wner matches responding concept. Some concepts are conveyed
N8's semantic label. Next, the MR of the semanpy phrases, like “has the ball” fawownerin the pre-

tic head is constructed recursively. The semantigioys example. Only one word is labeled with the
head of N3 is clearly N1. Since N1 is a part-of-concept; the syntactic head word (Collins, 1997) is
speech (POS) node, its semantic label directly d@yeferred. During parsing, the other words in the
termines its MR, which becomdsowne(.). Once phrase will provide context for determining the se-
the MR for the head is constructed, the MR of alinantic label of the head word.

other (non-head) children are computed recursively, | pels are added to the remaining nodes in a
and @MPOSEMR assigns their MR's to fill the ar- ottom-up manner. For each node, one of its chil-
guments in the head’s MR to construct the COMgren js chosen as the semantic head, from which it
plete MR for the node. Argument constraints argyij| inherit its label. The semantic head is chosen
used to determine the appropriate filler for each as the child whose semantic label can take the MR’s

gument. Since, N2 hasraull label, the MR of N3 ot the other children as arguments. This step was
also becomesowne(.). When computing the MR 4one mostly automatically, but required some man-
for N7, N4 is determined to be the head with thg, 5| corrections to account for unusual cases.

MR: player(_,)). ComPOosSEMR then assigns N5'’s
MR to fill the teamargument and N6’s MR to fill

In order for ®OMPOSEMR to be able to construct
the MR for a node, the argument constraints for
theunumargument to construct N7's complete MR semantic head must identify a unique concept
player(our, 2). This MR in turn is composed With 1, fi| each argument. However, some predicates
the MR for N3 to yield the final MR for the sen- 1e multiple arguments of the same type, such as
tence:bowne(playerour,2)). point.nunnumnun), which is a kind of point that

For MRL's, such as CBNG, whose syntax does represents a field coordinate in GAG.
not strictly follow a nested set of predicates and ar- |n this case, extra nodes are inserted in the tree
guments, some final minor syntactic adjustment afjith new type concepts that are unique for each ar-
the final MR may be needed. In the example, thgument. An example is shown in Figure 4 in which
final MR is (bowner (player ouq2})). In the fol-  the additional type conceptaimlandnum?are in-
lowing discussion, we ignore the difference betweeftoduced. Again, during parsing, context will be
these two. used to determine the correct type for a given word.

There are a few complications left which re- Thepointlabel of the root node of Figure 4 is the
quire special handling when generating MR’sconcept that includes all kinds of points in&NG.
like coordination, anaphora resolution and non©nce a predicate has all of its arguments filled, we

11



PRN-point S-bowner(has)

—-LRB-—point.num CD‘—numl ! CD‘—numZ —-RRB--nul NP-player(player) VP-bowner(has)
CD-num CD-num PRP$-team NN-player CD-unumVB-bowner NP=null(ball)
‘ ‘ DT-null NN-null
-LRB- 0.5 ’ 0.1 -RRB- ‘
Figure 4: Adding new types to disambiguate argu- gy player 2 has the ball
ments. Figure 5: A lexicalized SAPT.

use the most general @iNG label for its concept
(e.g. point instead ofpoint.num. This generality
avoids sparse data problems during training.

3. The probabilities of generat-
ing the left and right modifiers:
Hi:l..m+1 PT(Ri(Ti)|Ha thvAiflvRC) X

5 Integrated Parsing Model [Lic1 n1 Pu(Lils)| H, Py Aj—y, LC).

) ) Where A is the measure of the distance from

51 CollinsHead-Driven Model 2 the head word to the edge of the constituent,

Collins’ head-driven model 2 is a generative, lexi- andLy,1(lh+1) and Ry, 41 (rm+1) areSTOP.
calized model of statistical parsing. In the following The model stops generating more modifiers
section, we follow the notation in (Collins, 1997). whenSTOP is generated.

Each non-terminak in the tree is a syntactic label,
which is lexicalized by annotating it with @ord,
w, and aPOS tag t,,. Thus, we write a non- We extend Collins’ model to include the genera-
terminal asX (z), where X is a syntactic label andtion of semantic labels in the derivation tree. Un-
r = (w,tsyn). X(x)is then what is generated by less otherwise stated, notation has the same mean-

5.2 Integrating Semanticsinto the Model

the generative model. ing as in Section 5.1. The subscriggn refers to
Each productionn HS = RHS in the PCFG is the syntactic part, andem refers to the semantic
in the form: part. We redefineX and z to include semantics,

each non-terminak is now a pair of a syntactic la-
bel X,,, and a semantic labeX,.,,. Besides be-
where H is the head-child of the phrase, which in-ing annotated with the wordy, and the POS tag,
herits the head-word from its parentP. L..L, t.,, X is also annotated with the semantic tag,
andR;...R,, are left and right modifiers off . tsem, Of the head child. ThusX (z) now consists of
Sparse data makes the direct estimation oX = (X,yn, Xsem), andz = (w, tgyn, tsem). FiO-
P(RHS|LHS) infeasible. Therefore, it is decom-ure 5 shows a lexicalized SAPT (but omitting,
posed into several steps — first generating the heaahdi,..,).
then the right modifiers from the head outward, Similar to the syntactic subcat frames, we also
then the left modifiers in the same way. Syntacticondition the generation of modifiers on semantic
subcategorization frames, LC and RC, for the lefsubcat frames. Semantic subcat frames give se-
and right modifiers respectively, are generated benantic subcategorization preferences; for example,
fore the generation of the modifiers. Subcat frameslayertakes aeamand aunum ThusLC and RC
represent knowledge about subcategorization prefare now: (LCsyn, LCsem) and (RCsyn, RCsem)-
ences. The final probability of a production is com-X (z) is generated as in Section 5.1, but using the
posed from the following probabilities: new definitions ofX (z), LC and RC. The imple-
1. The probability of choosing a head constituen&nemmi_on of semantic subcat frames is_ similar tq
label H: Py (H|P, h). syntactlc subcat.frames. They are multisets speci-
fying the semantic labels which the head requires in
2. The probabilities of choosing the left and rightits left or right modifiers.
subcat frames LC and RCP,.(LC|P,H,h) As an example, the probability of generating the
and?P,.(RC|P,H,h). phrase “our player 2" using NP-[player](player}

P(h)— Ly(ly)...L1(I1)H(h)R1(r1)... R (rm)
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PRP$-[team](our) NN-[player](player) CD-[unum](2h the following discussion. As in (Collins, 1997),
is (omitting only the distance measure): the paramete®;(L;(lt;, lw;)| P, H,w,t, A, LC) is
further smoothed as follows:
Pr, (NN-[player]|NP-[player],playerk

Pic(({}.{teant) INP-[player],playerk P (Lz‘|P, H,w,t,A, LC) X
Pre({({},{unum})|NP-[player],playerk Pl?(lti|Pa H,w,t,A,LC, Li) X
P; (PRP$-[team](outNP-[player],player{},{tean})) x Pi3(lw;| P, H,w,t, A, LC, Li(It;))

(
Pr(CO-unuml(2)NP-{player] player{}. {unum)) < Note this smoothing is different from the syntactic
(

P1(STORNP-[player]player{} {})) x counterpart. This is due to the difference between
P, (STORNP-[player],player{}.{})) POS tags and semantic tags; namely, semantic tags
are generally more specific.
5.3 Smoothing Table 1 shows the various levels of back-off for

Since the left and right modifiers are independentigach semantic parameter. The probabilities from
generated in the same way, we only discuss smootthese back-off levels are interpolated using the tech-
ing for the left side. Each probability estimation inniques in (Collins, 1997). All words occurring less

the above generation steps is callggeaameter To  than 3 times in the training data, and words in test
reduce the risk of sparse data problems, the paran@ata that were not seen in training, are unknown

ters are decomposed as follows: words and are replaced with the "UNKNOWN?” to-
ken. Note this threshold is smaller than the one used
Pu(H|C) = Phyyn(Heyn|C) x in (Collins, 1997) since the corpora used in our ex-
Phoore (Hsem|C, Hoyn) periments are smaller.

m (

'PZC(LC|C) = Plcsy (LCsyn|C) X
Picsem (LCsem|C; LCisyn) For unknown words, the POS tags allowed are lim-

PiLi(l)IC) = Py (Ligyn (igyns lwi)[C)Xted to those seen with any unknown words during
Proem (Ligem (Wtige s lwi)|C, Ly, (It5,,,,,)) training. Otherwise they are generated along with
the words using the same approach as in (Collins,
For brevity, (' is used to represent the context o gg7). When parsing, semantic tags for each known
which each parameter is conditionéds, It;,,,,, and  word are limited to those seen with that word dur-
lt;..,, are the word, POS tag and semantic tag gengfyg training data. The semantic tags allowed for an

ated for the non-terminal;. The word is generated \nknown word are limited to those seen with its as-
separately in the syntactic and semantic outputs. ggciated POS tags during training.

We make the independence assumption that the
syntactic output is only conditioned on syntactic fea6 Experimental Evaluation
tures, and semantic output on semantic ones. Note
that the syntactic and semantic parameters are sfil M ethodology
integrated in the model to find the globally mosfTwo corpora of NL sentences paired with MR’s
likely parse. The syntactic parameters are the samere used to evaluateC&SsSoR For CLANG, 300
as in Section 5.1 and are smoothed as in (Collinpjeces of coaching advice were randomly selected
1997). We've also tried different ways of condition-from the log files of the 2003 RoboCup Coach Com-
ing syntactic output on semantic features and vicpetition. Each formal instruction was translated
versa, but they didn't help. Our explanation is thénto English by one of four annotators (Kate et al.,
integrated syntactic and semantic parameters ha2805). The average length of an NL sentence in
already captured the benefit of this integrated apthis corpus is 22.52 words. ForE®QUERY, 250
proach in our experimental domains. guestions were collected by asking undergraduate
Since the semantic parameters do not depend students to generate English queries for the given
any syntactic features, we omit them subscripts database. Queries were then manually translated

n

54 POS Tagging and Semantic Tagging

isyn
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| BACK-OFFLEVEL | Pp(H|..) | Prc(LC|...) | Prai(Lil..) | Pra(lti..) | Prs(lw;]...) |

1 Paw,t P,Hw,t PHwtA,LC | PHwtALC,L; | PHw,tA,LC, L;, It;
2 P P,H{ P,Ht,ALC P,Ht,ALC, L; P,H{,ALC, L;, It;
3 P P,H P,HA,LC PHA,LC, L, L;, It

4 - - - L; lt;

Table 1: Conditioning variables for each back-off level$emantic parametersem subscripts omitted).

into logical form (Zelle and Mooney, 1996). The ** ‘ ‘ E—
average length of an NL sentence in this corpus is *| e ;
6.87 words. The queries in this corpus are more *[ /
complex than those in the ATIS database-query cor- [ *
pus used in the speech community (Zue and Glassg
2000) which makes the @>QUERY problem harder, 7 *[
as also shown by the results in (Popescu et al., 2004)7

60 -

40

The average number of possible semantic tags for [ ¢

each word which can represent meanings inQG °r St o |

is 1.59 and that in BOQUERY is 1.46. ot seoRasE 2 ]
Scissor was evaluated using standard 10-fold  °c a0 10 50 2

Training sentences

cross validation. NL test sentences are first parsgtlgyre 6: preC|S|0n Iearnlng curves fOEGQUERY.
to generate their SAPT’s, then their MR’s were built =

from the trees. We measured the number of test sen- |
tences that produced complete MR’s, and the num-
ber of these MR’s that were correct. For 8\G,
an MR is correct if it exactly matches the correct
representation, up to reordering of the arguments of‘
commutative operators likand. For GEOQUERY, wl
an MR is correct if the resulting query retrieved
the same answer as the correct representation when
submitted to the database. The performance of the *
parser was then measured in termpucision(the % g w00 150 200 20
percentage of completed MR’s that were correct) e
and recall (the percentage of all sentences whose
MR’s were correctly generated). parse trees (generated by the Collins parser) to an
We compared 8issoRs performance to several MRL. In the GEOQUERY domain, we also compare
previous systems that learn semantic parsers that darthe original hand-built parserK&BASE
map sentences into formal MRL's.HILL (Zelle and
Mooney, 1996) is a system based on Inductive Loglg
Programming (ILP). We compare to the versiorFigures 6 and 7 show the precision and recall learn-
of CHILL presented in (Tang and Mooney, 2001)jng curves for GOQUERY, and Figures 8 and 9 for
which uses the improvedd@kTAIL ILP system and CLANG. Since GHILL is very memory intensive,
produces more accurate parsers than the original vétr-could not be run with larger training sets of the
sion presented in (Zelle and Mooney, 1996).TSs CLANG corpus.
a system that learns symbolic, pattern-based, trans-Overall, SISSORgives the best precision and re-
formation rules for mapping NL sentences to formatall results in both domains. The only exception
languages (Kate et al., 2005). It comes in two vers with recall for GEOQUERY, for which CHILL is
sions, SLT-string, which maps NL strings directly slightly higher. However, Sissorhas significantly
to an MRL, and 8T-tree, which maps syntactic higher precision (see discussion in Section 7).

3

am(%)

20 SCISSOR —+— 4
SILT-string ------
SILT-tree ---%---
CHILL --&
GEOBASE ---- 4

Figure 7: Recall learning curves forE® QUERY.

Results
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100 - - - - - tistical parsing that attempts to find the SAPT with
T maximum likelihood, which improves robustness
T compared to purely rule-based approaches. How-
ever, ISSORrequires an extra training input, gold-
standard SAPT’s, not required by these other sys-
tems. Further automating the construction of train-

Precision (%)

a0ty . E

ol e : ing SAPT’s from sentences paired with MR’s is a
wl | T coissoR | subject of on-going research.
wli SSirnes x| PRECISE is designed to work only for the spe-

o CHILL &
0 ! ! ! ! !

cific task of NL database interfaces. By comparison,
° T s ScissoRris more general and can work with other
Figure 8: Precision learning curves for GlG. MRL's as well (6.g. CIANG). Also, PRECISEis not
" , , , , , alearning system and can fail to parse a query it con-
siders ambiguous, even though it may not be consid-
ered ambiguous by a human and could potentially be
resolved by learning regularities in the training data.
In (Lev et al., 2004), a syntax-driven approach
1 is used to map logic puzzles described in NL to
i an MRL. The syntactic structures are paired with

70

60

50

40

Recall (%)

30 |
e X SCISSOR —+—

ol SILT-string >~ | hand-written rules. A statistical parser is used to
ol X* - oL e generate syntactic.parse trees, gnd then MR’s. are
- a built using compositional semantics. The meaning
% 50 100 150 20 20 300 of open-category words (with only a few exceptions)

Training sentences

] X is considered irrelevant to solving the puzzle and
Figure 9: Recall learning curves for GNG.

their meanings are not resolved. Further steps would
Results on a larger 80QUERY corpus with 880 be needed to generate MR’s in other domains like
queries have been reported f®iECISE(Popescu et CLANG and GEOQUERY. No empirical results are
al., 2003): 100% precision and 77.5% recall. Ofeported for their approach.
the same corpus,3SsORobtains 91.5% precision Several machine translation systems also attempt
and 72.3% recall. However, the figures are not conf® generate MR's for sentences. In (et al., 2002),
parable. RECISE can return multiple distinct SQL @ English-Chinese speech translation system for
queries when it judges a question to be ambigdi-mited domains is described. They train a statisti-
ous and it is considered correct whany of these cal parser on trees with only semantic labels on the
SQL queries is correct. Our measure only considef¥°des; however, they do not integrate syntactic and
the top result. Due to space limitations, we do not€mantic parsing.

present complete learning curves for this corpus. ~ History-based models of parsing were first in-
troduced in (Black et al., 1993). Their original

7 Rdated Work model also included semantic labels on parse-tree
nodes, but they were not used to generate a formal
We first discuss the systems introduced in SectioMR. Also, their parsing model is impoverished com-
6. CHILL uses computationally-complex ILP meth-pared to the history included in Collins’ more recent
ods, which are slow and memory intensive. Thenodel. SISSOR explores incorporating semantic
string-based version of IS uses no syntactic in- labels into Collins’ model in order to produce a com-
formation while the tree-based version generatespete SAPT which is then used to generate a formal
syntactic parse first and then transforms it into amR.
MR. In contrast, 81SSORintegrates syntactic and The systems introduced in (Miller et al., 1996;
semantic processing, allowing each to constrain aridiller et al., 2000) also integrate semantic labels
inform the other. It uses a successful approach to stato parsing; however, their SAPT’s are used to pro-
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duce a much simpler MR, i.e., a single semantic history-based grammars: Using richer models for prokmbili

which has three slots — the arrival time, origin and

destination. Only one frame needs to be extractdgpriand International. 1988. Turbo Prolog 2.0 Reference
. . . Guide Borland International, Scotts Valley, CA.

from each sentence, which is an easier task than

our problem in which multiple nested frames (predMao Chen et al. ~ 2003. ~ Users manual: RoboCup
icat tb tracted. Th tacti del | soccer server manual for soccer server version 7.07
icates) must be extracted. € syntactic moael IN g jater.  Available ahttp://sourceforge. net/

(Miller et al., 2000) is similar to Collins’, but does proj ects/ sserver/.

not use features like Schajt frames a_'nd distance M&RAzhael J. Collins. 1997. Three generative, lexicalisedimo
sures. Also, the non-terminal labh#l is not further els for statistical parsing. IRroc. of ACL-97 pages 16-23,
decomposed into separately-generated semantic and/adrid, Spain.

syntactic components. Since it used much more speuqing Gao et al. 2002. Mars: A statistical semantic parsing

cific labels (the cross-product of the syntactic and and gener{ition-based.multilingual automatic translagicn
. . . tem. Machine Translation17:185-212.
semantic labels), its parameter estimates are poten-

tially subject to much greater sparse-data pr0b|em§_aniel Gildea} and Daniel Jurafsky. 2092. Agtomated lalgelin
of semantic roles. Computational Linguistics28(3):245—

) 288.
8 Conclusion . .
Daniel Jurafsky and James H. Martin. 2008peech and Lan-

ScissoRrlearns statistical parsers that integrate syn- 9uage Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recog-

tax and semantics in order to produce a semanti- nition, Prentice Hall, Upper Saddle River, NJ.

cally augmented parse tree that is then used to COrlgc-)hit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. 2005.

positionally generate a formal meaning representa- |earning to transform natural to formal languages. To ap-
tion. Experimental results in two domains, a natural- pear inProc. of AAAI-05Pittsburgh, PA.

language database interface and an interpreter f@o Lev, Bill MacCartney, Christopher D. Manning, and Roge
coaching instructions in robotic soccer, have demon- Levy. 2004. Solving logic puzzles: From robust process-

_ ing to precise semantics. Froc. of 2nd Workshop on Text
strated that 8§1Issorgenerally produces more accu Meaning and Interpretation. AGL-OBarcelona, Spain.

rate semantic representations than several previous

; _Aftha. Scott Miller, David Stallard, Robert Bobrow, and Richard
approaches. By augmenting a state-of-the-art Staté Schwartz. 1996. A fully statistical approach to naturallan

tical parsing model to include semantic information, guage interfaces. IACL-96 pages 55-61, Santa Cruz, CA.
itis able to mtegratg syntactlc_ and semantic CIuegcott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.
to produce a robust interpretation that supports the weischedel. 2000. A novel use of statistical parsing to ex-
generation of complete formal meaning representa- tract information from text. IProc. of NAACL-00 pages
tions 226-233, Seattle, Washington.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. To-
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Abstract

In order to achieve the long-range goal
of semantic interpretation of noun com-
pounds, it is often necessary to first de-
termine their syntactic structure. This pa-
per describes an unsupervised method for
noun compound bracketing which extracts
statistics from Web search engines using a
x? measure, a new set of surface features,
and paraphrases. On a gold standard, the
system achieves results of 89.34% (base-

Marti Hearst
SIMS
University of California, Berkeley
Berkeley, CA 94720
hearst@sims.berkeley.edu

(1b)
(2b)

In this paper, we describe a highly accurate un-
supervised method for making bracketing decisions
for noun compounds (NCs). We improve on the cur-
rent standard approach of using bigram estimates to
compute adjacency and dependency scores by intro-
ducing the use of thg? measure for this problem.
We also introduce a new set of surface features for
qguerying Web search engines which prove highly ef-
fective. Finally, we experiment with paraphrases for

[ [ liver cell ] antibody] (left bracketing)
[liver [cell ling] ] (right bracketing)

line 66.80%), which is a sizable improve-
ment over the state of the art (80.70%).

improving prediction statistics. We have evaluated
the application of combinations of these features to
predict NC bracketing on two distinct collections,
one consisting of terms drawn from encyclopedia
text, and another drawn from bioscience text.

An important but understudied language analy- The remainder of this paper describes related
sis problem is that of noun compound bracketingyork, the word association models, the surface fea-
which is generally viewed as a necessary step tédres, the paraphrase features and the results.
wards noun compound interpretation. Consider the

following contrastive pair of noun compounds: 2 Related Work

(1) liver cell antibody The syntax and semantics of NCs is an active area of

(2) livercellline research; thdournal of Computer Speech and Lan-
In example (1) amntibodytargets diver cell, while  guagehas an upcoming special issue on Multiword
(2) refers to acell line which is derived from the Expressions.
liver. In order to make these semantic distinctions The best known early work on automated un-
accurately, it can be useful to begin with the corsupervised NC bracketing is that of Lauer (1995)
rect grouping of terms, since choosing a particulavho introduces the probabilistic dependency model
syntactic structure limits the options left for semanfor the syntactic disambiguation of NCs and argues
tics. Although equivalent at the part of speech (POS3)gainst the adjacency model, proposed by Marcus
level, these two noun compounds have different syrf1980), Pustejovsky et al. (1993) and Resnik (1993).
tactic trees. The distinction can be represented ad.auer collectsn-gram statistics from Grolier’'s en-
binary tree or, equivalently, as a binary bracketing: cyclopedia, containing about 8 million words. To

1 Introduction
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overcome data sparsity problems, he estimates profas opposed ta;; modifying ws).
abilities over conceptual categories in a taxonomy Left bracketing is a bit different since there is only
(Roget’s thesaurus) rather than for individual wordsmodificational choice for a 3-word NC. 16; modi-
Lauer evaluated his models on a set of 244 unanfiesw-, this implies thatv; w- is a compound which
biguous NCs derived from the same encyclopedia turn modifiesws, as inlaw enforcement agent
(inter-annotator agreement 81.50%) and achieved Thus the usefulness of the adjacency model vs.
77.50% for the dependency model above (baselinee dependency model can depend in part on the mix
66.80%). Adding POS and further tuning allowedbf left and right bracketing. Below we show that the
him to achieve the state-of-the-art result of 80.70%dependency model works better than the adjaceny
More recently, Keller and Lapata (2003) evaluimodel, confirming other results in the literature. The
ate the utility of using Web search engines for obnext subsections describe several different ways to
taining frequencies for unseen bigrams. They thecompute these measures.
later propose using Web counts as a baseline unsu- _ )
pervised method for many NLP tasks (Lapata ang-2 USIng Frequencies
Keller, 2004). They apply this idea to six NLP tasksThe most straightforward way to compute adjacency
including the syntactic and semantic disambiguaand dependency scores is to simply count the cor-
tion of NCs following Lauer (1995), and show thatresponding frequencies. Lapata and Keller (2004)
variations on bigram counts perform nearly as welhchieved their best accuracy (78.68%) with the de-
as more elaborate methods. They do not use tagendency model and the simple symmetric score
onomies and work with the word-grams directly, #(w;, w;).t
achieving 78.68% with a much simpler version of
the dependency model. 3.3 Computing Probabilities
Girju et al. (2005) propose aupervisednodel Lauer (1995) assumes that adjacency and depen-
(decision tree) for NC bracketinig context based dency should be computed via probabilities. Since
on five semantic features (requiring the corredhey are relatively simple to compute, we investigate
WordNet sense to be given): the top three Wordthem in our experiments.
Net semantic classes for each noun, derivationally Consider the dependency model, as introduced
related forms and whether the noun is a nominalizaabove, and the N@; wows. Let Pr(w; — wjlw;)
tion. The algorithm achieves accuracy of 83.10%. be the probability that the wordy; precedes a
given fixed wordw;. Assuming that the distinct
3 Models and Features head-modifier relations are independent, we obtain
Pr(right) = Pr(w; — ws|ws)Pr(ws — ws|ws)
andPr(left) = Pr(w; — wa|wg)Pr(wy — ws|ws).
In related work, a distinction is often made betweeRq choose the more likely structure, we can drop
what is called thelependency modaind theadja-  the shared factor and compaPe(w; — ws|ws) to
cency model The main idea is as follows. For APr(wy — wolws).
given 3-word NCw;wows, there are two reasons it The alternative adjacency model compares
may take on right bracketingy: [waws]]. Either (@)  pr(w, — wslws) to Pr(w; — wslws), ie. the
waws is a compound (modified byy), or (b)wy and - association strength between the last two words vs.
w2 independently modifyws. This distinction can that hetween the first two. If the first probability is
be seen in the examplé®me health carghealth |arger than the second, the model predicts right.
careis a compound modified byomg versusadult The probabilityPr(w; — ws|ws) can be esti-
male rat(adultandmaleindependently modifyat).  ated as (w1, wo) /4 (ws), wherest(wr, w) and

The adjacency model checks (), whetherws i (y,) are the corresponding bigram and unigram
is a compound (i.e., how stronglys modifiesws

as opposed ta;wy being a compound) to decide ‘This score worked best on training, when Keller&Lapata
were doing model selection. On testifgy (with the depen-

whether or not to predict a right braCket'_ng- Th&ency model) worked better and achieved accuracy of 80.32%,
dependency model checks (b), dags modify w3  but this result was ignored, & did worse on training.

3.1 Adjacency and Dependency Models
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frequencies. They can be approximated as the numhectly, we can calculateitad = N-A—- B—C.

ber of pages returned by a search engine in resporisimally, we estimateV as the total number of in-

to queries for the exact phrase{ ws” and for the dexed bigrams on the Web. They are estimated as 8

word ws. In our experiments below we smootRed trillion, since Google indexes about 8 billion pages

each of these frequencies by adding 0.5 to avoignd each contains about 1,000 words on average.

problems caused by nonexistengrams. Other measures of word association are possible,
Unless some particular probabilistic interpretasuch asnutual information(Ml), which we can use

tion is needed, there is no reason why for a givenwith the dependency and the adjacency models, sim-

ordered pair of words(w;,w;), we should use ilarly to #, x? or Pr. However, in our experiments,

Pr(w; — wj|w;) rather thanPr(w; — w;|w;), x? worked better than other methods; this is not sur-

i < j. This is confirmed by the adjacency modeprising, asy? is known to outperform Ml as a mea-

experiments in (Lapata and Keller, 2004) on Lauer’sure of association (Yang and Pedersen, 1997).

NC set. Their results show that both ways of

computing the probabilities make sense: using AI3.5 Web-Derived Surface Features

tavista queries, the former achieves a higher accly,thors sometimes (consciously or not) disam-
racy (70.49% vs. 68.85%), but the latter is better ogjgyate the words they write by using surface-level
the British National Corpus (65.57% vs. 63.11%). markers to suggest the correct meaning. We have
found that exploiting these markers, when they oc-
cur, can prove to be very helpful for making brack-
In both models, the probabilitPr(w; — wjlw;)  eting predictions. The enormous size of Web search
can be replaced by some (possibly symmetric) me@ngine indexes facilitates finding such markers fre-
sure of association betweer andw;, such asChi quently enough to make them useful.
squared(x*). To calculatex® (wi, w;), we need: One very productive feature is tidash(hyphen).
(A) #(wi, w)): Starting with the terntell cycle analysisif we can
b Ih , _ _ find a version of it in which a dash occurs between
(B) #(wi, wj), the number of bigrams in which the w0 first two words:cell-cycle this suggests a left
f|r§t word isw;, followed by a word other than o eting for the full NC. Similarly, the dash in
Wi» donor T-cellfavors a right bracketing. The right-
(C) #(wi,w;), the number of bigrams, ending inpand dashes are less reliable though, as their scope
wj, whose first word is other than;; is ambiguous. Irfiber optics-systenthe hyphen in-
(D) #(w;, w;), the number of bigrams in which the dicates that the noun compoufilsler opticsmodifies
first word is notw; and the second is nat;. system There are also cases with multiple hyphens,
as int-cell-depletion which preclude their use.
The genitive ending, opossessivenarker is an-
) N(AD — BO)? ” otf|1|er useful indi_carl]tot;. lhg pr;;ast_mrain's ste”m
X" = cellssuggests a right bracketing forain stem cells
(A+C)(B+D)(A+B)(C+D) while brain stem’s cell$avors a left bracketing.
Here N = A+ B + C + D is the total num- Another highly reliable source is related to inter-
ber of bigramsB = #(w;) — #(w;, w;) andC' = nal capitalization For examplePlasmodium vivax
#(w;) — #(w;, w;). While it is hard to estimat® Malaria suggests left bracketing, whilgrain Stem
— _ cellswould favor a right one. (We disable this fea-
Zero counts sometimes happen ., ws), butarerare  y,r0 oy Roman digits and single-letter words to pre-
for unigrams and bigrams on the Web, and there is no need for . s ) o
a more sophisticated smoothing. vent problems with terms likeitamin D deficiency
*For example, as used by Lauer to introduce a prior for leftwhere the capitalization is just a convention as op-

right bracketing preference. The best Lauer model does n%osed to a special mark to make the reader think that

3.4 Other Measures of Association

They are combined in the following formula:

work with words directly, but uses a taxonomy and further need
a probabilistic interpretation so that the hidden taxonomy varithe last two terms should go together.)

ables can be summed out. Because of that summation, theterm

Pr(w2 — ws|ws) does not cancel in his dependency model. “Features can also occur combined, brin’s stem-cells
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We can also make use of embedddashes For independent models in Tables 1 and 2.
example inleukemia/lymphoma celthe slash pre-  First, in some cases, we can query passessive
dicts a right bracketing since the first word is an almarkersdirectly: although search engines drop the
ternative and cannot be a modifier of the second onapostrophe, they keep th& so we can query for
In some cases we can find instances of the Ntrain’s” (but not for“brains’ ” ). We then com-
in which one or more words are enclosed in parerpare the number of times the possessive marker ap-
theses, e.g.growth factor (beta)or (growth fac- peared on the second vs. the first word, to make a
tor) beta both of which indicate a left structure, or bracketing decision.
(brain) stem cellswhich suggests a right bracketing. Abbreviationsare another important feature. For
Even a comma, a dot or a colon (or any speexample,“tumor necrosis factor (NF)"suggests a
cial character) can act as indicators. For exampléight bracketing, while‘tumor necrosis (TN) fac-
“health care, provideror “lung cancer: patients tor” would favor left. We would like to issue exact
are weak predictors of a left bracketing, showinghrase queries for the two patterns and see which
that the author chose to keep two of the words toene is more frequent. Unfortunately, the search en-
gether, separating out the third one. gines drop the brackets and ignore the capitalization,
We can also exploit dashes to words external t80 we issue queries with the parentheses removed, as
the target NC, as imouse-brain stem cellswhich in “tumor necrosis factor nf’ This produces highly
is a weak indicator of right bracketing. accurate results, although errors occur when the ab-
Unfortunately, Web search engines ignore pundreviation is an existing word (e.gng, a Roman
tuation characters, thus preventing querying directl§igit (€.g.,1V), a state (e.gCA), etc.
for terms containing hyphens, brackets, apostrophes,Another reliable feature isoncatenation Con-
etc. We collect them indirectly by issuing queriessider the NChealth care reform which is left-
with the NC as an exact phrase and then poskracketed. Now, consider the bigréhealth care”.
processing the resulting summaries, looking for thét the time of writing, Google estimates 80,900,000
surface features of interest. Search engines typical@ges for it as an exact term. Now, if we try the
allow the user to explore up to 1000 results. We coword healthcarewe get 80,500,000 hits. At the
lect all results and summary texts that are availabame time carereformreturns just 109. This sug-
for the target NC and then search for the surface pa@ests that authors sometimes concatenate words that
terns using regular expressions over the text. Ea@¢t as compounds. We find below that comparing
match increases the score for left or right brackethe frequency of the concatenation of the left bigram
ing, depending on which the pattern favors. to that of the right (adjacency model for concatena-
While some of the above features are clearl§ions) often yields accurate results. We also tried the
more reliable than others, we do not try to weighflependency model for concatenations, as well as the
them. For a given NC, we post-process the returnégncatenations of two words in the context of the
Web summaries, then we find the number of leftthird one (i.e., compare frequencies“ogalthcare
predicting surface feature instances (regardless tform” and“health carereform’).
their type) and compare it to the number of right- \We also used Google’s support for “**, which al-

predicting ones to make a bracketing deciéon_ IOWS a Single WOI’d Wildcard, to see hOW Often two Of
the words are present but separated from the third by
3.6 Other Web-Derived Features some other word(s). This implicitly tries to capture

Some features can be obtained by using the 0Vqu;traphrases involving the two sub-concepts making

all counts returned by the search engine. As thed® the whole. For example, we compared the fre-

. * ” 1
counts are derived from the entire Web, as opposé:HJency ofhealth care * reform” to that of*health

to a set of up to 1,000 summaries, they are ofdiﬂ‘er’i care reform”. We also used 2 and 3 stars and

ent magnitude, and we did not want to simply ad WithEIed Te V\éorzd gl’Ol:I‘p orderf(indifitid V\I/r:]h/
them to the surface features above. They appear Hgfables L an )Z €.g.care relorm ) eat. )
We also tried a simpleeorder without inserting

5This appears aSurface features (sunm Tables 1and 2. stars, i.e., compare the frequency‘mdform health
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care” to that of“care reform healthi. For exam- though, since as a study by Downing (1977) shows,
ple, when analyzingnyosin heavy chaiwe see that when no context is provided, people often come up
heavy chain myosiis very frequent, which provides with incompatible interpretations.
evidence against groupirigeavyandchaintogether In contrast, we use paraphrases in order to make
as they can commute. syntactic bracketing assignments. Instead of trying
Further, we tried to look inside theternal inflec- to manually decide the correct paraphrases, we can
tion variability. The idea is that iftyrosine kinase issue queries using paraphrase patterns and find out
activation” is left-bracketed, then the first two wordshow often each occurs in the corpus. We then add
probably make a whole and thus the second wongp the number of hits predicting a left versus a right
can be found inflected elsewhere but the first worbiracketing and compare the counts.

cannot, e.g.jtyrosine kinasa activation”. Alterna- Unfortunately, search engines lack linguistic an-
tively, if we find different internal inflections of the notations, making general verbal paraphrases too ex-
first word, this would favor a right bracketing. pensive. Instead we used a small set of hand-chosen

Finally, we tried switching the word order of the paraphrasesassociated withcaused bycontained
first two words. If they independently modify thein, derived from focusing onfound in involved in
third one (which implies a right bracketing), then welocated at/in made of performed by preventing
could expect to see also a form with the first twaelated toand used by/in/for It is however feasi-
words switched, e.g., if we are givéadult male ble to generate queries predicting left/right brack-
rat” , we would also expec¢male adult rat”. eting with/without a determiner for every preposi-
tion.® For the copula paraphrases we combine two
verb formsis andwas and three complementizers
Warren (1978) proposes that the semantics of the rérat, whichandwho. These are optionally combined
lations between words in a noun compound are ofwith a preposition or a verb form, e.ghemes that
ten made overt by paraphrase. As an example afe used in science fiction
prepositional paraphrasean author describing the
concept ofbrain stem cellamay choose to write it 4 Evaluation
in a more egpanded manner, suchsésm cells N 41 Lauers Dataset
the brain This contrast can be helpful for syntactic
bracketing, suggesting that the full NC takes on righ{Ve experimented with the dataset from (Lauer,
bracketing, sincatemandcellsare kept together in 1995), in order to produce results comparable to
the expanded version. However, this NC is ambigu}hose of Lauer and Keller & Lapata. The set consists

brain stemimplying a left bracketing. Grolier’s encyclopediahowever, only 216 of these

3.7 Paraphrases

Some NCs’ meaning cannot be readily expresstCs are unique.
with a prepositional paraphrase (Warren, 1978). An Lauer (1995) derivedi-gram frequencies from
alternative is thecopula paraphrasgas in office the Grolier’s corpus and tested the dependency and
building that/which is a skyscrapdright bracket- the adjacency models using this text. To help combat
ing), or averbal paraphrassuch apain associated data sparseness issues he also incorporated a taxon-
with arthritis migraine(left). omy and some additional information (see Related

Other researchers have used prepositional par@lork section above). Lapata and Keller (2004) de-
phrases as a proxy for determining the semantic relgved their statistics from the Web and achieved re-
tions that hold between nouns in a compound (Laue?,L”tS close to Lauer’s using simple lexical models.
1995; Keller and Lapata, 2003; Girju et al., 2005).
Since most NCs have a prepositional paraphrase,
Lauer builds a model trying to choose between th¥/e constructed a new set of noun compounds from
most likely candidate prepositionsf, for, in, at, the biomedical literature. Using the Open NLP
on, from, with and about (excludinglike which is ™6, J4dition to the articlesa( an, the), we also used quanti-
mentioned by Warren). This could be problematidiers (e.g.someevery and pronouns (e.ghis, his).

Biomedical Dataset
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tools,/ we sentence splitted, tokenized, POS taggetl3 Experiments

and shallow parsed a set of 1.4 million MEDLINE 1o n-grams, surface features, and paraphrase
abstracts (citations between 1994 and 2003). ThenR nts were collected by issuing exact phrase
we extracted all 3-noun sequences falling in the 'aﬁueries, limiting the pages to English and request-
three positions of noun phrases (NPs) found in thgyq filtering of similar resulté. For each NC, we

shallow parse. If the NP contained other nouns, t nerated all possible word inflections (etgmor
sequence was discarded. This allows for NCs whic. hdtumorg and alternative word variants (e.qu:

are modified by adjectives, determiners, and 0 Ofyor andtumoup. For the biomedical dataset they

but prevents extracting 3-noun NCs that are part Qfere automatically obtained from the UMLS Spe-
longer NCs. For details, see (Nakov et al., 2005). jgjist lexiconl® For Lauer's set we used Carroll's

This procedure resulted in 418,678 different NGnorphological tools! For bigrams, we inflect only
types. We manually investigated the most frequerihe second word. Similarly, for a prepositional para-
ones, removing those that had errors in tokenizghrase we generate all possible inflected forms for
tion (e.g., containing words likeansplanor tation),  the two parts, before and after the preposition.

POS tagging (e.g.acute lung injury whereacute
was wrongly tagged as a noun) or shallow parsin
(e.g.,situ hybridization that missesn). We had to The results are shown in Tables 1 and 2. As NCs
consider the first 843 examples in order to obtaiare left-bracketed at least 2/3rds of the time (Lauer,
500 good ones, which suggests an extraction accli995), a straightforward baseline is to always as-
racy of 59%. This number is low mainly because theign a left bracketing. Tables 1 and 2 suggest that
tokenizer handles dash-connected words as a sindke surface features perform best. The paraphrases
token (e.gfactor-alphg and many tokens containedare equally good on the biomedical dataset, but on
other special characters (e.gd4+), which cannot Lauer’s set their performance is lower and is compa-
be used in a query against a search engine and hadle to that of the dependency model.

to be discarded. The dependency model clearly outperforms the

The 500 NCs were annotated independently b djacency one (as other researchers have found) on

two judges, one of which has a biomedical back: auer’s set, but not on the biomedical set, where it
ground; the other one was one of the authors. TH@, equaI.Iy gOOdXQ_ barely outperforms #,buton the
problematic cases were reconsidered by the tv\;ﬂiomedlc""I sek” is a clear w_mner (by about 1.5%)
judges and after agreement was reached, the set c8R.both dependgncy and adjacency models._
tained: 361 left bracketed, 69 right bracketed and The frequencies (#) outperform or atleast rival the

70 ambiguous NCs. The latter group was eXclude[arobabiIities on both sets and for both models. This
from the experiments. iS not surprising, given the previous results by Lap-

_ ata and Keller (2004). Frequencies also outperform
We calculated the inter-annotator agreement Op,. o5, the biomedical set. This may be due to the

the 430 cases that were marked as unambig“?%undance of single-letter words in that set (because
after agreement.  Using the original annotator'gs terms like T cell, B cell, vitamin D etc.; similar
choices, we obtained an agreement of 88% or 82%9roblems are caused by Roman digits likéii etc.)

depending on whether we consider the annotationgose Web frequencies are rather unreliable, as they
that were initially marked as ambiguous by one ofe ysed byr but not by frequencies. Single-letter

the judges to be correct. The corresponding valuggords cause potential problems for the paraphrases
for the kappa statistics were .606 (substantial agree-

ment) and .442 (moderate agreement). °In our experiments we used MSN Search statistics fo!' the
n-grams and the paraphrases (unless the pattern contained a
“*m) and Google for the surface features. MSN always re-
- turned exact numbers, while Google and Yahoo rounded their
"http://opennlp.sourceforge.net/ page hits, which generally leads to lower accuracy (Yahoo was
8Two NCs can appear more than once but with a differenetter than Google for these estimates).
inflection or with a different word variant, e.ggcolon cancer Ohttp://mww.nim.nih.gov/pubs/factsheets/umislex.html
cellsandcolon carcinoma cells Uhttp://www.cogs.susx.ac.uk/lab/nlp/carroll/morph.html

6.4 Results and Discussion

22



Model [ V [ x] 0 [P@E)] C%)] [ Model | V [ x [ 0 [P®%)]| C%)]

# adjacency 183 61| O | 75.00 100.00 | #adjacency 374 | 56| 0 | 86.98 100.00
Pr adjacency 180 | 64 | 0 | 73.77) 100.00 | Pr adjacency 353 | 77| 0 | 82.09 100.00
MI adjacency 1821 62| O | 7459 100.00 | MI adjacency 372 | 58| 0 | 86.51 100.00
x2 adjacency 1841 60| O 75.41 100.00 | x2 adjacency 379 | 51| O 88.14 100.00
# dependency 193 | 50 | 1 | 79.42 99.59 # dependency 374 | 56 | 0 | 86.98 100.00
Pr dependency 194 | 50 | O | 79.51 100.00 | Prdependency 369 | 61| O | 85.81 100.00
MI dependency 194 | 50| O | 79.51 100.00 | MI dependency 369 | 61| O | 85.81 100.00
x2 dependency 195| 50 | O | 79.92 100.00 | x2 dependency 380 | 50| O | 88.37 100.00
# adjacency (*) 152 | 41 | 51 | 78.76 79.10 # adjacency (*) 373 | 57| 0 | 86.74 100.00
# adjacency (**) 162 | 43 | 39 | 79.02 84.02 # adjacency (**) 358 | 72| 0 | 83.26 100.00
# adjacency (***) 150 | 51 | 43 | 74.63 82.38 # adjacency (***) 334|838 | 8 | 79.15 98.14
# adjacency (*, rev.) 163 | 48 | 33 | 77.25 86.47 # adjacency (*, rev.) 370 | 59 | 1 | 86.25 99.77
# adjacency (**, rev.) 165| 51 | 28 | 76.39 88.52 # adjacency (**, rev.) 367 | 62| 1 | 8555 99.77
# adjacency (***,rev.) | 156 | 57 | 31 | 73.24 87.30 # adjacency (***,rev.) | 351 | 79 | 0 | 81.63 100.00
Concatenation adj. 175| 48 | 21 | 78.48 91.39 Concatenation adj. 370 | 47 | 13 | 88.73 96.98
Concatenation dep. 167 | 41 | 36 | 80.29 85.25 Concatenation dep. 366 | 43 | 21 | 89.49 95.12

Concatenation triples 76 | 3 | 165 | 96.20 32.38 Concatenation triple 238 | 37 | 155 | 86.55 63.95

Inflection Variability 69 | 36 | 139 | 65.71 43.03 Inflection Variability 198 | 49 | 183 | 80.16 57.44
Swap first two words 66 | 38 | 140 | 63.46 42.62 Swap first two words 90 | 18 | 322 | 83.33 25.12
Reorder 112 | 40 | 92 | 73.68 62.30 Reorder 320 | 78 | 32 | 80.40 92.56
Abbreviations 21 | 3 | 220 | 87.50 9.84 Abbreviations 133 | 23 | 274 | 85.25 36.27
Possessives 32 | 4 | 208 | 88.89 14.75 Possessives 48 7 | 375 | 87.27) 12.79
Paraphrases 174 38 | 32 | 82.08 86.89 Paraphrases 383 |44 | 3 | 89.70 99.30
Surface features (sum)| 183 | 31 | 30 | 85.51 87.70 Surface features (sum)| 382 | 48 | O | 88.84 100.0Q
Majority vote 210 | 22 | 12 | 90.521 95.08 Majority vote 403 | 17 | 10 | 95.95 97.67

Majority vote— left 218 | 26 | 0 | 89.34/ 100.00 | Majority vote— right 410| 20| O | 95.35 100.00
Baseline(choose left) | 163 | 81 | 0 | 66.80 100.0q0 | Baseline(chooseleft) | 361 69| 0 | 83.95 100.00

Table 1:Lauer Set. Shown are the numbers for cor- Table 2:Biomedical Set.

rect (,/), incorrect (), and no prediction(), fol-

lowed by precision (P, calculated ovgrandx only)

and coverage (C, % examples with prediction). Weelopment and the other half for testikgyWe, fol-

use “—" for back-off to another model in case 8f lowing Lauer, used everything for testing. Lapata &
Keller also used the AltaVista search engine, which

no longer exists in its earlier form. The table does

as well, by returning too many false positives, bubot contain the results of Girju et al. (2005), who

they work very well with concatenations and dashes; nieved 83.10% accuracy, but usesligervisedl-

e.g.,T cellis often written ascell gorithm and targeted bracketing context They
As Table 4 shows, most of the surface featureg, ther “shuffled” the Lauer’s set, mixing it with ad-

that we predicted to be right-bracketing actually ingjtional data, thus making their results even harder
dicated left. Overall, the surface features were veny, compare to these in the table.

good at predicting left bracketing, but unreliable for
right-bracketed examples. This is probably in par{r

due to the fact that they look for adjacent words, -84 its. Consider the bigrams, ws, wyw, andwsw,

they act as a kind of adjacency mode. and a page that contains each bigram exactly once.

h we ob:alr;gtil)lt)ur bedstloveralIkrequtsbb3l/dcpm_ll_3|rt1)|ln% search engine will contribute a page count of 1 for
€ most retiable models, marked in bold In 1ables, - qiead of a frequency of 3; thus the page hits

. w
1, 2and4. As they have independent errors, we us%i; w4 can be smaller than the page hits for the sum

amajority vote combination. of the individual bigrams. See Keller and Lapata
Table 3 compares our results to those of Laue(rzoos) for more iSSUes

(1995) and of Lapata and Keller (2004). It is impor-
tant to note though, that our results dreectlycom- —5——— . _ _

ble to those of Lauer. while the Keller&Lapata’ In fact, the differences are negligible; their system achieves
parable O_ ! P %retty much the same result on the half split as well as on the
are not, since they used half of the Lauer set for devhole set (personal communication).

Note that using page hits as a proxy foigram
equencies can produce some counter-intuitive re-
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[ Model | Acc. % | Example Predicts  Accuracy Coverage

LEFT (baseline) 66.80 brain-stem cells left 88.22 92.79
Lauer adjacency 68.90 brain stem’s cells left 91.43 16.28
Lauer dependency 77.50 (brain Stem) cells left 96.55 6.74
Our x2 dependency 79.92 brain stem (cells) left 100.00 1.63
Lauer tuned 80.70 brain stem, cells left 96.13 42.09
“Upper bound” (humans - Lauer) 81.50 brain stem: cells left 97.53 18.84
Our majority vote— left 89.34 brain stem cells-death left 80.69 60.23
Keller&Lapata: LEFT (baseline)| 63.93 gra!n stem cells/tissues  left 83.59 45.35
: rain stem Cells left 90.32 36.04
Keller&Lapata: best BNC 68.03 brain stem/cells left 100.00 7.21
Keller&Lapata: best AltaVista 78.68 brain. stem cells left 97 '58 38' 37
. . . . brain stem-cells right 25.35 50.47
Table 3: Comparison to previous unsupervised | piains stem cells right 5588 7.90
results on Lauer’s set The results of Keller & La- | (brain) stem cells right 46.67 3.49
pata are on half of Lauer’s set and thus are only inf Prain (stem cells) right 0.00 0.23
. . . brain, stem cells right 54.84 14.42
directly comparable (note the different baseline). | prain: stem cells right 44.44 6.28
rat-brain stem cells right 17.97 68.60
neural/brain stem cells right 16.36 51.16
. brain Stem cells right 24.69 18.84
5 Conclusions and Future Work brain/stem cells right 53.33 3.49
brain stem. cells right 39.34 14.19

We have extended and improved upon the state-o
the-art approaches to NC bracketing using an urfable 4: Surface features analysis (%Ss)run over
supervised method that is more robust than Lauéhe biomedical set.

(1995) and more accurate than Lapata and Keller

(2004). Future work will include testing on NCs
grank Keller and Mirella Lapata. 2003. Using the Web to

COhS]StIﬂg of more than 3 nou_ns' recogmzmg th obtain frequencies for unseen bigran@mputational Lin-
ambiguous cases, and bracketing NPs that includeguistics 29:459-484.

terminers and modifiers. We plan to test thi -
dete ers a d_ odifiers ¢ pian fo tes S aF?\/Iirella Lapata and Frank Keller. 2004. The Web as a base-
proach on other important NLP problems. line: Evaluating the performance of unsupervised Web-
As mentioned above, NC bracketing should be based models for a range of NLP tasks. Pioceedings of

helpful for semantic interpretation. Another possi- H-T-NAACL pages 121-128, Boston.
ble application is the refinement of parser outpuivark Lauer. 1995.Designing Statistical Language Learners:
Currently, NPs in the Penn TreeBank are flat, with- Experiments on Noun Compoundh.D. thesis, Department

. . . of Computing Macquarie University NSW 2109 Australia.
out internal structure. Absent any other information,
probabilistic parsers typically assume right bracketMitchell Marcus. 1980.A Theory of Syntactic Recognition for
ing, which is incorrect about 2/3rds of the time for Natural LanguageMIT Press.
3-noun NCs. It may be useful to augment the PenpPreslav Nakov, Ariel Schwartz, Brian Wolf, and Marti Hearst.
TreeBank with dependencies inside the currently flat 2005. Scaling up BioNLP: Application of a text annotation
NP hich . hei f I archltect_ure to noun compound bracketing. Pimceedings

s, which may improve their performance overall. f 516 BioLINK.
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Abstract

Recent work on the problem of detect-
ing synonymy through corpus analysis has
used the Test of English as a Foreign Lan-
guage (TOEFL) as a benchmark. How-
ever, this test involves as few as 80 ques-
tions, prompting questions regarding the
statistical significance of reported results.
We overcome this limitation by generating
a TOEFL-like test using WordNet, con-
taining thousands of questions and com-
posed only of words occurring with suf-
ficient corpus frequency to support sound
distributional comparisons. Experiments
with this test lead us to a similarity mea-
sure which significantly outperforms the
best proposed to date. Analysis suggests
that a strength of this measure is its rela-
tive robustness against polysemy.

1 Introduction

Many text applications are predicated on the idea
that shallow lexical semantics can be acquired
through corpus analysis. Harris articulated the ex-
pectation that words with similar meanings would be
used in similar contexts (Harris, 1968), and recent
empirical work involving large corpora has borne
this out. In particular, by associating each word with
a distribution over the words observed in its context,
we can distinguish synonyms from non-synonyms
with fair reliability. This capability may be ex-
ploited to generate corpus-based thesauri automat-
ically (Lin, 1998), or used in any other application
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of text that might benefit from a measure of lexi-
cal semantic similarity. And synonymy is a logical
first step in a broader research program that seeks to
account for natural language semantics through dis-
tributional means.

Previous research into corpus-analytic approaches
to synonymy has used the Test of English as a For-
eign Language (TOEFL). The TOEFL consists of
300 multiple-choice question, each question involv-
ing five words: the problem or target word and four
response words, one of which is a synonym of the
target. The objective is to identify the synonym (call
this the answer word, and call the other response
words decoys). In the context of research into lexi-
cal semantics, we seek a distance function which as
reliably as possible orders the answer word in front
of the decoys.

Landauer and Dumais first proposed the TOEFL
as a test of lexical semantic similarity and reported
a score of 64.4% on an 80-question version of the
TOEFL, a score nearly identical to the average score
of human test takers (Landauer and Dumais, 1997).
Subsequently, Sahlgren reported a score of 72.0%
on the same test using “random indexing” and a dif-
ferent training corpus (Sahlgren, 2001). By analyz-
ing a much larger corpus, Ehlert was able to score
82% on a 300-question version of the TOEFL, using
a simple distribution over contextual words (Ehlert,
2003).

While success on the TOEFL does not imme-
diately guarantee success in real-word applications
requiring lexical similarity judgments, the scores
have an intuitive appeal. They are easily inter-
pretable, and the expected performance of a random

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 25-32, Ann Arbor, June 20@®2005 Association for Computational Linguistics



guesser (25%) and typical human performance are
both known. Nevertheless, the TOEFL is problem-
atic in at least two ways. On the one hand, because it
involves so few questions, conclusions based on the
TOEFL regarding closely competing approaches are
suspect. Even on the 300-question TOEFL, a score
of 82% is accurate only to within plus or minus 4%
at the 95% confidence level. The other shortcoming
is a potential mis-match between the test vocabulary
and the corpus vocabulary. Typically, a substantial
number of questions include words observed too in-
frequently in the training corpus for a semantic judg-
ment to be made with any confidence.

We seek to overcome these difficulties by gener-
ating TOEFL-like tests automatically from Word-
Net (Fellbaum, 1998). While WordNet has been
used before to evaluate corpus-analytic approaches
to lexical similarity (Lin, 1998), the metric proposed
in that study, while useful for comparative purposes,
lacks an intuitive interpretation. In contrast, we
emulate the TOEFL using WordNet and inherit the
TOEFL’s easy interpretability.

Given a corpus, we first derive a list of words oc-
curring with sufficient marginal frequency to sup-
port a distributional comparison. We then use Word-
Net to generate a large set of questions identical in
format to those in the TOEFL. For a vocabulary of
reasonable size, this yields questions numbering in
the thousands. While the resulting questions differ
in some interesting ways from those in the TOEFL
(see below), their sheer number supports more con-
fident conclusions. Beyond this, we can partition
them by part of speech or degree of polysemy, en-
abling some analyses not supported by the original
TOEFL.

2 TheTest

To generate a TOEFL-like test from WordNet, we
perform the following procedure once each for
nouns, verbs, adjectives and adverbs. Given a list of
candidate words, we produce one test question for
every ordered pair of words appearing together in
any synset in the respective WordNet part-of-speech
database. Decoy words are chosen at random from
among other words in the database that do not have
a synonymy relation with either word in the pair.
For convenience, we will call the resulting test the
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technology:

A. engineering B. difference

C. department . west
stadium:

A. miss . hockey

C. wife . bowl
string:

A. giant . ballet

C. chain - hat
trial:

A. run . one-third

C. drove . Fform

Table 1: Four questions chosen at random from the
noun test. Answers are A, D, C, and A.

WordNet-based synonymy test (WBST).

We take a few additional steps in order to in-
crease the resemblance between the WBST and the
TOEFL. First, we remove from consideration any
stop words or inflected forms. Note that whether
a particular wordform is inflected is a function of
its presumed part of speech. The word “indicted”
is either an inflected verb (so would not be used as a
word in a question involving verbs) or an uninflected
adjective. Second, we rule out pairs of words that
are too similar under the string edit distance. Mor-
phological variants often share a synset in WordNet.
For example, “group” and “grouping” share a nom-
inal sense. Questions using such pairs appear trivial
to human test takers and allow stemming shortcuts.

In the experiments reported in this paper, we used
WordNet 1.7.1. Our experimental corpus is the
North American News corpus, which is also used
by Ehlert (2003). We include as a candidate test
word any word occurring at least 1000 times in the
corpus (about 15,000 words when restricted to those
appearing in WordNet). Table 1 shows four sample
questions generated from this list out of the noun
database. In total, this procedure yields 9887 noun,
7398 verb, 5824 adjective, and 461 adverb ques-
tions, a total of 23,570 questions.*

This procedure yields questions that differ in
some interesting ways from those in the TOEFL.
Most notable is a bias in favor of polysemous terms.
The number of times a word appears as either the tar-
get or the answer word is proportional to the number
of synonyms it has in the candidate list. In contrast,

1This test is available as http://www.cs.cmu.edu/
“dayne/wbst-nanews.tar.gz



decoy words are chosen at random, so are less poly-
Semous on average.

3 The Space of Solutions

Given that we have a large number of test ques-
tions composed of words with high corpus frequen-
cies, we now seek to optimize performance on the
WBST. The solutions we consider all start with a
word-conditional context frequency vector, usually
normalized to form a probability distribution. We
answer a question by comparing the target term vec-
tor and each of the response term vectors, choosing
the “closest.”

This problem definition excludes a common class
of solutions to this problem, in which the closeness
of a pair of terms is a statistic of the co-occurrence
patterns of the specific terms in question. It has
been shown that measures based on the pointwise
mutual information (PMI) between question words
yield good results on the TOEFL (Turney, 2001;
Terra and Clarke, 2003). However, Ehlert (2003)
shows convincingly that, for a fixed amount of data,
the distributional model performs better than what
we might call the pointwise co-occurrence model.
Terra and Clark (2003) report a top score of 81.3%
on an 80-word version of the TOEFL, which com-
pares favorably with Ehlert’s best of 82% on a 300-
word version, but their corpus is approximately 200
times as large as Ehlert’s.

Note that these two approaches are complemen-
tary and can be combined in a supervised setting,
along with static resources, to yield truly strong per-
formance (97.5%) on the TOEFL (Turney et al.,
2003). While impressive, this work begs an im-
portant question: Where do we obtain the training
data when moving to a less commonly taught lan-
guage, to say nothing of the comprehensive thesauri
and Web resources? In this paper, we focus on
shallow methods that use only the text corpus. We
are interested less in optimizing performance on the
TOEFL than in investigating the validity and limits
of the distributional hypothesis, and in illuminating
the barriers to automated human-level lexical simi-
larity judgments.

27

3.1 Definitions of Context

As in previous work, we form our context distribu-
tions by recording word-conditional counts of fea-
ture occurrences within some fixed window of a ref-
erence token. In this study, features are just unnor-
malized tokens, possibly augmented with direction
and distance information. In other words, we do not
investigate the utility of stemming. Similarly, except
where noted, we do not remove stop words.

All context definitions involve a window size,
which specifies the number of tokens to consider on
either side of an occurrence of a reference term. It
is always symmetric. Thus, a window size of one
indicates that only the immediately adjacent tokens
on either side should be considered. By default,
we bracket a token sequence with pseudo-tokens
“<bos>” and “<e0s>".2

Contextual tokens in the window may be either
observed or disregarded, and the policy governing
which to admit is one of the dimensions we ex-
plore here. The decision whether or not to observe
a particular contextual token is made before count-
ing commences, and is not sensitive to the circum-
stances of a particular occurrence (e.g., its partici-
pation in some syntactic relation (Lin, 1997; Lee,
1999)). When a contextual token is observed, it
is always counted as a single occurrence. Thus,
in contrast with earlier approaches (Sahlgren, 2001;
Ehlert, 2003), we do not use a weighting scheme that
is a function of distance from the reference token.

Once we have chosen to observe a contextual to-
ken, additional parameters govern whether counting
should be sensitive to the side of the reference token
on which it occurs and how distant from the refer-
ence token it is. If the strict direction parameter is
true, a left occurrence is distinguished from a right
occurrence. If strict distance is true, occurrences at
distinct removes (in number of tokens) are recorded
as distinct event types.

3.2 Distance Measures

The product of a particular context policy is a co-
occurrence matrix N, where the contents of a cell
Ny, is the number of times context c is observed to
occur with word w. A row of this matrix (IVy,) is

2|n this paper, a sequence is a North American News seg-

ment delimited by the <p> tag. Nominally paragraphs, most of
these segments are single sentences.



therefore a word-conditional context frequency vec-
tor. In comparing two of these vectors, we typically
normalize counts so that all cells in a row sum to
one, yielding a word-conditional distribution over
contexts P(c|w) (but see the Cosine measure be-
low).

We investigate some of the distance measures
commonly employed in comparing term vectors.
These include:

Manhattan 3, |P(c;|wi) — P(ci|ws)|

Euclidean \/ZZ- [P(ci|wi) — P(e;|ws)]?
Z' Nwl,cinQ,ci
[[Nwy [[-[[ Ny []

Cosine

Note that whereas we use probabilities in calculating
the Manhattan and Euclidean distances, in order to
avoid magnitude effects, the Cosine, which defines
a different kind of normalization, is applied to raw
number counts.

We also avail ourselves of measures suggested
by probability theory. For 6 € (0,1) and
word-conditional context distributions p and ¢, we
have the so-called d-divergences (Zhu and Rohwer,
1998):

1— Zpéql—é

1)
Divergences Dy and D, are defined as limits as § —
Oand 6 — 1:

p
Di(p,q) = Do(g,p) = Zplogg

In other words, D1 (p, q) is the KL-divergence of p
from ¢q. Members of this divergence family are in
some sense preferred by theory to alternative mea-
sures. It can be shown that the §-divergences (or
divergences defined by combinations of them, such
as the Jensen-Shannon or “skew” divergences (Lee,
1999)) are the only ones that are robust to redundant
contexts (i.e., only divergences in this family are in-
variant) (Csiszar, 1975).

Several notions of lexical similarity have been
based on the KL-divergence. Note that if any
g; = 0, then D1 (p, ¢) is infinite; in general, the KL-
divergence is very sensitive to small probabilities,
and careful attention must be paid to smoothing if
it is to be used with text co-occurrence data. The
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Jensen-Shannon divergence—an average of the di-
vergences of p and ¢ from their mean distribution—
does not share this sensitivity and has previously
been used in tests of lexical similarity (Lee, 1999).
Furthermore, unlike the KL-divergence, it is sym-
metric, presumably a desirable property in this set-
ting, since synonymy is a symmetric relation, and
our test design exploits this symmetry.

However, Dy 5(p, q), the Hellinger distance3, is
also symmetric and robust to small or zero esti-
mates. To our knowledge, the Hellinger distance
has not previously been assessed as a measure of
lexical similarity. We experimented with both the
Hellinger distance and Jensen-Shannon (JS) diver-
gence, and obtained close scores across a wide range
of parameter settings, with the Hellinger yielding a
slightly better top score. We report results only for
the Hellinger distance below. As will be seen, nei-
ther the Hellinger nor the JS divergence are optimal
for this task.

In pursuit of synonymy, Ehlert (2003) derives a
formula for the probability of the target word given
a response word:

. P(w1|c;)P(walc;)P(c;
P ciins

2)
= P(w) ¥ " @)

The second line, which fits more conveniently into
our framework, follows from the first (Ehlert’s ex-
pression) through an application of Bayes Theo-
rem. While this measure falls outside the class of
d-divergences, our experiments confirm its relative
strength on synonymy tests.

It is possible to unify the J-divergences with
Ehlert’s expression by defining a broader class of
measures:

DJ,’y,a(p’ Q) =1- Zci_apng
7

(4)

where ¢; is the marginal probability of a single con-
text, and p; and g; are its respective word-conditional
probabilities. Since, in the context of a given ques-
tion, P(w1) does not change, maximizing the ex-
pression in Equation 3 is the same as minimizing
D11,1. Ds1-5),0 recovers the ¢ divergences up to
a constant multiple, and D1 ; o provides the comple-
ment of the familiar inner-product measure.

Actudly, Di,»(p,q) is four times the square of the
Hellinger distance.



4 Evaluation

We experimented with various distance measures
and context policies using the full North American
News corpus. We count approximately one billion
words in this corpus, which is roughly four times
the size of the largest corpus considered by Ehlert.

Except where noted, the numbers reported here
are the result of taking the full WBST, a total of
23,570 test questions. Given this number of ques-
tions, scores where most of the results fall are accu-
rate to within plus or minus 0.6% at the 95% confi-
dence level.

4.1 Performance Bounds

In order to provide a point of comparison, the pa-
per’s authors each answered the same random sam-
ple of 100 questions from each part of speech. Aver-
age performance over this sample was 88.4%. The
one non-native speaker scored 80.3%. As will be
seen, this is better than the best automated result.
The expected score, in the absence of any seman-
tic information, is 25%. However, as noted, target
and answer words are more polysemous than decoy
words on average, and this can be exploited to es-
tablish a higher baseline. Since the frequency of
a word is correlated with its polysemy, a strategy
which always selects the most frequent word among
the response words yields 39.2%, 34.5%, 29.1%,
and 38.0% on nouns, verbs, adjectives, and adverbs,
respectively, for an average score of 35.2%.

4.2 An Initial Comparison

Table 2 displays a basic comparison of the distance
measures and context definitions enumerated so far.
For each distance measure (Manhattan, Euclidean,
Cosine, Hellinger, and Ehlert), results are shown for
window sizes 1 to 4 (columns). Results are further
sub-divided according to whether strict direction and
distance are false (None), only strict direction is true
(Dir), or both strict direction and strict distance are
true (Dir+Dist). In bold is the best score, along with
any scores indistinguishable from it at the 95% con-
fidence level.

Notable in Table 2 are the somewhat depressed
scores, compared with those reported for the
TOEFL. Ehlert reports a best score on the TOEFL
of 82%, whereas the best we are able to achieve on

29

Window Size
1] 2| 3| 4
None | 54.2 | 58.8 | 60.4 | 60.6
Manh Dir | 54.3 | 58.5 | 60.3 | 60.8
Dir+Dist | - | 57.3 | 58.8 | 58.9
None | 42.9 | 45.3 | 46.6 | 47.6
Euc Dir | 43.2 | 45.7 | 46.8 | 47.6
Dir+Dist | — | 449 | 453 | 45.6
None | 44.9 | 46.7 | 47.6 | 48.3
Cos Dir | 46.2 | 48.0 | 48.6 | 49.2
Dir+Dist | — | 48.0 | 48.4 | 485
None | 57.9 | 62.3 | 62.2 | 61.0
Hell Dir | 57.2 | 62.6 | 63.3 | 61.8
Dir+Dist | - 61.2 | 61.7 | 61.1
None | 64.0 | 66.2 | 66.2 | 65.7
Ehl Dir | 63.9 | 66.9 | 67.6 | 67.1
Dir+Dist | — | 66.4 | 67.2 | 67.5

Table 2: Accuracy on the WBST: an initial compar-
ison of distance measures and context definitions.

the WBST is 67.6%. Although there are differences
in some of the experimental details (Ehlert employs
a triangular window weighting and experiments with
stemming), these probably do not account for the
discrepancy. Rather, this appears to be a harder test
than the TOEFL—despite the fact that all words in-
volved are seen with high frequency.

It is hard to escape the conclusion that, in pursuit
of high scores, choice of distance measure is more
critical than the specific definition of context. All
scores returned by the Ehlert metric are significantly
higher than any returned by other distance measures.
Among the Ehlert scores, there is surprising lack of
sensitivity to context policy, given a window of size
2 or larger.

Although the Hellinger distance yields scores
only in the middle of the pack, it might be that other
divergences from the ¢-divergence family, such as
the KL-divergence, would yield better scores. We
experimented with various settings of § in Equa-
tion 1. In all cases, we observed bell-shaped curves
with peaks approximately at § = 0.5 and locally
worst performance with values at or near 0 or 1. This
held true when we used maximum likelihood esti-
mates, or under a simple smoothing regime in which



all cells of the co-occurrence matrix were initialized
with various fixed values. It is possible that numeri-
cal issues are nevertheless partly responsible for the
poor showing of the KL-divergence. However, given
the symmetry of the synonymy relation, it would be
surprising if some value of ¢ far from 0.5 was ulti-
mately shown to be best.

4.3 The Importance of Weighting

The Ehlert measure and the cosine are closely
related—both involve an inner product between
vectors—yet they return very different scores in Ta-
ble 2. There are two differences between these meth-
ods, normalization and vector element weighting.
We presume that normalization does not account for
the large score difference, and attribute the discrep-
ancy, and the general strength of the Ehlert measure,
to importance weighting.

In information retrieval, it is common to take the
cosine between vectors where vector elements are
not raw frequency counts, but counts weighted using
some version of the “inverse document frequency”
(IDF). We ran the cosine experiment again, this
time weighting the count of context i by log(D/d;),
where D is the number of rows in the count matrix
N and d; is the number of rows containing a non-
zero count for context 5. The results confirmed our
expectation. The performance of “CosinelDF” for a
window size of 3 with strict direction was 64.0%,
which is better than Hellinger but worse than the
Ehlert measure. This was the best result returned
for “CosinelDF.”

4.4 Optimizing Distance Measures

Both the Hellinger distance and the Ehlert measure
are members of the family of measures defined by
Equation 4. Although there are theoretical reasons
to prefer each to neighboring members of the same
family (see the discussion following Equation 1),
we undertook to validate this preference empirically.
We conducted parameter sweeps of «, d, and -, first
exploring members of the family § = +, of which
both Hellinger and Ehlert are members. Specifically,
we explored the space between § = v = 0.5 and
6 = v =1, first in increments of 0.1, then in incre-
ments of 0.01 around the approximate maximum, in
all cases varying o widely.

This experiment clearly favored a region midway
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Noun | Verb | Adj | Adv | All
Ehlert 716 | 57.2 | 734 | 725 | 67.6
Optimal | 75.8 | 63.8 | 76.4 | 76.6 | 72.2

Table 3: Comparison between the Ehlert measure
and the “optimal” point in the space of measures de-
fined by Equation 4 (§ = v = 0.75, « = 1.1), by
part of speech. Context policy is window size 3 with
strict direction.

between the Hellinger and Ehlert measures. We
identified 6 = v = 0.75, with o = 1.1 as the ap-
proximate midpoint of this optimal region. We next
varied ¢ and -y independently around this point. This
resulted in no improvement to the score, confirming
our expectation that some point along § = ~ would
be best. For the sake of brevity, we will refer to this
best point (Dy.75,0.75,1.1) as the “Optimal” measure.
As Table 3 indicates, this measure is significantly
better than the Ehlert measure, or any other measure
investigated here.

This clear separation between Ehlert and Opti-
mal does not hold for the original TOEFL. Using
the same context policy, we applied these measures
to 298 of the 300 questions used by Ehlert (all
questions except those involving multi-word terms,
which our framework does not currently support).
Optimal returns 84.2%, while Ehlert’s measure re-
turns 83.6%, which is slightly better than the 82%
reported by Ehlert. The two results are not distin-
guishable with any statistical significance.

Interesting in Table 3 is the range of scores seen
across parts of speech. The variation is even wider
under other measures, the usual ordering among
parts of speech being (from highest to lowest) ad-
verb, adjective, noun, verb. In Section 4.6, we at-
tempt to shed some light on both this ordering and
the close outcome we observe on the TOEFL.

4.5 Optimizing Context Policy

It is certain that not every contextual token seen
within the co-occurrence window is equally impor-
tant to the detection of synonymy, and probable that
some such tokens are useless or even detrimental.
On the one hand, the many low-frequency events in
the tails of the context distributions consume a lot
of space, perhaps without contributing much infor-



mation. On the other, very-high-frequency terms are
typically closed-class and stop words, possibly too
common to be useful in making semantic distinc-
tions. We investigated excluding words at both ends
of the frequency spectrum.

We experimented with two kinds of exclusion
policies: one excluding the & most frequent terms,
for k ranging between 10 and 200; and one ex-
cluding terms occurring fewer than k times, for k
ranging from 3 up to 100. Both Ehlert and Opti-
mal were largely invariant across all settings; no sta-
tistically significant improvements or degradations
were observed. Optimal returned scores ranging
from 72.0%, when contexts with marginal frequency
fewer than 100 were ignored, up to 72.6%, when the
200 most frequent terms were excluded.

Note there is a large qualitative difference be-
tween the two exclusion procedures. Whereas
we exclude only at most 200 words in the high-
frequency experiment, the number of terms ex-
cluded in the low-frequency experiment ranges
from 939,496 (less than minimum frequency 3) to
1,534,427 (minimum frequency 100), out of a vo-
cabulary containing about 1.6 million terms. Thus, it
is possible to reduce the expense of corpus analysis
substantially without sacrificing semantic fidelity.

4.6 Polysemy

We hypothesized that the variation in scores across
part of speech has to do with the average number of
senses seen in a test set. Common verbs, for exam-
ple, tend to be much more polysemous (and syntac-
tically ambiguous) than common adverbs. WordNet
allows us to test this hypothesis.

We define the polysemy level of a question as the
sum of the number of senses in WordNet of its tar-
get and answer words. Polysemy levels in our ques-
tion set range from 2 up to 116. Calculating the
average polysemy level for questions in the various
parts of speech—>5.1, 6.7, 7.5, and 10.4, for adverbs,
adjectives, nouns, and verbs, respectively—provides
support for our hypothesis, inasmuch as this order-
ing aligns with test scores. By contrast, the average
polysemy level in the TOEFL, which spans all four
parts of speech, is 4.6.

Plotting performance against polysemy level
helps explain why Ehlert and Optimal return roughly
equivalent performance on the original TOEFL. Fig-
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Figure 1: Score as a function of polysemy level.

ure 1 plots the Ehlert and Optimal measures as a
function of the polysemy level of the questions. To
produce this plot, we grouped questions according
to polysemy level, creating many smaller tests, and
scored each measure on each test separately.

At low polysemy levels, the Ehlert and Optimal
measures perform equally well. The advantage of
Optimal over Ehlert appears to lie specifically in its
relative strength in handling polysemous terms.

5 Discussion

Specific conclusions regarding the “Optimal” mea-
sure are problematic. We do not know whether
or to what extent this particular parameter setting
is universally best, best only for English, best for
newswire English, or best only for the specific test
we have devised. We have restricted our attention
to a relatively small space of similarity measures,
excluding many previously proposed measures of
lexical affinity (but see Weeds, et al (2004), and
Lee (1999) for some empirical comparisons). Lee
observed that measures from the space of invari-
ant divergences (particularly the JS and skew diver-
gences) perform at least as well as any of a wide
variety of alternatives. As noted, we experimented
with the JS divergence and observed accuracies that
tracked those of the Hellinger closely. This provides
a point of comparison with the measures investi-
gated by Lee, and recommends both Ehlert’s mea-
sure and what we have called “Optimal” as credible,
perhaps superior alternatives. More generally, our
results argue for some form of feature importance



weighting.

Empirically, the strength of Optimal on the
WBST is a feature of its robustness in the presence
of polysemy. Both Ehlert and Optimal are expressed
as a sum of ratios, in which the numerator is a prod-
uct of some function of conditional context prob-
abilities, and the denominator is some function of
the marginal probability. The Optimal exponents on
both the numerator and denominator have the effect
of advantaging lower-probability events, relative to
Ehlert. In our test, WordNet senses are sampled uni-
formly at random. Perhaps its emphasis on lower
probability events allows Optimal to sacrifice some
fidelity on high-frequency senses in exchange for in-
creased sensitivity to low-frequency ones.

It is clear, however, that polysemy is a critical
hurdle confronting distributional approaches to lex-
ical semantics. Figure 1 shows that, in the absence
of polysemy, distributional comparisons detect syn-
onymy quite well. Much of the human advantage
over machines on this task may be attributed to an
awareness of polysemy. In order to achieve perfor-
mance comparable to that of humans, therefore, it
is probably not enough to optimize context policies
or to rely on larger collections of text. Instead, we
require strategies for detecting and resolving latent
word senses.

Pantel and Lin (2002) propose one such method,
evaluated by finding the degree of overlap between
sense clusters and synsets in WordNet. The above
considerations suggest that a possibly more perti-
nent test of such approaches is to evaluate their util-
ity in the detection of semantic similarity between
specific polysemous terms. We expect to undertake
such an evaluation in future work.
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Abstract

Traditionally, word sense disambiguation
(WSD) involves a different context classifi-
cation model for each individual word. This
paper presents a weakly supervised learning
approach to WSD based on learning a word
independent context pair classification
model. Statistical models are not trained for
classifying the word contexts, but for classi-
fying a pair of contexts, i.e. determining if a
pair of contexts of the same ambiguous word
refers to the same or different senses. Using
this approach, annotated corpus of a target
word A can be explored to disambiguate
senses of a different word B. Hence, only a
limited amount of existing annotated corpus
is required in order to disambiguate the entire
vocabulary. In this research, maximum en-
tropy modeling is used to train the word in-
dependent context pair classification model.
Then based on the context pair classification
results, clustering is performed on word men-
tions extracted from a large raw corpus. The
resulting context clusters are mapped onto
the external thesaurus WordNet. This ap-
proach shows great flexibility to efficiently
integrate heterogencous knowledge sources,
e.g. trigger words and parsing structures.
Based on Senseval-3 Lexical Sample stan-
dards, this approach achieves state-of-the-art
performance in the unsupervised learning
category, and performs comparably with the
supervised Naive Bayes system.

1 Introduction

Word Sense Disambiguation (WSD) is one of the
central problems in Natural Language Processing.
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The difficulty of this task lies in the fact that con-
text features and the corresponding statistical dis-
tribution are different for each individual word.
Traditionally, WSD involves training the context
classification models for each ambiguous word.
(Gale et al. 1992) uses the Naive Bayes method for
context classification which requires a manually
annotated corpus for each ambiguous word. This
causes a serious Knowledge Bottleneck. The bot-
tleneck is particularly serious when considering the
domain dependency of word senses. To overcome
the Knowledge Bottleneck, unsupervised or weakly
supervised learning approaches have been pro-
posed. These include the bootstrapping approach
(Yarowsky 1995) and the context clustering ap-
proach (Schiitze 1998).

The above unsupervised or weakly supervised
learning approaches are less subject to the Knowl-
edge Bottleneck. For example, (Yarowsky 1995)
only requires sense number and a few seeds for
each sense of an ambiguous word (hereafter called
keyword). (Schiitze 1998) may only need minimal
annotation to map the resulting context clusters
onto external thesaurus for benchmarking and ap-
plication-related purposes. Both methods are based
on trigger words only.

This paper presents a novel approach based on
learning word-independent context pair classifica-
tion model. This idea may be traced back to
(Schiitze 1998) where context clusters based on
generic Euclidean distance are regarded as distinct
word senses. Different from (Schiitze 1998), we
observe that generic context clusters may not al-
ways correspond to distinct word senses. There-
fore, we used supervised machine learning to
model the relationships between the context dis-
tinctness and the sense distinctness.

Although supervised machine learning is used
for the context pair classification model, our over-
all system belongs to the weakly supervised cate-
gory because the learned context pair classification
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model is independent of the keyword for disam-
biguation. Our system does not need human-
annotated instances for each target ambiguous
word. The weak supervision is performed by using
a limited amount of existing annotated corpus
which does not need to include the target word set.

The insight is that the correlation regularity be-
tween the sense distinction and the context distinc-
tion can be captured at Part-of-Speech category
level, independent of individual words or word
senses. Since context determines the sense of a
word, a reasonable hypothesis is that there is some
mechanism in the human comprehension process
that will decide when two contexts are similar (or
dissimilar) enough to trigger our interpretation of a
word in the contexts as one meaning (or as two
different meanings). We can model this mecha-
nism by capturing the sense distinction regularity
at category level.

In the light of this, a maximum entropy model is
trained to determine if a pair of contexts of the
same keyword refers to the same or different word
senses. The maximum entropy modeling is based
on heterogeneous context features that involve
both trigger words and parsing structures. To en-
sure the resulting model’s independency of indi-
vidual words, the keywords used in training are
different from the keywords used in benchmarking.
For any target keyword, a collection of contexts is
retrieved from a large raw document pool. Context
clustering is performed to derive the optimal con-
text clusters which globally fit the local context
pair classification results. Here statistical annealing
is used for its optimal performance. In benchmark-
ing, a mapping procedure is required to correlate
the context clusters with external ontology senses.

In what follows, Section 2 formulates the maxi-
mum entropy model for context pair classification.
The context clustering algorithm, including the
object function of the clustering and the statistical
annealing-based optimization, is described in Sec-
tion 3. Section 4 presents and discusses bench-
marks, followed by conclusion in Section 5.

2 Maximum Entropy Modeling for Con-
text Pair Classification

Given n mentions of a keyword, we first introduce
the following symbols. C, refers to the i -th con-

text. S refers to the sense of the i -th context.
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CS ; refers to the context similarity between the

i -th context and the j -th context, which is a subset

of the predefined context similarity features. f,

refers to the a -th predefined context similarity
feature. So CS ; takes the form of {t.}.

In this section, we study the context pair classi-
fication task, i.e. given a pair of contexts C; and

C; of the same target word, are they referring to

the same sense? This task is formulated as compar-
ing the following conditional probabilities:

Pr(s =s|CS,,) and Pr(§ = SCS). Unlike

traditional context classification for WSD where
statistical model is trained for each individual
word, our context pair classification model is
trained for each Part-of-speech (POS) category.
The reason for choosing POS as the appropriate
category for learning the context similarity is that
the parsing structures, hence the context represen-
tation, are different for different POS categories.

The training corpora are constructed using the
Senseval-2 English Lexical Sample training cor-
pus. To ensure the resulting model’s independency
of individual words, the target words used for
benchmarking (which will be the ambiguous words
used in Senseval-3 English Lexicon Sample task)
are carefully removed in the corpus construction
process. For each POS category, positive and nega-
tive instances are constructed as follows.

Positive instances are constructed using context
pairs referring to the same sense of a word. Nega-
tive instances are constructed using context pairs
that refer to different senses of a word.

For each POS category, we have constructed
about 36,000 instances, half positive and half nega-
tive. The instances are represented as pairwise con-
text similarities, taking the form of {f_} .

Before presenting the context similarity features
we used, we first introduce the two categories of
the involved context features:

i) Co-occurring trigger words within a prede-
fined window size equal to 50 words to both
sides of the keyword. The trigger words are
learned from a TIPSTER document pool con-
taining ~170 million words of AP and WSIJ
news articles. Following (Schiitze 1998), X is
used to measure the cohesion between the
keyword and a co-occurring word. In our ex-



periment, all the words are first sorted based
on its X with the keyword, and then the top
2,000 words are selected as trigger words.

ii) Parsing relationships associated with the

keyword automatically decoded by a broad-
coverage parser, with F-measure (i.e. the pre-
cision-recall combined score) at about 85%
(reference temporarily omitted for the sake of
blind review). The logical dependency rela-
tionships being utilized are listed below.

2

LSA-based (Latent Semantic Analysis based)
trigger word similarity: LSA (Deerwester et
al. 1990) is a technique used to uncover the
underlying semantics based on co-occurrence
data. The first step of LSA is to construct
word-vs.-document co-occurrence matrix.
Then singular value decomposition (SVD) is
performed on this co-occurring matrix. The
key idea of LSA is to reduce noise or insig-
nificant association patterns by filtering the
insignificant components uncovered by SVD.

Noun: subject-of, This is done by keeping only the top K singu-
object-of, lar values. By using the resulting word-vs.-
complement-of, document co-occurrence matrix after the fil-
has-adj ective-modifier, tering, each word can be represented as a vec-
has-noun-modifier, tor in the semantic space.
modifier-of,
possess, In our experiment, we constructed the original
possessed-by, word-vs.-document co-occurring matrix as
appositive-of follows: 100,000 documents from the

TIPSTER corpus were used to construct the

Verb: has-subject, co-occurring matrix. We processed these

has-object, documents using our POS tagger, and se-

has-complement,
has-adverb-modifier,
has-prepositional -phrase-modifier

Adjective: modifier-of,
has-adverb-modifier

lected the top N most frequently mentioned
words from each POS category as base
words:

top 20,000 common nouns
top 40,000 proper names
top 10,000 verbs

top 10,000 adjectives
top 2,000 adverbs

Based on the above context features, the follow-
ing three categories of context similarity features
are defined:

In performing SVD, we set K (i.e. the number

(1) VSM-based (Vector Space Model based) of nonzero singular values) as 200, following

trigger word similarity: the trigger words
around the keyword are represented as a vec-
tor, and the word i in context j is weighted as
follows:

weight(i, j) =tf (i, ) * log

df (i)
where tf (i, j) is the frequency of word i in
the j-th context; D is the number of docu-
ments in the pool; and df (i) is the number of
documents containing the word i. D and
df (i) are estimated using the document pool
introduced above. The cosine of the angle be-
tween two resulting vectors is used as the
context similarity measure.
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3)

the practice reported in (Deerwester et al.
1990) and (Landauer & Dumais, 1997).

Using the LSA scheme described above, each
word is represented as a vector in the seman-
tic space. The co-occurring trigger words are
represented as a vector summation. Then the
cosine of the angle between the two resulting
vector summations is computed, and used as
the context similarity measure.

LSA-based parsing relationship similarity:
each relationship is in the form of R,(w).

Using LSA, each word w is represented as a



semantic vector V(W). The similarity between
R,(w,)and R,(w,) is represented as the co-
sine of the angle between V(Wl) and V(Wz).
Two special values are assigned to two excep-
tional cases: (i) when no relationship R, is

decoded in both contexts; (ii) when the rela-
tionship R, is decoded only for one context.

In matching parsing relationships in a context
pair, if only exact node match counts, very few
cases can be covered, hence significantly reducing
the effect of the parser in this task. To solve this
problem, LSA is used as a type of synonym expan-
sion in matching. For example, using LSA, the
following word similarity values are generated:

similarity(good, good) 1.00
similarity(good, pretty) 0.79
similarity(good, great) 0.72

Given a context pair of a noun keyword, suppose
the first context involves a relationship has
adjective-modifier whose value is good, and the
second context involves the same relationship has-
adjective-modifier with the value pretty, then the
system assigns 0.79 as the similarity value for this
relationship pair.

To facilitate the maximum entropy modeling in
the later stage, all the three categories of the result-
ing similarity values are discretized into 10 inte-
gers. Now the pairwise context similarity is
represented as a set of similarity features, e.g.

{VSM-Trigger-Words-Similairty-equal-to-2,
LSA-Trigger-Words-Similarity-equal-to-1,
LSA-Subject-Similarity-equal-to-2}.

In addition to the three categories of basic con-
text similarity features defined above, we also de-
fine induced context similarity features by
combining basic context similarity features using
the logical and operator. With induced features, the
context similarity vector in the previous example is
represented as
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{VSM-Trigger-Word-Similairty-equal-to-2,
LSA- Trigger-Word-Similarity-equal-to-1,
LSA-Subject-Similarity-equal-to-2,
[VSM-Similairty-equal-to-2 and
LSA-Trigger-Word-Similarity-equal-to-1],
[VSM-Similairty-equal-to-2 and
LSA-Subject-Similarity-equal-to-2],
[VSM-Trigger-Word-Similairty-equal-to-2

and LSA-Trigger-Word-Similarity-equal-to-1

and LSA-Subject-Similarity-equal-to-2]

}

The induced features provide direct and fine-
grained information, but suffer from less sampling
space. Combining basic features and induced fea-
tures under a smoothing scheme, maximum en-
tropy modeling may achieve optimal performance.

Using the context similarity features defined
above, the training corpora for the context pair
classification model is in the following format:

Instance 0 tag="positive” {VSM-Trigger-Word-
Similairty-equal-to-2, ...}

Instance 1 tag="negative” {VSM-Trigger-Word-
Similairty-equal-to-0, ...}

where positive tag denotes a context pair associ-
ated with same sense, and negative tag denotes a
context pair associated with different senses.

The maximum entropy modeling is used to com-
pute the conditional probabilities

Pr(S =S ‘CSJ) and Pr(SI %S, ‘CS,,J-): once the
context pair CS ; is represented as {f,}, the con-

ditional probability is given as

ﬂw”

j,S Z Sj} , Z is the normaliza-

Pr{tl(f,})=

where tD{S =

tion factor, W, ; is the weight associated with tag t

(M

and feature f .

structed above, the weights can be computed based
on Iterative Scaling algorithm (Pietra etc. 1995)
The exponential prior smoothing scheme (Good-
man 2003) is adopted in the training.

Using the training corpora con-



3 Context Clustering based on Context
Pair Classification Results

Given N mentions {Ci} of a keyword, we use the
following context clustering scheme. The discov-
ered context clusters correspond to distinct word
senses.

For any given context pair, the context similarity
features defined in Section 2 are computed. With n
n(n-1)

2
similarities CS (i D[l, n], j D[l,i)) are computed.
Using the context pair classification model, each
pair is  associated  with  two  scores

Soy :log(Pr(SI =S; |CS|,J'))

context

mentions of the same keyword,

and
i | =log(Pr(SI =S; |CS’J-)) which correspond to

the probabilities of two situations: the pair refers to
the same or different word senses.

Now we introduce the symbol {K, M} which re-
fers to the final context cluster configuration,
where K refers to the number of distinct sense, and
M represents the many-to-one mapping (from con-
texts to a sense) such that

M(i)=j,i0[1,n], jO[1,K]. Based on the pairwise
scores {SCIO j} and {SC,l j} , WSD is formulated as

searching for {K, M} which maximizes the follow-
ing global scores:

sc({K,M})é%fch?’” @)
| UO,if M(i)=M(j)

where k(, j):{ _
1, otherwise

Similar clustering scheme has been used success-

fully for the task of co-reference in (Luo etc.

2004), (Zelenko, Aone and Tibbetts, 2004a) and

(Zelenko, Aone and Tibbetts, 2004b).

In this paper, statistical annealing-based optimi-
zation (Neal 1993) is used to search for {K, M}
which maximizes Expression (2).

The optimization process consists of two steps.
First, an intermediate solution{K,M}0 is com-
puted by a greedy algorithm. Then by setting
{K, M} o as the initial state, statistical annealing is
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applied to search for the global optimal solution.
The optimization algorithm is as follows.

1. Set the initial state {K, M} as K=n, and
M (i) =i, iO[l,n];
2. Select a cluster pair for merging that

maximally increases
k(i.j)
?4 SCi.}
i} ,n},
e

se{K. M) =
3. If no cluster pair can be merged to in-
crease sc({K,M})= ?sci‘fgi’j)
1j[| h,ﬂ,
{K,M} as the intermediate solution;
otherwise, update {K,M} by the merge
and go to step 2.

, output

Using the intermediate solution {K, M} o of the

greedy algorithm as the initial state, the statistical
annealing is implemented using the following
pseudo-code:

Set {K,M} { K.M ,;
for(B =PBg; B < PgparsB*=1.01)
{

iterate pre-defined number of times

{
set {K,M}, { K.M ;
update {K, M} , by randomly changing
cluster number and cluster contents;
sk
se(fk, M)
if(x>=1)
{
set {K,M} { K,M ,
§

else

{
set {K,M} 5{ K,M , with probability
xP .

}
if so({K, M) > se({K,M},)
then set {K,M}0 ={ K,I\/}
}
h

output {K, M} o as the optimal state.



4 Benchmarking

Corpus-driven context clusters need to map to a
word sense standard to facilitate performance
benchmark. Using Senseval-3 evaluation stan-
dards, we implemented the following procedure to
map the context clusters:

1) Process TIPSTER corpus and the origi-
nal unlabeled Senseval-3 corpora (in-
cluding the training corpus and the
testing corpus) by our parser, and save
all the parsing results into a repository.

i) For each keyword, all related contexts in
Senseval-3 corpora and up-to-1,000 re-
lated contexts in TIPSTER corpus are
retrieved from the repository.

All the retrieved contexts are clustered
based on the context clustering algo-
rithm presented in Sect. 2 and 3.

For each keyword sense, three annotated
contexts from Senseval-3 training cor-
pus are used for the sense mapping. The
context cluster is mapped onto the most
frequent word sense associated with the
cluster members. By design, the context
clusters correspond to distinct senses,
therefore, we do not allow multiple con-
text clusters to be mapped onto one
sense. In case multiple clusters corre-
spond to one sense, only the largest
cluster is retained.

V) Each context in the testing corpus is
tagged with the sense to which its con-
text cluster corresponds to.

As mentioned above, Sensval-2 English lexical
sample training corpora is used to train the context
pair classification model. And Sensval-3 English
lexical sample testing corpora is used here for
benchmarking. There are several keyword occur-
ring in both Senseval-2 and Senseval-3 corpora.
The sense tags associated with these keywords are
not used in the context pair classification training
process.

In order to gauge the performance of this new
weakly supervised learning algorithm, we have
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also implemented a supervised Naive Bayes sys-
tem following (Gale et al. 1992). This system is
trained based on the Senseval-3 English Lexical
Sample training corpus. In addition, for the pur-
pose of quantifying the contribution from the pars-
ing structures in WSD, we have run our new
system with two configurations: (i) using only
trigger words; (ii) using both trigger words and
parsing relationships. All the benchmarking is per-
formed using the Senseval-3 English Lexical Sam-
ple testing corpus and standards.

The performance benchmarks for the two sys-
tems in three runs are shown in Table 1, Table 2
and Table 3. When using only trigger words, this
algorithm has 8 percentage degradation from the
supervised Naive Bayes system (see Table 1 vs.
Table 2). When adding parsing structures, per-
formance degradation is reduced, with about 5 per-
centage drop (see Table 3 vs. Table 2). Comparing
Table 1 with Table 3, we observe about 3% en-
hancement due to the contribution from the parsing
support in WSD. The benchmark of our algorithm
using both trigger words and parsing relationships
is one of the best in unsupervised category of the
Senseval-3 Lexical Sample evaluation.

Table 1. New Algorithm Using Only Trigger Words

Accuracy
Category Fine grain (%) | Coarse grain (%)
Adjective (3) 463 608
Noun (20) 546 628
Verb (32) 541 642
Overall 54.0 63.4

Table 2. Supervised Naive Bayes System

Accuracy
Category Fine grain (%) | Coarse grain (%)
Adjective (5) 447 56.6
Noun (20) 66.3 745
Verb (32) 58.6 70.0
Overall 61.6 71.5

Table 3. New Algorithm Using Both Trigger Words and

Parsing
Accuracy
Category Fine grain (%) | Coarse grain (%)
Adjective (5) 49.1 64.8
Noun (20) 57.9 66.6
Verb (32) 553 66.3
Overall 56.3 66.4




It is noted that Naive Bayes algorithm has many
variation, and its performance has been greatly
enhanced during recent research. Based on Sen-
seval-3 results, the best Naive Bayse system out-
perform our version (which is implemented based
on Gale et al. 1992) by 8%~10%. So the best su-
pervised WSD systems output-perform our weakly
supervised WSD system by 13%~15% in accuracy.

5 Conclusion

We have presented a weakly supervised learning
approach to WSD. Statistical models are not
trained for the contexts of each individual word,
but for context pair classification. This approach
overcomes the knowledge bottleneck that chal-
lenges supervised WSD systems which need la-
beled data for each individual word. It captures the
correlation regularity between the sense distinction
and the context distinction at Part-of-Speech cate-
gory level, independent of individual words and
senses. Hence, it only requires a limited amount of
existing annotated corpus in order to disambiguate
the full target set of ambiguous words, in particu-
lar, the target words that do not appear in the train-
ing corpus.

The weakly supervised learning scheme can
combine trigger words and parsing structures in
supporting WSD. Using Senseval-3 English Lexi-
cal Sample benchmarking, this new approach
reaches one of the best scores in the unsupervised
category of English Lexical Sample evaluation.
This performance is close to the performance for
the supervised Naive Bayes system.

In the future, we will implement a new scheme
to map context clusters onto WordNet senses by
exploring WordNet glosses and sample sentences.
Based on the new sense mapping scheme, we will
benchmark our system performance using Senseval
English all-words corpora.
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Abstract Depending on the context, strong word similarity
may indicate either that words share a common ori-
gin (cognate} a common meaningsynonymys or
are related in some way (e.gpelling variant. In
this paper, we focus on cognates. Genetic cognates
are well-suited for testing measures of word simi-
larity because they arise by evolving from a single
word in a proto-language. Unlike rather indefinite
concepts like synonymy or confusability, cognation
is a binary notion, which in most cases can be reli-
ably determined.

Methods that are normally used for computing
word similarity can be divided into orthographic
and phonetic. The former includes string edit dis-
tance (Wagner and Fischer, 1974), longest common
subsequence ratio (Melamed, 1999), and measures
) based on shared charactegrams (Brew and Mc-

1 Introduction Kelvie, 1996). These usually employ a binary iden-

The computation of surface similarity between pair§ty function on the level of character comparison.
of words is an important task in many areas of natlhe phonetic approaches, such as Soundex (Hall
ural language processing. In historical linguistic&nd Dowling, 1980) and Editex (Zobel and Dart,
phonetic similarity is one of the clues for identi-1996), attempt to take advantage of the phonetic
fying cognates that is, words that share a com-Characteristics of individual characters in order to
mon origin (Oakes, 2000). In statistical machiné&stimate their similarity. All of the above meth-
translation, cognates are helpful in inducing translgRds are static, in the sense of having a fixed defi-
tion lexicons (Koehn and Knight, 2001; Mann andhition that leaves little room for adaptation to a spe-
Yarowsky, 2001), sentence alignment (Melamecﬁiﬁc context. In contrast, the methods proposed by
1999), and word alignment (Tiedemann, 2003). Idiedemann (1999) automatically construct weighted
dialectology, similarity is used for estimating dis-String similarity measures on the basis of string seg-
tance between dialects (Nerbonne, 2003). Oth&pentation and bitext co-occurrence statistics.
applications include cross-lingual information re- We have created a system for determining word
trieval (Pirkola et al., 2003), detection of confusablesimilarity based on a Pair Hidden Markov Model.
drug names (Kondrak and Dorr, 2004), and lexicogthe parameters of the model are automatically
raphy (Brew and McKelvie, 1996). learned from training data that consists of word

We present a system for computing sim-
ilarity between pairs of words. Our sys-
tem is based on Pair Hidden Markov Mod-
els, a variation on Hidden Markov Mod-
els that has been used successfully for the
alignment of biological sequences. The
parameters of the model are automatically
learned from training data that consists
of word pairs known to be similar. Our
tests focus on the identification of cog-
nates — words of common origin in re-
lated languages. The results show that our
system outperforms previously proposed
techniques.
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pairs that are known to be similar. The model Second, we assume that each symbol is aligned
is trained using the Baum-Welch algorithm (Baumnto at most one symbol in the other word. This as-
et al.,, 1970). We examine several variants of theumption is aimed at reducing the number of param-
model, which are characterized by different trainingeters that have to be learned from limited-size train-
techniques, number of parameters, and word lengthg data. If there is a many-to-one correspondence
correction method. The models are tested on a cotfat is consistent between languages, it would be
nate recognition task across word lists representirtgeneficial to change the word representation so that
several Indo-European languages. The experimerte many symbols are considered as a single sym-
indicate that our system substantially outperformbol instead. For example, a group of characters in
the most commonly used approaches. the orthographic representation may correspond to a
The paper is organized as follows. Section 2 givesingle phoneme if the word is written phonetically.
a more detailed description of the problem of word L
similarity. Section 3 contains an introduction to Pais  Pair Hidden Markov Models

Hidden Markov Models, while section 4 describegjjgden Markov Models have been applied success-
their adaptation to our domain. Sections 5 and 6 rgg|ly to a number of problems in natural language

port experimental set-up and results. processing, including speech recognition (Jelinek,
o 1999) and statistical machine translation (Och and
2 Word Similarity Ney, 2000). One of the more intangible aspects of

D . : a Hidden Markov Model is the choice of the model

Word similarity is, at its core, an alignment task. In. . . . .
. Lo itself. While algorithms exist to train the parameters

order to determine similarity between two words, we . |
: ) . of the model so that the model better describes its

look at the various alignments that can exist between

. . .~ data, there is no formulaic way to create the model.
them. Each component of the alignment is as&gngﬁ y

a probability-based score by our trained model. The © decm_ied tq adopt as a starting point a model de-
scores are then combined to produce the overall sir}ll?mped In a different field of study.
P Durbin et al. (1998) created a new type of Hid-

llarity score for any wor_d pair, which can be usgd toden Markov Model that has been used for the task
rank the word pairs against each other. Alternatlvel%f aligning biological sequences (Figure 1). Called
a discrete cut-off point can be selected in order tg Pair Hidden Markov Model. it uses two. output
separate pairs that show the required similarity frorrs1treams in parallel, each co1rrespon ding to a se-
th%o?es that do notl.. ds. th b quence that is being alignédThe alignment model
teotl)r_e twe Cag alugnTwo_r SI,I tehy mus b T S€Phas three states that represent the basic edit opera-
arated Into symbols. — fypically, the Symbols ar, . spstitution (represented by state “M”), inser-
characters in the orthographic representation, and (“Y™), and deletion (“X"). “M", the match state

phonemes in the phongﬂ_c representatlon: we .al%?nits an aligned pair of symbols (not necessarily
need to put some restrictions on the possible alig

) ri1c'ientical) with one symbol on the top and the other
ments between these symbols. By adopting the foJ)-n the bottom output stream. “X” and “Y”, thgap

Iovv_lng tw_o as_s_umonns,_ \.Ne are able tq fuI_Iy ex'state;; output a symbol on only one stream against

ploit the simplicity and efficiency of the Pair Hlddena gap on the other. Each state has its own emission

Mar.kov Model _ _ probabilities representing the likelihood of produc-
First, we assume that the basic ordering of SYMhg a pairwise alignment of the type described by

bols remains the same between languages. This dqfg siate. The model has three transition parame-
not mean that every symbol has a corresponding OR&s: & ¢, andt. In order to reduce the number of

in the other language, but instead that word transfof, -4 meters, there is no explicit start state. Rather,

mathn comes from thrge basic operatlossb_stlt“' the probability of starting in a given state is equal to
tion, insertionanddeletion Exceptionsto thisrule
certainly exist (e.gmetathesis but are sufficiently 1pair Hidden Markov Models have been used in the area of

. . . . natural language processing once before: Clark (2001) applied
infrequent to make the benefits of this constraint faI5HMMs to the task of learning stochastic finite-state transduc-

outweigh the costs. ers for modeling morphological paradigms.
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Figure 1: A Pair Hidden Markov Model for aligning Figure 2: The random Pair Hidden Markov Model.
biological sequences.

sponding algorithms. The modified model is shown

the probability of going from the match state to then Figure 3.
given state. First, the original model’'s assumption that an in-

Durbin et al. (1998) describe several different alsertion followed by a deletion is the same as a sub-
gorithms that can be used to score and rank pairggitution is problematic in the context of word simi-
biological sequences. Two of them are based darity. Covington (1998) illustrates the problem with
common HMM algorithms. The Viterbi algorithm an example of Italian “due” and the Spanish “dos”,
uses the most probable path through the model toth of which mean “two”. While there is no doubt
score the pair. The forward algorithm computes thehat the first two pairs of symbols should be aligned,
total overall probability for a pair by summing up thethere is no historical connection between the Italian
probabilities of every possible alignment betweene” and the Spanish “s”. In this case, a sequence of
the words. A third algorithm (théog oddsalgo- an insertion and a deletion is more appropriate than
rithm) was designed to take into account how likelyy substitution. In order to remedy this problem, we
the pair would be to occur randomly within the twodecided to a add a pair of transitions between states
languages by considering a separately trairgd  “X” and “Y”, which is denoted by in Figure 3.
dom mode(Figure 2) in conjunction with the sim-  The second modification involves splitting the pa-
ilarity model. In the random model, the sequencegameten into two separate values;, for the match
are assumed to have no relationship to each other, s@ite, andyy for the gap states. The original biolog-
there is no match state. The log odds algorithm cajcal model keeps the probability for the transition to
culates a score for a pair of symbols by dividing thghe end state constant for all other states. For cog-
probability of a genuine correspondence betweenrates, and other word similarity tasks, it may be that
pair of symbols (the similarity model) by the proba-similar words are more or less likely to end in gaps
bility of them co-occurring by chance (the randomor matches. The modification preserves the symme-
model). These individual scores are combined tgy of the model while allowing it to capture how

produce an overall score for the pair of sequencegely a given operation is to occur at the end of an
in the same way as individual symbol probabilitieslignment.

are combined in other algorithms.

4.1 Algorithm Variations

4 PHMMs for Word Similarity We have investigated several algorithms for the

Because of the differences between biological selignment and scoring of word pairs. Apart from
guence analysis and computing word similarity, théhe standard Viterbi (abbreviat&dT ) and forward
bioinformatics model has to be adapted to handle tHEOR) algorithms, we considered two variations of
latter task. In this section, we propose a number dghe log odds algorithm, The original log odds al-
modifications to the original model and the corregorithm (LOG) functions much like a Viterbi algo-
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uses letter frequencies from the training data instead.
A similar test of the effectiveness of trained gap pa-
rameters can be performed for the Viterbi and for-
ward algorithms by proceeding in the opposite direc-
tion. Instead of deriving the gap probabilities from
the training data (as in the original model), we can
set them to uniform values after training, thus mak-
ing the final scores depend primarily on matches.
The second variation removes the effect the tran-
sition parameters have on the final calculation. In the
resulting model, a transition probability from any
Figure 3: A Pair Hidden Markov Model for aligning State to any state (except the end state) is constant,
words. effectively merging “X”, “¥”, and “M” into a sin-
gle state. One of the purposes of the separated states

was to allow for affine gap penalties, which is why

rithm, looking at only the most probable sequencgsere gre different transition parameters for going to
of states. We also greated another variation, forvyar&l gap state and for staying in that state. By making
log odds FLO), which uses a forward approach in-ye transitions constant, we are also taking away the
stead, considering the aggregate probability of alltfine gap structure. As a third variant, we try both
possible paths through both models. the first and second variation combined.

The next variation concerns the effect of the end
state on the final score. Unlike in the alignment
Apart from comparing the effectiveness of differentf biological sequences, word alignment boundaries
algorithms, we are also interested in establishing there known beforehand, so an end state is not strictly
optimal structure of the underlying model. The simnecessary. It is simple enough to remove the end
ilarity model can be broken up into three sets of pastate from our model after the training has been com-
rameters: the match probabilities, the gap probabipleted. The remaining transition probability mass is
ities, and the transition probabilities. Our goal is tashifted to the transitions that lead to the match state.
examine the relative contribution of various compo- Once the end state is removed, it is possible to
nents of the model, and to find out whether simplifyreduce the number of transition parameters to a sin-
ing the model affects the overall performance of thgle one, by taking advantage of the symmetry be-
system. Since the match probabilities constitute thgveen the insertion and deletion states. In the result-
core of the model, we focus on the remaining emising model, the probability of entering a gap state is
sion and transition probabilities. We also investigatequal to 1;‘, wherex is the probability of a transi-
the necessity of including an explicit end state in théion to the match state. Naturally, the log odds algo-
model. rithms also have a separate parameter for the random

The first variation concerns the issue of gap emisnodel.
sion probabilities. For the log odds algorithm, _

Durbin et al. (1998) allow the gap emission prob4-3 Correcting for Length

abilities of both the similarity and random models toAnother problem that needs to be addressed is the
be equal. While this greatly simplifies the calculabias introduced by the length of the words. The prin-
tions and allows for the emphasis to be on matchezpal objective of the bioinformatics model is the
symbols, it might be more in spirit with the word optimal alignment of two sequences. In our case,
similarity task to keep the emissions of the two modthe alignment is a means to computing word simi-
els separate. If we adopt such an approach, the sinrity. In fact, some of the algorithms (e.g. the for-
larity model learns the gap emission probabilities usvard algorithm) do not yield an explicit best align-
ing the forward-backward algorithm, just as is donenent. While the log odds algorithms have a built-in
with the match probabilities, but the random modelength correction, the Viterbi and the forward do not.

4.2 Model Variations

43



These algorithms continually multiply probabilities5 Experimental Setup

together every time they process a symbol (or a sym- | q d similari h K
bol pair), which means that the overall probability ofWe evaluated our word similarity system on the tas

an alignment strongly depends on word lengths. Iﬂf the_: identification of cognates. The input_ cor_15is_ts
order to rectify this problem, we multiply the final O_f pairs of words that have th-e same meaning in dis-
probability by L., wherenis the length of the longer tinct languages. For each pair, the system produces a
word in the paﬁr and is a constant. The value 6f Sc¢ore representing the likelihood that the words are

can be established on a held-out dataset cognate. Ideally, the scores for true cognate pairs
' should always be higher than scores assigned to un-

related pairs. For binary classification, a specific

4.4 Levenshtein with Learned Weights score threshold could be applied, but we defer the

_ _ , decision on the precision-recall trade-off to down-
Mann and Yarowsky (2001) investigated the inducCgiream applications. Instead, we order the candidate
tion of translation lexicons via bridge Ianguagesp(,iirS by their scores, and evaluate the ranking us-
Their approach starts with a dictionary between twg1g 11-point interpolated average precisidMan-
well studied languages (e.g. English-Spanish). Thqgﬁng and Schutze, 2001).
then use cognate pairs to inducdrdge between g similarity is not always a perfect indicator

two strongly related languages (e.g. Spanish ang .oonation because it can also result from lexical
Italian), and from this create a smaller tranSIat'OrE)orrowing and random chance. It is also possible
dictionary between the remaining two languageg, st o words are cognates and yet exhibit little sur-
(e.g. English and ltalian). They compared the peig e gimilarity. Therefore, the upper bound for aver-

formances of several different cognate similarity (0546 precision is likely to be substantially lower than
distance) measures, including one based on the L&y,

enshtein distance, one based on the stochastic trans-
ducers of Ristad and Yianilos (1998), and a varia5.1 Data
tion of a Hidden Markov Model. Somewhat surpris-

. : Training data for our cognate recognition model
ingly, the.Hldden Markqv Model falls well short of comes from the Comparative Indoeuropean Data
the baseline Levenshtein distarice.

Corpus (Dyen et al.,, 1992). The data contains
Mann and Yarowsky (2001) developed yet anyorq lists of 200 basic meanings representing 95
other model, which outperformed all other simi-speech varieties from the Indoeuropean family of
larity measures. In the approach, which they calhnguages. Each word is represented in an ortho-
“Levenshtein with learned weights”, the probabil-graphic form without diacritics using the 26 letters
ities of their stochastic transducer are transformegk the Roman alphabet. All cognate pairs are also
into substitution weights for computing Levenshteingentified in the data.
distance: 0.5 for highly similar symbols, 0.75 for The development sétonsisted of two language
weakly similar symbols, etc. We have endeavored tgajrs: |talian and Serbo-Croatian, as well as Polish
emulate this approach (abbreviatedV ) by con-  and Russian. We chose these two language pairs
verting the log odds substitution scores calculategecayse they represent very different levels of re-
from the fully trained model into the substitution|gtedness: 25.3% and 73.5% of the word pairs are
weights used by the authors. cognates, respectively. The percentage of cognates
within the data is important, as it provides a sim-
~ 2Another common method to correct for length is to také?!€ baseline from which to compare the success of

then" root of the final calculation, whemeis the length of the our algorithms. If our cognate identification process

longest word. However, our initial experiments indicated that

this method does not perform well on the word similarity task.  4Several parameters used in our experiments were deter-
3The HMM model of (Mann and Yarowsky, 2001) is of dis- mined during the development of the word similarity model.

tinctly different design than our PHMM model. For example,These include the random model's parametethe constant

the emission probabilities corresponding to the atomic edit ogransition probabilities in the simplified model, and the constant

erations sum to one faachalphabet symbol. In our model, the C for correcting the length bias in the Viterbi and forward algo-

emission probabilities for different symbols are interdependentithms. See (Mackay, 2004) for complete details.
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were random, we would expect to get roughly these Model Algorithm
percentages for our recognition precision (on aver{ Variation VIT | FOR | LOG | FLO
age). full model 0.630| 0.621| 0.656| 0.631
The test set consisted of five 200-word lists repre-| gaps const | 0.633| 0.631| 0.684 | 0.624
senting English, German, French, Latin, and Alba-| trans const | 0.565| 0.507 | 0.700 | 0.550
nian, compiled by Kessler (2001). The lists for these| both const | 0.566 | 0.531| 0.704 | 0.574
languages were removed from the training data (ex{ no end state| 0.626 | 0.620| 0.637| 0.601
cept Latin, which was not part of the training set), in | single param 0.647 | 0.650| 0.703 | 0.596
order to keep the testing and training data as sepa-
rate as possible We converted the test data to havelable 1. Average cognate recognition precision for
the same orthographic representation as the trainiegch model and algorithm combination.
data.

5.2 Significance tests

We performed pairwise statistical significance test'én_()deI without changes. The remaining rows con-
tain the results for the model variations described in

for various model and algorithm combinations. Fol- tion 4.2 1n all the simolificati )
lowing the method proposed by Evert (2004), w ection .. 'n afl cases, ine simpiiications are in
ffect during testing only, after the full model had

applied Fisher’s exact test to counts of word pairg trained. We al ; d . ts with
that are accepted by only one of the two tested apoen trained. We also performed experiments wi

gorithms. For a given language pair, the cutoff Ieveﬁhe model simplified prior to training but their results

was set equal to the actual number of cognate pa}%ere consistently lower than the results presented

in the list. For example, since 118 out of 200 wor

pairs in the English/German list are cognate, we con- \yjith the exception of the forward log odds algo-
sidered the true and false positives among the set gfhm, the best results are obtained with simplified
118 top scoring pairs. For the overall average dhodels. The model with only a single transition
a number of different language pairs, we took thgarameter performs particularly well. On the other
union of the individual sets. For the results in Tahand, the removal of the end state invariably causes
bles 1 and 2, the pooled set contained 567 out ¢f decrease in performance with respect to the full
2000 pairs, which corresponds to the proportion ghodel. If a non-essential part of the model is made
cognates in the entire test data (28.35%). constant, only the Viterbi-based log odds algorithm
improves significantly; the performance of the other
three algorithms either deteriorates or shows no sig-

6 Experimental Results

In this section, we first report on the effect of modeificant difference.
variations on the overall performance, and then we Overall

; the top four variations of the Viterbi-
compare the best results for each algorithm.

based log odds algorithm (shown in italics in Ta-
ble 1) significantly outperform all other PHMM
variations and algorithms. This is not entirely unex-
Table 1 shows the average cognate recognition PrBected a4 OG is a more complex algorithms than
cision on the test set for a number of model variyoth VIT and FOR. It appears that the incorpora-
ations combined with four basic algorithmg|T,  tjon of the random model allowsOG to better dis-
FOR, LOG, andFLO, which were introduced in tinguish true similarity from chance similarity. In

Section 4.1. The first row refers to the fully trained,qgition, the log odds algorithms automatically nor-

5The complete separation of training and testing data is diffimahze the r(_aSUIt[S based on the lengths of the quds
cult to achieve in this case because of the similarity of cognatdgnder examination. However, from the rather dis-
across languages in the same family. For each of the remové?pointing performance d¢fLO, we conclude that
languages, there are other closely related languages thatarere- . . . . .
tained in the training set, which may exhibit similar or evencon5|der'ng all possible alignments does not help the
identical correspondences. log odds approach.

6.1 Model Variations
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Languages Proportion Method
of Cognates LCSR LLW ALINE VIT FOR LOG FLO
English | German 0.590 0.895| 0.917| 0.916 | 0.932| 0.932| 0.930| 0.929

French | Latin 0.560 0.902 | 0.893| 0.863 | 0.916| 0.914| 0.934| 0.904
English | Latin 0.290 0.634 | 0.713| 0.725 | 0.789| 0.792| 0.803| 0.755
German | Latin 0.290 0.539 | 0.647| 0.706 | 0.673| 0.666 | 0.730| 0.644

English | French 0.275 0.673| 0.725| 0.615 | 0.751| 0.757| 0.812| 0.725
French German 0.245 0.568 | 0.591| 0.504 | 0.556| 0.559| 0.734| 0.588
Albanian | Latin 0.195 0.541| 0.510| 0.618 | 0.546| 0.557| 0.680| 0.541
Albanian| French 0.165 0.486 | 0.444| 0.612 | 0.505| 0.530| 0.653| 0.545
Albanian| German 0.125 0.275| 0.340| 0.323 | 0.380| 0.385| 0.379| 0.280
Albanian | English 0.100 0.245| 0.322| 0.277 | 0.416| 0.406| 0.382| 0.403

AVERAGE 0.2835 0.576 | 0.610| 0.616 | 0.647| 0.650| 0.704| 0.631

Table 2: Average cognate recognition precision for various models and algorithms.

6.2 Comparison is incorporated into ALINE. ALINE does not in-

volve extensive supervised training, but it requires

Table 2 contains the results of the best varianty, . \\ i< t0 be in a phonetic, rather than ortho-
which are shown in boldface in Table 1, along Witl‘gY ’

) raphic form. We conjecture that the performance
other methods for comparison. The results are sep FLOG would further improve if it could be trained

rated into individual language pairs from the test sebn phonetically-transcribed multilingual data.
For the baseline method, we selected the Longest

Common Subsequence RatlddSR), a measure of

orthographic word similarity often used for cognate

identification (Brew and McKelvie, 1996; Melamed,7 Conclusion

1999; Koehn and Knight, 2001). The LCSR of

two words is computed by dividing the length of

their longest common subsequence by the lenghYe created a system that learns to recognize word
of the longer word.LLW stands for “Levenshtein pairs that are similar based on some criteria provided
with learned weights”, which is described in Secduring training, and separate such word pairs from
tion 4.4. We also include the results obtainedhose that do not exhibit such similarity or whose

by the ALINE word aligner (Kondrak, 2000) on Similarity exists solely by chance. The system is

phonetically-transcribed word lists. based on Pair Hidden Markov Models, a technique
Because of the relatively small size of the “S,[Sadapted from the field of bioinformatics. We tested a

the differences among results for individual lan.number of training algorithms and model variations

guage pairs are not statistically significant in man@" the task of identifying cognates. However, since

cases. However, when the average over all langualj¢i0€S not rely on domain-specific knowledge, our
pairs is considered, the Viterbi-based log odds aPYStem can be applied to any task that requires com-

gorithm (LOG) is significantly better than all other PUting word similarity, as long as there are examples

algorithms in Table 2. The differences betweer?fwords that would be considered similar in a given

the remaining algorithms are not statistically signifi—conteXt'

cant, except that they all significantly outperformthe |n the future, we would like to extend our system
LCSR baseline. by removing the one-to-one constraint that requires

The fact thatLOG is significantly better than alignments to consist of single symbols. It would
ALINE demonstrates that given a sufficiently largealso be interesting to test the system in other ap-
training set, an HMM-based algorithm can automatplications, such as the detection of confusable drug
ically learn the notion of phonetic similarity, which names or word alignment in bitexts.

46



Acknowledgments Grzegorz Kondrak. 2000. A new algorithm for the
] ) _alignment of phonetic sequences. Rmoceedings of

This research was funded in part by the Natural Sci- NAACL 2000 pages 288-295.

ences and Engineering Research Council of Canada

; ; Wesley Mackay. 2004. Word similarity using Pair Hid-
(NSERC), and the Alberta Informatics Circle of Re den Markov Models. Master’s thesis, University of
search Excellence (iCORE). Alberta.

Gideon S. Mann and David Yarowsky. 2001. Multipath
References translation lexicon induction via bridge languages. In

) Proceedings of NAACL 200pages 151-158.
Leonard E. Baum, Ted Petrie, George Soules, and Nor-

man Weiss. 1970. A maximization technique occurChristopher D. Manning and Hinrich Schutze. 2001.
ring in the statistical analysis of probabilistic function Foundations of Statistical Natural Language Process-
of Markov chains.The Annals of Mathematical Statis-  ing. The MIT Press.
tics, 41(1):164-171.

_ ) ) ) I. Dan Melamed. 1999. Bitext maps and alignment

Chris Brew and David McKelvie. 1996. Word-pair ex- via pattern recognition. Computational Linguistigs

traction for lexicography. IfProceedings of the 2nd 25(1):107-130.
International Conference on New Methods in Lan-
guage Processingages 45-55. John Nerbonne. 2003. Linguistic variation and compu-

) ) . tation. InProceedings of EACL-Q®ages 3-10.
Alexander Clark. 2001. Learning morphology with Pair

Hidden Markov Models. liProceedings of the Student Michael P. Oakes. 2000. Computer estimation of vocab-
Workshop at ACL 2001 ulary in protolanguage from word lists in four daugh-

. . . . I . | of itative Linguisti
Michael A. Covington. 1998. Alignment of multiple lan- ';te(;)zazré%u_azaess Journal of Quantitative Linguistics

guages for historical comparison. Rroceedings of
COLING-ACL'98 pages 275-280. Franz Josef Och and Hermann Ney. 2000. Improved

Richard Durbin, Sean R. Eddy, Anders Krogh, and gtoaélétlcaaleasl,lgzrg]_eﬂf?odels. Proceedings of ACL-
Graeme Mitchison. 1998iological sequence analy- pag '

sis Cambridge University Press. Ari Pirkola, Jarmo Toivonen, Heikki Keskustalo, Kari

Isidore Dyen, Joseph B. Kruskal, and Paul Black. 1992, Visala, and Kalervo Jarvelin. 2003. Fuzzy transla-
An Indoeuropean classification: A lexicostatistical ex- t|fon of cross-lingual spelling variants. RFroceedings
periment. Transactions of the American Philosophical Of SIGIR'03 pages 345-352.

Society 82(5). Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
Stefan Evert. 2004. Significance tests for the evaluation iNg string edit distancd EEE Transactions on Pattern
of ranking methods. IRroceedings of COLING 2004  Analysis and Machine Intelligenc20(2):522-532.

pages 945-951. Jorg Tiedemann. 1999. Automatic construction of

Patrick A. V. Hall and Geoff R. Dowling. 1980. Approxi- ~ Weighted string similarity measures. Rroceedings
mate string matchingComputing Surveyd2(4):381— of the Joint SIGDAT Conference on Empirical Meth-
402. ods in Natural Language Processing and Very Large

Corpora College Park, Maryland.
Frederick Jelinek. 1999Statistical Methods for Speech

Recognition The Massachusetts Institute of Technol-Jorg Tiedemann. 2003. Combining clues for word align-
ogy Press. ment. InProceedings of the 10th Conference of the

o ) European Chapter of the ACL (EACLO03)
Brett Kessler. 2001. The Significance of Word Lists

Stanford: CSLI Publications. Robert A. Wagner and Michael J. Fischer. 1974. The

Philipp Koehn and Kevin Knight. 2001. Knowledge 'sa\tcr;rlc/lg-;ci-at)r:lgggitir;gf:tlon problem.Journal of the

sources for word-level translation models.Aroceed-
ings of the 2001 Conference on Empirical Methods inyystin Zobel and Philip Dart. 1996. Phonetic string
Natural Language Processingages 27-35. matching: Lessons from information retrieval. Rro-

Grzegorz Kondrak and Bonnie Dorr. 2004. Identification ceedings of SIGIR'9fpages 166-172.

of confusable drug names: A new approach and evalu-
ation methodology. IfProceedings of COLING 2004
pages 952-958.

47



A Bayesian mixture model for term re-occurrence and burstiness

Avik Sarkar!, Paul H Garthwaite?, Anne De Roeck!
! Department of Computing, 2 Department of Statistics
The Open University
Milton Keynes, MK7 6AA, UK

{a. sarkar,

Abstract

This paper proposes a model for term re-
occurrence in a text collection based on
the gaps between successive occurrences
of aterm. These gaps are modeled using
amixture of exponentia distributions. Pa-
rameter estimation is based on aBayesian
framework that allows us to fit a flexi-
ble model. The modd provides measures
of aterm’s re-occurrence rate and within-
document burstiness. The model works
for al kinds of terms, be it rare content
word, medium frequency term or frequent
function word. A measure is proposed to
account for the term’s importance based
on its distribution pattern in the corpus.

1 Introduction

Traditionally, Information Retrieval (IR) and Statis-
tical Natural Language Processing (NLP) applica
tions have been based on the “bag of words’ model.
This model assumes term independence and homo-
geneity of the text and document under considera-
tion, i.e. the terms in a document are all assumed
to be distributed homogeneously. This immediately
leads to the Vector Space representation of text. The
immense popularity of this model is due to the ease
with which mathematical and statistical techniques
can be applied to it.

The model assumes that once a term occurs in a
document, its overall frequency in the entire doc-
ument is the only useful measure that associates a
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term with a document. It does not take into consid-
eration whether the term occurred in the beginning,
middle or end of the document. Neither does it con-
sider whether the term occurs many times in close
succession or whether it occurs uniformly through-
out the document. It also assumes that additional
positional information does not provide any extra
leverage to the performance of the NLP and IR ap-
plications based on it. This assumption has been
shown to be wrong in certain applications (Franz,
1997).

Existing models for term distribution are based on
the above assumption, so they can merely estimate
the term’s frequency in a document or a term’s top-
ical behavior for a content term. The occurrence of
acontent word is classified as topical or non-topical
based on whether it occurs once or many times in
the document (Katz, 1996). We are not aware of any
existing model that makes | ess stringent assumptions
and models the distribution of occurrences of aterm.

In this paper we describe a modd for term re-
occurrence in text based on the gaps between succes-
sive occurrences of the term and the position of its
first occurrence in a document. The gaps are mod-
eled by amixture of exponential distributions. Non-
occurrence of aterm in a document is modeled by
the statistical concept of censoring, which states that
the event of observing a certain term is censored at
the end of the document, i.e. the document length.
The modeling is done in a Bayesian framework.

The organization of the paper is as follows. In
section 2 we discuss existing term distribution mod-
els, the issue of burstiness and some other work that
demonstrates the failure of the “bag of words’ as-

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
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sumption. In section 3 we describe our mixture
model, the issue of censoring and the Bayesian for-
mulation of the model. Section 4 describes the
Bayesian estimation theory and methodology. In
section 5 we talk about ways of drawing infer-
ences from our model, present parameter estimates
on some chosen terms and present case studies for a
few selected terms. We discuss our conclusions and
suggest directions for future work in section 6.

2 Existing Work

2.1 Models

Previous attempts to model aterm’s distribution pat-
tern have been based on the Poisson distribution. If
the number of occurrences of aterm in a document
is denoted by k, then the model assumes:

NG
k!

for k = 0,1,2,... Estimates based on this model
are good for non-content, non-informative terms, but
not for the more informative content terms (Manning
and Schiitze, 1999).

The two-Poisson model is suggested asavariation
of the Poisson distribution (Bookstein and Swanson,
1974; Church and Gale, 1995b). This model as-
sumes that there are two classes of documents as-
sociated with a term, one class with a low average
number of occurrences and the other with a high av-
erage number of occurrences.

p(k) = e

I
D = e kj' a)e kj' s
where o and (1 — «) denote the probabilities of a
document in each of these classes. Often this model
under-estimates the probability that a term will oc-

cur exactly twice in adocument.

2.2 Burstiness

Burstiness is a phenomenon of content words,
whereby they are likely to occur again in a text af-
ter they have occurred once. Katz (1996) describes
within-document bur stiness asthe close proximity of
al or some individual instances of a word within a
document exhibiting multiple occurrences.

He proposes amodel for within-document bursti-
ness with three parameters as:
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o the probability that aterm occursin adocument
at all (document frequency)

o the probability that it will occur a second time
in adocument given that it has occurred once

o the probability that it will occur another time,
given that it has aready occurred k times
(wherek > 1).

The drawbacks of this model are: (a) it cannot han-
dle non-occurrence of aterm in a document; (b) the
model can handle only content terms, and is hot suit-
able for high frequency function words or medium
frequency terms; and (c) the rate of re-occurrence of
the term or the length of gaps cannot be accounted
for. We overcome these drawbacks in our model.

A measure of burstiness was proposed as a binary
value that is based on the magnitude of average-term
frequency of the term in the corpus (Kwok, 1996).
This measure takes the value 1 (bursty term) if the
average-term frequency value is large and 0 other-
wise. The measure is too naive and incomplete to
account for term burstiness.

2.3 Homogeneity Assumption

The popular “bag of words’ assumption for text
states that a term’s occurrence is uniform and ho-
mogeneous throughout. A measure of homogeneity
or self-similarity of a corpus can be calculated, by
dividing the corpus into two frequency lists based
on the term frequency and then calculating the 2
statistic between them (Kilgarriff, 1997). Various
schemes for dividing the corpus were used (De
Roeck et al., 20044) to detect homogeneity of terms
at document level, within-document level and by
choosing text chunks of various sizes. Their work
revealed that homogeneity increases by nullifying
the within document term distribution pattern and
homogeneity decreases when chunks of larger size
are chosen as it incorporates more document struc-
ture in it. Other work based on the same method-
ology (De Roeck et a., 2004b) reveas that even
very frequent function words do not distribute ho-
mogeneously over acorpus or document. These (De
Roeck et al., 2004a; De Roeck et al., 2004b) provide
evidence of the fact that the " bag of words’ assump-
tionisinvalid. Thusit sets the platform for a model



that defies the independence assumption and consid-
ers the term distribution pattern in a document and
COrpus.

3 Modding

3.1 Terminology and Notation

We build a single model for a particular term in a
given corpus. Let us suppose the term under consid-
eration is z as shown in Figure 1. We describe the
notation for a particular document, i in the corpus.

Wil Wi Wini Wini+]

A

&

document length, d;

Figure 1. The document structure and the gaps be-
tween terms

e d; denotes the number of words in document ¢
(i.e. the document length).

e n; denotes the number of occurrences of term
2 in document 3.

e w;; denotes the position of the first occurrence
of term z in document <.

® Wiy, ..., Wy, denotes the successive gaps be-
tween occurrences of term x in document 3.

e w;n,+1 denotes the gap for the next occurrence
of z, somewhere after the document ends.

e cen; is the value at which observation w;,, 11
is censored, as explained in section 3.2.2.

3.2 TheModd

We suppose we are looking through a document,
noting when the term of interest occurs. Our model
assumes that the term occurs at some low underly-
ing base rate 1/, but, after the term has occurred,
then the probability of it occurring soon afterwards
is increased to some higher rate 1/)\,. Specifically,
the rate of re-occurrence is modeled by a mixture of
two exponential distributions. Each of the exponen-
tial components is described as follows:
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e The exponential component with larger mean
(average), 1/, determines the rate with which
the particular term will occur if it has not oc-
curred before or it has not occurred recently.

e The second component with smaller mean
(average), 1/\y, determines the rate of re-
occurrence in a document or text chunk given
that it has already occurred recently. This com-
ponent captures the bursty nature of thetermin
the text (or document) i.e. the within-document
burstiness.

The mixture mode! is described as follows:
P(wij)

forj € {2,...,n;}. pand (1 — p) denote respec-
tively, the probabilities of membership for the first
and the second exponential distribution.

There are a few boundary conditions that the
model is expected to handle. We take each of these
cases and discuss them briefly:

p)\le—)\lwij + (1 _ p))\ze—)\zwi]’

3.2.1 First occurrence

Themodd treatsthefirst occurrence of aterm dif-
ferently from the other gaps. The second exponen-
tial component measuring burstiness does not fea-
tureinit. Hence the distribution is:

Ppr(win) = e Mvn

3.2.2 Censoring

Here we discuss the modeling of two cases that
require special attention, corresponding to gaps that
have a minimum length but whose actual length is
unknown. These cases are:

e Thelast occurrence of aterm in a document.
e Theterm does not occur in adocument at all.

We follow a standard technique from clinical tri-
als, where a patient is observed for a certain amount
of time and the observation of the study is expected
in that time period (the observation might be the
time until death, for example). In some cases it hap-
pens that the observation for a patient does not occur
in that time period. In such acase it is assumed that
the observation would occur at sometime in the fu-
ture. Thisiscalled censoring at a certain point.



In our case, we assume the particular term would
eventually occur, but the document has ended before
it occurs so we do not observeit. In our notation we
observe the term n; times, so the (n; + 1) time the
term occurs is after the end of the document. Hence
the distribution of w;,, 11 iscensored at length cen;.
If cen; is small, so that the n;?h occurrence of the
term is near the end of the document, then it is not
surprising that w;y,, +1 iscensored. Incontrast if cen;
is large, so the n!* occurrence is far from the end
of the document, then either it is surprising that the
term did not re-occur, or it suggests the term is rare.
The information about the model parameters that is
given by the censored occurrence is,

- o(x)dx

cen;

Pr(wip,+1 > cen;) =

— pe—)\lceni 4 (1 _ p)e—)\gceni; Whefe,

ng
cen; = di— E w,-j
7j=1

Also when a particular term does not occur in a
document, our model assumes that the term would
eventually occur had the document continued indef-
initely. In this case the first occurrence is censored
and censoring takes place at the document length. If
aterm does not occur in along document, it suggests
thetermisrare.

3.3 Bayesian formulation

Our modeling is based on aBayesian approach (Gel-
man et a., 1995). The Bayesian approach differs
from the traditional frequentist approach. In the fre-
guentist approach it is assumed that the parameters
of a distribution are constant and the data varies.
In the Bayesian approach one can assign distrib-
utions to the parameters in a model. We choose
non-informative priors, as is common practice in
Bayesian applications. So we put,

p ~ Uniform(0,1), and

A1 ~ Uniform(0,1)

To tell the model that ), isthe larger of the two As,
we put Ao = A1 + v, wherey > 0, and

v ~ Uniform(0,1)

Also cen; depends on the document length d; and
the number of occurrences of the term in that doc-
ument, n;. Fitting mixture techniques is tricky and
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Figure 2. Bayesian dependencies between the para-
meters

requires special methods. We use data augmenta-
tion to make it feasible to fit the model using Gibbs
Sampling (section 4.2). For details about this, see
Robert (1996) who describes in detail the fitting of
mixture models in MCMC methods (section 4.2).

4 Parameter Estimation

4.1 Bayesian Estimation

In the Bayesian approach of parameter estimation,
the parameters are uncertain, and it is assumed that
they follow some distribution. In our case the para-
meters and the data are defined as:

© = {p, A1, A2} denote the parameters of the model.
W = {wi1,... , Win,, Win,+1} denotes the data.
Hence based on this we may define the following:

e f(©)istheprior distribution of 6 asassigned
in section 3.3. It summarizes everything we
know about © apart from the data V.

e f(W|6) is the likelihood function. It is our
model for the data 17 conditional on the para-
meters 6. (As well as the observed data, the
likelihood also conveys the information given
by the censored values)

e f(B|W) is the posterior distribution of ©,

=,

given . It describes our beliefs about the pa-
rameters given the information we have.



Deriving the density function for a parameter set 5)
after observing data W, can be achieved by using
Bayes Theorem as:

fOw) = )

where f (VT/)His simply anormalizing constant, inde-
pendent of ©. It can be computed in terms of the
likelihood and prior as:

/ F(716)£(6)d6

Hence equation 1 isreduced to:
FOIW) o f(W6)(6)

So, once we have specified the posterior density
function f(6[1"), we can obtain the estimates of the
parameters ¢ 5) by simply averaging the values gener-
ated by f(6|W).

4.2 Gibbs Sampling

The density function of ©;, f(©;|W) can be ob-
tained by integrating f(©|W) over the remaining
parameters of 6. Butin many cases, asinours, itis
impossible to find a closed form solution of f(6;).
In such cases we may use a simulation process
based on random numbers, Markov Chain Monte
Carlo(MCMC) (Gilks et al., 1996). By generating
alarge sample of observations from the joint distri-
bution f(6, W), the integrals of the complex dis-
tributions can be approximated from the generated
data. The values are generated based on the Markov
chain assumption, which states that the next gener-
ated value only depends on the present value and
does not depend on the values previous to it. Based
on mild regularity conditions, the chain will gradu-
aly forget its initial starting point and will eventu-
ally converge to aunique stationary distribution.
Gibbs Sampling (Gilks et al., 1996) is a popular
method used for MCMC analysis. It providesan ele-
gant way for sampling from the joint distributions of
multiple variables. sample repeatedly from the dis-
tributions of one-dimensional conditionals given the
current observations. Initial random values are as-
signed to each of the parameters. And then these val-
ues are updated iteratively based on the joint distri-
bution, until the values settle down and converge to
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a stationary distribution. The values generated from
the start to the point where the chain settles down are
discarded and are called the burn-in values. The pa
rameter estimates are based on the values generated
thereafter.

5 Results

Parameter estimation was carried out using Gibb's
Sampling on the WinBUGS software (Spiegel halter
et al., 2003). Vaues from the first 1000 iteration
were discarded as burn-in. It had been observed that
in most cases the chain reached the stationary distri-
bution well within 1000 iterations. A further 5000 it-
erations were run to obtain the parameter estimates.

5.1

The parameters of the model can be interpreted in
the following manner:

Interpretation of Parameters

e )\ = 1/)\; isthe mean of an exponential dis-
tribution with parameter ;. XI measures the
rate at which this term is expected in arunning
text corpus. A\ determines the rarity of aterm
in a corpus, as it is the average gap at which
the term occurs if it has not occurred recently.
Thus, alarge value of \; tells us that the term
isvery rarein the corpus and vice-versa.

e Similarly, X; measures the within-document
burstiness, i.e. the rate of occurrence of aterm
given that it has occurred recently. It measures
the term re-occurrence rate in a burst within
a document. Small values of )y indicate the
bursty nature of the term.

e pand 1 — p denote, respectively, the probabil-
ities of the term occurring with rate A; and A,
in the entire corpus.

Table 1 presents some heuristics for drawing in-
ference based on the values of the parameter esti-
mates.

5.2 Data

We choose for evaluation, terms from the Associ-
ated Press (AP) newswire articles, as this is a stan-
dard corpus for language research. We picked terms
which had been used previoudly in the literature
(Church and Gale, 1995a; Church, 2000; Manning



| A1 small X large Term P N X | A/

Az smal || frequently occur- | topica content th% gié iggg iggg 182
ring and common | word occurring in an : : ' :

function word bursts of 0.58 38.85 37.22 1.04

except 0.67 | 21551.72 | 8496.18 254

Az large || comparatively infrequent and scat- follows 056 | 80000.00 | 30330.60 2.64

frequent but We”- tered function word yet 0.51 10789.81 3846.15 281

spaced  function he 051 296.12 48.22 6.14

word sad 0.03 895.26 69.06 12.96

government (| 0.60 1975.50 134.34 14.71

Table 1: Heuristics for inference, based onthe para- | Somewhat || 0.84 | 75244.54 | 434972 | 17.30

. federal 0.84 2334.27 102.57 22.76

meter estimates. here 094 | 344234 | 11063 | 3L12

she 0.73 1696.35 41.41 40.97

. george 0.88 | 17379.21 323.73 53.68

and Schitze, 1999; Umemura and Church, 2000) bush 071 3844.68 53.48 71.90

with respect to modeling different distribution, so as iov'eéd 8-% 121462?-4218 gg-ﬁ 113%

to present a comparative picture. For building the church 092 | 1129178 2013 | 16102

model we randomly selected 1% of the documents book 092 | 17143.84 79.68 | 215.16

from the corpus, asthe software (Spiegelhalter et al., \é'emag‘ g-gg 13%23(1)-(% 1%22 ggg-jg
. - 0y COl . . ) .

2003) we used is Windows PC based and could not noriega 091 | 8628128 56.88 | 1516.82

handle enormous volume of data with our available
hardware resources. As stated earlier, our model can
handle both frequent function terms and rare content
terms. We chose terms suitable for demonstrating
this. We also used some medium frequency termsto
demonstrate their characteristics.

5.3 Parameter estimates

Table 2 shows the parameter estimates for the cho-
sen terms.  The table does not show the values of
1 — p asthey can be obtained from the value of p. It
has been observed that the value \; / A\, isagood in-
dicator of the nature of terms, hence the rows in the
table containing terms are sorted on the basis of that
value. Thetable is divided into three parts. The top
part contains very frequent (function) words. The
second part contains terms in the medium frequency
range. And the bottom part contains rarely occurring
and content terms.

5.4 Discussion

The top part of the table consists of the very fre-
guently occurring function words occurring fre-
quently throughout the corpus. These statements are
supported by the low values of A\; and A,. These
values are quite close, indicating that the occurrence
of these terms shows low burstiness in arunning text
chunk. This supports our heuristics about the value
of A1/\2, which is small for such terms. Moder-
ate, not very high values of p also support this state-
ment, as the term is then quite likely to be gener-

53

Table 2: Parameter estimates Nof t/rle model for some
selected terms, sorted by the \; /A, value

ated from either of the exponential distributions (the
has high value of p, but since the values of \ are
so closg, it doesn't really matter which distribution
generated the observation). We observe compara-
tively larger values of \; for terms like yet, follows
and except since they have some dependence on the
document topic. One may claim that these are some
outliers having large values of both \; and A,. The
large value of \; can be explained, asthese termsare
rarely occurring function words in the corpus. They
do not occur in bursts and their occurrences are scat-
tered, so values of A\, are also large (Table 1). Inter-

estingly, based on our heuristics these large values
nullify each other to obtain a small value of \; /.

But since these cases are exceptional, they find their
place on the boundary region of the division.

The second part of the table contains mostly non-
topical content terms as defined in the literature
(Katz, 1996). They do not describe the main topic
of the document, but some useful aspects of the doc-
ument or a nearby topical term. Specia attention
may be given to the term george, which describes
the topical term bush. In a document about George
Bush, the complete name is mentioned possibly only
once in the beginning and further referencesto it are
made using the word bush, leading to bush being as-



signed as a topical term, but not george. The term
government in the group refers to some newswire
article about some government in any state or any
country, future references to which are made us-
ing this term. Similarly the term federal is used
to make future references to the US Government.
As the words federal and government are used fre-
quently for referencing, they exhibit comparatively
small values of \o. We were surprised by the occur-
rence of terms like said, here and she in the second
group, as they are commonly considered as func-
tion words. Closer examination revealed the details.
Said has some dependence on the document genre,
with respect to the content and reporting style. The
data were based on newswire articles about impor-
tant people and events. It is true, though unfor-
tunate, that the majority of such people are male,
hence there are more articles about men than women
(he occurs 757, 301 timesin 163, 884 documents as
the 13" most frequent term in the corpus, whereas
she occurs 164,030 times in 48, 794 documents as
the 70" frequent term). This explains why he has
a smaller value of \; than she. But the )y values
for both of them are quite close, showing that they
have similar usage pattern. Again, newswire articles
are mostly about people and events, and rarely about
some location, referencedN by the term here. This ex-
plains the large value of A\, for here. Again, because
of its usage for referencing, it re-occurs frequently
while describing a particular location, leading to a
small value of \,. Possibly, in acollection of :t/ravel
documents’, herewill have asmaller value of A\; and
thus occur higher up in the list, which would allow
the model to be used for characterizing genre.

Terms in the third part, as expected, are topical
content terms. An occurrence of such a term de-
fines the topic or the main content word of the doc-
ument or the text chunk under consideration. These
terms are rare in the entire corpus, and only appear
in documents that are about this term, resulting in
very high values of ;. Also low values of \, for
these terms mean that repeat occurrences within the
same document are quite frequent; the characteris-
tic expected from atopical content term. Because of
these characteristics, based on our heuristics these
terms have very high values of A\, /A2, and hence are
considered the most informative termsin the corpus.
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55 Case Studies

Here we study selected terms based on our model.
These terms have been studied before by other re-
searchers. We study these terms to compare our
findings with previous work and also demonstrate
the range of inferences that may be derived from our
model.

5.5.1 somewhat vrs boycott

These terms occur an approximately equal num-
ber of times in the AP corpus, and inverse doc-
ument frequency was used to distinguish between
them (Church and Gale, 1995q3). Our model aso
gives approximately similar rates of occurrence (A1)
for these two terms as shown in Table 2. But the re-
occurrence rate, Ao, is 110.56 for boycott, which is
very small in comparison with the value of 4349.72
for somewhat. Hence based on this, our model as-
signs somewhat as arare function word occurring in
a scattered manner over the entire corpus. Whereas
boycott is assigned as a topical content word, as it
should be.

55.2 followsvrs soviet

These terms were studied in connection with fit-
ting Poisson distributions to their term distribution
(Manning and Schiitze, 1999), and hence determin-
ing their characteristigsP In our model, follows has
large values of both A; and Ay (Table 2), so that it
has the characteristics of arare function word. But
soviet hasalarge \; value and avery small A, value,
so that it has the characteristics of atopical content
word. So the findings from our model agree with the
original work.

5.5.3 kennedy vrs except

Both these terms have nearly equal inverse doc-
ument frequency for the AP corpus (Church, 2000;
Umemura and Church, 2000) and will be assigned
equal weight. They used a method (Kwok, 1996)
based on average-term frequency to determine the
nature of the term. According to our model, the \s
value of kennedy is very small as compared to that
for except. Hence using the \; /A, measure, we can
correctly identify kennedy as atopical content term

1The original study was based on the New York Times, ours
on the Associated Press corpus



and except as an infrequent function word. Thisisin
agreement with the findings of the original analysis.

5.5.4 noriega and said

These terms were studied in the context of an
adaptive language model to demonstrate the fact that
the probability of arepeat occurrence of atermin a
document defies the “bag of words’ independence
assumption (Church, 2000). The deviation from in-
dependence is greater for content terms like noriega
as compared to general terms like said. This can be
explained in the context of our model as said has
small values of \; and \,, and their values are quite
close to each other (as compared to other terms, see
Table 2). Hence said is distributed more evenly in
the corpus than noriega. Therefore, noriega defies
the independence assumption to a much greater ex-
tent than said. Hence their findings (Church, 2000)
are well explained by our model.

6 Conclusion

In this paper we present a model for term re-
occurrence in text based on gaps between succes-
sive occurrences of aterm in adocument. Parameter
estimates based on this model reveal various charac-
teristics of term use in a collection. The model can
differentiate aterm’s dependence on genre and col-
lection and we intend to investigate use of the model
for purposes like genre detection, corpus profiling,
authorship attribution, Lex‘g:lassification, etc. The
proposed measure of A;/A2 can be appropriately
adopted as a means of feature selection that takes
into account the term’s occurrence pattern in a cor-
pus. We can capture both within-document bursti-
ness and rate of occurrence of aterm in a single
model.
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Abstract

In this paper we propose and evaluate
a technique to perform semi-supervised
learning for Text Categorization. In
particular we defined a kernel function,
namely the Domain Kernel, that allowed
us to plug “external knowledge” into the
supervised learning process. External
knowledge is acquired from unlabeled
data in a totally unsupervised way, and it
is represented by means of Domain Mod-
els.

We evaluated the Domain Kernel in two
standard benchmarks for Text Categoriza-
tion with good results, and we compared
its performance with a kernel function that
exploits a standard bag-of-words feature
representation. The learning curves show
that the Domain Kernel allows us to re-
duce drastically the amount of training
data required for learning.

1 Introduction

Text Categorization (TC) deals with the problem of
assigning a set of category labels to documents. Cat-
egories are usually defined according to a variety
of topics (e.g. SPORT vs. POLITICS) and a set of
hand tagged examples is provided for training. In the
state-of-the-art TC settings supervised classifiers are
used for learning and texts are represented by means
of bag-of-words.

Even if, in principle, supervised approaches reach
the best performance in many Natural Language
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Processing (NLP) tasks, in practice it is not always
easy to apply them to concrete applicative settings.
In fact, supervised systems for TC require to be
trained a large amount of hand tagged texts. This
situation is usually feasible only when there is some-
one (e.g. a big company) that can easily provide al-
ready classified documents to train the system.

In most of the cases this scenario is quite unprac-
tical, if not infeasible. An example is the task of
categorizing personal documents, in which the cate-
gories can be modified according to the user’s inter-
ests: new categories are often introduced and, pos-
sibly, the available labeled training for them is very
limited.

In the NLP literature the problem of providing
large amounts of manually annotated data is known
as the Knowledge Acquisition Bottleneck. Cur-
rent research in supervised approaches to NLP often
deals with defining methodologies and algorithms to
reduce the amount of human effort required for col-
lecting labeled examples.

A promising direction to solve this problem is to
provide unlabeled data together with labeled texts
to help supervision. In the Machine Learning lit-
erature this learning schema has been called semi-
supervised learning. It has been applied to the
TC problem using different techniques: co-training
(Blum and Mitchell, 1998), EM-algorithm (Nigam
et al., 2000), Transduptive SVM (Joachims, 1999b)
and Latent Semantic Indexing (Zelikovitz and Hirsh,
2001).

In this paper we propose a novel technique to per-
form semi-supervised learning for TC. The under-
lying idea behind our approach is that lexical co-

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
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herence (i.e. co-occurence in texts of semantically
related terms) (Magnini et al., 2002) is an inherent
property of corpora, and it can be exploited to help a
supervised classifier to build a better categorization
hypothesis, even if the amount of labeled training
data provided for learning is very low.

Our proposal consists of defining a Domain
Kernel and exploiting it inside a Support Vector
Machine (SVM) classification framework for TC
(Joachims, 2002). The Domain Kernel relies on the
notion of Domain Model, which is a shallow repre-
sentation for lexical ambiguity and variability. Do-
main Models can be acquired in an unsupervised
way from unlabeled data, and then exploited to de-
fine a Domain Kernel (i.e. a generalized similarity
function among documents)'.

We evaluated the Domain Kernel in two stan-
dard benchmarks for TC (i.e. Reuters and 20News-
groups), and we compared its performance with a
kernel function that exploits a more standard Bag-
of-Words (BoW) feature representation. The use of
the Domain Kernel got a significant improvement in
the learning curves of both tasks. In particular, there
is a notable increment of the recall, especially with
few learning examples. In addition, F1 measure in-
creases by 2.8 points in the Reuters task at full learn-
ing, achieving the state-of-the-art results.

The paper is structured as follows. Section 2 in-
troduces the notion of Domain Model and describes
an automatic acquisition technique based on Latent
Semantic Analysis (LSA). In Section 3 we illustrate
the SVM approach to TC, and we define a Domain
Kernel that exploits Domain Models to estimate sim-
ilarity among documents. In Section 4 the perfor-
mance of the Domain Kernel are compared with a
standard bag-of-words feature representation, show-
ing the improvements in the learning curves. Section
5 describes the previous attempts to exploit semi-
supervised learning for TC, while section 6 con-
cludes the paper and proposes some directions for
future research.

"The idea of exploiting a Domain Kernel to help a super-
vised classification framework, has been profitably used also in
other NLP tasks such as word sense disambiguation (see for ex-
ample (Strapparava et al., 2004)).
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2 Domain Models

The simplest methodology to estimate the similar-
ity among the topics of two texts is to represent
them by means of vectors in the Vector Space Model
(VSM), and to exploit the cosine similarity. More
formally, let 7 = {t1,t2,...,t,} be a corpus, let
V = {wy,ws,...,w;} be its vocabulary, let T be
the k x n term-by-document matrix representing 7,
such that t; j is the frequency of word w; into the text
t;. The VSM is a k-dimensional space R¥, in which
the text t; € 7 is represented by means of the vec-
tor ¢; such that the 7*" component of ¢; is t; ;. The
similarity among two texts in the VSM is estimated
by computing the cosine.

However this approach does not deal well with
lexical variability and ambiguity. For example the
two sentences “he is affected by AIDS” and “HIV is
a virus” do not have any words in common. In the
VSM their similarity is zero because they have or-
thogonal vectors, even if the concepts they express
are very closely related. On the other hand, the sim-
ilarity between the two sentences “the laptop has
been infected by a virus” and “HIV is a virus” would
turn out very high, due to the ambiguity of the word
virus.

To overcome this problem we introduce the notion
of Domain Model (DM), and we show how to use it
in order to define a domain VSM, in which texts and
terms are represented in a uniform way.

A Domain Model is composed by soft clusters of
terms. Each cluster represents a semantic domain
(Gliozzo et al., 2004), i.e. a set of terms that often
co-occur in texts having similar topics. A Domain
Model is represented by a k x k' rectangular matrix
D, containing the degree of association among terms
and domains, as illustrated in Table 1.

\ \ MEDICINE COMPUTER_SCIENCE

HIV 1 0
AIDS 1 0
virus 0.5 0.5
laptop 0 1

Table 1: Example of Domain Matrix

Domain Models can be used to describe lexical
ambiguity and variability. Lexical ambiguity is rep-



resented by associating one term to more than one
domain, while variability is represented by associat-
ing different terms to the same domain. For example
the term virus is associated to both the domain
COMPUTER_SCIENCE and the domain MEDICINE
(ambiguity) while the domain MEDICINE is associ-
ated to both the terms ATIDS and HIV (variability).
More formally, let D = {D1,Ds,..., Dy} be
a set of domains, such that ¥ < k. A Domain
Model is fully defined by a k x k' domain matrix
D representing in each cell d;, the domain rele-
vance of term w; with respect to the domain D,.
The domain matrix D is used to define a function
D: R — R¥, that maps the vectors t;, expressed

into the classical VSM, into the vectors t; in the do-
main VSM. D is defined by?

D(;) = ;;(I'PFD) = ¢/ e

IDF
1,8
IDF(w;), t; is represented as a row vector, and
IDF(w;) is the Inverse Document Frequency of w;.
Vectors in the domain VSM are called Domain

Vectors. Domain Vectors for texts are estimated by

where I'™PF is a diagonal matrix such that i

exploiting formula 1, while the Domain Vector w/,
corresponding to the word w; € V/, is the i** row of
the domain matrix D. To be a valid domain matrix
such vectors should be normalized (i.e. (w},w}) =
1).

In the Domain VSM the similarity among Domain
Vectors is estimated by taking into account second
order relations among terms. For example the simi-
larity of the two sentences “He is affected by AIDS”
and “HIV is a virus” is very high, because the terms
AIDS, HIV and virus are highly associated to the
domain MEDICINE.

In this work we propose the use of Latent Se-
mantic Analysis (LSA) (Deerwester et al., 1990) to
induce Domain Models from corpora. LSA is an
unsupervised technique for estimating the similar-
ity among texts and terms in a corpus. LSA is per-
formed by means of a Singular Value Decomposi-
tion (SVD) of the term-by-document matrix T de-
scribing the corpus. The SVD algorithm can be ex-
ploited to acquire a domain matrix D from a large

’In (Wong et al., 1985) a similar schema is adopted to define

a Generalized Vector Space Model, of which the Domain VSM
is a particular instance.
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corpus 7 in a totally unsupervised way. SVD de-
composes the term-by-document matrix T into three
matrixes T ~ VX, U’ where X} is the diagonal
k x k matrix containing the highest &’ < k eigen-
values of T, and all the remaining elements set to
0. The parameter k’ is the dimensionality of the Do-
main VSM and can be fixed in advance®. Under this
setting we define the domain matrix Dy,g Atas

Disa =NV 2
where IN is a diagonal matrix such that 1}\1 =
1 s th ;
———, wj is the 7" row of the matrix V /X

(wl )

3 The Domain Kernel

Kernel Methods are the state-of-the-art supervised
framework for learning, and they have been success-
fully adopted to approach the TC task (Joachims,
1999a).

The basic idea behind kernel methods is to embed
the data into a suitable feature space F via a map-
ping function ¢ : X — F, and then use a linear
algorithm for discovering nonlinear patterns. Kernel
methods allow us to build a modular system, as the
kernel function acts as an interface between the data
and the learning algorithm. Thus the kernel function
becomes the only domain specific module of the sys-
tem, while the learning algorithm is a general pur-
pose component. Potentially a kernel function can
work with any kernel-based algorithm, such as for
example SVM.

During the learning phase SVMs assign a weight
A; > 0 to any example z; € X. All the labeled
instances x; such that \; > 0 are called support vec-
tors. The support vectors lie close to the best sepa-
rating hyper-plane between positive and negative ex-
amples. New examples are then assigned to the class
of its closest support vectors, according to equation
3.

31t is not clear how to choose the right dimensionality. In
our experiments we used 400 dimensions.

“When D1.sa is substituted in Equation 1 the Domain VSM
is equivalent to a Latent Semantic Space (Deerwester et al.,
1990). The only difference in our formulation is that the vectors
representing the terms in the Domain VSM are normalized by
the matrix I, and then rescaled, according to their IDF value,
by matrix I"PF . Note the analogy with the ¢f idf term weighting
schema (Salton and McGill, 1983), widely adopted in Informa-
tion Retrieval.



fl@) =Y MK (zi,2) + Ao 3)
iz1

The kernel function K returns the similarity be-
tween two instances in the input space X, and can
be designed in order to capture the relevant aspects
to estimate similarity, just by taking care of satis-
fying set of formal requirements, as described in
(Scholkopf and Smola, 2001).

In this paper we define the Domain Kernel and we
apply it to TC tasks. The Domain Kernel, denoted
by K p, can be exploited to estimate the topic simi-
larity among two texts while taking into account the
external knowledge provided by a Domain Model
(see section 2). It is a variation of the Latent Seman-
tic Kernel (Shawe-Taylor and Cristianini, 2004), in
which a Domain Model is exploited to define an ex-
plicit mapping D : RF — R¥ from the classical
VSM into the domain VSM. The Domain Kernel is
defined by

Kp(titj) =

where D is the Domain Mapping defined in equa-
tion 1. To be fully defined, the Domain Kernel re-
quires a Domain Matrix D. In principle, D can be
acquired from any corpora by exploiting any (soft)
term clustering algorithm. Anyway, we belive that
adequate Domain Models for particular tasks can be
better acquired from collections of documents from
the same source. For this reason, for the experi-
ments reported in this paper, we acquired the matrix
Disa, defined by equation 2, using the whole (un-
labeled) training corpora available for each task, so
tuning the Domain Model on the particular task in
which it will be applied.

A more traditional approach to measure topic sim-
ilarity among text consists of extracting BoW fea-
tures and to compare them in a vector space. The
BoW kernel, denoted by K g1y, is a particular case
of the Domain Kernel, in which D = I, and I is the
identity matrix. The BoW Kernel does not require
a Domain Model, so we can consider this setting
as “purely” supervised, in which no external knowl-
edge source is provided.
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4 Evaluation

We compared the performance of both Kp and
Kpow on two standard TC benchmarks. In sub-
section 4.1 we describe the evaluation tasks and the
preprocessing steps, in 4.2 we describe some algo-
rithmic details of the TC system adopted. Finally
in subsection 4.3 we compare the learning curves of
K D and K BoW -

4.1 Text Categorization tasks

For the experiments reported in this paper, we se-
lected two evaluation benchmarks typically used in
the TC literature (Sebastiani, 2002): the 20news-
groups and the Reuters corpora. In both the data sets
we tagged the texts for part of speech and we consid-
ered only the noun, verb, adjective, and adverb parts
of speech, representing them by vectors containing
the frequencies of each disambiguated lemma. The
only feature selection step we performed was to re-
move all the closed-class words from the document
index.

20newsgroups. The 20Newsgroups data set’ is
a collection of approximately 20,000 newsgroup
documents, partitioned (nearly) evenly across 20
different newsgroups. This collection has become
a popular data set for experiments in text appli-
cations of machine learning techniques, such as
text classification and text clustering. Some of
the newsgroups are very closely related to each
other (e.g. comp.sys.ibm.pc.hardware
/ comp.sys.mac.hardware), while others
are highly unrelated (e.g. misc.forsale /
soc.religion.christian). We removed
cross-posts  (duplicates), newsgroup-identifying
headers (i.e. Xref, Newsgroups, Path, Followup-To,
Date), and empty documents from the original
corpus, so to obtain 18,941 documents. Then we
randomly divided it into training (80%) and test
(20%) sets, containing respectively 15,153 and
3,788 documents.

Reuters. We used the Reuters-21578 collec-
tion%, and we splitted it into training and test

> Available at http://www.ai.mit.edu-
/people/jrennie/20Newsgroups/.

SAvailable athttp: //kdd.ics.uci.edu/databases/—

reuters21578/reuters21578.html.



partitions according to the standard ModAptée
split. It includes 12,902 documents for 90 cat-
egories, with a fixed splitting between training
and test data. We conducted our experiments by
considering only the 10 most frequent categories,
i.e. Earn,
Grain, Crude, Trade, Interest,
Ship, Wheat and Corn, and we included in
our dataset all the non empty documents labeled
with at least one of those categories. Thus the final
dataset includes 9295 document, of which 6680 are
included in the training partition, and 2615 are in
the test set.

Acquisition, Money-£fx,

4.2 Implementation details

As a supervised learning device, we used the SVM
implementation described in (Joachims, 1999a).
The Domain Kernel is implemented by defining an
explicit feature mapping according to formula 1, and
by normalizing each vector to obtain vectors of uni-
tary length. All the experiments have been per-
formed on the standard parameter settings, using a
linear kernel.

We acquired a different Domain Model for each
corpus by performing the SVD processes on the
term-by-document matrices representing the whole
training partitions, and we considered only the first
400 domains (i.e. k&' = 400)".

As far as the Reuters task is concerned, the TC
problem has been approached as a set of binary fil-
tering problems, allowing the TC system to pro-
vide more than one category label to each document.
For the 20newsgroups task, we implemented a one-
versus-all classification schema, in order to assign a
single category to each news.

4.3 Domain Kernel versus BoW Kernel

Figure 1 and Figure 2 report the learning curves for
both Kp and Kp,w, evaluated respectively on the
Reuters and the 20newgroups task. Results clearly
show that Kp always outperforms Kp,w, espe-
cially when very limited amount of labeled data is
provided for learning.

"To perform the SVD operation we adopted
LIBSVDC, an optimized package for sparse ma-
trix that allows to perform this step in few minutes
even for large corpora. It can be downloaded from
http://tedlab.mit.edu/~dr/SVDLIBC/.
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Figure 2: Micro-F1 learning curves for 20news-
groups

Table 2 compares the performances of the two
kernels at full learning. Kp achieves a better micro-
F1 than Kp, in both tasks. The improvement is
particularly significant in the Reuters task (+ 2.8 %).

Tables 3 shows the number of labeled examples
required by Kp and Kpqy to achieve the same
micro-F1 in the Reuters task. Kp requires only
146 examples to obtain a micro-F1 of 0.84, while
Kpow requires 1380 examples to achieve the same
performance. In the same task, K p surpass the per-
formance of Kp, at full learning using only the
10% of the labeled data. The last column of the ta-
ble shows clearly that K p requires 90% less labeled
data than K g, to achieve the same performances.

A similar behavior is reported in Table 4 for the



Fl

Domain Kernel Bow Kernel ‘

Reuters
20newsgroups

0.928
0.886

0.900
0.880

Table 2: Micro-F1 with full learning

‘ Fl ‘ Domain Kernel Bow Kernel ‘ Ratio ‘

.54 14 267 5%
.84 146 1380 10%
90 668 6680 10%

‘ Fi ‘ Domain Kernel Bow Kernel ‘ Ratio ‘

.50
.70
.85

30
98
2272

500
1182
7879

6%
8%
29%

Table 4: Number of training examples needed by
Kp and Kp,w to reach the same micro-F1 on the
20newsgroups task

1

T

Table 3: Number of training examples needed by
Kp and Kp to reach the same micro-F1 on the
Reuters task

20newsgroups task. It is important to notice that the
number of labeled documents is higher in this corpus
than in the previous one. The benefits of using Do-
main Models are then less evident at full learning,
even if they are significant when very few labeled
data are provided.

Figures 3 and 4 report a more detailed analysis
by comparing the micro-precision and micro-recall
learning curves of both kernels in the Reuters task®.
It is clear from the graphs that the main contribute
of Kp is about increasing recall, while precision is
similar in both cases®. This last result confirms our
hypothesis that the information provided by the Do-
main Models allows the system to generalize in a
more effective way over the training examples, al-
lowing to estimate the similarity among texts even if
they have just few words in common.

Finally, Kp achieves the state-of-the-art in the
Reuters task, as reported in section 5.

5 Related Works

To our knowledge, the first attempt to apply the
semi-supervised learning schema to TC has been
reported in (Blum and Mitchell, 1998). Their co-
training algorithm was able to reduce significantly
the error rate, if compared to a strictly supervised

8For the 20-newsgroups task both micro-precision and
micro-recall are equal to micro-F1 because a single category
label has been assigned to every instance.

°It is worth noting that K gets a F1 measure of 0.54 (Preci-
sion/Recall of 0.93/0.38) using just 14 training examples, sug-
gesting that it can be profitably exploited for a bootstrapping
process.
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classifier.

(Nigam et al., 2000) adopted an Expectation Max-
imization (EM) schema to deal with the same prob-
lem, evaluating extensively their approach on sev-
eral datasets. They compared their algorithm with
a standard probabilistic approach to TC, reporting
substantial improvements in the learning curve.



A similar evaluation is also reported in (Joachims,
1999b), where a transduptive SVM is compared
to a state-of-the-art TC classifier based on SVM.
The semi-supervised approach obtained better re-
sults than the standard with few learning data, while
at full learning results seem to converge.

(Bekkerman et al., 2002) adopted a SVM classi-
fier in which texts have been represented by their as-
sociations to a set of Distributional Word Clusters.
Even if this approach is very similar to ours, it is not
a semi-supervised learning schema, because authors
did not exploit any additional unlabeled data to in-
duce word clusters.

In (Zelikovitz and Hirsh, 2001) background
knowledge (i.e. the unlabeled data) is exploited to-
gether with labeled data to estimate document sim-
ilarity in a Latent Semantic Space (Deerwester et
al., 1990). Their approach differs from the one pro-
posed in this paper because a different categoriza-
tion algorithm has been adopted. Authors compared
their algorithm with an EM schema (Nigam et al.,
2000) on the same dataset, reporting better results
only with very few labeled data, while EM performs
better with more training.

All the semi-supervised approaches in the liter-
ature reports better results than strictly supervised
ones with few learning, while with more data the
learning curves tend to converge.

A comparative evaluation among semi-supervised
TC algorithms is quite difficult, because the used
data sets, the preprocessing steps and the splitting
partitions adopted affect sensibly the final results.
Anyway, we reported the best F1 measure on the
Reuters corpus: to our knowledge, the state-of-the-
art on the 10 top most frequent categories of the
ModApte split at full learning is F1 92.0 (Bekker-
man et al., 2002) while we obtained 92.8. It is im-
portant to notice here that this results has been ob-
tained thanks to the improvements of the Domain
Kernel. In addition, on the 20newsgroups task, our
methods requires about 100 documents (i.e. five
documents per category) to achieve 70% F1, while
both EM (Nigam et al., 2000) and LSI (Zelikovitz
and Hirsh, 2001) requires more than 400 to achieve
the same performance.
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6 Conclusion and Future Works

In this paper a novel technique to perform semi-
supervised learning for TC has been proposed and
evaluated. We defined a Domain Kernel that allows
us to improve the similarity estimation among docu-
ments by exploiting Domain Models. Domain Mod-
els are acquired from large collections of non anno-
tated texts in a totally unsupervised way.

An extensive evaluation on two standard bench-
marks shows that the Domain Kernel allows us to re-
duce drastically the amount of training data required
for learning. In particular the recall increases sen-
sibly, while preserving a very good accuracy. We
explained this phenomenon by showing that the sim-
ilarity scores evaluated by the Domain Kernel takes
into account both variability and ambiguity, being
able to estimate similarity even among texts that do
not have any word in common.

As future work, we plan to apply our semi-
supervised learning method to some concrete ap-
plicative scenarios, such as user modeling and cat-
egorization of personal documents in mail clients.
In addition, we are going deeper in the direction of
semi-supervised learning, by acquiring more com-
plex structures than clusters (e.g. synonymy, hyper-
onymy) to represent domain models. Furthermore,
we are working to adapt the general framework pro-
vided by the Domain Models to a multilingual sce-
nario, in order to apply the Domain Kernel to a Cross
Language TC task.
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Abstract

Clustering is an optimization procedure that
partitions a set of elements to optimize some
criteria, based on a fixed distance metric de-
fined between the elements. Clustering ap-
proaches have been widely applied in natural
language processing and it has been shown re-
peatedly that their success depends on defin-
ing a good distance metric, one that is appro-
priate for the task and the clustering algorithm
used. This paper develops a framework in
which clustering is viewed as a learning task,
and proposes a way to train a distance metric
that is appropriate for the chosen clustering al-
gorithm in the context of the given task. Ex-
periments in the context of the entity identifi-
cation problem exhibit significant performance
improvements over state-of-the-art clustering
approaches developed for this problem.

Introduction

higher level, (Mann and Yarowsky, 2003) disambiguated
personal names by clustering people’s home pages using
a TFIDF similarity, and several other researchers have ap-
plied clustering at the same level in the context of the
entity identification problem (Bilenko et al., 2003; Mc-
Callum and Wellner, 2003; Li et al., 2004). Similarly, ap-
proaches to coreference resolution (Cardie and Wagstaff,
1999) use clustering to identify groups of references to
the same entity.

Clustering is an optimization procedure that takes as
input (1) a collection of domain elements along with (2)
a distance metric between them and (3) an algorithm se-
lected to partition the data elements, with the goal of op-
timizing some form of clustering quality with respect to
the given distance metric. For example, the K-Means
clustering approach (Hartigan and Wong, 1979) seeks to
maximize a measure of tightness of the resulting clusters
based on the Euclidean distance. Clustering is typically
called an unsupervised method, since data elements are
used without labels during the clustering process and la-
bels are not used to provide feedback to the optimiza-
tion process. E.g., labels are not taken into account when

1 measuring the quality of the partition. However, in many

Clustering approaches have been widely applied to natases, supervision is used at the application level when
ural language processing (NLP) problems. Typicallydetermining an appropriate distance metric (e.g., (Lee,
natural language elements (words, phrases, sentenck897; Weeds etal., 2004; Bilenko et al., 2003) and more).
etc.) are partitioned into non-overlapping classes, based This scenario, however, has several setbacks. First, the
on some distance (or similarity) metric defined betweefrocess of clustering, simply a function that partitions a
them, in order to provide some level of syntactic or seset of elements into different classes, involves no learn-
mantic abstraction. A key example is that of class-basdtig and thus lacks flexibility. Second, clustering quality is
language models (Brown et al., 1992; Dagan et al., 199%ypically defined with respect to a fixed distance metric,
where clustering approaches are used in order to partthout utilizing any direct supervision, so the practical
tion words, determined to be similar, into sets. Thiglustering outcome could be disparate from one’s inten-
enables estimating more robust statistics since these dien. Third, when clustering with a given algorithm and
computed over collections of “similar” words. A large a fixed metric, one in fact makes some implicit assump-
number of different metrics and algorithms have been estions on the data and the task (e.g., (Kamvar et al., 2002);
perimented with these problems (Dagan et al., 1999; Legore on that below). For example, the optimal conditions
1997; Weeds et al., 2004). Similarity between words wagnder which for K-means works are that the data is gen-
also used as a metric in a distributional clustering algeerated from a uniform mixture of Gaussian models; this
rithm in (Pantel and Lin, 2002), and it shows that funcimnay not hold in reality.

tionally similar words can be grouped together and even This paper proposes a new clustering framework that
separated to smaller groups based on their senses. Aaddresses all the problems discussed above. Specifically,
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we define clustering as a learning task: in the trainingcally used to generate a functidnto approximate the
stage, a partition function, parameterized by a distandeue partition functiorp. Denoteh(S) = A4(S), the par-
metric, is trained with respect to a specific clustering altition of S by h. A distance (equivalently, a similarity)
gorithm, with supervision. Some of the distinct properfunctiond that measures the proximity between two ele-
ties of this framework are that: (1) The training stage isnents is a pairwise functioX x X — R*, which can
formalized as an optimization problem in which a parti-be parameterized to represent a family of functions —
tion function is learned in a way that minimizes a clusmetric properties are not discussed in this paper. For ex-

tering error. (2) The clustering error is well-defined ancample, given any two element =< 151)’ . 796(17”) >
driven by feedback from labeled data. (3) Training Bndey =< xgl), . 733§m) > in anm-dimensional space,

distance metric with respect to any given clustering aly jinearly weighted Euclidean distance with parameters
gorithm seeks to minimize the clustering error on traing _ {w}7" is defined as:

ing data that, under standard learning theory assumptions,

can be shown to imply small error also in the application m

stage. (4) We develop a general learning algorithm that do(z1,22) = Zwl . |x§” — xgl)|2 Q)

can be used to learn an expressive distance metric over 1=1

the fegture space (e.g,, it can mak.e.use of kernels). When supervision (e.g. class index of elements) is un-
While our ap_proach makes expl|_c:|t use qf Iapeleq dataavailable, the quality of a partition functidn operating

we argue that, in fact, many (.:Iu.stermg a}ppllcatllons NNakn g ¢ X, is measured with respect to the distance met-

ural language also exploit this information off-line, when

. . . : ric defined overX. Suppose: partitionsS into disjoint
exploring which metrics are appropriate for the task. Ouéetsh(S) — {5/}, onequality functionused in the K-
framework makes better use of this resource by incorpcm eans algorithkmlis, defined as:

rating it directly into the metric training process; training

is driven by true clustering error, computed via the spe- K L
cific algorithm chosen to partition the data. gs(h) =" dlx, 1), 2
We study this new framework empirically on the en- k=lzes,

tity identification problem — identifying whether differ-

ent mentions of real world entities, such as “JFK” ancﬁ
“John Kennedy”, within and across text documents, ac-
tually represent the same concept (McCallum and WelR.1 What is a Good Metric?
ner, 2003; Li et al., 2004). Our experimental results exa

hibit a significant performance improvement over existyq|| ith the likelihood of being in the same class. When
ing approaches2(% — 30% £y error reduction) on all g55ving clustering to some task, people typically decide
three types of entities we study, and indicate its promiss, the clustering quality measuge(h) they want to op-
ing prospective in other natural language tasks. ~ {imize and then chose a specific clustering algorithm
The rest of this paper dlspusses existing cluste.rlng aBhd a distance metrid to generate a ‘good’ partition
proaches (Sec. 2) and then introduces our Supervised Dignction . However, it is clear that without any super-
criminative Clustering framework (SDC) (Sec. 3) and gjisjon, the resulting function is not guaranteed to agree
general learner for training in it (Sec. 4). Sec. 5 describggiin the target functiom (or one’s original intention).
the entity identification problem and Sec. 6 compares dif- jyen this realization. there has been some work on

ferent clustering approaches on this task. selectinga good distance metric for a family of related

. problems and otearninga metric for specific tasks. For
2 Clustering in Natural Language Tasks the former, the focus is on developing and selecting good

Clustering is the task of partitioning a set of elementdistance (similarity) metrics that reflect well pairwise
S C X into a disjoint decompositioh p(S) = {Si, Sa, proximity between domain elements. The “goodness”
..., Sk} of S. We associate with it partition function of a metric is empirically measured when combined with

p=ps: X — C=1{1,2,...K}that maps each € S different clustering algorithms on different problems.. F_or

to a class indeys(z) = k iff z € Sy. The subscrips gxamplg (Lee, 1997; Weed; etal., 2004) compare S|mllar—
in ps andps(z) is omitted when clear from the context. |ty metrics such as the _Cosm_e, Manhattan and Euclidean
Notice that, unlike a classifier, the imagec S under a distances, Kullback-Leibler divergence, Jensen-Shannon
partition function depends afi. divergence, and Jaccard’s Coefficient, that could be ap-

In practice, a clustering algorithtd (e.g. K-Means) plied in general clustering tasks, on the task of measur-

and a distance metrit(e.g., Euclidean distance), are typ-ing distributional similarity. (Cohen et al., 2003) com-
pares a number of string and token-based similarity met-

'overlapping partitions will not be discussed here. rics on the task of matching entity names and found that,

herey, is the mean of elements in sgf. However, this
easure can be computed irrespective of the algorithm.

good metric is one in which close proximity correlates
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overall, the best-performing method is a hybrid schemever the classifier's output. As expected, experimental
(SoftTFIDF) combining a TFIDF weighting scheme ofevidence (Cohen et al., 2003; Cohen and Richman, 2002;
tokens with the Jaro-Winkler string-distance scheme that et al., 2004) shows that domain-specific distance func-
is widely used for record linkage in databases. tions improve over a fixed metric. This can be explained
by the flexibility provided by adapting the metric to the

9007) = [0 BB ) = 106D B0 1) domain as well as the contribution of supervision that
/ \ / guides the adaptation of the metric.

O . 0 A few works (Xing et al., 2002; Bar-Hillel et al., 2003;
e . e . o Schultz and Joachims, 2004; Mochihashi et al., 2004)
o o o outside the NLP domain have also pursued this general

. o ° o .+ o direction, and some have tried to learn the metric with
(@) Sngle Linkegewith () K-Meanswith  (c) K-Meanswith a limited amount of supervision, no supervision or by in-

corporating other information sources such as constraints
Figure 1: Different combinations of clustering algorithms ~ on the class memberships of the data elements. In most of
with distance metrics. The 12 points, positioned in a two- these cases, the algorithm practically used in clustering,
dimensional spacec X, X® >, are clustered into two (€.9. K-Means), is not considered in the learning proce-
groups containing solid and hollow points respectively. dure, or only implicitly exploited by optimizing the same
Moreover, it is not clear whether there exists ampbjective function. (Bach and Jordan, 2003; Bilenko et

universal metric that is good for many different prob- al., 2004) indeed suggest to learn a metric directly in a

lems (or even different data sets for similar problems?'“Ste””g task but the learning procedure is specific for

and is appropriate for any clustering algorithm. For th&@n€ clustering algorithm.

word-based distributional similarity mentioned above . T | .
this point was discussed in (Geffet and Dagan, 20043 Supervised Discriminative Clustering

when it is shown that proximity metrics that are approq, solve the limitations of existing approaches, we de-
priate for class-based language models may not be a0 the Supervised Discriminative Clustering Frame-
propriate for other tasks. We illustrate this critical pointin, (SDC), that can train a distance function with re-

Fig. 1. (@) and (b) show that even for the same data collegpe it 1 any chosen clustering algorithm in the context of
tion, different clustering algorithms with the same met, given task, guided by supervision.

ric could generate different outcomes. (b) and (c) show

that with the same clustering algorithm, different metrics Training Stage:
could also produce different outcom&$erefore, a good A'abe'eidata i Soat v <argmin
distance metric should be both domain-specific and asso-

ciated with a specific clustering algorithm. @ A tton ncion
2.2 Metric Learning via Pairwise Classification 1 I

Several works (Cohen et al., 2003; Cohen and Rich- [@ + Appicaton
man, 2002; McCallum and Wellner, 2003; Li et al., o = ) jeesne)
2004) have tried to remedy the aforementioned problems t 1 /

by attempting to learn a distance function in a domain- Az o

specific way via pairwise classification. In the training — e

stage, given a set of labeled element pairs, a function

f: X x X — {0,1} is trained to classify any two el-  Figure 2:Supervised Discriminative Clustering
ements as to whether they belong to the same clgss (

or not (), independently of other elements. The dis- Fig. 2 presents this framework, in which a cluster-
tance between the two elements is defined by convertingg task is explicitly split into training and application
the prediction confidence of the pairwise classifier, andtages, and the chosen clustering algorithm involves in
clustering is then performed based on this distance funbeth stages. In the training stage, supervision is directly
tion. Particularly, (Li et al., 2004) applied this approachntegrated into measuring the clustering efors(h, p)

to measuring name similarity in the entity identificationof a partition functior by exploiting the feedback given
problem, where a pairwise classifier (LMR) is trained ushy the true partitiop. The goal of training is to find a par-
ing the SNoW learning architecture (Roth, 1998) basetition functionh* in a hypothesis spadé that minimizes

on variations of Perceptron and Winnow, and using a cothe error. Consequently, given a new data%eh the ap-
lection of relational features between a pair of nameglication stage, under some standard learning theory as-
The distance between two names is defined as a softmsamptions, the hope is that the learned partition function
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can generalize well and achieve small error as well. With this formalization, SDC along with supervised

. . . training, can be distinguished clearly from (1) unsuper-
3.1 Supervised and Unsupervised Training vised clustering approaches, (2) clustering over pairwise
Letp be the target function oveX, i be a function in the classification; and (3) related works that exploit partial
hypothesis spacél, andh(S) = {S;}¥. In principle, supervision in metric learning as constraints.
given data se§ C X, if the true partitiorp(S) = { S} o _ _
of S is available, one can measure the deviatiohstbm 3.2  Clustering via Metric Learning
p over S, using arerror functionerrs(h,p) — R*. We By fixing the clustering algorithm in the training stage,
distinguish an error function from a quality function (aswe can further define supervised metric learning, a spe-
in Equ. 2) as follows: an error function measures the disial case of supervised training.

agreement between clustering and the target partition (§afinition 3.3 Supervised Metric LearningGiven a la-

_on_e’s int_ention)_ when supervisio_n_is given, while a qualbeled data ses andp(5), and a family of partition func-
ity is defined without any supervision. tions H = {h} that are parameterized by a chosen clus-

For clustering, there is generally no direct way to Comfering algorithm 4 and a family of distance metriag
pare the true class indexXz) of each element with that (0 € Q), the problem is to seek an optimal metrig.

given by a hypothesis(x), so an alternative is to mea- with respect ta4, s.t. forh(S) = A 4, (S)
sure the disagreement betweeandh over pairs of el- T ’

ements. Given a labeled data seandp(S), one error 0* = argming errs(h, p). (4)
function, namelyweighted clustering errqiis defined as
a sum of the pairwise errors over any two elements,in Learning the metric parametetsequires parameteriz-

weighted by the distance between them: ing h as a function of, when the algorithn is chosen
1 and fixed inh. In the later experiments of Sec. 5, we
errs(h,p) = S Z [d(xi, x;)-Aij+(D—d(z:,7;))-Bij]  try to learn weighted Manhattan distances for the single-
i, €S link algorithm and other algorithms, in the task of en-

i i (3,) tity identification. In this case, when pairwise features
whereD = max;, o;es d(2;,2;) iS the maximum dis- 50 oyiracted for any elements, =5 € X, (z1,32) =<
tance between any two elementsdrand! is an indica- b1, ba,- - b >, thelinearly weighted Manhattan dis-
tor function. A;; = I{(p(w:) = p(x;) & h(w:) # h(z;)]  tance parameterized by(= {w;}7") is defined as:
andB;; = I(p(z;) # p(x;) & h(x;) = h(x;)] represent
two types of pairwise errors respectively. m

Just like the quality defined in Equ. 2, this error is a d(z1,22) = Y _wy - ¢i(1,72) (5)
) . " L —
function of the metrial. Intuitively, the contribution of a wherew, is the weight 0\}er feature (1, 2,). Since

pair of _elements that s_hould_bel_ong to the same class IOM[easurement of the error is dependent on the metric,
are split byh, grows with their distance, and vice versa.

. L . as shown in Equ. 3, one needs to enforce some con-
However, this measure is significantly different from the

A . X . straints on the parameters. One constrait s =
quality, in that it does not just measure the tightness of t P BEJS, |l

. ) . , Which prevents the error from being scale-dependent
tr;g;ttlzggsg:)\/fiﬂ:glérzgg;fg?cé:eb;gféebr;;e between the(e.g., metrics giving smaller distance are always better).

Given a set of observed data, the goal of training istq A General Learner for SDC
learn a good partition function, parameterized by specific

clustering algorithms and distance functions. Dependini addition to the theoretical SDC framework, we also de-
on whether training data is labeled or unlabeled, we cavelop a practical learning algorithm based on gradient de-
further define supervised and unsupervised training. ~ scent (in Fig. 3), that can train a distance function for any
Definition 3.1 Supervised Training: Given a labeled CN0sen clustering algorithm (such as Single-Linkage and
data setS and p(S), a family of partition functions, K-Means), as in the setting of supervised metric learning.

and the error functiorerrs(h, p)(h € H), the problem The training procedure incorporates the clustering algo-
is to find an optimal function* s.t. rithm (step 2.a) so that the metric is trained with respect

' to the specific algorithm that will be applied in evalua-
h* = argminpen errs(h,p). tion. The convergence of this general training procedure

Definition 3.2 Unsupervised Training: Given an unla- depends on the convexity of the error as a functiofl.of

beled data sef (p(S) is unknown), a family of partition Forexample, §ince the error function we uskrisarin 6, .
functionsH, and a quality functionys(k)(h € H), the the algorithm is guaranteed to converge to a global mini-

problem is to find an optimal partition functidt s.t. mum. In this case, for rate of convergence, one can appeal
. to general results that typically imply, when there exists
h* = argmazhen qs(h). a parameter vector with zero error, that convergence rate
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depends on the ‘separation” of the training data, whickntities. Understanding natural language requires identi-
roughly means the minimal error archived with this pafying whether different mentions of a name, within and
rameter vector. Results such as (Freund and Schapiegross documents, represent the same entity.

1998) can be used to extend the rate of convergence re-We study this problem for three entity types — People,
sult a bit beyond the separable case, when a small numheaycation and Organization. Although deciding the coref-

of the pairs are not separable.

Algorithm: SDC-Learner

Input: S andp(S): the labeled data sed: the clustering
algorithm.errs(h, p): the clustering error functionx > 0
: the learning rateT" (typically T" is large) : the number g
iterations allowed.

Output: 6™ : the parameters in the distance functibn

=

erence of names within the same document might be rela-
tively easy, since within a single document identical men-
tions typically refer to the same entity, identifying coref-
erence across-document is much harder. With no stan-
dard corpora for studying the problem in a general setting
— both within and across documents, we created our own
corpus. This is done by collecting abait600 names

1. In the initial (I-) step, we randomly choog® for d. from 300 randomly sampled 1998-2000 New York Times
After this step we have the initial” andh°. articles in the TREC corpus (Voorhees, 2002). These
2. Then we iterate over(t = 1,2, -, names are fir_s_t annotat(_ad by a _named entity tggg_er, then
manually verified and given as input to an entity identi-
(a) PartitionS usingh'~1(S) = A 4-1(S); fier.
(b) Computeerrs(h'~*,p) and updaté using the Since the number of classes (entities) for names is very
formula: 6" = 6"~ —a - %’lflp) large, standard multi-class classification is not feasible.
(c) Normalization:#* = % - 6*, whereZ = |[6"||. Instead, we compare SDC with several pairwise classifi-
) o ) ) cation and clustering approaches. Some of them (for ex-
3. Stopping Criterion: If > T, the algorithm exits and

ample, those based on SoftTFIDF similarity) do not make
use of any domain knowledge, while others do exploit su-
pervision, such as LMR and SDC. Other works (Bilenko
et al., 2003) also exploited supervision in this problem by
For the weighted clustering error in Equ. 3, and linearhdiscriminative training of a pairwise classifier but were
weighted Manhattan distances as in Equ. 5, the updasbown to be inferior.
rule in Step2(b) becomes 1. SoftTFIDF Classifier— a pairwise classifier deciding
whether any two names refer to the same entity, imple-
mented by thresholding a state-of-art SoftTFIDF similar-
ity metric for string comparison (Cohen et al., 2003). Dif-
ferent thresholds have been experimented but only the best
results are reported.
. LMR Classifier (fW) — a SNoW-based pairwise classi-
fier (Li et al., 2004) (described in Sec. 2.2) that learns a
linear function for each class over a collection of relational
features between two names: including string and token-
level features and structural features (listed in Table 1).
For pairwise classifiers like LMR and SoftTFIDF, predic-
tion is made over pairs of names so transitivity of predic-
tions is not guaranteed as in clustering.
Clustering over SoftTFIDF a clustering approach based
on the SoftTFIDF similarity metric.
4. Clustering over LMR (RV)— a clustering approach (Li et

outputs the metric in the iteration with the least error.

Figure 3:A general training algorithm for SDC

—a- lt—l

».S) =, (h,S)].  (6)

whereyi(p, S) = 15w Yy, 0yes Di(wi zy) - I[p(i) =
p(z;)] and i (h,S) ﬁzmi,ﬁes b1z, xj) -
I[h(x;) = h(x;)], anda > 0 is the learning rate.

t__

5 Entity Identification in Text

We conduct experimental study on the task of entity iden-
tification in text (Bilenko et al., 2003; McCallum and
Wellner, 2003; Li et al., 2004). A given entity — rep-
resenting a person, a location or an organization — may3-
be mentioned in text in multiple, ambiguous ways. Con-

sider, for example, an open domain question answering ™
system (Voorhees, 2002) that attempts, given a question
like: “When was President Kennedy born?” to search a 5.
large collection of articles in order to pinpoint the con-
cise answer: “on May 29, 1917.” The sentence, and even

al., 2004) by converting the LMR classifier into a similar-
ity metric (see Sec. 2.2).

SDC- our new supervised clustering approach. The dis-
tance metric is represented as a linear function over a set
of pairwise features as defined in Equ. 5.

the document that contains the answer, may not contain The above approaches (2), (4) and (5) learn a classifier
the name “President Kennedy”; it may refer to this ener a distance metric using the same feature set as in Ta-
tity as “Kennedy”, “JFK” or “John Fitzgerald Kennedy”. ble 1. Different clustering algorithn such as Single-
Other documents may state that “John F. Kennedy, Jinkage, Complete-Linkage, Graph clustering (George,
was born on l_\lo’vember 25, 1960 | but this fact r:efers toTlustering packag€lusterby Michael Eisen at Stan-

our target entity’s son. Other mentions, such as “Senatgy, 4 University is adopted for K-medoids andLUTO by

Kennedy” or “Mrs. Kennedy” are even “closer” to the (George, 2003) is used for other algorithms. Details of these
writing of the target entity, but clearly refer to different algorithms can be found there.
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Honorific Equal active if both tokens are honorifics and identical.
Honorific Equivalence active if both tokens are honorifics, not identical, but equivalent.
Honorific Mismatch active for different honorifics.
Equality active if both tokens are identical.
Case-Insensitive Equdl active if the tokens are case-insensitive equal.
Nickname active if tokens have a “nickname” relation.

Prefix Equality active if the prefixes of both tokens are equal.
Substring active if one of the tokens is a substring of the other.
Abbreviation active if one of the tokens is an abbreviation of the other.
Prefix Edit Distance active if the prefixes of both tokens have an edit-distance of 1.

Edit Distance active if the tokens have an edit-distancel of
Initial active if one of the tokens is an initial of another.
Symbol Map active if one token is a symbolic representative of the other.
Structural recording the location of the tokens that generate other features in two names.

Table 1:Features employed by LMR and SDC.

2003) — seeking a minimum cut of a nearest neighbd@.1 Comparison of Different Approaches

graph, Repeated Bisections and K-medoids (Chu €t af;, 4 oresents the performance of different approaches
2001) (a variation 0 .f K-.means) are gxpenmentg din (S)Cdescribed in Sec. 5) on identifying the three entity types.
The number of entities in a data set is always given. We experimented with different clustering algorithms but
only the results by Single-Linkage are reported@us-
6 Experimental Study ter over LMR (PW) and SDC, since they are the best.
SDC works well for all three entity types in spite of
Our experimental study focuses on (1) evaluating thgheir different characteristics. The bdstvalues of SDC
supervised discriminative clustering approach on entity g 92.7%, 92.4% and 95.7% for people, locations and
identification; (2) comparing it with existing pairwise organizations respectively, abo2t% — 30% error re-
classification and clustering approaches widely used ifyction compared with the best performance of the other
similar tasks; and (3) further analyzing the characterisypproaches. This is an indication that this new approach
tics of this new framework. which integrates metric learning and supervision in a uni-

We use the TREC corpus to evaluate different apfied framework, has significant advantades
proaches in identifying three types of entities: People,

Locations and Organization. For each type, we generaée2 Further Analysis of SDC

three pairs of training and test sets, eaf:h contain.ing aboithe next experiments, we will further analyze the char-
300 names. We note that the three entity types yield very e istics of SDC by evaluating it in different settings.
different data sets, exhibited by some statistical proper-
ties’. Results on each entity type will be averaged ovePifferent Training Sizes Fig. 5 reports the relationship
the three sets and ten runs of two-fold cross-validation fdyetween the performance of SDC and different training
each of them. For SDC, given a training set with annosizes. The learning curves for other learning-based ap-
tated name pairs, a distance function is first trained usirigyoaches are also shown. We find that SDC exhibits good
the algorithm in Fig. 3 (irR0 iterations) with respect to learning ability with limited supervision. When training
a clustering algorithm and then be used to partition théxamples are very limited, for example, orl§% of all
corresponding test set with the same algorithm. 300 names, pairwise classifiers based on Perceptron and
For a comparative evaluation, the outcomes of each ap¥innow exhibit advantages over SDC. However, when
proach on a test set of names are converted to a classfiPervision become reasonable+ examples), SDC
cation over all possible pairs of names (including nonStarts to outperform all other approaches.

matching pairs). Only examples in the sef,, those pitferent Clustering Algorithms ~ Fig. 6 shows the
that are predicated to belong to the same entity (POSjerformance of applying different clustering algorithms
tive predictions) are used in the evaluation, and are COMisee Sec. 5) in the SDC approach. Single-Linkage and
pared with the sed/, of examples annotated as positive.complete-Linkage outperform all other algorithms. One
The performance of an approach is then evaluatefiby possible reason is that this task has a great number of

value, defined ast’ = %% —_
P “ “We note that in this experiment, the relative comparison

- between the pairwise classifiers and the clustering approaches
3The average SoftTFIDF similarity between names of thever them is not consistent for all entity types. This can be

same entity is 0.81, 0.89 and 0.95 for people, locations and opartially explained by the theoretical analysis in (Li etal., 2004)

ganizations respectively. and the difference between entity types.
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Figure 4: Performance of different approaches.The results are reported for SDC with a learning rate- 100.0.
The Single-Linkage algorithm is applied whenever clustering is performed. Results are repdrieahich averaged
over the three data sets for each entity type ahduns of two-fold cross-validation. Each training set typically
contains300 annotated names.
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Figure 5:Performance for different training sizes. Five learning-based approaches are compared. Single-Linkage is
applied whenever clustering is performed. X-axis denotes different percentadf¥smEmes used in training. Results
are reported irf; and averaged over the three data sets for each entity type.

[ Graph

[ K-Medoids

[ RB

Il Complete-Linkage
Hl Single-Linkage

People Locations ~ Organizations
Different Entity Types Different Entity Types

People Locations Organizations

Figure 6:Different clustering algorithms. Five cluster- Figure 7: Performance for different learning rates.
ing algorithms are compared in SDG & 100.0). Re- SDC with different learning ratesy(= 1.0, 10.0, 100.0,
sults are averaged over the three data sets for each entiy)0.0) compared in this setting. Single-Linkage cluster-
type andl0 runs of two-fold cross-validations. ing algorithm is applied.

. ) ~ 6.3 Discussion
classes {00 — 200 entities) for300 names in each sin-

gle data set. The results indicate that the metric leard-"€ réason that SDC can outperform existing clustering
ing process relies on properties of the data set, as well @8Proaches can be explained by the advantages of SDC —
the clustering algorithm. Even if a good distance metrid@ining the distance function with respect to the chosen

could be learned in SDC, choosing an appropriate alg&!Ustering algorithm, guided by supervision, but they do
rithm for the specific task is still important. not explain why it can also outperform the pairwise clas-

sifiers. One intuitive explanation is that supervision in the
Different Learning Rates We also experimented with entity identification task or similar tasks is typically given
different learning rates in the SDC approach as shown ion whether two names correspond to the same entity —
Fig. 7. It seems that SDC is not very sensitive to differenéntity-level annotation. Therefore it does not necessarily
learning rates as long as it is in a reasonable range.  mean whether they are similar in appearance. For exam-
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ple, “Brian” and “Wilson” could both refer to a person W. Cohen and J. Richman. 2002. Learning to match and clus-
“Brian Wilson” in different contexts, and thus this name ter large high-dimensional data sets for data integration. In
pair is a positive example in training a pairwise classi- KPD-02 pages 475-480.

fier. However, with features that only capture the appeag, Cohen, P. Ravikumar, and S. Fienberg. 2003. A comparison
ance similarity between names, such apparently different of string metrics for name-matching tasks. IlWeb Work-
names become training noise. This is what exactly hap- shop 2003pages 73-78.

peped when we train the LMR CIaSSITIGr W!th such name Dagan, L. Lee, and F. Pereira. 1999. Similarity-based mod-
pairs. SDC, however, can employ this entity-level anno- els of word cooccurrence probabilitieslachine Learning
tation and avoid the problem through transitivity in clus- 34(1-3):43-69.

tering. In the above example, if there is “Brian Wilson”
in the data set, then “Brian” and “Wilson” can be both
clustered into the same group with “Brian Wilson”. Such

cases do not frequently occur for locations and organiz- Geffetand I. Dagan. 2004. Automatic feature vector quality
tion but still exist . and distributional similarity. ICOLING-04

Y. Freund and R. Schapire. 1998. Large margin classification
using the Perceptron algorithm. @OLT-98

. K. George. 2003. Cluto: A clustering toolkit. Technical report,
7 Conclusion Dept of Computer Science, University of Minnesota.

In this paper, we explicitly formalize clustering as a learnJ. Hartigan and M. Wong. 1979. A k-means clustering algo-

ing task, and propose a unified framework for training "thm. Applied Statistics28(1):100-108.

a met.ric for any chosen F:Iustering algqrithm, guideq P¥. Kamvar, D. Klein, and C. Manning. 2002. Interpreting and

domain-specific supervision. Our experiments exhibit the extending classical agglomerative clustering algorithms us-

advantage of this approach over existing approaches oning a model-based approach. fBML-02, pages 283-290.

Entlty Identification. Fgrthgr research in this direction, Lee. 1997. Similarity-Based Approaches to Natural Lan-

will focus on (1) aPP'Y'ng it to more NLP tasks, €.9. guage ProcessingPh.D. thesis, Harvard University, Cam-

coreference resolution; (2) analyzing the related theoret- bridge, MA.

ical issues, e.g. the convergence of the algorithm; and . _ I

(3) comparin ?t ex erimenta?l with relatedg roache<’ Li, P. Morie, and D. Roth. 2004. Identification and trac-
p . g P y PP ' ing of ambiguous names: Discriminative and generative ap-

such as (Xing et al., 2002) and (McCallum and Wellner, proaches. IMAAI-04 pages 419-424.

2003).
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Abstract

The classification problem derived from
information extraction (IE) has an imbal-
anced training set. This is particularly
true when learning from smaller datasets
which often have a few positive training
examples and many negative ones. This
paper takes two popular IE algorithms —
SVM and Perceptron — and demonstrates
how the introduction of an uneven margins
parameter can improve the results on im-
balanced training data in IE. Our experi-
ments demonstrate that the uneven margin
was indeed helpful, especially when learn-
ing from few examples. Essentially, the
smaller the training set is, the more bene-
ficial the uneven margin can be. We also
compare our systems to other state-of-the-
art algorithms on several benchmarking
corpora for IE.

1 Introduction

Information Extraction (IE) is the process of auto-
matic extraction of information about pre-specified
types of events, entities or relations from text such
as newswire articles or Web pages. IE is useful in
many applications, such as information gathering in
a variety of domains, automatic annotations of web
pages for Semantic Web, and knowledge manage-
ment.

A wide range of machine learning techniques
have been used for IE and achieved state-of-the-art
results, comparable to manually engineered IE sys-
tems. A learning algorithm usually learns a model
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from a set of documents which have been manually
annotated by the user. Then the model can be used
to extract information from new documents. Manual
annotation is a time-consuming process. Hence, in
many cases learning from small data sets is highly
desirable. Therefore in this paper we also evaluate
the performance of our algorithms on small amounts
of training data and show their learning curve.

The learning algorithms for IE can be classified
broadly into two main categories: rule learning and
statistical learning. The former induces a set of
rules from training examples. There are many rule
based learning systems, e.g. SRV (Freitag, 1998),
RAPIER (Califf, 1998), WHISK (Soderland, 1999),
BWI (Freitag and Kushmerick, 2000), and (LP)?
(Ciravegna, 2001). Statistical systems learn a statis-
tical model or classifiers, such as HMMs (Freigtag
and McCallum, 1999), Maximal Entropy (Chieu and
Ng., 2002), the SVM (Isozaki and Kazawa, 2002;
Mayfield et al., 2003), and Perceptron (Carreras et
al., 2003). IE systems also differ from each other
in the NLP features that they use. These include
simple features such as token form and capitalisa-
tion information, linguistic features such as part-of-
speech, semantic information from gazetteer lists,
and genre-specific information such as document
structure. In general, the more features the system
uses, the better performance it can achieve.

This paper concentrates on classifier-based learn-
ing for IE, which typically converts the recognition
of each information entity into a set of classification
problems. In the framework discussed here, two bi-
nary classifiers are trained for each type of informa-
tion entity. One classifier is used for recognising the
entity’s start token and the other — the entity’s end
token.
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The classification problem derived from IE usu-
ally has imbalanced training data, in which positive
training examples are vastly outnumbered by neg-
ative ones. This is particularly true for smaller data
sets where often there are hundreds of negative train-
ing examples and only few positive ones. Two ap-
proaches have been studied so far to deal with imbal-
anced data in IE. One approach is to under-sample
majority class or over-sample minority class in order
to obtain a relatively balanced training data (Zhang
and Mani, 2003). However, under-sampling can
potentially remove certain important examples, and
over-sampling can lead to over-fitting and a larger
training set. Another approach is to divide the prob-
lem into several sub-problems in two layers, each of
which has less imbalanced training set than the orig-
inal one (Carreras et al., 2003; Sitter and Daelemans,
2003). The output of the classifier in the first layer is
used as the input to the classifiers in the second layer.
As aresult, this approach needs more classifiers than
the original problem. Moreover, the classification
errors in the first layer will affect the performance of
the second one.

In this paper we explore another approach to han-
dle the imbalanced data in IE, namely, adapting
the learning algorithms for balanced classification to
imbalanced data. We particularly study two popular
classification algorithms in IE, Support Vector Ma-
chines (SVM) and Perceptron.

SVM is a general supervised machine learning
algorithm, that has achieved state of the art per-
formance on many classification tasks, including
NE recognition. Isozaki and Kazawa (2002) com-
pared three commonly used methods for named en-
tity recognition — the SVM with quadratic kernel,
maximal entropy method, and a rule based learning
system, and showed that the SVM-based system per-
formed better than the other two. Mayfield et al.
(2003) used a lattice-based approach to named en-
tity recognition and employed the SVM with cubic
kernel to compute transition probabilities in a lattice.
Their results on CoNLL2003 shared task were com-
parable to other systems but were not the best ones.

Previous research on using SVMs for IE adopts
the standard form of the SVM, which treats posi-
tive and negative examples equally. As a result, they
did not consider the difference between the balanced
classification problems, where the SVM performs
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quite well, and the imbalanced ones. Li and Shawe-
Taylor (2003) proposes an uneven margins version
of the SVM and shows that the SVM with uneven
margins performs significantly better than the stan-
dard SVM on document classification problems with
imbalanced training data. Since the classification
problem for IE is also imbalanced, this paper inves-
tigates the SVM with uneven margins for IE tasks
and demonstrates empirically that the uneven mar-
gins SVM does have better performance than the
standard SVM.

Perceptron is a simple, fast and effective learn-
ing algorithm, which has successfully been applied
to named entity recognition (Carreras et al., 2003).
The system uses a two-layer structure of classifiers
to handle the imbalanced data. The first layer clas-
sifies each word as entity or non-entity. The second
layer classifies the named entities identified by the
first layer in the respective entity classes. Li et al.
(2002) proposed another variant of Perceptron, the
Perceptron algorithm with uneven margins (PAUM),
designed especially for imbalanced data. In this pa-
per we explore the application of PAUM to IE.

The rest of the paper is structured as follows. Sec-
tion 2 describes the uneven margins SVM and Per-
ceptron algorithms. Sections 3.1 and 3.2 discuss
the classifier-based framework for IE and the exper-
imental datasets we used, respectively. We compare
our systems to other state-of-the-art systems on three
benchmark datasets in Section 3.3. Section 3.4 dis-
cusses the effects of the uneven margins parameter
on the SVM and Perceptron’s performances. Finally,
Section 4 provides some conclusions.

2 Uneven Margins SVM and Perceptron

Li and Shawe-Taylor (2003) introduced an uneven
margins parameter into the SVM to deal with imbal-
anced classification problems. They showed that the
SVM with uneven margins outperformed the stan-
dard SVM on document classification problem with
imbalanced training data. Formally, given a training
set Z = ((x1,¥1)s- -, (Xm, Ym)),Where x; is the n-
dimensional input vector and y; (= +1 or —1) its
label, the SVM with uneven margins is obtained by
solving the quadratic optimisation problem:

m
minw7 b, € (W,W) + CZ&
i=1



st (w,x) +&+b0>1 if yy=+1

(w,x;) =& +b< —1 if y; =—1

for :=1,....,m

& >0

We can see that the uneven margins parameter
7 was added to the constraints of the optimisation
problem. 7 is the ratio of negative margin to the
positive margin of the classifier and is equal to 1 in
the standard SVM. For an imbalanced dataset with
a few positive examples and many negative ones, it
would be beneficial to use larger margin for positive
examples than for the negative ones. Li and Shawe-
Taylor (2003) also showed that the solution of the
above problem could be obtained by solving a re-
lated standard SVM problem by, for example, using
a publicly available SVM package'.

Perceptron is an on-line learning algorithm for
linear classification. It checks the training exam-
ples one by one by predicting their labels. If the
prediction is correct, the example is passed; other-
wise, the example is used to correct the model. The
algorithm stops when the model classifies all train-
ing examples correctly. The margin Perceptron not
only classifies every training example correctly but
also outputs for every training example a value (be-
fore thresholding) larger than a predefined parameter
(margin). The margin Perceptron has better general-
isation capability than the standard Perceptron. Li
et al. (2002) proposed the Perceptron algorithm with
uneven margins (PAUM) by introducing two margin
parameters 74 and 7_ into the updating rules for the
positive and negative examples, respectively. Sim-
ilar to the uneven margins parameter in SVM, two
margin parameters allow the PAUM to handle im-
balanced datasets better than both the standard Per-
ceptron and the margin Perceptron. Additionally, it
is known that the Perceptron learning will stop after
limited loops only on a linearly separable training
set. Hence, a regularisation parameter \ is used in
PAUM to guarantee that the algorithm would stop
for any training dataset after some updates. PAUM
is simple and fast and performed very well on doc-
ument classification, in particularly on imbalanced
training data.

'The SVMY9" package version 3.5, available from
http://svmlight.joachims.org/, was used to learn the SVM clas-
sifiers in our experiments.
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3 Experiments

3.1 Classifier-Based Framework for IE

In the experiments we adopted a classifier-based
framework for applying the SVM and PAUM algo-
rithms to IE. The framework consists of three stages:
pre-processing of the documents to obtain feature
vectors, learning classifiers or applying classifiers to
test documents, and finally post-processing the re-
sults to tag the documents.

The aim of the preprocessing is to form input vec-
tors from documents. Each document is first pro-
cessed using the open-source ANNIE system, which
is part of GATE? (Cunningham et al., 2002). This
produces a number of linguistic (NLP) features, in-
cluding token form, capitalisation information, to-
ken kind, lemma, part-of-speech (POS) tag, seman-
tic classes from gazetteers, and named entity types
according to ANNIE’s rule-based recogniser.

Based on the linguistic information, an input
vector is constructed for each token, as we iter-
ate through the tokens in each document (includ-
ing word, number, punctuation and other symbols)
to see if the current token belongs to an information
entity or not. Since in IE the context of the token is
usually as important as the token itself, the features
in the input vector come not only from the current
token, but also from preceding and following ones.
As the input vector incorporates information from
the context surrounding the current token, features
from different tokens can be weighted differently,
based on their position in the context. The weight-
ing scheme we use is the reciprocal scheme, which
weights the surrounding tokens reciprocally to the
distance to the token in the centre of the context
window. This reflects the intuition that the nearer
a neighbouring token is, the more important it is
for classifying the given token. Our experiments
showed that such a weighting scheme obtained bet-
ter results than the commonly used equal weighting
of features (Li et al., 2005).

The key part of the framework is to convert the
recognition of information entities into binary clas-
sification tasks — one to decide whether a token is the
start of an entity and another one for the end token.

After classification, the start and end tags of the

% Available from http://www.gate.ac.uk/



entities are obtained and need to be combined into
one entity tag. Therefore some post-processing
is needed to guarantee tag consistency and to try
to improve the results by exploring other informa-
tion. The currently implemented procedure has three
stages. First, in order to guarantee the consistency
of the recognition results, the document is scanned
from left to right to remove start tags without match-
ing end tags and end tags without preceding start
tags. The second stage filters out candidate enti-
ties from the output of the first stage, based on their
length. Namely, a candidate entity tag is removed
if the entity’s length (i.e., the number of tokens) is
not equal to the length of any entity of the same type
in the training set. The third stage puts together all
possible tags for a sequence of tokens and chooses
the best one according to the probability which was
computed from the output of the classifiers (before
thresholding) via a Sigmoid function.

3.2 The Experimental Datasets

The paper reports evaluation results on three corpora
covering different IE tasks — named entity recogni-
tion (CoNLL-2003) and template filling or scenario
templates in different domains (Jobs and CFP). The
CoNLL-2003% provides the most recent evaluation
results of many learning algorithms on named entity
recognition. The Jobs corpus* has also been used re-
cently by several learning systems. The CFP corpus
was created as part of the recent Pascal Challenge
for evaluation of machine learning methods for IES.

In detail, we used the English part of the CoNLL-
2003 shared task dataset, which consists of 946 doc-
uments for training, 216 document for development
(e.g., tuning the parameters in learning algorithm),
and 231 documents for evaluation (i.e., testing), all
of which are news articles taken from the Reuters
English corpus (RCV1). The corpus contains four
types of named entities — person, location, organ-
isation and miscellaneous names. In the other two
corpora domain-specific information was extracted
into a number of slots. The Job corpus includes 300
computer related job advertisements and 17 slots en-
coding job details, such as title, salary, recruiter,
computer language, application, and platform. The

3See http://cnts.uia.ac.be/conl12003/ner/
4See http://www.isi.edu/info-agents/RISE/repository.html.
3See http://nlp.shef.ac.uk/pascal/.
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CFP corpus consists of 1100 conference or work-
shop call for papers (CFP), of which 600 were anno-
tated. The corpus includes 11 slots such as work-
shop and conference names and acronyms, work-
shop date, location and homepage.

3.3 Comparison to Other Systems

Named Entity Recognition The algorithms are
evaluated on the CoNLL-2003 dataset. Since this set
comes with development data for tuning the learning
algorithm, different settings were tried in order to
obtain the best performance on the development set.
Different SVM kernel types, window sizes (namely
the number of tokens in left or right side of the token
at the centre of window), and the uneven margins
parameter 7 were tested. We found that quadratic
kernel, window size 4 and 7 = 0.5 produced best
results on the development set. These settings were
used in all experiments on the CoNLL-2003 dataset
in this paper, unless otherwise stated. The parameter
settings for PAUM described in Li et al. (2002), e.g.
7+ = 50,7 = 1, were adopted in all experiments
with PAUM, unless otherwise stated.

Table 1 presents the results of our system using
three learning algorithms, the uneven margins SVM,
the standard SVM and the PAUM on the CONLL-
2003 test set, together with the results of three
participating systems in the CoNLL-2003 shared
task: the best system (Florian et al., 2003), the
SVM-based system (Mayfield et al., 2003) and the
Perceptron-based system (Carreras et al., 2003).

Firstly, our uneven margins SVM system per-
formed significantly better than the other SVM-
based system. As the two systems are different from
each other in not only the SVM models used but
also other aspects such as the NLP features and the
framework, in order to make a fair comparison be-
tween the uneven margins SVM and the standard
SVM, we also present the results of the two learning
algorithms implemented in our framework. We can
see from Table 1 that, under the same experimental
settings, the uneven margins SVM again performed
better than the standard SVM.

Secondly, our PAUM-based system performed
slightly better than the system based on voted Per-
ceptron, but there is no significant difference be-
tween them. Note that they adopted different mech-
anisms to deal with the imbalanced data in IE (refer



Table 1: Comparison to other systems on CoNLL-2003 corpus: F'-measure(%) on each entity type and the
overall micro-averaged F-measure. The 90% confidence intervals for results of other three systems are also

presented. The best performance figures for each entity type and overall appear in bold.

System LOC MISC ORG PER Overall
Our SVM with uneven margins | 89.25 77.79 82.29 90.92 86.30
Systems Standard SVM 88.86 77.32 80.16 88.93 85.05

PAUM 88.18 76.64 7826 89.73 84.36
Participating | Best one 91.15 80.44 84.67 93.85 | 88.76(+0.7)
Systems Another SVM 88.77 74.19 79.00 90.67 | 84.67(+1.0)

Voted Perceptron 87.88 77.97 80.09 87.31 | 84.30(£0.9)

to Section 1). The structure of PAUM system is sim-
pler than that of the voted Perceptron system.

Finally, the PAUM system performed worse than
the SVM system. On the other hand, training time
of PAUM is only 1% of that for the SVM and the
PAUM implementation is much simpler than that of
SVM. Therefore, when simplicity and speed are re-
quired, PAUM presents a good alternative.

Template Filling On Jobs corpus our systems
are compared to several state-of-the-art learning sys-
tems, which include the rule based systems Rapier
(Califf, 1998), (LP)? (Ciravegna, 2001) and BWI
(Freitag and Kushmerick, 2000), the statistical sys-
tem HMM (Freitag and Kushmerick, 2000), and the
double classification system (Sitter and Daelemans,
2003). In order to make the comparison as informa-
tive as possible, the same settings are adopted in our
experiments as those used by (LP)?2, which previ-
ously reported the highest results on this dataset. In
particular, the results are obtained by averaging the
performance in ten runs, using a random half of the
corpus for training and the rest for testing. Only ba-
sic NLP features are used: token form, capitalisation
information, token types, and lemmas.

Preliminary experiments established that the
SVM with linear kernel obtained better results than
SVM with quadratic kernel on the Jobs corpus (Li
et al., 2005). Hence we used the SVM with linear
kernel in the experiments on the Jobs data. Note that
PAUM always uses linear kernel in our experiments.

Table 2 presents the results of our systems as well
as the other six systems which have been evaluated
on the Jobs corpus. Note that the results for all the
17 slots are available for only three systems, Rapier,
(LP)? and double classification, while the results
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for some slots were available for the other three sys-
tems. We computed the macro-averaged F (the
mean of the F of all slots) for our systems as well
as for the three fully evaluated systems in order to
make a comparison of the overall performance.

Firstly, the overall performance of our two sys-
tems is significantly better than the other three fully
evaluated systems. The PAUM system achieves the
best performance on 5 out of the 17 slots. The SVM
system performs best on the other 3 slots. Secondly,
the double classification system had much worse
overall performance than our systems and other two
fully evaluated systems. HMM was evaluated only
on two slots. It achieved best result on one slot but
was much worse on the other slot than our two sys-
tems and some of the others. Finally, somewhat sur-
prisingly, our PAUM system achieves better perfor-
mance than the SVM system on this dataset. More-
over, the computation time of PAUM is about 1/3 of
that of the SVM. Hence, the PAUM system performs
quite satisfactory on the Jobs corpus.

Our systems were also evaluated by participating
in a Pascal challenge — Evaluating Machine Learn-
ing for Information Extraction. The evaluation pro-
vided not only the CFP corpus but also the linguistic
features for all tokens by pre-processing the docu-
ments. The main purpose of the challenge was to
evaluate machine learning algorithms based on the
same linguistic features. The only compulsory task
is taskl, which used 400 annotated documents for
training and other 200 annotated documents for test-
ing. See Ireson and Ciravegna (2005) for a short
overview of the challenge. The learning methods ex-
plored by the participating systems included LP?,
HMM, CRF, SVM, and a variety of combinations



Table 2: Comparison to other systems on the jobs corpus: F (%) on each entity type and overall perfor-
mance as macro-averaged F. Standard deviations for the MA F of our systems are presented in parenthe-
sis. The highest score on each slot and overall performance appears in bold.

Slot SVM PAUM (LP)* Rapier DCs BWI HMM semi-CRF
Id 97.7 97.4 100 97.5 97 100 - -
Title 49.6 53.1 43.9 40.5 35 501 577 40.2
Company 77.2 78.4 71.9 70.0 38 782 504 60.9
Salary 86.5 86.4 62.8 67.4 67 - - -
Recruiter 78.4 814 80.6 68.4 55 - - -
State 92.8 93.6 84.7 90.2 94 - - -
City 95.5 95.2 93.0 90.4 91 - - -
Country 96.2 96.5 81.0 93.2 92 - - -
Language 86.9 87.3 91.0 81.8 33 - - -
Platform 80.1 78.4 80.5 72.5 36 - - -
Application 70.2 69.7 78.4 69.3 30 - - -
Area 46.8 54.0 53.7 42.4 17 - - -
Req-years-e 80.8 80.0 68.8 67.2 76 - - -
Des-years-e 81.9 85.6 60.4 87.5 47 - - -
Req-degree 87.5 87.9 84.7 81.5 45 - - -
Des-degree 59.2 62.9 65.1 72.2 33 - - -
Post date 99.2 99.4 99.5 99.5 98 - - -
MA Fy 80.8(£1.0) 81.6(+1.1) | 77.2 76.0 579 - - -

of different learning algorithms. Firstly, the sys-
tem of the challenge organisers, which is based on
L P? obtained the best result for Task1, followed by
one of our participating systems which combined the
uneven margins SVM and PAUM (see Ireson and
Ciravegna (2005)). Our SVM and PAUM systems
on their own were respectively in the fourth and fifth
position among the 20 participating systems. Sec-
ondly, at least six other participating system were
also based on SVM but used different IE framework
and possibly different SVM models from our SVM
system. Our SVM system achieved better results
than all those SVM-based systems, showing that the
SVM models and the IE framework of our system
were quite suitable to IE task. Thirdly, our PAUM
based system was not as good as our SVM system
but was still better than the other SVM based sys-
tems. The computation time of the PAUM system
was about 1/5 of that of our SVM system.

Table 3 presents the per slot results and over-
all performance of our SVM and PAUM systems
as well as the system with the best overall result.
Compared to the best system, our SVM system per-
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formed better on two slots and had similar results
on many of other slots. The best system had ex-
tremely good results on the two slots, C-acronym
and C-homepage. Actually, the F values of the best
system on the two slots were more than double of
those of every other participating system.

3.4 Effects of Uneven Margins Parameter

A number of experiments were conducted to inves-
tigate the influence of the uneven margins parameter
on the SVM and Perceptron’s performances. Table 4
show the results with several different values of un-
even margins parameter respectively for the SVM
and the Perceptron on two datasets — CoNLL-2003
and Jobs. The SVM with uneven margins (7 < 1.0)
had better results than the standard SVM (7 1).
We can also see that the results were similar for the 7
between 0.6 and 0.4, showing that the results are not
particularly sensitive to the value of the uneven mar-
gins parameter. The uneven margins parameter has
similar effect on Perceptron as on the SVM. Table 4
shows that the PAUM had better results than both the
standard Perceptron and the margin Perceptron



Table 3: Results of our SVM and PAUM systems
on CFP corpus: F-measures(%) on individual entity
type and the overall figures, together with the system
with the highest overall score. The highest score on
each slot appears in bold.

SLOT PAUM SVM | Best one
W-name 519 54.2 35.2
W-acronym 50.4 60.0 86.5
W-date 67.0  69.0 69.4
W-homepage 69.6 705 72.1
W-location 60.0 66.0 48.8
W-submission 70.2 69.6 86.4
W-notification 76.1 85.6 88.9
W-camera-ready | 71.5 74.7 87.0
C-name 43.2 47.7 551
C-acronym 38.8 38.7 90.5
C-homepage 7.1 11.6 393
Micro-average 61.1 64.3 73.4

Our conjecture was that the uneven margins pa-
rameter was more helpful on small training sets, be-
cause the smaller a training set is, the more imbal-
anced it could be. Therefore we carried out exper-
iments on a small numbers of training documents.
Table 5 shows the results of the SVM and the uneven
margins SVM on different numbers of training doc-
uments from CoNLL-2003 and Jobs datasets. The
performance of both the standard SVM and the un-
even margins SVM improves consistently as more
training documents are used. Moreover, compared
to the results one large training sets shown in Table
4, the uneven margins SVM obtains more improve-
ments on small training sets than the standard SVM
model. We can see that the smaller the training set
is, the better the results of the uneven margins SVM
are in comparison to the standard SVM.

4 Conclusions

This paper studied the uneven margins versions of
two learning algorithms — SVM and Perceptron — to
deal with the imbalanced training data in IE. Our ex-
periments showed that the uneven margin is helpful,
in particular on small training sets. The smaller the
training set is, the more beneficial the uneven margin
could be. We also showed that the systems based on
the uneven margins SVM and Perceptron were com-
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Table 4: The effects of uneven margins parameter
of the SVM and Perceptron, respectively: macro av-
eraged F1(%) on the two datasets CoNLL-2003 (de-
velopment set) and Jobs. The standard deviations for
the Jobs dataset show the statistical significances of
the results. In bold are the best performance figures
for each dataset and each system.

T 1.0 0.8 0.6 0.4 0.2
Conll 89.0 89.6 89.7 892 853
Jobs 79.0 799 81.0 80.8 79.0
+14 £1.2 +09 +£1.0 =13
(t4,7—) (0,00 (1,1) (50,1)
Conll 835 839 844
Jobs 74.1 78.8 81.6
+1.5 +£1.0 =11

parable to other state-of-the-art systems.

Our SVM system obtained better results than
other SVM-based systems on the CoNLL-2003 cor-
pus and CFP corpus respectively, while being sim-
pler than most of them. This demonstrates that our
SVM system is both effective and efficient.

We also explored PAUM, a simple and fast
learning algorithm for IE. The results of PAUM
were somehow worse (about 0.02 overall F-measure
lower) than those of the SVM on two out of three
datasets. On the other hand, PAUM is much faster
to train and easier to implement than SVM. It is also
worth noting that PAUM outperformed some other
learning algorithms. Therefore, even PAUM on its
own would be a good learning algorithm for IE.
Moreover, PAUM could be used in combination with
other classifiers or in the more complicated frame-
work such as the one in Carreras et al. (2003).

Since many other tasks in Natural Language Pro-
cessing, like IE, often lead to imbalanced classifica-
tion problems and the SVM has been used widely
in Natural Language Learning (NLL), we can ex-
pect that the uneven margins SVM and PAUM are
likely to obtain good results on other NLL problems
as well.
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Table 5: The performances of the SVM system with
small training sets: macro-averaged F'(%) on the
two datasets CoNLL-2003 (development set) and
Jobs. The uneven margins SVM (7 = 0.4) is com-
pared to the standard SVM model with even margins
(t = 1). The standard deviations are presented for
results on the Jobs dataset.

size 10 20 30 40 50

T=04
Conll 60.6 664 704 722 728
Jobs 51.6 609 657 686 71.1
+2.7 +25 +£2.1 £19 £2.5
T=1
Conll 462 586 652 683 68.6
Jobs 471 565 614 654 68.1
+34 431 27 +19 £2.1
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I mproving sequence segmentation learning by predicting trigrams
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Abstract

Symbolic machine-learning classifiers are
known to suffer from near-sightedness
when performing sequence segmentation
(chunking) tasks in natural language pro-
cessing: without special architectural ad-
ditions they are oblivious of the decisions
they made earlier when making new ones.
We introduce a new pointwise-prediction
single-classifier method that predicts tri-
grams of class labels on the basis of win-
dowed input sequences, and uses a simple
voting mechanism to decide on the labels
in the final output sequence. We apply
the method to maximum-entropy, sparse-
winnow, and memory-based classifiers us-
ing three different sentence-level chunk-
ing tasks, and show that the method is able
to boost generalization performance in
most experiments, attaining error reduc-
tions of up to 51%. We compare and com-
bine the method with two known alterna-
tive methods to combat near-sightedness,
viz. a feedback-loop method and a stack-
ing method, using the memory-based clas-
sifier. The combination with a feedback
loop suffers from the label bias problem,
while the combination with a stacking
method produces the best overall results.

1 Optimizing output sequences
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Figure 1. Standard windowing process. Sequences
of input symbols and output symbols are converted
into windows of fixed-width input symbols each as-
sociated with one output symbol.

chunk. The latter typically involves disambigua-
tion among alternative labels (e.g. syntactic role la-
beling, or semantic type assignment). Both tasks,
whether seen as separate tasks or as one, involve the
use of contextual knowledge from the available in-
put (e.g. words with part-of-speech tags), but also
the coordination of segmentations and disambigua-
tions over the sentence as a whole.

Many machine-learning approaches to chunking
tasks use windowing, a standard representational ap-
proach to generate cases that can be sequentially
processed. Each case produces one element of the
output sequence. The simplest method to process
these cases is that each case is classified in isolation,
generating a so-called point-wise prediction; the se-
guence of subsequent predictions can be concate-
nated to form the entire output analysis of the sen-
tence. Within a window, fixed-width subsequences

Many tasks in natural language processing have tleé adjacent input symbols, representing a certain
full sentence as their domain. Chunking tasks, fotontextual scope, are mapped to one output symbol,
example, deal with segmenting the full sentence inttypically associated with one of the input symbols,
chunks of some type, for example constituents dor example the middle one. Figure 1 displays this
named entities, and possibly labeling each identifiestandard version of the windowing process.

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 80-87, Ann Arbor, June 20@®2005 Association for Computational Linguistics



The fact that the point-wise classifier is onlyput symbols employed for maximizing the likeli-
trained to associate subsequences of input symbdisod of point-wise single-label predictions at the
to single output symbols as accurately as possibtitput level, classifier output may be augmented by
is a problematic restriction: it may easily cause than optimization over the output sequence as a whole
classifier to produce invalid or impossible output setising optimization techniques such as beam search-
guences, since it is incapable of taking into accourihg in the space of a conditional markov model’s
any decisions it has made earlier. This well-knowroutput (Ratnaparkhi, 1996) or hidden markov mod-
problem has triggered at least the following threels (Skut and Brants, 1998). Maximum-entropy
main types of solutions. markov models (McCallum et al., 2000) and con-

o ditional random fields (Lafferty et al., 2001) opti-
Feedback loop  Each training or test example may ¢ the likelihood of segmentations of output sym-

represent not only the regular windowed input, buf,| sequences through variations of Viterbi search.
also a copy of previously made classifications, to aly non-stochastic, non-generative method for output
low the classifier to be more consistent with its preéequence optimization is presented by Argamon et
vious o!ecisions. Direct feedback_ loops that copy; (1999), who propose a memory-based sequence
a predicted output label to the input representag,ner that finds alternative chunking analyses of a
tion of the next example have been used in SyMseqy,ence, and produces one best-guess analysis by a

bolic machine-learning architectures such as the tang algorithm that finds an optimal joining of the
maximum-entropy tagger described by Ratnaparkhjiiarnative analyses.

(1996) and the memory-based taggemsg) pro- In this paper we introduce a symbolic machine-
posed by Daeleman's et'al. (1996). This solution %sarning method that can be likened to the ap-
sumes that processing is dllrected, e.g. .from left tBroaches of the latter type of output sequence op-
right. A noted problem of this approach is ta®el  mi;ers but which does not perform a search in
bias problem(Lafferty et al., 2001), which is that a space of possible analyses. The approach is to
feedback-loop classifier may be driven to be consig;; e a point-wise symbolic machine-learning clas-

tent_ vyith its previous decision also in the case thig;fiq, predict series of overlapping-grams (in the
decision was wrong; sequences of errors may resully rent study, trigrams) of class symbols, and have

Stacking, boosting, and voting  The partly incor- & simple voting mechanism decide on the final out-

rect concatenated output sequence of a single clasBHt séquence based on the overlapping predicted tri-
fier may serve as input to a second-stage classifier §iams: We show that the approach has similar posi-
a stacking architecture, a common machine-learniry® €ffects when applied to a memory-based classi-

optimization technique (Wolpert, 1992). Although!le" and & maximum-entropy classifier, while yield-
less elegant than a monolithic single-classifier ai'd Mixed effects with a sparse-winnow classifier.

chitecture, this method is known to be capable of/e then proceed to compare the trigram prediction

recognizing recurring errors of the first-stage clagN€thod to a feedback-loop method and a stacking
sifier and correcting them (Veenstra, 1998). Boosflethod applied using the memory-based classifier.
ing (Freund and Schapire, 1996) has been appliedwe thre_e methods attal_n compa_rable error_rgduc—
optimize chunking systems (Carreras et al., 20025',°ns' Fln_ally, we combine the trigram-prediction

as well as voting over sets of different classifier&€thod with each of the two other methods. We
(Florian et al., 2003). Punyakanok and Roth (2001§h°W that the combination of the trigram-prediction

present two methods for combining the prediction§'€thod and the feedback-loop method does not
of different classifiers according to constraints thafProve performance due to the label bias prob-

ensure that the resulting output is made more cohd™M- [N contrast, the combination of the trigram-
ent. prediction method and the stacking method leads to

the overall best results, indicating that the latter two
Output sequence optimization Rather than bas- methods solve complementary aspects of the near-
ing classifications only on model parameters estsightedness problem.
mated from co-occurrences between input and out- The structure of the paper is as follows. First,

81



we introduce the three chunking sequence segmen-NER, hamed-entity recognition, is to recognize
tation tasks studied in this paper and explain the aand type named entities in text. We employ the En-
tomatic algorithmic model selection method for theglish NER shared task data set used in the CoNLL-
three machine-learning classifiers used in our studg003 conference, again using the same evaluation
in Section 2. The subsequent three sections repartethod as originally used in the shared task (Tjong
on empirical results for the different methods proKim Sang and De Meulder, 2003). This data set
posed for correcting the near-sightedness of clasgliscriminates four name types: persons, organiza-
fiers: the new class-trigrams method, a feedbackions, locations, and a rest category of “miscellany
loop approach in combination with single classeaames”. The data set is a collection of newswire ar-
and class trigrams, and two types of stacking in conticles from the Reuters Corpus, RC¥1The given
bination with single classes and class trigrams. Setraining set contains 203,621 examples; as test set
tion 6 sums up and discusses the main results of thnee use the “testb” evaluation set which contains

comparison. 46,435 examples. Examples represent seven-word
windows of unattenuated words with their respec-
2 Data and methodology tive predicted part-of-speech tags. No other task-

specific features such as capitalization identifiers or

The three data sets we used for this study reprgeed list features were used. Class labels use the
sent a varied set of sentence-level chunking task®B segmentation coding coupled with the four pos-
of both syntactic and semantic nature: Engliskible name type labels. Analogous to thBUNK
base phrase chunking (hencefortiMUNK), En- task, generalization performance is measured by the
glish named-entity recognitiorNER), and disflu- F-score on correctly identified and labeled named
ency chunking in transcribed spoken Dutch utterentities in test data. An example sentence with
ances DISFL). the named entities segmented and typed is the fol-

CHUNK is the task of splitting sentences intolowing: [U.N.]organization Official [EKeUS]person heads for
non-overlapping syntactic phrases or constituent@aghdad]iocation-
The used data set, extracted from the WSJ PennDisFL, disfluency chunking, is the task of rec-
Treebank, contains 211,727 training examples arghnizing subsequences of words in spoken utter-
47,377 test instances. The examples represestices such as fragmented words, laughter, self-
seven-word windows of words and their respectiveorrections, stammering, repetitions, abandoned
(predicted) part-of-speech tags, and each examptenstituents, hesitations, and filled pauses, that are
is labeled with a class using the IOB type of segnot part of the syntactic core of the spoken utter-
mentation coding as introduced by Ramshaw anahce. We use data introduced by Lendvai et al.
Marcus (1995), marking whether the middle word2003), who extracted the data from a part of the
is inside (1), outside (O), or at the beginning (B)Spoken Dutch Corpus of spontaneous spédicht
of a chunk. Words occuring less than ten times iiis both transcribed and syntactically annotated. All
the training material are attenuated (converted intoveords and multi-word subsequences judged not to
more general string that retains some of the wordse part of the syntactic tree are defined as disfluent
surface form). Generalization performance is meahunks. We used a single 90% — 10% split of the
sured by the F-score on correctly identified and ladata, producing a training set of 303,385 examples
beled constituents in test data, using the evaluatiamd a test set of 37,160 examples. Each example
method originally used in the “shared task” subrepresents a window of nine words (attenuated be-
event of the CoNLL-2000 conference (Tjong Kimlow an occurrence threshold of 100) and 22 binary
Sang and Buchholz, 2000) in which this particufeatures representing various string overlaps (to en-
lar training and test set were used. An exampleode possible repetitions); for details, cf. (Lendvai
sentence with base phrases marked and labeled-is_

. 1 H
the following: [He]~ p [reckons]y p [the current account o 1;‘57”865;3130%3’ Volume 1, English language, 1996-08-20
deficit]yp [will narrow]yp [to]pp [only $ 1.8 billion]yp 2CGN, époken Dutch  Corpus, version 1.0,

[in]pp [September]yp . http://1 ands. | et.kun. nl/cgn/ ehone. ht m
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et al.,, 2003). Generalization performance is mea- E E E E output sequence

sured by the F-score on correctly identified disfluent o secuence
chunks in test data. An example of a chunked Spo- E E E E E E P

ken Dutch Corpus sentence is the following (“uh” is
a filled pause; without the disfluencies, the sentence | [Z] [4] (2]
means “I have followed this process with a certain ’ y ==
amount of scepticism for about a yearfik uh] ik heb [@E@E [@@@E

met de nodige scepsis [uh] deze gang van zaken [zo'n] window 1 window 2

zo'n jaar aangekeken. . . . . .
We perform our experiments on the three tasks u&igure 2: Windowing process with trigrams of class

ing three machine-learning algorithms: the memory8Ymbols. Sequences of input symbols and output
based learning ok-nearest neighbor algorithm asSymbols are converted into windows of fixed-width
implemented in the TIMBL software package (verinPut symbols each associated with, in this example,
sion 5.1) (Daelemans et al., 2004), henceforth rdtigrams of output symbols.

ferred to asmBL; maximum-entropy classification

(Guiasu and Shenitzer, 1985) as implemented igingle class labels to wider trigrams. ThelUNK

the maxent software package (version 2004093@hta, for example, has 22 classes (“IOB” codes as-
by Zhang Lé, henceforthMAXENT; and a sparse- sqciated with chunk types); in the same training set,
winnow network (Littlestone, 1988) as implementedg46 different trigrams of these 22 classes and the
in the SNoW software package (version 3.0.5) b¥iart/end context symbol occur. The eight original
Carlson et al. (1999), hencefortiNnOow.  All ¢lasses ofvER combine to 138 occurring trigrams.
three algorithms have algorithmic parameters thg$sr only has two classes, but 18 trigram classes.
bias their performance; to allow for a fair compar- Figure 2 illustrates the procedure by which win-
ison we optimized each algorithm on each task Usows are created with, as an example, class trigrams.
ing wrapped progressive sampling (Van den Bosclach windowed instance maps to a class label that
2004) (wps), a heuristic automatic procedure thatincorporates three atomic class labels, namely the
on the basis of validation experiments internal t@qcys class label that was the original unigram label,

the training material, searches among algorithmigs jts immediate left and right neighboring class
parameter combinations for a combination likely tqzpels.

yield optimal generalization performance on unseen \yije creating instances this way is trivial, it is

data. We used wrapped progressive sampling in gt entirely trivial how the output of overlapping

experiments. class trigrams recombines into a normal string of
class sequences. When the example illustrated in
Figure 2 is followed, each single class label in the
There is no intrinsic bound to what is packed intamutput sequence is effectively predicted three times;
a class label associated to a windowed examplfirst, as the right label of a trigram, next as the mid-
For example, complex class labels can span ovelte label, and finally as the left label. Although
trigrams of singular class labels. A classifier thait would be possible to avoid overlaps and classify
learns to produce trigrams of class labels will at leaginly every three words, there is an interesting prop-
produce syntactically valid trigrams from the train-erty of overlapping class label-grams: it is pos-
ing material, which might partly solve some nearsible to vote over them. To pursue our example of
sightedness problems of the single-class classifiefigram classes, the following voting procedure can
Although simple and appealing, the lurking disadbe followed to decide about the resulting unigram
vantage of the trigram idea is that the number oflass label sequence:

class labels increases explosively when moving from

3 Predicting classtrigrams

BT . _ 1. When all three votes are unanimous, their com-
Maximum Entropy Modeling Toolkit for Python . .

and C++, ht t p: / / homepages. i nf . ed. ac. uk/ s0450736/ mon class label is returned,

maxent tool kit.htr . 2. When two out of three votes are for the same
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MBL MAXENT WINNOW

Task Baseline Trigram red. Baseline Trigram red. Baseline Trigram. red
CHUNK 91.9 92.7 10 90.3 91.9 17 895 88.3 -11
NER 77.2 80.2 17 475 74.5 51 68.9 70.1 4

DISFL  77.9 81.7 17 753 80.7 22 705 65.3 -17

Table 1: Comparison of generalization performances of three machimedgalgorithms in terms of F-
score on the three test sets without and with class trigrams. Each third coisipteyd the error reduction
in F-score by the class trigrams method over the other method. The bestnpantes per task are printed
in bold.

class label, this class label is returned; Task  Baseline Feedback Trigrams Feddi
3. _\Nhen aI_I thrge votes disagree (|_.e., when ma_ Nk 91.9 93.0 92 7 59.8
jority voting ties), the class label is returned of

, o . NER 77.2 78.1 80.2 77.5
which the classifier is most confident. DISEL 77.9 78.6 817 70.1

Classifier confidence, needed for the third tie-
breaking rule, can be heuristically estimated by takFable 2: Comparison of generalization perfor-
ing the distance of the nearest neighbowmisL, the mances in terms of F-score mBL on the three test
estimated probability value of the most likely classsets, with and without a feedback loop, and the error
produced by thenAXeNT classifier, or the activa- reduction attained by the feedback-loop method, the
tion level of the most active unit of thesinnow — F-score of the trigram-class method, and the F-score
network. of the combination of the two methods.

Clearly this scheme is one out of many possible
schemes, using variants of voting as well as variants
of n (and having multiple classifiers with differemt

so that some back-off procedure could be foIIowed}ipproach was proposed in the context of memory-
For now we use this procedure with trigrams as af5geqd learning for part-of-speech tagging asTV

example. To measure its effect we apply it to the S§paelemans et al., 1996). The number of decisions
quence taskEHUNK, NER, andDISFL. The results feq pack into the input can be varied. In the exper-
of this experiment, where in each cageswas used jments described here, the feedback loop iteratively

algorithms, are listed in Table 1. We find rather positigns.

tive effects of the trigram method both witteL and

MAXENT; we observe relative error reductionsinthe Tphe feedback-loop approach can be combined
F-score on chunking ranging between 10% and a rgpih with single class and class trigram output. In
markable 51% error reduction, WithAXENT onthe  he |atter case, the full trigram class labels are copied
NER task. WithwINNOW, we observe decreases inyg the input, retaining at any time the three most re-
performance oltHUNK andDISFL, and & minor er- cently predicted labels in the input. Table 2 shows
ror reduction of 4% OmMER. the results for both options on the three chunking
tasks. The feedback-loop method outperforms the
trigram-class method o@HUNK, but not on the
other two tasks. It does consistently outperform
An alternative method for providing a classifier acthe baseline single-class classifier. Interestingly, the
cess to its previous decisions is a feedback-loop apembination of the two methods performs worse
proach, which extends the windowing approach bthan the baseline classifier amuNk, and also per-
feeding previous decisions of the classifier as federms worse than the trigram-class method on the
tures into the current input of the classifier. Thisother two tasks.

4 Thefeedback-loop method ver sus class
trigrams
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|Z| IE‘ |E| IE‘ IZ‘ IE‘ IE‘ predicted output sequence Perfect Adaptive

Task Baseline stacking stacking
IE‘ IE‘ IE‘ real output sequence
_ CHUNK 91.9 92.0 92.6
LRI LT e] e NER  T77.2 783 789
DISFL 77.9 80.5 81.6

Table 3: Comparison of generalization perfor-
mances in terms of F-score @BL on the three test
sets, without stacking, and with perfect and adaptive
stacking.

window 1 window 2

Figure 3: The windowing process after a first-stagfiigh weight, especially considering that in testing
classifier has produced a predicted output sequenggis feature would contain errors. To assign a very
Sequences of input symbols, predicted output synkigh weight to a feature that may contain an erro-

bols, and real output symbols are converted into Wileous value does not seem a good idea in view of
dows of fixed-width input symbols and predictecihe |abel bias problem.

output symbols, each associated with one output Adaptive —

the training material is created in-
symbol.

directly by running an internal 10-fold cross-
validation experiment on the first-stage training set,
5 Stacking versusclasstrigrams concatenating the predicted output class labels on all
of the ten test partitions, and converting this out-
Stacking, a term popularized by Wolpert (1992) irput to class windows. In contrast with the perfect
an artificial neural network context, refers to a clasgariant, we do include the focus class feature in the
of meta-learning systems that learn to correct ecopied class label window. The adaptive approach
rors made by lower-level classifiers. We implementan in principle learn from recurring classification
stacking by adding a windowed sequence of previerrors in the input, and predict the correct class in
ous and subsequent output class labels to the origiase an error re-occurs.
nal input features (here, we copy a window of seven Table 3 lists the comparative results on the
predictions to the input, centered around the middleHuNnk, NER, and DISFL tasks introduced earlier.
position), and providing these enriched examples aghey show that both types of stacking improve per-
training material to a second-stage classifier. Figormance on the three tasks, and that the adaptive
ure 3 illustrates the procedure. Given the (possiblgtacking variant produces higher relative gains than
erroneous) output of a first classifier on an input sehe perfect variant; in terms of error reduction in F-
quence, a certain window of class symbols from thaicore as compared to the baseline single-class clas-
predicted sequence is copied to the input, to act asfier, the gains are 9% fortHUNK, 7% for NER,
predictive features for the real class label. and 17% forpisFL. There appears to be more use-
To generate the output of a first-stage classifieful information in training data derived from cross-
two options are open. We name these optipas validated output with errors, than in training data
fect andadaptive. They differ in the way they create with error-free material.
training material for the second-stage classifier: Stacking and class trigrams can be combined.
Perfect — the training material is created straightOne possible straightforward combination is that of
from the training material of the first-stage classia first-stage classifier that predicts trigrams, and a
fier, by windowing over the real class sequencesecond-stage stacked classifier that also predicts tri-
In doing so, the class label of each window is exgrams (we use the adaptive variant, since it produced
cluded from the input window, since it is alwaysthe best results), while including a centered seven-
the same as the class to be predicted. In trainingpsitions-wide window of first-stage trigram class
this focus feature would receive an unrealisticallyabels in the input. Table 4 compares the results

85



Adaptive their near-sighted counterparts, error reductions are

Task stacking  Trigram Combination attained of 10 to 51% wittmsL and MAXENT on

CHUNK 926 928 031 three chunking tasks. We found weaker results with
NER 78.9 80.2 80.6 a WINNOW classifier, suggesting that the latter is
DISFL 816 81.7 819 more sensitive to the division of the class space in

more classes, likely due to the relatively sparser co-

Table 4: Comparison of generalization perfor®CCurrences between feature values and class labels

mances in terms of F-score mBL on the three test on whichwINNOw network connection weights are

sets, with adaptive stacking, trigram classes, and tll?@sed' _
combination of the two We have contrasted the trigram-class method

against a feedback-loop methadgT) and a stack-

) ) ) ) ing method, all using a memory-based classifier
of adaptive stacking and trigram classes with thosg, ;¢ the methods generalize to any machine-learning
of the combination of the two. As can be seen, thg|,ssifier). With the feedback-loop method, modest
combination produces even better results than bof o reductions of 3%. 4%, and 17% are measured:
the stacking and the trigram-class methods indiVids'tacking attains comparable improvements of 7%,
ually, on all three tasks. Compared to the baselir@%, and 17% error reductions in the chunking F-
single-class classifier, the error reductions are 15%.,ra \We then combined the trigram-class method
for CHUNK, 15% forNER, and 18% fomISFL. with the two other methods. The combination with

~As an additional analysis, we inspected the preye feedback-loop system led to relatively low per-
dictions made by the trigram-class method and itg,-mance results. A closer analysis indicated that
combinations with the stacking and the feedbacke two methods appear to render each other ineffec-
loop methods on theHUNK task to obtain a bet- yjye. py feeding back predicted trigrams in the input,
ter view on the amount of disagreements betwee\g ¢|assifier is very much geared towards predicting
the trigrams. We found that with the trigram-class, next trigram that will be in accordance with the
method, in 6.3% of all votes some disagreemeny,, partly overlapping trigrams in the input, as sug-
among the overlapping trigrams occurs. A slightlyyested by overwhelming evidence in this direction
higher percentage of disagreements, 7.1%, is Ofy raining material — this problem is also known as
served with the combination of the trigram-class ang,q |5pel bias problem (Lafferty et al., 2001). (The

the stacking method. Interestingly, in the combinag, ot that maximum-entropy markov models also suf-
tion of the trigram-class and feedback-loop method$e, from this problem prompted Laffertgt al. to
only 0.1% of all trigram votes are not unanimouspmpoSe conditional random fields.)

This clearly illustrates that in the latter combination \ye a1so observed that the positive effects of the

the resulting sequence of trigrams is internally veryjqram.class and stacking variants do not mute each
consistent —also in its errors. other when combined. The overall highest error re-
ductions are attained with the combination: 15%
for CHUNK, 15% for NER, and 18% forDISFL.
Classifiers trained on chunking tasks that make isd@-he combination of the two methods solve more er-
lated. near-sighted decisions on output symbols amdrs than the individual methods do. Apparently,
that do not optimize the resulting output sequencdbey both introduce complementary disagreements
afterwards or internally through a feedback loopin overlapping trigrams, which the simple voting
tend to produce weak models for sequence processechanism can convert to more correct predictions
ing tasks. To combat this weakness, we have prdhan the two methods do individually.

posed a new method that uses a single symbolic Further research should focus on a deep quan-
machine-learning classifier predicting trigrams ofitative and qualitative analysis of the different er-
classes, using a simple voting mechanism to reducers the different methods correct when compared
the sequence of predicted overlapping trigrams tota the baseline single-class classifier, as well as
sequence of single output symbols. Compared the errors they may introduce. Alternatives to the

6 Conclusion
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IOB-style encoding should also be incorporated ii. Kashima and Y. Tsuboi. 2004. Kernel-based discrim-
these experiments (Tjong Kim Sang, 2000). Ad- inative learning algorithms for labeling sequences,

ditionally, a broader comparison with point-wise [€es and graphs. IRroceedings of ICML-2004
Banff, Canada.

predictors (Kashima and Tsuboi, 2004) as well a3 | afferty, A. McCallum, and F. Pereira. 2001. Con-
Viterbi-based probabilistic models (McCallum et al., ditional random fields: Probabilistic models for seg-
2000; Lafferty et al., 2001; Sha and Pereira, 2003) menting and labeling sequence data. Piloceedings
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Abstract Our approach is a synthesis of linguistic and sta-
tistical methods. For each pronoun, a list of an-
tecedent candidates derived from the parsed corpus
is presented to the Expectation Maximization (EM)
learner. Special cases, such as pleonastic, reflex-
ive and cataphoric pronouns are dealt with linguisti-
cally during list construction. This allows us to train
on and resolve all third-person pronouns in a large
Question Answering corpus. We learn lexicalized
gender/number, language, and antecedent probabil-
ity models. These models, tied to individual words,
can not be learned with sufficient coverage from la-
beled data. Pronouns are resolved by choosing the
most likely antecedent in the candidate list accord-
1 Introduction ing to these distributions. The resulting resolution

Coreference resolution is the process of determir?—c\(;:racy |s% corr]nparatlzle to supgrwsed methogs.' _
ing which expressions in text refer to the same real- € gain further performance improvement by ini-

world entity. Pronoun resolution is the important yefIaIIZIng EM with a gender/number model derived

challenging subset of coreference resolution wherefﬁom special cases in the training data. This model

system attempts to establish coreference betweerﬁSaShOWn to perform reliably on its own. We also

pronominal anaphor, such as a third-person pronodjrgmonstrate how the models learned through our un-

like he, she, itor they, and a preceding noun phrase,SUperVised method can be used as features in a su-

called an antecedent. In the following example, Qerwsed pronoun resolution system.
pronoun resolution system must determine the CO5  palated Work
rect antecedent for the pronouns “his” and “he.”

We propose an unsupervised Expectation
Maximization approach to pronoun reso-

lution. The system learns from a fixed

list of potential antecedents for each pro-
noun. We show that unsupervised learn-
ing is possible in this context, as the per-
formance of our system is comparable to
supervised methods. Our results indicate
that a probabilistic gender/number model,
determined automatically from unlabeled

text, is a powerful feature for this task.

(1) When the president entered the arena with hlgronoun resolution typically employs some com-

. L Ination of constraints and preferences to select
family, he was serenaded by a mariachi band. . .
the antecedent from preceding noun phrase candi-

Pronoun resolution has applications across margates. Constraints filter the candidate list of improb-
areas of Natural Language Processing, particularBble antecedents, while preferences encourage se-
in the field of information extraction. Resolving alection of antecedents that are more recent, frequent,
pronoun to a noun phrase can provide a new inteetc. Implementation of constraints and preferences
pretation of a given sentence, giving a Question Anzan be based on empirical insight (Lappin and Le-
swering system, for example, more data to consideass, 1994), or machine learning from a reference-
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annotated corpus (Ge et al., 1998). The majoritg Methods
of pronoun resolution approaches have thus far re- ,
lied on manual intervention in the resolution pro—3'1 Problem formulation
cess, such as using a manually-parsed corpus, \f will consider our training set to consist of
manually removing difficult non-anaphoric cases(p, k, C) triples: one for each pronoun, whepes
we follow Mitkov et al.'s approach (2002) with a the pronoun to be resolved,is the pronoun’s con-
fully-automatic pronoun resolution method. Parstext, andC'is a candidate list containing the noyns
ing, noun-phrase identification, and non-anaphorigould potentially be resolved to. Initially, we take
pronoun removal are all done automatically. to be the parsed sentence thatppears in.
Machine-learned, fully-automatic systems are C consists of all nouns and pronouns that precede
more common in noun phrase coreference resolw; looking back through the current sentence and the
tion, where the method of choice has been decgentence immediately preceding it. This small win-
sion trees (Soon et al., 2001; Ng and Cardie, 200jow may seem limiting, but we found that a cor-
These systems generally handle pronouns as a subsst candidate appeared in 97% of such lists in a
of all noun phrases, but with limited features comiabeled development text. Mitkov et al. also limit
pared to systems devoted solely to pronouns. Kehleandidate consideration to the same window (2002).
used Maximum Entropy to assign a probability disEach triple is processed with non-anaphoric pronoun
tribution over possible noun phrase coreference ré¢andlers (Section 3.3) and linguistic filters (Sec-
lationships (1997). Like his approach, our systertion 3.4), which produce the final candidate lists.
does not make hard coreference decisions, but re-Before we pass thép, k, C) triples to EM, we
turns a distribution over candidates. modify them to better suit our EM formulation.
The above learning approaches require annd-here are four possibilities for the gender and num-
tated training data for supervised learning. Cardiber of third-person pronouns in English: masculine,
and Wagstaff developed an unsupervised approaf#dminine, neutral and plural (e.che, she, it, they
that partitions noun phrases into coreferent groupd/e assume a noun is equally likely to corefer with
through clustering (1999). However, the partitionsiny member of a given gender/number category, and
they generate for a particular document are not useeduce eaclp to a category label accordingly. For
ful for processing new documents, while our apexample he his, himandhimselfare all labeled as
proach learns distributions that can be used on umascfor masculine pronoun. Plural, feminine and
seen data. There are also approaches to anaphoeatral pronouns are handled similarly. We reduce
resolution using unsupervised methods to extratie context ternk to p’s immediate syntactic con-
useful information, such as gender and number (@ext, including onlyp’s syntactic parent, the parent’s
et al., 1998), or contextual role-knowledge (Beampart of speech, angs relationship to the parent, as
and Riloff, 2004). Co-training can also leverageletermined by a dependency parser. Incorporating
unlabeled data through weakly-supervised referenc@ntext only through the governing constituent was
resolution learning (Mller et al., 2002). As an alter- also done in (Ge et al., 1998). Finally, each candi-
native to co-training, Ng and Cardie (2003) use EMlate inC' is augmented with ordering information,
to augment a supervised coreference system wigt® we know how many nouns to “step over” before
unlabeled data. Their feature set is quite different, agriving at a given candidate. We will refer to this or-
it is designed to generalize from the data in a labeledering information as a candidatg’serm, for jump.
set, while our system models individual words. WeDur example sentence in Section 1 would create the
suspect that the two approaches can be combinediwo triples shown in Figure 1, assuming the sentence
Our approach is inspired by the use of EM inbegan the document it was found in.
bilingual word alignment, which finds word-to-word -
correspondences between a sentence and its trandl  Probability model
tion. The prominent statistical methods in this fieldExpectation Maximization (Dempster et al., 1977) is
are unsupervised. Our methods are most influencedorocess for filling in unobserved data probabilisti-
by IBM’'s Model 1 (Brown et al., 1993). cally. To use EM to do unsupervised pronoun reso-
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. = k= p'sfamil
his: g _ (,Tr:i(; ) presi]c?IZn?al)y Table 1: Examples of learned pronoun probabilities.
p — masc k — serenade Word () | masc| fem | neut| plur
president (3) prESident 0.94 | 0.01| 0.03| 0.02
teacher | 0.19 | 0.71| 0.09| 0.01

Figure 1. EM input for our example sentence.

j-values follow each lexical candidate.
This results in four models that work together to

luti h th lution task in t fh_ddetermine the likelihood of a given candidate. The
ution, we phrase the resolution task in terms ot i Pr(p|l) distribution measures the likelihood of a pro-

:iherj[ yarlabLes of an observdgg [t)rofcess.thWe af;:; un given an antecedent. Since we have collapsed
atin €ach case, one candidate from the candi "ﬂ?e observed pronouns into groups, this models a

listis selected ?S the _antec_:edent beﬁolzmdk__are_ word’s affinity for each of the four relevant gen-
ggne_rated. EM's r<_)le IS to mduc;e a proba_blllty dis; er/number categories. We will refer to this as our
tribution over c_andldates to_maX|m|z¢ _the IlkellhoodsrOnoun model. Pr(k|l) measures the probability of
of the (p, k) pairs observed in our training set. the syntactic relationship between a pronoun and its
. parent, given a prospective antecedent for the pro-
Pr(Dataset) = H Prip, k) @ noun. This is effectively éanguage mode| grading
lexical choice by context. k) measures the prob-
We can rewrite Rip, k) so that it uses a hidden can-ability that the word! will be found to be an an-
didate (or antecedent) variabtahat influences the tecedent. This is useful, as some entities, such as

(p,k)€Dataset

observeg andk: “president” in newspaper text, are inherently more
likely to be referenced with a pronoun. Finally,
Pr(p,k) = > Pr(p, k,c) (2) Pr(j) measures the likelihood of jumping a given

ceC number of noun phrases backward to find the cor-

Pr(p, k, c) = Pr(p, k|c)Pr(c) (3) rect candidate. We represent these models with ta-

ble look-up. Table 1 shows selectédalue entries

To improve our ability to generalize to future cases,, he P(p|l) table from our best performing EM

we use a rize Bayes assumption to state that thg,,qe| Note that the probabilities reflect biases in-
choices of pronoun and context are conditionally inparant in our news domain training set.

dependent, given an antecedent. That is, once WeGiven models for the four distributions above,

sele(_:t the word the pronoun represents, the pronoyn. ., assign a probability to each candidate in
and its context are no longer coupled: C according to the observationsand k; that is,
Pr(c|p, k) can be obtained by dividing Equation 5
Pr(p, k|c) = Pr Pr(k 4 ’
(. kle) (ple)Pr(kle) @ by Equation 2. Remember that= (I, j).
We can split each candidatento its lexical com- ,
ponentl and its jump valug. Thatis,c = (1,j).  Pr(c|p, k) = Pr(p|l)P/r(k:]l)Pt(l)Pr(/j) .
If we assume thatand;j are independent, and that Y wec Pr(p|l")Pr(K[l)Pr(I)Pr(j )(6)
p andk each depend only on tHecomponent ot )
we can combine Equations 3 and 4 to get our fin{fr(dp’ k) allows us to get fractional counts of

formulation for the joint probability distribution: p, k, ) triples in our tralr_wlng s'et, as if we had actu-
ally observed: co-occurring with(p, k) in the pro-

Pr(p, k, c) = Pr(p|l)Pr(k|))Pr({)Pr(j)  (5) Portions specified by Equation 6. This estimation
process is effectively the E-step in EM.

The jump termyj, though important when resolving The M-step is conducted by redefining our mod-

pronouns, is not likely to be correlated with any lex-els according to these fractional counts. For exam-

ical choices in the training set. ple, after assigning fractional counts to candidates
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according to Rie|p, k), we re-estimate Bp|l) with  of no approach that handles pronouns referring to

the following equation for a specifip, /) pair: verb phrases or implicit entities. The unavoidable
errors for these pronouns, occurring roughly 4% of
Pr(p|l) = N(p,1) (7) thetime, are included in our final results.

N(l)
_ 3.4 Candidate list modifications
where N () counts the number of times we see a

given event or joint event throughout the training seft Would bé possible foC' to include every noun
Given trained models, we resolve pronouns b hrase in the current and previous sentence, but per-

finding the candidaté that is most likely for the formance can be improved by automatically remov-
current pronoun, that is = argmax..Pr(c|p, k). ing improbable antecedents. We use a standard set of
Because Rp,k) is constant with erespect te. constraints to filter candidates. If a candidate’s gen-
¢ = argmax ;PV(P k,c). der or number is known, and does not match the pro-
< Y noun’s, the candidate is excluded. Candidates with
3.3 Non-anaphoric Pronouns known gender include other pronouns, and names
Not every pronoun in text refers anaphorically to 4"1th gendered designators (such as "Mr.” or “Mrs.”).
ur parser also identifies plurals and some gendered

preceding noun phrase. There are a frequent nurf?.

ber of difficult cases that require special attentior!'St Names. We remove frodi all times, dates, ad-
including pronouns that are: dresses, monetary amounts, units of measurement,

and pronouns identified as pleonastic.

e Pleonastic: pronouns that have a grammatical e use the syntactic constraints from Binding
function but do not reference an entity. E.g. “ItTheory to eliminate candidates (Haegeman, 1994).
is important to observe itis raining_” For the reﬂexive&himself, herself, itseliind them-

° Cataphora: pronouns that reference a futur@EIVGSthiS allows immediate SyntaCtiC identification
noun phrase. E.g. “In his speech, the preside®f the antecedent. These cases become unambigu-
praised the workers.” ous; only the indicated antecedent is included’in

 Non-noun referential: pronouns that refer to a We improve the quality of our training set by re-

verb phrase, sentence, or implicit concept. E.gnoving known noisy cases before passing the set
“John told Mary they should buy a car.” to EM. For example, we anticipate that sentences

with quotation marks will be problematic, as other

If we construct them rigely, the candidate lists researchers have observed that quoted text requires
for these pronouns will be invalid, introducing noisespecial handling for pronoun resolution (Kennedy
in our training set. Manual handling or removaland Boguraev, 1996). Thus we remove pronouns
of these cases is infeasible in an unsupervised apecurring in the same sentences as quotes from the
proach, where the input is thousands of documentigarning process. Also, we exclude triples where
Instead, pleonastics are identified syntactically ughe constraints removed all possible antecedents, or
ing an extension of the detector developed by Lapwhere the pronoun was deemed to be pleonastic.
pin and Leass (1994). Roughly 7% of all pronoun®erforming these exclusions is justified for training,
in our labeled test data are pleonastic. We detebut in testing we state results for all pronouns.
cataphora using a pattern-based method on parsed o
sentences, described in (Bergsma, 2005b). Futupe> EM initialization
nouns are only included when cataphora are idelzarly in the development of this system, we were
tified. This approach is quite different from Lap-impressed with the quality of the pronoun model
pin and Leass (1994), who always include all fuPr(p|l) learned by EM. However, we found we could
ture nouns from the current sentence as candidatesnstruct an even more precise pronoun model for
with a constant penalty added to possible cataphor@mmmon words by examining unambiguous cases in
resolutions. The cataphora module identifies 1.4%ur training data. Unambiguous cases are pronouns
of test data pronouns to be cataphoric; in each ifraving only one word in their candidate ISt This
stance this identification is correct. Finally, we knowcould be a result of the preprocessors described in
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Sections 3.3 and 3.4, or the pronoun’s position imwhereVi : A\, = 1. Effectively, the log proba-
the document. A Rr(p|l) model constructed from bilities of our models become feature functions in
only unambiguous examples covers far fewer words log-linear model. When labeled training data is
than a learned model, but it rarely makes poor gemvailable, we can use the Maximum Entropy princi-
der/number choices. Furthermore, it can be obtaingale (Berger et al., 1996) to optimize theweights.
without EM. Training on unambiguous cases is sim- This provides us with an optional supervised ex-
ilar in spirit to (Hindle and Rooth, 1993). We foundtension to the unsupervised system. Given a small
in our development and test sets that, after applyinget of data that has the correct candidates indicated,
filters, roughly 9% of pronouns occur with unam-such as the set we used while developing our unsu-
biguous antecedents. pervised system, we can re-weight the final models
When optimizing a probability function that is not provided by EM to maximize the probability of ob-
concave, the EM algorithm is only guaranteed t@erving the indicated candidates. To this end, we
find a local maximum; therefore, it can be helpfulfollow the approach of (Och and Ney, 2002) very
to start the process near the desired end-point in pélosely, including their handling of multiple correct
rameter space. The unambiguous pronoun modghswers. We use the limited memory variable met-
described above can provide such a starting poinic method as implemented in Malouf’s maximum
When using thisinitializer, we perform our ini- entropy package (2002) to set our weights.
tial E-step by weighting candidates according to
Pry (pl|l), instead of weighting them uniformly. This 4 Experimental Design
biases the initial E-step probabilities so that a strong
indication of the gender/number of a candidate from.1 Data sets

unambiguous cases will either boost the candidate’s o _ _
chances or remove it from competition, dependiny/e used two training sets in our experiments, both

on whether or not the predicted category matche§awn from the AQUAINT Question Answering
that of the pronoun being resolved. corpus (Vorhees, 2002). For each traini_ng set, we
To deal with the sparseness of the/Ps|l) dis- manua}lly labeled pronoun antecedents in a corre-
tribution, we use add-1 smoothing (Jeffreys, 19615Pondingkey containing a subset of the pronouns
The resulting effect is that words with few unam-" the set. These keys are drawn from a collection
biguous occurrences receive a near-uniform gef complete documents. For each document, all pro-
der/number distribution, while those observed frefoUns are included. With the exception of the super-
quently will closely match the observed distributioniSed extension, the keys are used only to validate
During development, we also tried clever initializerdn€ resolution decisions made by a trained system.
for the other three models, including an extensivEurther details are available in (Bergsma, 2005D).
language model initializer, but none were able toim- The development set consists of 333,000 pro-

prove over Py (p|l) alone. nouns drawn from 31,000 documents. The devel-
opment key consists of 644 labeled pronouns drawn
3.6 Supervised extension from 58 documents; 417 are drawn from sentences

Even though we have justified Equation 5 with reaWithout quotation marks. The development set and
sonable independence assumptions, our four mol§s key were used to guide us while designing the
els may not be combined optimally for our pronourprobability model, and to fine-tune EM and smooth-
resolution task, as the models are only approximdPd parameters. We also use the development key as
tions of the true distributions they are intended tdabeled training data for our supervised extension.
represent. Following the approach in (Och and Ney, The test set consists of 890,000 pronouns drawn
2002), we can view the right-hand-side of Equafrom 50,000 documents. The test key consists of
tion 5 as a special case of: 1209 labeled pronouns drawn from 118 documents;
892 are drawn from sentences without quotation
A1 log Pr(pl|l) 4+ A2 log Pr(k|l)+ marks. All of the results reported in Section 5 are
Az log Pr(l) + A4 log Pr(j) (8) determined using the test key.
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4.2 Implementation Details learning of antecedents to occur. To that end, our

To get the context values and implement the syntaé—rSt set of experiments compare the pronoun resolu-
tic filters, we parsed our corpora with Minipar (Lin,t'on accuracy of our EM-based solutions to that of a

1994). Experiments on the development set ingRrevious-noun baseline on our test key. The results
cated that EM generally began to overfit after 2 it2"® shown in Table 2. The cqumps split the results
erations, so we stop EM after the second iteratioff)l0 three cases: all pronouns with no exceptions;

using the models from the second M-step for tesf’-‘” ca§e's where the pronoun was found in a sentence
ing. During testing, ties in likelihood are broken bycontalnlng no quotation marks (and therefore resem-

taking the candidate closest to the pronoun. bling the training data provided to EM); and finally

The EM-produced models need to be smootheé‘,” pronouns e>_<c|uded by the second case. We com-
as there will be unseen words and unobseryed)  Pare the following methods:
or (k,1) pairs in the test set. This is because prob-
lematic cases are omitted from the training set, while
all pronouns are included in the key. We han-
dle out-of-vocabulary events by replacing words or
context-values that occur only once during training
with a specialinknown symbol. Out-of-vocabulary
events encountered during testing are also treated
as unknown. We handle unseen pairs with additive
smoothing. Instead of adding 1 as in Section 3.5, we4'

1. Previous noun Pick the candidate from the fil-
tered list with the lowesi value.

2. EM, no initializer : The EM algorithm trained
on the test set, starting from a uniform E-step.

3. Initializer, no EM : A model that ranks candi-

dates using only a pronoun model built from

unambiguous cases (Section 3.5).

EM w/ initializer : As in (2), but using the ini-

adds, = 0.00001 for (k1) pairs, andb,, = 0.001 tializer in (3) for the first E-step.

for (p, 1) pairs. Thesé values were determined ex- - Maxent extension The models produced by

perimentally with the development key. (4) are used as features in a log-linear model
trained on the development key (Section 3.6).

4.3 Evaluation scheme 6. Upper bound: The percentage of cases with a

We evaluate our work in the context of a fully auto- ~ correct answer in the filtered candidate list.

matic system, as was done in (Mitkov et al., 20OZ)For a reference point, picking the previous noun be-

Our evaluation criteria is similar to theiesolution . . . .
tiquette We define accuracy as the proportion O{ore applying any of our candidate filters receives an
€lig accuracy score of 0.281 on the “All" task.

pronouns correctly resolved, either to any coreferent Looking at the “All” column in Table 2, we see
noun phrase in the candidate list, or to the pIeona]s:_- ’

. ) . M can indeed learn in this situation. Starting from
tic category, which precludes resolution, SyStemﬁniform parameters it climbs from a 40% baseline
that handle and state performance for all pronouns 0 o
. ) 0 a 60% accurate model. However, the initializer
in unrestricted text report much lower accuracy than : . )
. . can do slightly better with precise but sparse gen-
most gpproachgs in the literature. F.urthermore, Ader/mumber information alone. As we hoped, com-
toma_ncally parsing gnd_ pre-processing texts Caus%lsping the initializer and EM results in a statistically
consistent degradation in performance, regardless of .- . . .
. . significant improvement over EM with a uniform
the accuracy of the pronoun resolution algorithm. Tg,” . . o I
. Starting point, but it is not significantly better than

have a point of comparison to other fuIIy-automatn%he initializer alone. The advantage of the EM pro-

approaches, note the resolution etiquette score re-_ . hat | itiol | hich
ported in (Mitkov et al., 2002) is 0.582. cess is that it produces multiple models, which can

be re-weighted with maximum entropy to reach our

5 Results highest accuracy, roughly 67%. Theweights that
achieve this score are shown in Table 3.
5.1 Validation of unsupervised method Maximum entropy leaves the pronoun model

The key concern of our work is whether enougP!(p|!) nearly untouched and drastically reduces the

useful information is present in the pronoun’s cat- ISignificance is determined throughout Section 5 using Mc-

egory, context, and candidate list for unsupervisedemar’s test with a significance level= 0.05.
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Table 2: Accuracy for all cases, all excluding sen-  Table 3: Weights set by maximum entropy.
tences with quotes, and only sentences with quotes. Model | Pr(p[l) | Prk[) | Prl) | Pr(j)

Lambda| 0.931 | 0.056 | 0.070| 0.167

| Method | Al | No“” | Only*" |

1 Previous noun 0.397| 0.399| 0.391

2 EM, noinitializer | 0.610| 0.632| 0.549 Table 4: Comparison to SVM.

3 Initializer, no EM | 0.628 | 0.642| 0.587 ’ Method ‘ Accuracy\

4 EMw/ initializer | 0.632| 0.663| 0.546 Previolus noun 0.398

5 Maxent extension 0.669| 0.696| 0.593 EM W/ initializer 0.664

6 Upper bound 0.838| 0.868| 0.754 Maxent extension 0708
SVM 0.714

influence of all other models (Table 3). This, com-5'2 Comparison to supervised system

bined with the success of the initializer alone, lead¥/e put our results in context by comparing our
us to believe that a strong notion of gender/numbénethods to a recent supervised system. The compar-
is very important in this task. Therefore, we im-iSon system is an SVM that uses 52 linguistically-
plemented EM with several models that used onljnotivated features, including probabilistic gen-
pronoun category, but none were able to surpass tHer/number information obtained through web
initializer in accuracy on the test key. One factogueries (Bergsma, 2005a). The SVM is trained
that might help explain the initializer's success igvith 1398 separate labeled pronouns, the same train-
that despite using only a P¢p|/) model, the ini- ing set used in (Bergsma, 2005a). This data is
tializer also has an implicit factor resembling g#pr also drawn from the news domain. Note the su-
model: when two candidates agree with the categoBgrvised system was not constructed to handle all
of the pronoun, add-1 smoothing ensures the mofonoun cases, so non-anaphoric pronouns were re-
frequent candidate receives a higher probability. moved from the test key and from the candidate lists
in the test key to ensure a fair comparison. As ex-
As was stated in Section 3.4, sentences with qu@ECtEd, this removal of difficult cases increases the
tations were excluded from the learning process b&erformance of our system on the test key (Table 4).
cause the presence of a correct antecedent in the cAdso note there is no significant difference in per-
didate list was less frequent in these cases. This figfrmance between our supervised extension and the
validated by the low upper bound of 0.754 in theSVM. The completely unsupervised EM system per-
0n|y_qu0te portion of the test key We can see thé@rms worse, but with Only a 7% relative reduction
all methods except for the previous noun heurigh performace compared to the SVM; the previous
tic score noticeably better when ignoring those serioun heuristic shows a 44% reduction.
tences that contain quotation marks. In particula
the difference between our three unsupervised sol
tions ((2), (3) and (4)) are more pronounced. Muclif one accounts for the upper bound in Table 2, our
of the performance improvements that corresponaiethods do very well on those cases where a cor-
to our model refinements are masked in the overalect answer actually appears in the candidate list: the
task because adding the initializer to EM does ndiest EM solution scores 0.754, and the supervised
improve EM’s performance on quotes at all. Develextension scores 0.800. A variety of factors resultin
oping a method to construct more robust candidatbe 196 candidate lists that do not contain a true an-
lists for quotations could improve our performanceecedent. 21% of these errors arise from our limited
on these cases, and greatly increase the percentagadidate window (Section 3.1). Incorrect pleonas-
of pronouns we are training on for a given corpus. tic detection accounts for another 31% while non-

r
5:3 Analysis of upper bound
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noun referential pronouns cause 25% (Section 3.3). Haegeman. 1994Introduction to Government & Binding
Linguistic filters (Section 3_4) account for most of theory: Second EditianBasil Blackwell, Cambridge, UK.
the remainder. Animprovementin any of these conBonald Hindle and Mats Rooth. 1993. Structural ambiguity
ponents would result in not only higher final scores, :1128 lexical relationsComputational Linguistigsl9(1):103—

but cleaner EM training data.
Harold Jeffreys, 1961Theory of Probabilitychapter 3.23. Ox-
6 Conclusion ford: Clarendon Press, 3rd edition.

h d dth ised | . Andrew Kehler. 1997. Probabilistic coreference in informa-
We have demonstrated that unsupervised learning iSiion extraction. IProceedings of the Second Conference on

possible for pronoun resolution. We achieve accu- Empirical Methods in Natural Language Processipages
racy of 63% on an all-pronoun task, or 75% when 163-173.
a true antecedent is available to EM. There is nowhristopher Kennedy and Branimir Boguraev. 1996. Anaphora

motivation to develop cleaner candidate lists and for everyone: Pronominal anaphora resolution without a
parser. InProceedings of the 16th Conference on Compu-

stronger probability models, with the hope of sur- tational Linguistics pages 113-118.

in rvi hni . For example, incqr:
pass_ g supervised tec ques. or example, Incq halom Lappin and Herbert J. Leass. 1994. An algorithm for
porating antecedent context, either at the sentencepronominal anaphora resolutionComputational Linguis-

or document level, may boost performance. Further- tics, 20(4):535-561.

maore, _the lexicalized models learned in OL_” SysteNbekang Lin. 1994. Principar - an efficient, broad-coverage,
especially the pronoun model, are potentially pow- principle-based parser. IRroceedings of COLING-94
erful features for any supervised pronoun resolution Pages 42-48, Kyoto, Japan.

system. Robert Malouf. 2002. A comparison of algorithms for max-
imum entropy parameter estimation. Proceedings of the
Sixth Conference on Natural Language Learning (CoNLL-
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Abstract

We describe a data-driven approach to
building interpretable discourse structures
for appointment scheduling dialogues. We
represent discourse structures as headed
trees and model them with probabilis-
tic head-driven parsing techniques. We
show that dialogue-based features regard-
ing turn-taking and domain specific goals
have a large positive impact on perfor-
mance. Our best model achieves an f-
score of 43.2% for labelled discourse rela-
tions and 67.9% for unlabelled ones, sig-
nificantly beating a right-branching base-
line that uses the most frequent relations.

1 Introduction

Achieving a model of discourse interpretation that is
both robust and deep is a major challenge. Consider
the dialogue in Figure 1 (the sentence numbers are
from the Redwoods treebank (Oepen et al., 2002)).
A robust and deep interpretation of it should resolve
the anaphoric temporal description in utterance 154
to the twenty sixth of July in the afternoon. It should
identify that time and before 3pm on the twenty-
seventh as potential times to meet, while ruling out
July thirtieth to August third. It should gracefully
handle incomplete or ungrammatical utterances like
152 and recognise that utterances 151 and 152 have
no overall effect on the time and place to meet.
According to Hobbs et al. (1993) and Asher and
Lascarides (2003), a discourse structure consisting
of hierarchical rhetorical connections between utter-
ances is vital for providing a unified model of a wide
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149 PAM: maybe we can get together, and, discuss, the

planning, say, two hours, in the next, couple weeks,
150
151
152

153

PAM: let me know what your schedule is like.
CAE:
CAE:

CAE:

okay, let me see.

twenty,

actually, July twenty sixth and twenty seventh looks
good,

154
155
156
157

CAE: the twenty sixth afternoon,

CAE: or the twenty seventh, before three p.m., geez.
CAE: I am out of town the thirtieth through the,

CAE: the third, I am in San Francisco.

Figure 1: A dialogue extract from Redwoods.

range of anaphoric and intentional discourse phe-
nomena, contributing to the interpretations of pro-
nouns, temporal expressions, presuppositions and
ellipses (among others), as well as influencing com-
municative goals. This suggests that a robust model
of discourse structure could complement current ro-
bust interpretation systems, which tend to focus on
only one aspect of the semantically ambiguous ma-
terial, such as pronouns (e.g., Striibe and Miiller
(2003)), definite descriptions (e.g., Vieira and Poe-
sio (2000)), or temporal expressions (e.g., Wiebe
et al. (1998)). This specialization makes it hard to
assess how they would perform in the context of a
more comprehensive set of interpretation tasks.

To date, most methods for constructing discourse
structures are not robust. They typically rely on
grammatical input and use symbolic methods which
inevitably lack coverage. One exception is Marcu’s
work (Marcu, 1997, 1999) (see also Soricut and
Marcu (2003) for constructing discourse structures
for individual sentences). Marcu (1999) uses a
decision-tree learner and shallow syntactic features

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 96—103, Ann Arbor, June 200§2005 Association for Computational Linguistics



to create classifiers for discourse segmentation and
for identifying rhetorical relations. Together, these
amount to a model of discourse parsing. However,
the results are trees of Rhetorical Structure Theory
(RST) (Mann and Thompson, 1986), and the clas-
sifiers rely on well-formedness constraints on RST
trees which are too restrictive (Moore and Pollack,
1992). Furthermore, RST does not offer an account
of how compositional semantics gets augmented,
nor does it model anaphora. It is also designed for
monologue rather than dialogue, so it does not of-
fer a precise semantics of questions or non-sentential
utterances which convey propositional content (e.g.,
154 and 155 in Figure 1). Another main approach to
robust dialogue processing has been statistical mod-
els for identifying dialogue acts (e.g., Stolcke et al.
(2000)). However, dialogue acts are properties of
utterances rather than hierarchically arranged rela-
tions between them, so they do not provide a basis
for resolving semantic underspecification generated
by the grammar (Asher and Lascarides, 2003).

Here, we present the first probabilistic approach
to parsing the discourse structure of dialogue.
We use dialogues from Redwoods’ appointment
scheduling domain and adapt head-driven genera-
tive parsing strategies from sentential parsing (e.g.,
Collins (2003)) for discourse parsing. The discourse
structures we build conform to Segmented Dis-
course Representation Theory (SDRT) (Asher and
Lascarides, 2003). SDRT provides a precise dynamic
semantic interpretation for its discourse structures
which augments the conventional semantic repre-
sentations that are built by most grammars. We thus
view the task of learning a model of SDRT-style dis-
course structures as one step towards achieving the
goal of robust and precise semantic interpretations.

We describe SDRT in the context of our domain
in Section 2. Section 3 discusses how we encode
and annotate discourse structures as headed trees
for our domain. Section 4 provides background on
probabilistic head-driven parsing models, and Sec-
tion 5 describes how we adapt the approach for dis-
course and gives four models for discourse parsing.
We report results in Section 6, which show the im-
portance of dialogue-based features on performance.
Our best model performs far better than a baseline
that uses the most frequent rhetorical relations and
right-branching segmentation.
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ho :  Request-Elab(149, 150) A
Plan-Elab(150, hy)

hi :  Elaboration(153, ha)A
Continuation(153, 156 )\
Continuation(156, 157)

ho = Alternation(154, 155)

Figure 2: The SDRS for the dialogue in Figure 1.

2 Segmented Discourse Representation
Theory

SDRT extends prior work in dynamic semantics (e.g.,
van Eijk and Kamp (1997)) via logical forms that
feature rhetorical relations. The logical forms con-
sist of speech act discourse referents which la-
bel content (either of a clause or of text seg-
ments). Rhetorical relations such as Explanation
relate these referents. The resulting structures are
called segmented discourse representation struc-
tures or SDRSs. An SDRS for the dialogue in Fig-
ure 1 is given in Figure 2; we have used the numbers
of the elementary utterances from Redwoods as the
speech act discourse referents but have omitted their
labelled logical forms. Note that utterances 151 and
152, which do not contribute to the truth conditions
of the dialogue, are absent — we return to this shortly.
There are several things to note about this SDRS.
First, SDRT’s dynamic semantics of rhetorical rela-
tions imposes constraints on the contents of its argu-
ments. For example, Plan-Elab(150, h1) (standing
for Plan-Elaboration) means that h1 provides infor-
mation from which the speaker of 150 can elaborate
a plan to achieve their communicative goal (to meet
for two hours in the next couple of weeks). The
relation Plan-Elab contrasts with Plan-Correction,
which would relate the utterances in dialogue (1):

A: Can we meet at the weekend?

(1 a.
b.  B: I'm afraid I'm busy then.

Plan-Correction holds when the content of the sec-
ond utterance in the relation indicates that its com-
municative goals conflict with those of the first one.
In this case, A indicates he wants to meet next week-
end, and B indicates that he does not (note that then
resolves to the weekend). Utterances (1ab) would
also be related with IQAP (Indirect Question Answer



Pair): this means that (1b) provides sufficient infor-
mation for the questioner A to infer a direct answer
to his question (Asher and Lascarides, 2003).

The relation Elaboration(153,hs) in Figure 2
means that the segment 154 to 155 resolves to a
proposition which elaborates part of the content of
the proposition 153. Therefore the twenty sixth in
154 resolves to the twenty sixth of July—any other
interpretation contradicts the truth conditional con-
sequences of Elaboration. Alternation(154,155)
has truth conditions similar to (dynamic) disjunc-
tion. Continuation(156,157) means that 156 and
157 have a common topic (here, this amounts to a
proposition about when CAE is unavailable to meet).

The second thing to note about Figure 2 is how
one rhetorical relation can outscope another: this
creates a hierarchical segmentation of the discourse.
For example, the second argument to the Elabo-
ration relation is the label hg of the Alternation-
segment relating 154 to 155. Due to the semantics
of Elaboration and Alternation, this ensures that the
dialogue entails that one of 154 or 155 is true, but it
does not entail 154, nor 155.

Finally, observe that SDRT allows for a situ-
ation where an utterance connects to more than
one subsequent utterance, as shown here with
Elaboration(153, h2) A Continuation(153,156). In
fact, SDRT also allows two utterances to be related
by multiple relations (see (1)) and it allows an utter-
ance to rhetorically connect to multiple utterances in
the context. These three features of SDRT capture the
fact that an utterance can make more than one illo-
cutionary contribution to the discourse. An example
of the latter kind of structure is given in (2):

2) a.
b.  A: How about one pm?
c. B: Would one thirty be OK with you?

A: Shall we meet on Wednesday?

The SDRS for this dialogue would feature the re-
lations Plan-Correction(2b,2c), IQAP(2b,2c) and
Q-Elab(2a,2c¢). Q-Elab, or Question-Elaboration,
always takes a question as its second argument;
any answers to the question must elaborate a plan
to achieve the communicative goal underlying the
first argument to the relation. From a logical per-
spective, recognising Plan-Correction(2b,2c) and
Q-Elab(2a, 2c) are co-dependent.
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Segment/hg

~
ind Request-Elab
149 imp Plan-Elab
[ e
150 Segment/h1
Pass Continuation
pause irr ind  Elaboration/ha ind Continuation
[ I I 7 N\ I
151 152 153 irid Alterrlzation 156 irid
154 inld 157
155

Figure 3: The discourse structure for the dialogue
from Figure 1 in tree form.

3 Augmenting the Redwoods treebank
with discourse structures

Our starting point is to create training material for
probabilistic discourse parsers. For this, we have
augmented dialogues from the Redwoods Treebank
(Oepen et al., 2002) with their analyses within a
fragment of SDRT (Baldridge and Lascarides, 2005).
This is a very different effort from that being pur-
sued for the Penn Discourse Treebank (Miltsakaki
et al.,, 2004), which uses discourse connectives
rather than abstract rhetorical relations like those in
SDRT in order to provide theory neutral annotations.
Our goal is instead to leverage the power of the se-
mantics provided by SDRT’s relations, and in partic-
ular to do so for dialogue as opposed to monologue.

Because the SDRS-representation scheme, as
shown in Figure 2, uses graph structures that do not
conform to tree constraints, it cannot be combined
directly with statistical techniques from sentential
parsing. We have therefore designed a headed tree
encoding of SDRSs, which can be straightforwardly
modeled with standard parsing techniques and from
which SDRSs can be recovered.

For instance, the tree for the dialogue in Figure 1
is given in Figure 3. The SDRS in Figure 2 is recov-
ered automatically from it. In this tree, utterances
are leaves which are immediately dominated by their
tag, indicating either the sentence mood (indicative,
interrogative or imperative) or that it is irrelevant, a
pause or a pleasantry (e.g., hello), annotated as pls.
Each non-terminal node has a unique head daugh-
ter: this is either a Segment node, Pass node, or a



leaf utterance tagged with its sentence mood. Non-
terminal nodes may in addition have any number of
daughter irr, pause and pls nodes, and an additional
daughter labelled with a rhetorical relation.

The notion of headedness has no status in the se-
mantics of SDRSs themselves. The heads of these
discourse trees are not like verbal heads with sub-
categorization requirements in syntax; here, they are
nothing more than the left argument of a rhetor-
ical relation, like 154 in Alternation(154,155).
Nonetheless, defining one of the arguments of
rhetorical relations as a head serves two main pur-
poses. First, it enables a fully deterministic algo-
rithm for recovering SDRSs from these trees. Sec-
ond, it is also crucial for creating probabilistic head-
driven parsing models for discourse structure.

Segment and Pass are non-rhetorical node types.
The former explicitly groups multiple utterances.
The latter allows its head daughter to enter into re-
lations with segments higher in the tree. This allows
us to represent situations where an utterance attaches
to more than one subsequent utterance, such as 153
in dialogue (1). Annotators manually annotate the
rhetorical relation, Segment and Pass nodes and de-
termine their daughters. They also tag the individual
utterances with one of the three sentence moods or
irr, pause or pls. The labels for segments (e.g., hg
and h; in Figure 3) are added automatically. Non-
veridical relations such as Alternation also introduce
segment labels on their parents; e.g., ho in Figure 3.

The SDRS is automatically recovered from this
tree representation as follows. First, each rela-
tion node generates a rhetorical connection in the
SDRS: its first argument is the discourse referent
of its parent’s head daughter, and the second is the
discourse referent of the node itself (which unless
stated otherwise is its head daughter’s discourse ref-
erent). For example, the structure in Figure 3 yields
Request-Elab(149, 150), Alternation(154,155) and
Elaboration(153, hy). The labels for the relations
in the SDRS—which determine segmentation—must
also be recovered. This is easily done: any node
which has a segment label introduces an outscopes
relation between that and the discourse referents
of the node’s daughters. This produces, for ex-
ample, outscopes(ho, 149), outscopes(hi, 153) and
outscopes(hg, 154). 1t is straightforward to deter-
mine the labels of all the rhetorical relations from
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these conditions. Utterances such as 151 and 152,
which are attached with pause and irr to indicate that
they have no overall truth conditional effect on the
dialogue, are ignored when constructing the SDRS,
S0 SDRT does not assign these terms any semantics.
Overall, this algorithm generates the SDRS in Fig-
ure 2 from the tree in Figure 3.

Thus far, 70 dialogues have been annotated and
reviewed to create our gold-standard corpus. On av-
erage, these dialogues have 237.5 words, 31.5 ut-
terances, and 8.9 speaker turns. In all, there are 30
different rhetorical relations in the inventory for this
annotation task, and 6 types of tags for the utterances
themselves: ind, int, imp, pause, irr and pls.

Finally, we annotated all 6,000 utterances in the
Verbmobil portion of Redwoods with the following:
whether the time mentioned (if there is one) is a
good time to meet (e.g., I'm free then or Shall we
meet at 2pm?) or a bad time to meet (e.g., I'm busy
then or Let’s avoid meeting at the weekend). These
are used as features in our model of discourse struc-
ture (see Section 5). We use these so as to minimise
using directly detailed features from the utterances
themselves (e.g. the fact that the utterance contains
the word free or busy, or that it contains a negation),
which would lead to sparse data problems given the
size of our training corpus. We ultimately aim to
learn good-time and bad-time from sentence-level
features extracted from the 6,000 Redwoods analy-
ses, but we leave this to future work.

4 Generative parsing models

There is a significant body of work on probabilistic
parsing, especially that dealing with the English sen-
tences found in the annotated Penn Treebank. One
of the most important developments in this work is
that of Collins (2003). Collins created several lex-
icalised head-driven generative parsing models that
incorporate varying levels of structural information,
such as distance features, the complement/adjunct
distinction, subcategorization and gaps. These mod-
els are attractive for constructing our discourse trees,
which contain heads that establish non-local depen-
dencies in a manner similar to that in syntactic pars-
ing. Also, the co-dependent tasks of determining
segmentation and choosing the rhetorical connec-
tions are both heavily influenced by the content of



the utterances/segments which are being considered,
and lexicalisation allows the model to probabilisti-
cally relate such utterances/segments very directly.

Probabilistic Context Free Grammars (PCFGs)
determine the conditional probability of a right-
hand side of a rule given the left-hand side,
P(RHS|LHS). Collins instead decomposes the
calculation of such probabilities by first generating a
head and then generating its left and right modifiers
independently. In a supervised setting, doing this
gathers a much larger set of rules from a set of la-
belled data than a standard PCFG, which learns only
rules that are directly observed.!

The decomposition of a rule begins by noting that
rules in a lexicalised PCFG have the form:

P(h) — Lp(lp) ... Li(L)H(h)R1(11) . . . Ry (1)

where h is the head word, H(h) is the label of the
head constituent, P(h) is its parent, and L;(l;) and
R;(r;) are the n left and m right modifiers, respec-
tively. It is also necessary to include STOP sym-
bols L,4+1 and R,,+1 on either side to allow the
Markov process to properly model the sequences of
modifiers. By assuming these modifiers are gener-
ated independently of each other but are dependent
on the head and its parent, the probability of such
expansions can be calculated as follows (where P,
‘P, and P, are the probabilities for the head, left-
modifiers and right-modifiers respectively):

PLn(l) ... Ly () H(R)Ry(r1) . .. R (rm) | P(R)) =

Pr(H|P(h))

X H Pu(Li(l;)|P(h), H)
i=1l...n+1

x [ Pr(Ri(ri)|P(h),H)
i=1..m1

This provides the simplest of models. More con-
ditioning information can of course be added from
any structure which has already been generated. For
example, Collins’ model 1 adds a distance feature
that indicates whether the head and modifier it is
generating are adjacent and whether a verb is in the
string between the head and the modifier.

'A similar effect can be achieved by converting n-ary trees
to binary form.
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5 Discourse parsing models

In Section 3, we outlined how SDRSs can be repre-
sented as headed trees. This allows us to create pars-
ing models for discourse that are directly inspired by
those described in the previous section. These mod-
els are well suited for our discourse parsing task.
They are lexicalised, so there is a clear place in the
discourse model for incorporating features from ut-
terances: simply replace lexical heads with whole
utterances, and exploit features from those utter-
ances in discourse parsing in the same manner as
lexical features are used in sentential parsing.

Discourse trees contain a much wider variety of
kinds of information than syntactic trees. The leaves
of these trees are sentences with full syntactic and
semantic analyses, rather than words. Furthermore,
each dialogue has two speakers, and speaker style
can change dramatically from dialogue to dialogue.
Nonetheless, the task is also more constrained in
that there are fewer overall constituent labels, there
are only a few labels which can act as heads, and
trees are essentially binary branching apart from
constituents containing ignorable utterances.

The basic features we use are very similar to those
for the syntactic parsing model given in the previous
section. The feature P is the parent label that is the
starting point for generating the head and its modi-
fiers. H is the label of the head constituent. The tag
t is also used, except that rather than being a part-of-
speech, it is either a sentence mood label (ind, int, or
imp) or an ignorable label (irr, pls, or pause). The
word feature w in our model is the first discourse cue
phrase present in the utterance.? In the absence of a
cue phrase, w is the empty string. The distance fea-
ture A is true if the modifier being generated is adja-
cent to the head and false otherwise. To incorporate
a larger context into the conditioning information,
we also utilize a feature HC R, which encodes the
child relation of a node’s head.

We have two features that are particular to dia-
logue. The first ST, indicates whether the head ut-
terance of a segment starts a turn or not. The other,
TC, encodes the number of turn changes within a
segment with one of the values 0, 1, or > 2.

Finally, we use the good/bad-time annotations
discussed in Section 3 for a feature 7'M indicating

2We obtained our list of cue phrases from Oates (2001).



Head features Modifier features
P|t|w|HCR|ST|TC|TM || P |t |w | H|A|HCR|ST|TC|TM
Modell | v | vV | V VIV I IVvIiv |V
Model2 | v | vV | V v v VIV IVvIiVvI|Y v v
Model3 | v | vV | V v v | Vv VIV IVvIiv |V v v |V
Model4 | v | V | V v VAR VAR VAR | IRV VA IRV VAN V4 v VI vV

Figure 4: The features active for determining the head and modifier probabilities in each of the four models.

one of the following values for the head utterance of
a segment: good_time, bad_time, neither, or both.

With these features, we create the four models
given in Figure 4. As example feature values, con-
sider the Segment node labelled h; in Figure 3. Here,
the features have as values: P=Segment, H=Pass,
t=ind (the tag of utterance 153), w=Actually (see
153 in Figure 1), HC R=Elaboration, ST=false,
TC=0, and T M=good_time.

As is standard, linear interpolation with back-off
levels of decreasing specificity is used for smooth-
ing. Weights for the levels are determined as in
Collins (2003).

6 Results

For our experiments, we use a standard chart parsing
algorithm with beam search that allows a maximum
of 500 edges per cell. The figure of merit for the
cut-off combines the probability of an edge with the
prior probability of its label, head and head tag. Hy-
pothesized trees that do not conform to some simple
discourse tree constraints are also pruned.>

The parser is given the elementary discourse units
as defined in the corpus. These units correspond di-
rectly to the utterances already defined in Redwoods
and we can thus easily access their complete syntac-
tic analyses directly from the treebank.

The parser is also given the correct utterance
moods to start with. This is akin to getting the cor-
rect part-of-speech tags in syntactic parsing. We
do this since we are using the parser for semi-
automated annotation. Tagging moods for a new
discourse is a very quick and reliable task for the
human. With them the parser can produce the more
complex hierarchical structure more accurately than
if it had to guess them — with the potential to dra-
matically reduce the time to annotate the discourse

3E.g., nodes can have at most one child with a relation label.
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structures of further dialogues. Later, we will create
a sentence mood tagger that presents an n-best list
for the parser to start with, from the tag set ind, int,
imp, iry, pause, and pls.

Models are evaluated by using a leave-one-out
strategy, in which each dialogue is parsed after train-
ing on all the others. We measure labelled and un-
labelled performance with both the standard PAR-
SEVAL metric for comparing spans in trees and a
relation-based metric that compares the SDRS’s pro-
duced by the trees. The latter gives a more direct in-
dication of the accuracy of the actual discourse log-
ical form, but we include the former to show perfor-
mance using a more standard measure. Scores are
globally determined rather than averaged over all in-
dividual dialogues.

For the relations metric, the relations from the
derived discourse tree for the test dialogue are ex-
tracted; then, the overlap with relations from the
corresponding gold standard tree is measured. For
labelled performance, the model is awarded a point
for a span or relation which has the correct discourse
relation label and both arguments are correct. For
unlabelled, only the arguments need to be correct.*

Figure 5 provides the f-scores® of the various
models and compares them against those of a base-
line model and annotators. All differences between
models are significant, using a pair-wise t-test at
99.5% confidence, except that between the baseline
and Model 2 for unlabelled relations.

The baseline model is based on the most frequent
way of attaching the current utterance to its dia-

“This is a much stricter measure than one which measures
relations between a head and its dependents in syntax because
it requires two segments rather than two heads to be related cor-
rectly. For example, Model 4’s labelled and unlabelled relation
f-scores using segments are 43.2% and 67.9%, respectively; on
a head-to-head basis, they rise to 50.4% and 81.8%.

. 2 IS g
SThe f-score is calculated as 2Xprecisionxrecall
precision+recall



PARSEVAL Relations
Model Lab. Unlab. | Lab. Unlab.
Baseline 14.7 338 | 74 53.3
Model 1 22.7 42.2 | 23.1 47.0
Model 2 30.1 51.1 | 31.0 54.3
Model 3 394 62.8 | 394 64.4
Model 4 46.3 69.2 | 43.2 67.9
Inter-annotator | 53.7 76.5 | 50.3 73.0
Annotator-gold | 75.9 88.0 | 75.3 84.0

Figure 5: Model performance.

logue context. The baseline is informed by the gold-
standard utterance moods. For this corpus, this re-
sults in a baseline which is a right-branching struc-
ture, where the relation Plan-Elaboration is used if
the utterance is indicative, Question-Elaboration if
it is interrogative, and Request-Elaboration if it is
imperative. The baseline also appropriately handles
ignorable utterances (i.e, those with the mood labels
irrelevant, pause, or pleasantry).

The baseline performs poorly on labelled rela-
tions (7.4%), but is more competitive on unlabelled
ones (53.3%). The main reason for this is that
it takes no segmentation risks. It simply relates
every non-ignorable utterance to the previous one,
which is indeed a typical configuration with com-
mon content-level relations like Continuation. The
generative models take risks that allow them to cor-
rectly identify more complex segments — at the cost
of missing some of these easier cases.

Considering instead the PARSEVAL scores for the
baseline, the labelled performance is much higher
(14.7%) and the unlabelled is much lower (33.8%)
than for relations. The difference in labelled per-
formance is due to the fact that the intentional-level
relations used in the baseline often have arguments
that are multi-utterance segments in the gold stan-
dard. These are penalized in the relations compar-
ison, but the spans used in PARSEVAL are blind to
them. On the other hand, the unlabelled score drops
considerably — this is due to poor performance on
dialogues whose gold standard analyses do not have
a primarily right-branching structure.

Model 1 performs most poorly of all the models.
It is significantly better than the baseline on labelled
relations, but significantly worse on unlabelled rela-
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tions. All its features are derived from the structure
of the trees, so it gets no clues from speaker turns or
the semantic content of utterances.

Model 2 brings turns and larger context via the
ST and HC'R features, respectively. This improves
segmentation over Model 1 considerably, so that the
model matches the baseline on unlabelled relations
and beats it significantly on labelled relations.

The inclusion of the T'C' feature in Model 3 brings
large (and significant) improvements over Model 2.
Essentially, this feature has the effect of penalizing
hypothesized content-level segments that span sev-
eral turns. This leads to better overall segmentation.

Finally, Model 4 incorporates the domain-based
T M feature that summarizes some of the semantic
content of utterances. This extra information im-
proves the determination of labelled relations. For
example, it is especially useful in distinguishing a
Plan-Correction from a Plan-Elaboration.

The overall trend of differences between PARSE-
VAL and relations scoring show that PARSEVAL is
tougher on overall segmentation and relations scor-
ing is tougher on whether a model got the right ar-
guments for each labelled relation. It is the latter
that ultimately matters for the discourse structures
produced by the parser to be useful; nonetheless, the
PARSEVAL scores do show that each model progres-
sively improves on capturing the trees themselves,
and that even Model 1 — as a syntactic model — is
far superior to the baseline for capturing the overall
form of the trees.

We also compare our best model against two up-
perbounds: (1) inter-annotator agreement on ten
dialogues that were annotated independently and
(2) the best annotator against the gold standard
agreed upon after the independent annotation phase.
For the first, the labelled/unlabelled relations f-
scores are 50.3%/73.0% and for the latter, they are
75.3%/84.0%—this is similar to the performance on
other discourse annotation projects, e.g., Carlson
et al. (2001). On the same ten dialogues, Model 4
achieves 42.3%/64.9%.

It is hard to compare these models with Marcu’s
(1999) rhetorical parsing model. Unlike Marcu, we
did not use a variety of corpora, have a smaller train-
ing corpus, are analysing dialogues as opposed to
monologues, have a larger class of rhetorical re-
lations, and obtain the elementary discourse units



from the Redwoods annotations rather than estimat-
ing them. Even so, it is interesting that the scores
reported in Marcu (1999) for labelled and unlabelled
relations are similar to our scores for Model 4.

7 Conclusion

In this paper, we have shown how the complex task
of creating structures for SDRT can be adapted to a
standard probabilistic parsing task. This is achieved
via a headed tree representation from which SDRSs
can be recovered. This enables us to directly ap-
ply well-known probabilistic parsing algorithms and
use features inspired by them. Our results show
that using dialogue-based features are a major factor
in improving the performance of the models, both
in terms of determining segmentation appropriately
and choosing the right relations to connect them.

There is clearly a great deal of room for improve-
ment, even with our best model. Even so, that
model performed sufficiently well for use in semi-
automated annotation: when correcting the model’s
output on ten dialogues, one annotator took 30 sec-
onds per utterance, compared to 39 for another an-
notator working on the same dialogues with no aid.

In future work, we intend to exploit an exist-
ing implementation of SDRT’s semantics (Schlangen
and Lascarides, 2002), which adopts theorem prov-
ing to infer resolutions of temporal anaphora and
communicative goals from SDRSs for scheduling di-
alogues. This additional semantic content can in
turn be added (semi-automatically) to a training cor-
pus. This will provide further features for learn-
ing discourse structure and opportunities for learn-
ing anaphora and goal information directly.
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Abstract

Natural language interfaces designed for
situationally embedded domains (e.g.
cars, videogames) must incorporate
knowledge about the users’ context to
address the many ambiguities of situated
language use. We introduce a model of
situated language acquisition that operates
in two phases. First, intentional context is
represented and inferred from user actions
using probabilistic context free grammars.
Then, utterances are mapped onto this
representation in a noisy channel
framework. The acquisition model is
trained on unconstrained speech collected
from subjects playing an interactive game,
and tested on an understanding task.

1 Introduction

As information technologies move off of our
desktops and into the world, the need for Natural
Language Processing (NLP) systems that exploit
information about the environment becomes
increasingly apparent. =~ Whether in physical
environments (for cars and cell phones) or in
virtual ones (for videogames and training
simulators), applications are beginning to demand
language  interfaces that can  understand
unconstrained speech about constrained domains.
Unlike most text-based NLP research, which
focuses on open-domain problems, work we refer
to as situated NLP focuses on improving language
processing by  exploiting  domain-specific
information about the non-linguistic situational
context of users’ interactions. For applications
where agents interact in shared environments, such
information  is  critical = for  successful
communication.
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Previous work in situated NLP has focused on
methods for grounding the meaning of words in
physical and virtual environments. The motivation
for this work comes from the inability of text-
based NLP technologies to offer viable models of
semantics for human computer interaction in
shared environments. For example, imagine a
situation in which a human user is interacting with
a robotic arm around a table of different colored
objects. If the human were to issue the command
“give me the blue one,” both the manually-coded
(Lenat, 1995; Fellbaum, 1998) and statistical
models (Manning and Schutze, 2000) of meaning
employed in text-based NLP are inadequate; for, in
both models, the meaning of a word is based only
on its relations to other words. However, in order
for the robot to successfully “give me the blue
one,” it must be able to link the meaning of the
words in the utterance to its perception of the
environment (Roy, Hsiao, & Mavridis, 2004).
Thus, recent work on grounding meaning has
focused on how words and utterances map onto
physical descriptions of the environment: either in
the form of perceptual representations (Roy, in
press, Siskind, 2001, Regier, 1996) or control
schemas (Bailey, 1997 Narayanan, 1999).'

While such physical descriptions are useful
representations for some classes of words (e.g.,
colors, shapes, physical movements), they are
insufficient for more abstract language, such as
that which denotes intentional action.  This
insufficiency stems from the fact that intentional
actions (i.e. actions performed with the purpose of
achieving a goal) are highly ambiguous when
described only in terms of their physically
observable characteristics. For example, imagine a
situation in which one person moves a cup towards
another person and utters the unknown word

! Note that Narayanan’s work moves away from purely
physical to metaphorical levels of description.

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 104-111, Ann Arbor, June 200%2005 Association for Computational Linguistics



“blicket.” Now, based only on the physical
description of this action, one might come to think
of “blicket” as meaning anything from “give cup”,
to “offer drink”, to “ask for change.” This
ambiguity stems from the lack of contextual
information that strictly perceptual descriptions of
action provide.

This research presents a methodology for
modeling the intentional context of utterances and
describes how such representations can be used in
a language learning task. We decompose language
learning into two phases: intention recognition and
linguistic mapping. In the first phase, we model
intentional action using a probabilistic context free
grammar. We use this model to parse sequences of
observed physical actions, thereby inferring a
hierarchical tree representation of a wuser’s
intentions. In the second phase, we use a noisy
channel model to learn a mapping between
utterances and nodes in that tree representation.
We present pilot situated language acquisition
experiments using a dataset of paired spontaneous
speech and action collected from human subjects
interacting in a shared virtual environment. We
evaluate the acquired model on a situated language
understanding task.

2 Intention Recognition

The ability to infer the purpose of others’ actions
has been proposed in the psychological literature
as essential for language learning in children
(Tommasello, 2003, Regier, 2003). In order to
understand how such intention recognition might
be modeled in a computational framework, it is
useful to specify the types of ambiguities that make
intentional actions difficult to model. Using as an
example the situation involving the cup described
above, we propose that this interaction
demonstrates two distinct types of ambiguity. The
first type, which we refer to as a vertical ambiguity
describes the ambiguity between the “move cup”
vs. “offer drink” meanings of “blicket.” Here the
ambiguity is based on the level of description that
the speaker intended to convey. Thus, while both
meanings are correct (i.e., both meanings
accurately describe the action), only one
corresponds to the word “blicket.”

The second type of ambiguity, referred to as
horizontal ambiguity describes the ambiguity
between the “offer drink” vs. “ask for change”
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interpretations of “blicket.” Here there is an
ambiguity based on what actually is the intention
behind the physical action. Thus, it is the case that
only one of these meaning corresponds to “blicket”
and the other meaning is not an accurate
description of the intended action.

Figure 1 shows a graphical representation of
these ambiguities. Here the leaf nodes represent a
basic physical description of the action, while the
root nodes represent the highest-level actions for
which the leaf actions were performed®. Such a
tree representation is useful in that it shows both
the horizontal ambiguity that exists between the
nodes labeled “ask for change” and “offer drink,”
as well as the vertical ambiguity that exits between
the nodes labeled “offer drink” and “move cup.”

Be Polite QQ

' Offer Drink_D)Ask for Change
‘// /\'\.
Move Cup
7 T~
Lift Cup Slide Cup
\ \\\.

[observed action ]

Action: O ffer
Agent: Personl
Patient: Person2
Object: Drink

Figure 1: Graphical representation of vertical and
horizontal ambiguities for actions.

In order to exploit the intuitive value of such a
tree representation, we model intention recognition
using probabilistic context free grammars
(PCFG)’. We develop a small set of production
rules in which the left hand side represents a higher
order intentional action (e.g., “offer drink™), and
the right hand side represents a sequence of lower
level actions that accomplish it (e.g. “grasp cup”,
“move cup”’, “release cup”). Each individual
action (i.e. letter in the alphabet of the PCFQG) is
further modeled as a simple semantic frame that
contains roles for an agent, an object, an action,
and multiple optional modifier roles (see inset
figure 1). While in this initial work productions
are created by hand (a task made feasible by the

* In other words, high-level actions (e.g. “be polite) are
preformed by means of the performance of lower-level
actions (e.g. “offer drink™).

3 The idea of a “grammar of behavior” has a rich history
in the cognitive sciences dating back at least to Miller et
al., 1960



constrained nature of situated domains) learning
such rules automatically is discussed in section 4.2.
Just as in the plan recognition work of Pynadath,
(1999), we cast the problem of intention
recognition as a probabilistic parsing problem in
which sequences of physical actions are used to
infer an abstract tree representation. Resolving
horizontal ambiguities thus becomes equivalent to
determining which parse tree is most likely given a
sequence of events. Further, resolving vertical
ambiguities corresponds to determining which
level node in the inferred tree is the correct level of
description that the speaker had in mind.

3 Linguistic Mapping

Given a model of intention recognition, the
problem for a language learner becomes one of
mapping spoken utterances onto appropriate
constituents of their inferred intentional
representations. Given the intention representation
above, this is equivalent to mapping all of the
words in an utterance to the role fillers of the
appropriate semantic frame in the induced
intention tree. To model this mapping procedure,
we employ a noisy channel model in which the
probability of inferring the correct meaning given
an utterance is approximated by the (channel)
probability of generating that utterance given that
meaning, times the (source) prior probability of the
meaning itself (see Equation 1).

p(meaning | utterance) ~

(1)

p(utterance | meaning)* e p(meaning)~*

Here utterance refers to some linguistic unit
(usually a sentence) and meaning refers to some
node in the tree (represented as a semantic frame)
inferred during intention recognition®. We can use
the probability associated with the inferred tree (as
given by the PCFG parser) as the source
probability. Further, we can learn the channel
probabilities in an unsupervised manner using a
variant of the EM algorithm similar to machine
translation (Brown et al., 1993), and statistical
language understanding (Epstein, 1996).

4 Pilot Experiments

4.1 Data Collection

* o refers to a weighting coefficient.
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In order to avoid the many physical and perceptual
problems that complicate work with robots and
sensor-grounded data, this work focuses on
language learning in virtual environments. We
focus on multiplayer videogames , which support
rich types of social interactions. The complexities
of these environments highlight the problems of
ambiguous  speech described above, and
distinguish this work from projects characterized
by more simplified worlds and linguistic

interactions, such as SHRDLU (Winograd, 1972).
Further, the proliferation of both commercial and
military applications (e.g., Rickel et al., 2002)
involving such virtual worlds suggests that they
will continue to become an increasingly important
area for natural language research in the future.

Figure 2: Screen shoic-(J)-t:Ne\;efwinter Nigilts gamé i{;ed
in experimentation.

In order to test our model, we developed a virtual
environment based on the multi-user videogame
Neverwinter Nights.” The game, shown in Figure
2, provides useful tools for generating modules in
which players can interact. The game was
instrumented such that all players’ speech/text
language and actions are recorded during game
play. For data collection, a game was designed in
which a single player must navigate their way
through a cavernous world, collecting specific
objects, in order to escape. Subjects were paired
such that one, the novice, would control the virtual
character, while the other, the expert, guided her
through the world. While the expert could say
anything in order to tell the novice where to go and
what to do, the novice was instructed not to speak,
but only to follow the commands of the expert.

> http://nwn.bioware.com/
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Figure 3. Experimental methodology: a) subjects’ speech and action sequences are recorded; b) an intentional tree is
inferred over the sequence of observed actions using a PCFG parser; c) the linguistic mapping algorithm examines
the mappings between the utterance and all possible nodes to learn the best mapping of words given semantic roles.

The purpose behind these restrictions was to elicit
free and spontaneous speech that is only
constrained by the nature of the task. This
environment seeks to emulate the type of speech
that a real situated language system might
encounter: i.e., natural in its characteristics, but
limited in its domain of discourse.

The subjects in the data collection were
university graduate and undergraduate students.
Subjects (8 male, 4 female) were staggered such
that the novice in one trial became the expert in the
next. Each pair played the game at least five times,
and for each of those trials, all speech from the
expert and all actions from the novice were
recorded. Table 1 shows examples of utterances
recorded from game play, the observed actions

associated with them, and the actions’ inferred
semantic frame.
Utterance Action Frame
ok this time you are MOVE act: GET
gonna get the axe first ROOM1 ohj: AXE
through the red archway | MOVE act: MOVE
on your right ROOM2 goal: ARCH
manner: THRU
now open that door CLICK_ON [ act: OPEN
LEVER obj: DOOR
ok now take the axe CLICK_ON | act: TAKE
CHEST obj: AXE
source: CHEST

Table 1: Representative test utterances collected from
subjects with associated game actions and frames

Data collection produces two parallel streams of
information: the sequence of actions taken by the
novice and the audio stream produced by the
expert (figure 3a). The audio streams are
automatically segmented into utterances using a
speech endpoint detector, which are then
transcribed by a human annotator. Each action in

107

the sequence is then automatically parsed, and each
node in the tree is replaced with a semantic frame
(figure 3b).® The data streams are then fed into the
linguistic mapping algorithms as a parallel corpus
of the expert’s transcribed utterances and the
inferred semantic roles associated with the
novice’s actions (figure 3c¢).

4.2  Algorithms

Intention Recognition

As described in section 2, we represent the task
model associated with the game as a set of
production rules in which the right hand side
consists of an intended action (e.g. “find key”) and
the left hand side consists of a sequence of sub-
actions that are sufficient to complete that action
(e.g. “go through door, open chest, pick up key”).
By applying probabilities to the rules, intention
recognition can be treated as a probabilistic context
free parsing problem, following Pynadath, 1999.
For these initial experiments we have hand-
annotated the training data in order to generate the
grammar used for intention recognition, estimating
their maximum likelihood probabilities over the
training set. In future work, we intend to examine
how such grammars can be learned in conjunction
with the language itself; extending research on
learning task models (Nicolescu and Mataric,
2003) and work on learning PCFGs (Klein and
Manning, 2004) with our own work on
unsupervised language learning.

Given the PCFG, we use a probabilistic Earley
parser (Stolcke, 1994), modified slightly to output

% We use 65 different frames, comprised of 35 unique
role fillers.




partial trees (with probabilities) as each action is
observed. Figure 4 shows a time slice of an
inferred intention tree after a player mouse clicked
on a lever in the game. Note that both the vertical
and horizontal ambiguities that exist for this action
in the game parallel the ambiguities shown in
Figure 1. As described above, each node in the
tree is represented as a semantic frame (see figure
4 insets), whose roles are aligned to the words in
the utterances during the linguistic mapping phase.

Linguistic Mapping

The problem of learning a mapping between
linguistic labels and nodes in an inferred
intentional tree is recast as one of learning the
channel probabilities in Equation 1. Each node in
a tree is treated as a simple semantic frame and the
role fillers in these frames, along with the words in
the utterances, are treated as a parallel corpus.
This corpus is used as input to a standard
Expectation Maximization algorithm that estimates
the probabilities of generating a word given the
occurrence of a role filler. We follow IBM Model
1 (Brown et al., 1993) and assume that each word
in an utterance is generated by exactly one role in
the parallel frame

Using standard EM to learn the role to word
mapping is only sufficient if one knows to which
level in the tree the utterance should be mapped.
However, because of the vertical ambiguity
inherent in intentional actions, we do not know in
advance which is the correct utterance-to-level
mapping. To account for this, we extend the
standard EM algorithm as follows (see figure 3c¢):

1) set uniform likelihoods for all utterance-to-
level mappings
for each mapping, run standard EM
merge output distributions of EM (weighting
each by its mapping likelihood)
use merged distribution to recalculate
likelihoods of all utterance-to-level mappings
goto step 2

2)
3)

4)
5)

4.3 Experiments

Methodologies for evaluating language acquisition
tasks are not standardized. Given our model, there
exists the possibility of employing intrinsic
measures of success, such as word alignment
accuracy. However, we choose to measure the
success of learning by examining the related (and
more natural) task of language understanding.
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For each subject pair, the linguistic mapping
algorithms are trained on the first four trials of
game play and tested on the final trial. (This gives
on average 130 utterances of training data and 30
utterances of testing data per pair.) For each
utterance in the test data, we calculate the
likelihood that it was generated by each frame seen
in testing. We select the maximum likelihood
frame as the system’s hypothesized meaning for
the test utterance, and examine both how often the
maximum likelihood estimate exactly matches the
true frame (frame accuracy), and how many of the
role fillers within the estimated frame match the
role fillers of the true frame (role accuracy).’”

Find Key Exit Leve

Action:  Get
Agent: Player
Object: Key
Source: Chest

Action:  Exit
Agent:

Player
Object:  Level

Go Through Door

Open Door) [Action: oOpen
Agent:
Move Player

[FObject: Door
Pull Lever Turn Knob

~

Action:
Agent:
Object:
Manner: Through

Player
Door

[ Tetick_on tever [ ]

Figure 4: Inferred intention tree (with semantic
frames) from human subject game play.

For each subject, the algorithm’s parameters are
optimized using data from all other subjects. We
assume correct knowledge of the temporal
alignment between utterances and actions. In
future work, we will relax this assumption to
explore the effects of not knowing which actions
correspond to which utterances in time.

To examine the performance of the model, three
experiments are presented. Experiment 1
examines the basic performance of the algorithms
on the language understanding task described
above given uniform priors. The system is tested
under two conditions: 1) using the extended EM
algorithm given an unknown utterance-to-level
alignment, and 2) using the standard EM algorithm
given the correct utterance-to-level alignment.

Experiment 2 tests the benefit of incorporating
intentional context directly into language
understanding. This is done by using the parse
probability of each hypothesized intention as the

’ See Fleischman and Roy (2005) for experiments
detailing performance on specific word categories.




source probability in Equation 1. Thus, given an
utterance to understand, we cycle through all
possible actions in the grammar, parse each one as
if it were observed, and use the probability
generated by the parser as its prior probability. By
changing the weighting coefficient (o)) between the
source and channel probabilities, we show the
range of performances of the system from using no
context at all (a=1) to using only context itself
(0=0) in understanding.

‘mbasehne munknow n level mknow n level ‘

90%
80%
70%
60%
50%
40% o
30% o
20% o
10% o
0% -

frame accuracy

role accuracy

Figure 5: Comparison of models trained with utterance-
to-level alignment both known and unknown.
Performance is on a language understanding task
(baseline equivalent to choosing most frequent frame)

Experiment 3 studies to what extent inferred tree
structures are necessary when modeling language
acquisition.  Although, in section 1, we have
presented intuitive reasons why such structures are
required, one might argue that inferring trees over
sequences of observed actions might not actually
improve  understanding  performance  when
compared to a model trained only on the observed
actions themselves. This hypothesis is tested by
comparing a model trained given the correct
utterance-to-level  alignment  (described in
experiment 1) with a model in which each
utterance is aligned to the leaf node (i.e. observed
action) below the correct level of alignment. For
example, in figure 4, this would correspond to
mapping the utterance “go through the door”, not
to “GO THROUGH DOOR”, but rather to
“CLICK_ON LEVER.”

4.4 Results

Experiment 1: We present the average performance
over all subject pairs, trained with the correct
utterance-to-level alignment both known and
unknown, and compare it to a baseline of choosing
the most frequent frame from the training data.
Figure 5 shows the percentage of maximum
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likelihood frames chosen by the system that
exactly match the intended frame (frame
accuracy), as well as, the percentage of roles from
the maximum likelihood frame that overlap with
roles in the intended frame (role accuracy).

As expected, the understanding performance
goes down for both frames and roles when the
correct utterance-to-level alignment is unknown.
Interestingly, while the frame performance
declines by 14.3%, the performance on roles only
declines 6.4%. This difference is due primarily to
the fact that, while the mapping from words to
action role fillers is hindered by the need to
examine all alignments, the mapping from words
to object role fillers remains relatively robust. This
is due to the fact that while each level of intention
carries a different action term, often the objects
described at different levels remain the same. For
example, in figure 4, the action fillers “TAKE”,
“MOVE”, “OPEN”, and “PULL” occur only once
along the path. However, the object filler
“DOOR” occurs multiple times. Thus, the chance
that the role filler “DOOR” correctly maps to the
word “door” is relatively high compared to the role
filler “OPEN” mapping to the word “open.”®

g
g 39%

14

3

S 37w o
<

°

E 35%

6
a

Figure 6: Frame accuracy as a function of a value (Eq.
1) trained on unknown utterance-to-level alignments.

Experiment 2: Figure 6 shows the average frame
accuracy of the system trained without knowing
the correct utterance-to-level alignment, as a
function of varying the o values from Equation 1.
The graph shows that including intentional context
does improve system performance when it is not
given too much weight (i.e., at relatively high
alpha values). This suggests that the benefit of
intentional context is somewhat outweighed by the
power of the learned role to word mappings.

¥ This asymmetry for learning words about actions vs.
objects is well known in psychology (Gleitman, 1990)
and is addressed directly in Fleischman and Roy, 2005.



Looking closer, we find a strong negative
correlation (r=-0.81) between the understanding
performance using only channel probabilities (0=1)
and the improvement obtained by including the
intentional context. In other words, the better one
does without context, the less context improves
performance. Thus, we expect that in noisier
environments (such as when speech recognition is
employed) where channel probabilities are less
reliable, employing intentional context will be
even more advantageous.

Experiment 3: Figure 7 shows the average
performance on both frame and role accuracy for
systems trained without using the inferred tree
structure (on leaf nodes only) and on the full tree
structure (given the correct utterance-to-level
alignment). Baselines are calculated by choosing
the most frequent frame from training.’

‘. baseline (observed) m observed m baseline (inferred) m inferred ‘

90% +
80% -
70% +
60% ~
50%
40% -
30% -
20%
10% +

0% -

frame accuracy

role accuracy

Figure 7: Comparison of models trained on inferred
intentional tree vs. directly on observed actions

It is clear from the figure that understanding
performance is higher when the intentional tree is
used in training. This is a direct result of the fact
that speakers often speak about high-level
intentions with words that do not directly refer to
the observed actions. For example, after opening a
door, experts often say: “go through the door,” for
which the observed action is a simple movement
(e.g., “MOVE ROOMx™). Also, by referring to
high-level intentions, experts can describe
sequences of actions that are not immediately
referred to. For example, an expert might say: “get
the key” to describe a sequence of actions that
begins with “CLICK _ON CHEST.” Thus, the
result of not learning over a parsed hierarchical

? Note that baselines are different for the two conditions,
because there are a differing number of frames used in
the leaf node only condition.
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representation of intentions is increased noise, and
subsequently, poorer understanding performance.

5 Discussion

The results from these experiments, although
preliminary, indicate that this model of language
acquisition performs well above baseline on a
language understanding task. This is particularly
encouraging given the unconstrained nature of the
speech on which it was trained. Thus, even free
and spontaneous speech can be handled when
modeling a constrained domain of discourse."

In addition to performing well given difficult
data, the experiments demonstrate the advantages
of using an inferred intentional representation both
as a contextual aid to understanding and as a
representational scaffolding for language learning.
More important than these preliminary results,
however, is the general lesson that this work
suggests about the importance of knowledge
representations for situated language acquisition.

As discussed in section 2, learning language
about intentional action requires dealing with two
distinct types of ambiguity. These difficulties
cannot be handled by merely increasing the
amount of data used, or switching to a more
sophisticated learning algorithm. Rather, dealing
with language use for situated applications requires
building appropriate knowledge representations
that are powerful enough for unconstrained
language, yet scalable enough for practical
applications. The work presented here is an initial
demonstration of how the semantics of
unconstrained speech can be modeled by focusing
on constrained domains.

As for scalability, it is our contention that for
situated NLP, it is not a question of being able to
scale up a single model to handle open-domain
speech. The complexity of situated communication
requires the use of domain-specific knowledge for
modeling language use in different contexts. Thus,
with situated NLP systems, it is less productive to
focus on how to scale up single models to operate
beyond their original domains. Rather, as more
individual applications are tackled (e.g. cars,

1% Notably, situated applications for which natural
language interfaces are required typically have limited
domains (e.g., talking to one’s car doesn’t require open-
domain language processing).



phones, videogames, etc.) the interesting question
becomes one of how agents can learn to switch
between different models of language as they
interact in different domains of discourse.

6 Conclusion

We have introduced a model of language
acquisition that explicitly incorporates intentional
contexts in both learning and understanding. We
have described pilot experiments on paired
language and action data in order to demonstrate
both the model’s feasibility as well as the efficacy
of using intentional context in understanding.
Although we have demonstrated a first step toward
an advanced model of language acquisition, there
is a great deal that has not been addressed. First,
what is perhaps most obviously missing is any
mention of syntax in the language learning process
and its role in bootstrapping for language
acquisition. Future work will focus on moving
beyond the IBM Model 1 assumptions, to develop
more syntactically-structured models.

Further, although the virtual environment used in
this research Dbears similarity to situated
applications that demand NL interfaces, it is not
known exactly how well the model will perform
“in the real world.” Future work will examine
installing models in real world applications. In
parallel investigations, we will explore our method
as a cognitive model of human language learning.

Finally, as was mentioned previously, the task
model for this domain was hand annotated and,
while the constrained nature of the domain
simplified this process, further work is required to
learn such models jointly with language.

In summary, we have presented first steps
toward tackling problems of ambiguity inherent in
grounding the semantics of situated language. We
believe this work will lead to practical applications
for situated NLP, and provide new tools for
modeling human cognitive structures and
processes underlying situated language use
(Fleischman and Roy, 2005).

Acknowledgments

Peter Gorniak developed the software to capture
data from the videogame used in our experiments.

References

111

D. Bailey, J Feldman, S. Narayanan., & G. Lakoff..
Embodied lexical development. 19" Cognitive
Science Society Meeting. Mahwah, NJ, 1997.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra &
R. L. Mercer. “The Mathematics of Sta-tistical
Machine Translation: Parameter Estimation,”
Computational Linguistics 19(2). 1993.

M Epstein Statistical Source Channel Models for
Natural Language Understanding Ph. D. thesis,
New York University, September, 1996

C. Fellbaum WordNet: An On-line Lexical Database
and Some of its Applications. MIT Press, 1998.

M. Fleischman and D.K. Roy. Why Verbs are
Harder to Learn than Nouns: Initial Insights from a
Computational Model of Intention Recognition in
Situated Word Learning. CogSci. Italy, 2005.

L. Gleitman. "The structural sources of verb
meanings." Language Acquisition, 1(1), 1990.

D. Klein and C. Manning, "Corpus-Based Induction
of Syntactic Structure: Models of Dependency and
Constituency", Proc. of the 42nd ACL, 2004

D. B Lenat,, CYC: A Large-Scale Investment in
Knowledge Infrastructure". Comm. of ACM, 1995.

C. Manning, H. Schutze,. Foundations of Statistical
Natural Language Processing. MIT Press, 2001.

G. A. Miller, E. Galanter, and K. Pribram 1960. Plans
and the Structure of Behavior. New York: Halt.

S. Narayanan.. Moving right along: A computational
model of metaphoric reasoning about events. In
Proc. of AAAI Orlando, FL, 1999.

M. Nicolescu, M. Mataric’, Natural Methods for
Robot Task Learning: Instructive Demonstration,
Generalization and Practice, AGENTS, Australia, 2003.

D. Pynadath, 1999. Probabilistic Grammars for Plan
Recognition. Ph.D. Thesis, University of Michigan.

T. Regier. The human semantic potential. MIT Press,
Cambridge, MA, 1996.

T. Regier. Emergent constraints on word-learning: A
computational review. TICS, 7, 263-268, 2003.

J. Rickel, S. Marsella, J. Gratch, R. Hill, D. Traum
and W. Swartout, "Towards a New Generation of
Virtual Humans for Interactive Experiences," in
IEEE Intelligent Systems July/August 2002.

D.Roy, K. Hsiao, and N. Mavridis. Mental imagery
for a conversational robot. IEEE Trans. on
Systems, Man, and Cybernetics, 34(3) 2004.

D. Roy. (in press). Grounding Language in the
World: Schema Theory Meets Semiotics. Al

J.  Siskind. Grounding the Lexical Semantics of
Verbs in Visual Perception using Force Dynamics
and Event Logic. JAIR, 2001.

A. Stolcke. Bayesian Learning of Probabilistic
Language Models. Ph.d., UC Berkeley, 1994.

M. Tomasello. Constructing a Language: A Usage-
Based Theory of Language Acquisition. Harvard
University Press, 2003.

T. Winograd. Understanding Natural
Academic Press, 1972.

Language.



1

Representational Biasin Unsupervised Learning of Syllable Structure

Sharon Goldwater and Mark Johnson
Department of Cognitive and Linguistic Sciences
Brown University
Providence, Rl 02912
{Shar on_Col dwat er, Mar k_Johnson}@r own. edu

Abstract

Unsupervised learning algorithms based
on Expectation Maximization (EM) are
often straightforward to implement and
provably converge on a local likelihood
maximum. However, these algorithms of-
ten do not perform well in practice. Com-
mon wisdom holds that they yield poor
results because they are overly sensitive
to initial parameter values and easily get
stuck in local (but not global) maxima.
We present a series of experiments indi-
cating that for the task of learning sylla-
ble structure, the initial parameter weights
are not crucial. Rather, it is the choice of
model class itself that makes the differ-
ence between successful and unsuccess-
ful learning. We use a language-universal
rule-based algorithm to find a good set of
parameters, and then train the parameter
weights using EM. We achieve word ac-
curacy of 95.9% on German and 97.1% on
English, as compared to 97.4% and 98.1%
respectively for supervised training.

Introduction

framework, one method that can be used for unsu-
pervised learning is to devise a probabilistic model

of the data, and then choose the values for the model
parameters that maximize the likelihood of the data
under the model.

If the model contains hidden variables, there is
often no closed-form expression for the maximum
likelihood parameter values, and some iterative ap-
proximation method must be used. Expectation
Maximization (EM) (Neal and Hinton, 1998) is
one way to find parameter values that at least lo-
cally maximize the likelihood for models with hid-
den variables. EM is attractive because at each
iteration, the likelihood of the data is guaranteed
not to decrease. In addition, there are efficient
dynamic-programming versions of the EM algo-
rithm for several classes of models that are important
in computational linguistics, such as the forward-
backward algorithm for training Hidden Markov
Models (HMMs) and the inside-outside algorithm
for training Probabilistic Context-Free Grammars
(PCFGs).

Despite the advantages of maximum likelihood
estimation and its implementation via various in-
stantiations of the EM algorithm, it is widely re-
garded as ineffective for unsupervised language
learning. Merialdo (1994) showed that with only

The use of statistical methods in computational lina tiny amount of tagged training data, supervised
guistics has produced advances in tasks such as pdraining of an HMM part-of-speech tagger outper-

ing, information retrieval, and machine translationformed unsupervised EM training. Later results (e.g.
However, most of the successful work to date haBrill (1995)) seemed to indicate that other methods
used supervised learning techniques. Unsupervisetlunsupervised learning could be more effective (al-
algorithms that can learn from raw linguistic datathough the work of Banko and Moore (2004) sug-

as humans can, remain a challenge. In a statistiogésts that the difference may be far less than previ-
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ously assumed). Klein and Manning (2001; 2002)vho trains a PCFG of syllable structure from a
recently achieved more encouraging results using a@orpus of words with syllable boundaries marked.
EM-like algorithm to induce syntactic constituentWe, too, use a model defined by a grammar to de-
grammars, based on a deficient probability model. scribe syllable structure. However, our work dif-

It has been suggested that EM often yield podiers from Muiller’s in that it focuses on how to learn
results because it is overly sensitive to initial paramthe model’'s parameters in an unsupervised manner.
eter values and tends to converge on likelihood maxseveral researchers have worked on unsupervised
ima that are local, but not global (Carroll and Charlearning of phonotactic constraints and word seg-
niak, 1992). In this paper, we present a series afientation (Elman, 2003; Brent, 1999; Venkatara-
experiments indicating that for the task of learningnan, 2001), but to our knowledge there is no pre-
a syllable structure grammar, the initial parameteviously published work on unsupervised learning of
weights are not crucial. Rather, it is the choice o$yllable structure.

the model class, i.e., thepresentational biasthat In the work described here, we experimented with
makes the difference between successful and unsuero different classes of models of syllable structure.
cessful learning. Both of these model classes are presented as PCFGs.

In the remainder of this paper, we first describédhe first model class, described intiNer (2002),
the task itself and the structure of the two differencodes information about the positions within a
ent classes of models we experimented with. Weord or syllable in which each phoneme is likely
then present a deterministic algorithm for choosingp appear. In thigositional model, each syllable
a good set of parameters for this task. The algas labeled as initial (1), medial (M), final (F), or as
rithm is based on language-universal principles dhe one syllable in a monosyllabic word (O). Syl-
syllabification, but produces different parameters foiables are broken down into an optional onset (the
each language. We apply this algorithm to Englisinitial consonant or consonant cluster) followed by a
and German data, and describe the results of expehyme. The rhyme consists of a nucleus (the vowel)
iments using EM to learn the parameter weights foiollowed by an optional coda consonant or cluster.
the resulting models. We conclude with a discussioRach phoneme is labeled with a preterminal cate-
of the implications of our experiments. gory of the formCatPos.x.y whereCat € {Ons,

Nuc, Cod, Pose {I, M, F, O}, = is the position
2 Statistical Parsing of Syllable Structure  of a consonant within its cluster, angdis the total

Knowledge of syllable structure is important fornumber of consonants n the clustera_ndy are un-
used wherCat = Nug, since all nuclei consist of a

correct pronunciation of spoken words, since cers—in le vowel. See Fig. 1 for an example barse
tain phonemes may be pronounced differently de- 9 ) - T19. ‘example p -
Rather than directly encoding positional infor-

ending on their position in the syllable. A num-_ " . . )
P g P y mation, the second model class we investigate (the

ber of different supervised machine learning tech-. ram model) models statistical dependencies b
nigues have been applied to the task of automatjed ) ISt P ! e

syllable boundary detection, including decision-tre%:‘\r':’een adjacent phonemes and adjacent syllables.

classifiers (van den Bosch et al., 1998), weighted particular, each OWSG‘ or coda expands direc_tly
finite state transducers (Kiraz andoblus, 1998), INto one or more terminal phonemes, thus capturing

and PCFGs (Nller, 2001; Miller, 2002). The re- the ordering dependencies between consonants in a

searchers presenting these systems have generglllusmr' Also, the shape of each syllable (whether it

argued from the engineering standpoint that sylla(z(%taInS an onset or coda) depends on the shape of

ble boundary detection is useful for pronunciation the previous syllable, so that the ’.“Ode' can learn,
or example, that syllables ending in a coda should

unknown words in text-to-speech systems. Our mq- : o
tivation is a more scientific one: we are interested icrl%e followed by syllables with an onsétThis kind

the kinds of procedures and representations that can*we follow Miiller in representing our models as PCFGs be-

lead to successful unsupervised language learningGause this representation is easy to present. The languages gen-
erated by these PCFGs are in fact regular, and it is straightfor-

both computers and humaqs. _ ward to transform the PCFGs into equivalent regular grammars.
Our work has some similarity to that of iMer, 2 Many linguists believe that, cross-linguistically, a poten-
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Figure 1: Positional analysis (left) and bigram analysis (right) of the vagrdementGroups of terminals
dominated by a Syl* node constitute syllables. Terminals appear in the SAM&#diery of IPA used by
CELEX.

of bigram dependency between syllables is modelgikbrcentage of words with no syllabification errors)
using rules of the form WH — SylX WdY, where was 97.4% for the bigram model and 97.2% for the
X andY are drawn from the set of possible combipositional modef, while in English it was 98.1%
nations of onset, nucleus, and codain a syllabd: and 97.6% respectively. These results for English
ON, NC, ONG. Each SyK category has only one are in line with previous reported results using other
expansion. See Fig. 1 for an example. supervised learning techniques, e.g. van den Bosch
With respect to either of these two model classest al. (1998). Since many of the words in the data are
each way of assigning syllable boundaries to a worshonosyllabic (49.1% in German, 61.2% in English)
corresponds to exactly one parse of that word. Th&and therefore contain no ambiguous syllable bound-
makes it simple to train the models from a corpus irries, we also calculated the multisyllabic word ac-
which syllable boundaries are provided, as idldr  curacy. This was 94.9% (bigram) and 94.5% (posi-
(2001). We used two different corpora for our expertional) in German, and 95.2% (bigram) and 93.8%
iments, one German (from the ECI corpus of newspositional) in English.
paper text) and one English (from the Penn WSJ
corpus). Each corpus was created by converting Categorical Parsing of Syllable Structure

the orthographic forms in the original text into thelrIn the previous section, we described two different

phonemic transcriptions using the_CELEX databasr%odel classes and showed that the maximum like-
(Baayen_ et aI.,_ 1995). - CELEX mcIuo!es S‘y""?lb_lqihood estimates with supervised training data yield
boundaries, Wh.'Ch we used for' superw_se_d trammgood models of syllable structure. In moving to un-
and for evaluqtlon. _Any words in the_ original te_XtSsupervised learning, however, there are two prob-
that were not listed in CELEX were discarded, SINCfms that need to be addressed: exactly what class of
. . , U¥odels do we want to consider (i.e., what kinds of
supervised tralnlné. From_the resulting phonemic rules should the model contain), and how should we
corpora, we created a training set_of 20,000 tOI(erkselect a particular model from that class (i.e., what
?nd arisﬁ_iet %f 10’000. toléens.. l_Jsmg starcljdard ma\)/\(/'eights should the rules have)? We take as our so-
Imum fIkelinood supervise training proceaures, W o 14 the latter problem the most straightforward
obtained similar results for models from the two proach; namely, maximum likelihood estimation

_ a
model classes. In German, word accuracy (i.e. th.?ging EM. This leaves us with the question of how

tially ambiguous consonant, such as thin saber is always t0 choose a set of parameters in the first place. In this
syllabified as the onset of the second syllable rather than t*@ction, we describe an algorithm based on two fun-

coda of the first. We discuss this point further in Section 3. tal ph loaical princioles that. wh .
3Due to the nature of the corpora, the percentage of worogamen al phonological principles that, when given a

discarded was fairly high: 35.6% of the English tokens (pri-Set of data from a particular language, will produce a
marily proper nouns, acronyms, and numerals, with a smaller

number of morphologically complex words) and 26.7% of the  *Miller reports slightly lower results of 96.88% on German
German tokens (with compound words making up a somewhaising the same positional model. We have no explanation for
larger portion of these discards). this discrepancy.
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set of rules appropriate to that language. These rulekister of consonants between two syllable nuclei,
can then be trained using EM. sonority sequencing states that the syllable boundary
Given a particular rule schema, it is not imme-should occur either just before or just after the con-
diately clear which of the possible rules should acsonant with lowest sonority. Combining this princi-
tually be included in the model. For example, inple with onset maximization predicts that the bound-
the bigram model, should we start off with the ruleary should fall before the lowest-sonority segment.
Ons— k n? This rule is unnecessary for English, Predicting syllable boundaries in this way is not
and could lead to incorrect parses of words sucfvolproof. In some cases, clusters that are predicted
asweakness But /kn/ is a legal onset in German, by sonority sequencing to be acceptable are in fact
and since we want an algorithm that is prepared tiflegal in some languages. The illegal English on-
learn any language, disallowinkn/ as an onset out set clusterkn is a good example. In other cases,
of hand is unacceptable. On the other hand, the ssiich as the English onsstr, clusters are allowed
of all combinatorially possible consonant clusters iglespite violating sonority sequencing. These mis-
infinite, and even limiting ourselves to clusters actumatches between universal principles and language-
ally seen in the data for a particular language yieldspecific phonotactics lead to errors in the predic-
extremely unlikely-sounding onsets lik&j/ (calcu-  tions of the categorical parser, suchwasa.knesand
late) and bst/ (substanck Ideally, we should limit ins.tru.ment In addition, certain consonant clusters
the set of rules to ones that are likely to actually béke bst (as in substance may contain more than
used in the language of interest. one minimum sonority point. To handle these cases,
The algorithm we have developed for producthe categorical parser follows onset maximization
ing a set of language-appropriate rules is essentially adding any consonants occurring between the
a simple categorical (i.e., non-statistical) syllablewo minima to the onset of the second syllable:
parser based on the principles afiset maximiza- sub.stance

tion andsonority sequencingBlevins, 1995). Onset  Not surprisingly, the categorical parser does not
maximization is the idea that in word-medial consoperform as well as the supervised statistical parser:
nant clusters, as many consonants as possible (giv§Rly 92.7% of German words and 94.9% of English
the phonotactics of the language) should be assign@rds (85.7% and 86.8%, respectively, of multisyl-
to onset position. This idea is widely accepted anghpic words) are syllabified correctly. However, a
has been codified in Optimality Theory (Prince angnore important result of parsing the corpus using
Smolensky, 1993) by proposing the existence of the categorical parser is that its output can be used
universal preference for syllables with onsets.  to define a model class (i.e., a set of PCFG rules)
In addition to onset maximization, our categoricafrom which a model can be learned using EM.

parser follows the principle of sonority sequencing Specifically, our model class contains the set of
whenever possible. This principle states that, withipjes that were proposed at least once by the cat-
a syllable, segments that are closer to the nuclewgyrical parser in its analysis of the training cor-
should be higher in sonority th.an segments that alis; in the EM experiments described below, the
further away. Vowels are considered to be the mogfje probabilities are initialized to their frequency
sonorous segments, followed by glides (&v/), lid- i, the categorical parser's output. Due to the mis-
uids (0/, if), nasals @/, i/, hy), fricatives (#/,  akes made by the categorical parser, there will be
Isl, 161, ...), and stops W, i/, fk/, ...). Given & gome ryles, lik®Ons— k nin English, that are not

Tmportam point, which we return to in Section 5, is present in the model trained on the true syllabifica-

that exceptions to onset maximization may occur at morphenféon, but many possible but spurious rules, such as
boundaries. Some linguists also believe that there are addbns— b s t, will be avoided. Although clusters that

tional exceptions in certain languages (including English and. . . .
German), where stressed syllables attract codas. Under this t éplate sonority sequencing tend to be avoided by

ory, the correct syllabification f@aberwould not besa.berbut ~ the categorical parser, it does find examples of these
rathersab.er or possiblysalb]er, where thdb] is ambisyllabic. nypes of clusters at the beginnings and endings of

Since the syllable annotations in the CELEX database follo d I . I d diall .
simple onset maximization, we take that as our approach as wdlords, as well as occasionally word-medially (as in

and do not consider stress when assigning syllable boundariesub.stance This means that many legal clusters that
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Bigram Positional Bigram Positional

all multi | all multi all multi | all multi
CP 92.7 85.7|92.7 857 CP 949 86.8| 949 86.8
CP+EM 959 919|918 84.0 CP + EM 97.1 92.6|94.1 84.9
CP-U+EM 959 919|920 84.4 CP-U+EM 97.1 92.6| 94.1 84.9
supervised 97.4 94.9 97.2 945 supervised 98.1 95.2 97.6 93.8
SP + EM 716 443|944 89.1 SP + EM 86.0 64.0| 96.5 90.9
SP-U+EM 71.6 44.3| 944 89.0 SP-U+EM 86.0 64.0| 67.6 16.5

Table 1: Results for German: % of all words (or Table 2: Results for English.

multisyllabic words) correctly syllabified.

the bigram model was simply due to good initial-
violate sonority sequencing will also be included irization of the parameter weights, we performed a
the set of rules found by this procedure, althougfecond experiment. Again starting with the set of
their probabilities may be considerably lower tharfules output by the categorical parser, we initialized
those of the supervised model. In the following secthe rule weights to the uniform distribution. The re-
tion, we show that these differences in rule probabifsults of this experiment (CP-U + EM) show that for
ities are unimportant; in fact, it is not the rule probihe class of bigram models, the performance of the
abilities estimated from the categorical parser’s oufinal model found by EM does not depend on the
put, but only the set of rules itself that matters foinitial rule probabilities. Performance within the po-

successful task performance. sitional model framework does depend on the initial
rule probabilities, since accuracy in German is dif-
4 Experiments ferent for the two experiments.

In this section, we present a series of experiments us-~S W& have pointed out, the rules found by the
ing EM to learn a model of syllable structure. All of c&tegorical parser are not exactly the same as the
our experiments use the same German and EngliSes found using supervised training. This raises
20,000-word training corpora and 10,000-word test"€ duestion of whether the difference in perfor--
ing corpora as described in Sectiofl 2. mance between the unsupervised and supervised bi-
For our first experiment, we ran the categorica’@m models is due to differences in the rules. To
parser on the training corpora and estimated a mod@&fidress this question, we performed two additional
from the parse trees it produced, as described in tfggPeriments. First, we simply ran EM starting from
previous section. This is essentially a single steff¢ M0del estimated from supervised training data.
of Viterbi EM training. We then continued to train S€¢0nd. we kept the set of rules from the supervised
the model by running (standard) EM to convergencéfaining data, but reinitialized the probabilities to a
Results of this experiment with Categorical ParsUniform distribution before running EM. The results
ing + EM (CP + EM) are shown in Tables 1 andof these experiments are shown as SP + EM and SP-
2. For both German and English, using this leamn? * EM, respectively. Again, performance of the
ing method with the bigram model yields perfor-b'gram model is mvgnant with respect to initial pa-
mance that is much better than the categorical pars@Meter values, while the performance of the posi-
alone, though not quite as good as the fully supeF'—onaI model is not. _Interestlngly, the p_erformz_ance
vised regime. On the other hand, training a posf the bigram model in these two experiments is far
tional model from the categorical parser's output an/©'S€ than in the CP experiments. This result is
then running EM causes performance to degrade. counterintuitive, since it would seem that the model
To determine whether the good performance dtlés found by the supervised system are the opti-
mal rules for this task. In the following section, we

¢of course, for unsupervised leaming, it is not necessary fxplain why these rules are not, in fact, the optimal
use a distinct testing corpus. We did so in order to use the same

testing corpus for both supervised and unsupervised Iearnirﬂ:}”?s for unsgperwsed learning, as well as why we
experiments, to ensure fair comparison of results. believe the bigram model performs so much better
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than the positional model in the unsupervised learwill cause relatively large changes in the induced

ing situation. model. On the other hand, models with high bias
_ _ are less sensitive to changes in the observed data.
5 Discussion Here, the bigram model induced from the categor-

ical parser has a relatively high bias: regardless of

The results of our experiments raise two interestin : o
e parameter weights, it will be a poor model of

guestions. First, when starting from the categoric ta wh d-medial onsets and codas are ver
parser’s output, why does the bigram model improv ata where word-medial onsets S very

after EM training, while the positional model does ifferent from.those a_t word edges, and it cannot
not? And second, why does applying EM to the gymodel data with certain onsets such ag/ /or /tz/
' t all because the rulé®@ns—v pandOns —t z

pervised bigram model lead to worse performanc% . ) .
than applying it to the model induced from the cate?'® simply absent. The mducgd positional mpdel
gorical parser? can model both of these situations, and_can fit the
To answer the first question, notice that one difErue parses more cI_oser as well (as evidenced by
ference between the bigram model and the postihe fact that the likelihood of the data under the su-

ervised positional model is higher than the like-

tional model is that onsets and codas in the bigra#hood under the supervised bigram model). As a

model are modeled using the same set of paramlé- o . "
. result, however, it is more sensitive to the initial
ters regardless of where in the word they occur. This )
. : rpglrameter weights and learns to recreate the errors
means that the bigram model generalizes whatever'i . . .
oduced by the categorical parser. This sensitiv-

learns about clusters at word edges to word-medi8l

clusters (and, of course, vice versa). Since the cat'@-/ to initial parameter weights also explains the ex-

: . ._tremely poor performance of the positional model
orical parser only makes errors word-medially, in- . .
g P y Y M the SP-U + EM experiment on English. Because

correct clusters are only a small percentage of CIU?He model is so unconstrained, in this case it finds a
ters overall, and the bigram model can overcome '

these errors by reanalyzing the word-medial Clusqompletely dn‘fgrent local maximum (not the global
maximum) which more or less follows coda max-

ters. The errors that are made after EM trainingm. : o L
- ization rather than onset maximization, yielding
are mostly due to overgeneralization from clusters

that are very common at word edges, e.g. predictinsg}/”abiﬁcations likesynd.ic.ateandtent.at.ive.ly
le.gi.sla.tion instead of le.gis.la.tion. The concept of representational bias can also ex-
In contrast to the bigram model, the positionaplain why applying EM to the supervised bigram
model does not generalize over different positionmodel performs so poorly. Examining the model in-
of the word, which means that it learns and repeattuced from the categorical parser reveals that, not
the word-medial errors of the categorical parser. F@urprisingly, it contains more rules than the super-
example, this model predicts.gze kju.tiv/ for ex- vised bigram model. This is because the categori-
ecutive just as the categorical parser does, althougtal parser produces a wider range of onsets and co-
/gzl is never attested in word-initial position. In ad-das than there are in the true parses. However, the
dition, each segment in a cluster is generated inrduced model is not a superset of the supervised
dependently, which means clusters liké may be model. There are four rules (three in English) that
placed together in an onset becauges/common occur in the supervised model but not the induced
as the first segment of an onset, atid common model. These are the rules that allow words where
as the second. While this problem exists even ione syllable contains a coda and the following syl-
the supervised positional model, it is compoundetable has no onset. These are never produced by the
in the unsupervised version because of the errors ohtegorical parser because of its onset-maximization
the categorical parser. principle. However, it turns out that a very small per-
The differences between these two models are aentage of words do follow this pattern (about .14%
example of the bias-variance trade-off in probabilisef English tokens and 1.1% of German tokens). In
tic modeling (Geman et al., 1992): models with lowEnglish, these examples seem to consist entirely of
bias will be able to fit a broad range of observations/ords where the unusual syllable boundary occurs at
fairly closely, but slight changes in the observed data morpheme boundary (e.gn.usually, dis.appoint,
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week.end, turn.overin German, all but a handful of sible rules within a particular framework and relied
examples occur at morpheme boundaries as ell. on EM to remove the “unnecessary” rules by letting
The fact that the induced bigram model is unabléheir probabilities go to zero. We suggest that this
to model words with codas followed by no onset iprocedure tends to yield models with low bias but
a very strong bias, but these words are so infrequehigh variance, so that they are extremely sensitive
that the model can still fit the data quite well. Theto the small variations in expected rule counts that
missing rules have no effect on the accuracy of theccur with different initialization weights.
parser, because in the supervised model the proba-Our work suggests that using models with higher
bilities on the rules allowing these kinds of wordsbias but lower variance may lead to much more
are so low that they are never used in the Viterlduccessful results. In particular, we used univer-
parses anyway. The problem is that if these rules asal phonological principles to induce a set of rules
included in the model prior to running EM, they addwithin a carefully chosen grammatical framework.
several extra free parameters, and suddenly EM We found that there were several factors that en-
able to reanalyze many of the words in the corpus tabled our induced bigram model to learn success-
make better use of these parameters. It ends up pfally where the comparison positional model did
ferring certain segments and clusters as onsets andk:
others as codas, which raises the likelihood of the
corpus but leads to very poor performance. Essen-
tially, it seems that the presence of a certain kind of
morpheme boundary is an additional parameter of

the “true” model that the bigram model doesn'tin- > The pigram model does not distinguish be-

parameter matters requires introducing extra param-  generalize onset and coda sequences from word
eters that allow EM too much freedom of analysis.  gqges to word-medial position.

It is far better to constrain the model, disallowing

certain rare analyses but enabling the model to learn3. The bigram model learns specific sequences
successfully in a way that is robust to variations in ~ of legal clusters rather than information about
initial conditions and idiosyncracies of the data. which positions segments are likely to occur in.

1. The bigram model encodes bigram dependen-
cies of syllable shape and disallows onset-less
syllables following syllables with codas.

6 Conclusion Notice that each of these factors imposes a con-
straint on the kinds of data that can be modeled. We
We make no claims that our learning system enhave already discussed the fact that item 1 rules out
bodies a complete model of syllabification. A fullthe correct syllabification of certain morphologically
model would need to account for the effects of morcomplex words, but since our system currently has
phological boundaries, as well as the fact that somgb way to determine morpheme boundaries, itis bet-
languages allow resyllabification over word boundter to do so than to introduce extra free parameters.
aries. Nevertheless, we feel that the results presentefe possible extension to this work would be to try
here are significant. We have shown that, despite incorporate morphological boundary information
previous discouraging results (Carroll and Charniakeither annotated or induced) into the model.
1992; Merialdo, 1994), itis possible to achieve good A more interesting constraint is the one imposed
results using EM to learn linguistic structures in arpy item 2, since in fact most languages do have some
unsupervised way. However, the choice of modelifferences between the onsets and (especially) co-
parameters is crucial for successful learning. Cagas allowed at word edges and within words. How-
roll and Charniak, for example, generated all posever, the proper way to handle this fact is not by
Txceptions in our training data wexaserkoren ‘cho- ?nf[r.oducingl complet.ely inde_p_enden_t parameters for
sen’, erobern ‘capture’and forms oferinnern ‘remind: all of  initial, medial, and final positions, since this allows

which were listed in CELEX as having a syllable boundary, bufar too much freedom. It would be extremely sur-
no morpheme boundary, after the first consonant. Our knowl-

edge of German is not sufficient to determine whether there BfSIN9 to fm_d a language with one set Of_ C_Oqas al-
some other factor that can explain these cases. lowed word-internally, and a completely disjoint set
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allowed word-finally. In fact, the usual situation ism. Banko and R. Moore. 2004. A study of unsupervised part-
that word-internal onsets and codas are a subset ofof-speech tagging. IRroceedings of COLING '04
those allowed at word edges, and this is exactly why Blevins. 1995. The syllable in phonological theory. In
using word edges to induce our rules was Successful_J. Goldsmith, editothe Handbook of Phonological Theory

. . . Blackwell, Oxford.

Considering language more broadly, it is com-

L . for segmentation and word discoveryachine Learning
many similarities but some differences as well. For 3471105
such cases, adding extra parameters to asupervisecll3 i 199 sed learning of disambiauati |
model often yields better performance, since thg BMI: 1995 Unsupervised learning of disambiguation rules

- for part of speech tagging. IRroceedings of the 3rd Work-
augmented model can capture both primary and sec-shop on Very Large Corporaages 1-13.

ondary effects. But it Se_ems that’_ at I_e?St for th‘é. Carroll and E. Charniak. 1992. Two experiments on learning
current state of unsupervised learning, it is better to probabilistic dependency grammars from corpora.Pta-
limit the number of parameters and focus on those ceedings of the AAAI Workshop on Statistically-Based Natu-
that capture the main effects in the data. In our task " -@"guage Processing Techniqué&an Jose, CA.
of learning syllable structure, we were able to usé Elman. 2003. Generalization from sparse inputPioceed-
just a few simple principles to constrain the model gg;;‘;the 38th Annual Meeting of the Chicago Linguistic
successfully. For more complex tasks such as syn-

; ; ; ot ; . Geman, E. Bienenstock, and R. Doursat. 1992. Neural net-
tactic pa_lrsmg, the space of Ilngwstlcally pIaUSIbIeS works and the bias/variance dilemnideural Computation
models is much larger. We feel that a research pro- 4.1_5g.

ram integrating results from the study of linguistic
9 9 9 y 9 G. A. Kiraz and B. Mbius. 1998. Multilingual syllabifica-

Un?VersaIS’ hur_nan_ Ianguage anUiSitiom anq COMPU-tion using weighted finite-state transducers.Phoceedings

tational modeling is likely to yield the most insight of the Third European Speech Communication Association

into the kinds of constraints that are needed for suc- Workshop on Speech Synthesis

cessful learning. D. Klein and C. Manning. 2001. Distributional phrase struc-
Ultimately, of course, we will want to be able to ture induction. IrProceedlngs of the Conference on Natural

. . Language Learningpages 113-120.

capture not only the main effects in the data, but _ _ _ _

some of the subtler effects as well. However, w- Klein and C. Mannlng. 2002. A generative constituent-

beli that th to do this i t by introduci context model forimproved grammar induction.Rroceed-
elieve that the way to do this is not by introducing - jngs of the ACL

completely free parameters, but by using aBayeS|aBn Merialdo. 1994. Taqai lish text with babilisti
. S . Merialdo. . Tagging english text with a probabilistic

prior that would enforce a degree of similarity be- model. Computational Linguistic20(2):155-172.

tween certain parameters. In the meantime, we have

. . e . K. Muller. 2001. Automatic detection of syllable boundaries
shown that employing linguistic universals to deter- combining the advantages of treebank and bracketed corpora

mine which set of parameters to include in a lan- training. InProceedings of the ACL
guage mOde‘I for Sy"able parsmg_ a”OV_VS us to USE. Muller. 2002. Probabilistic context-free grammars for
EM for learning the parameter weights in a success- phonology. InProceedings of the Workshop on Morpholog-

ful and robust way. ical and Phonological Learning at ACL
R. Neal and G. Hinton, 1998\ New View of the EM Algorithm
Acknowledgments That Justifies Incremental and Other Varigngmges 355—
368. Kluwer.
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Abstract

Analogical learning is based on a two-
step inference process: (i) computation
of a structural mapping between a new
and a memorized situation; (ii) transfer
of knowledge from the known to the un-
known situation. This approach requires
the ability to search for and exploit such
mappings, hence the need to properly de-
fine analogical relationships, and to effi-
ciently implement their computation.

In this paper, we propose a unified defini-
tion for the notion of (formal) analogical
proportion, which applies to a wide range
of algebraic structures. We show that this
definition is suitable for learning in do-
mains involving large databases of struc-
tured data, as is especially the case in Nat-
ural Language Processing (NLP). We then
present experimental results obtained on
two morphological analysis tasks which
demonstrate the flexibility and accuracy of
this approach.

Introduction
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induced, based on one or several analogs. The im-
plementation of this kind of inference process re-

quires techniques for searching for, and reasoning
with, structural mappings, hence the need to prop-
erly define the notion of analogical relationships and

to efficiently implement their computation.

In Natural Language Processing (NLP), the typ-
ical dimensionality of databases, which are made
up of hundreds of thousands of instances, makes
the search for complex structural mappings a very
challenging task. It is however possible to take ad-
vantage of the specific nature of linguistic data to
work around this problem. Formal (surface) analog-
ical relationships between linguistic representations
are often a good sign of deeper analogies: a surface
similarity between the word stringsgrite and writer
denotes a deeper (semantic) similarity between the
related concepts. Surface similarities can of course
be misleading. In order to minimize such confu-
sions, one can take advantage of other specificities
of linguistic data: (i) their systemic organization in
(pseudo)-paradigms, and (ii) their high level of re-
dundancy. In a large lexicon, we can indeed expect
to find many instances of pairs likerite-writer: for
instanceread-reader, review-reviewer...

Complementing surface analogies with statistical
information thus has the potential to make the search
problem tractable, while still providing with many

Analogical learning (Gentner et al., 2001) is basedood analogs. Various attempts have been made to
on a two-step inductive process. The first step comuse surface analogies in various contexts: automatic
sists in the construction ofstructuralmapping be-
tween a new instance of a problem and solved iranalysis (Lepage, 1999a; Pirrelli and Yvon, 1999)

stances of the same problem. Once this mappirand syntactical analysis (Lepage, 1999b). These ex-
is established, solutions for the new instance can riments have mainly focused on linear represen-

word pronunciation (Yvon, 1999), morphological

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 120-127, Ann Arbor, June 20082005 Association for Computational Linguistics



tations of linguistic data, taking the form of finite our reasoning ability; it is also invoked to explain
sequences of symbols, using a restrictive and somseme human skills which do not involve any sort of
timesad-hoc definition of the notion of an analogy. conscious reasoning. This is the case for many tasks
The first contribution of this paper is to propose aelated to the perception and production of language:
general definition of formal analogical proportiondexical access, morphological parsing, word pronun-
for algebraic structures commonly used in NLPciation, etc. In this context, analogical models have
attribute-value vectors, words on finite alphabets anloeen proposed as a viable alternative to rule-based
labeled trees. The second contribution is to showodels, and many implementation of these low-
how these formal definitions can be used within atevel analogical processes have been proposed such
instance-based learning framework to learn morph@s decision trees, neural networks or instance-based
logical regularities. learning methods (see e.g. (Skousen, 1989; Daele-
This paper is organized as follows. In Section 2mans et al., 1999)). These models share an accepta-
our interpretation of analogical learning is intro-tion of analogy which mainly relies on surfasini-
duced and related to other models of analogicddrities between instances.
learning and reasoning. Section 3 presents a generalour learner tries to bridge the gap between these
algebraic framework for defining analogical proporapproaches and attempts to remain faithful to the
tions as well as its instantiation to the case of wordiglea of structural analogies, which prevails in the
and labeled trees. This section also discusses thé literature, while also exploiting the intuitions of
algorithmic complexity of the inference procedurelarge-scale, instance-based learning models.
Section 4 reports the results of experiments aimed
at demonstrating the flexibility of this model and af:
assessing its generalization performance. We coMVe consider the following supervised learning task:
clude by discussing current limitations of this mode& learner is given a sef of training instances

2 Analogical learning

and by suggesting possible extensions. {X1,...,X,} independently drawn from some un-
known distribution. Each instanc¥; is a vector
2 Principles of analogical learning containingm features: (X1, ..., X;m). GivenS,

the task is to predict the missing features of partially
informed new instances. Put in more standard terms,
The ability to identify analogical relationships be-the set of known (resp. unknown) features for a new
tween what looks like unrelated situations, and tealue X forms theinput spacgresp.output spacg
use these relationships to solve complex problemthe projections ofX onto the input (resp. output)
lies at the core of human cognition (Gentner et alspace will be denotefi X) (resp.O(X)). This set-
2001). A number of models of this ability haveting is more general than the simpler classification
been proposed, based on symbolic (e.g. (Falketask, in which only one feature (the class label) is
heimer and Gentner, 1986; Thagard et al., 199@nknown, and covers many other interesting tasks.
Hofstadter and the Fluid Analogies Research group, The inference procedure can be sketched as fol-
1995)) or subsymbolic (e.g. (Plate, 2000; Holyoakows: training examples are simply stored for fu-
and Hummel, 2001)) approaches. The main focusire use; no generalization (abstraction) of the data
of these models is the dynamic process of analogyg performed, which is characteristiclakzy learning
making, which involves the identification of a struc-(Aha, 1997). Given a new instancé, we identify
tural mappings between a memorized and a new sformal analogical proportions involving in the in-
uation. Structural mapping relates situations whiclput space; known objects involved in these propor-
while being apparently very different, share a set dfons are then used to infer the missing features.
common high-level relationships. The building of An analogical proportion is a relation involv-
a structural mapping between two situations utilizeig four objects A, B, C' and D, denoted by
several subparts of their descriptions and the relat : B :: C : D and which readsi is to B asC is
tionships between them. to D. The definition and computation of these pro-
Analogy-making seems to play a central role irportions are studied in Section 3. For the moment,

2.1 Analogical reasoning
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we contend that it is possible to construct analogic An algebraic framework for analogical

proportions between (possibly partially informed)  proportions

objects inS. Let I(X) be a partially described ob- _ _ . o

ject not seen during training. The analogical inferOur inductive model requires the availability of a de-

ence process is formalized as: vice for computing analogical proportions on feature

vectors. We consider that an analogical proportion

holds between four feature vectors when the propor-

3 tion holds for all components. In this section, we

T(X)={(4,B,0)eS5"| propose a unified algebraic framework for defining
I(A): I(B) = I(C) : I(X)}  analogical proportions between individual features.

After giving the general definition, we present its in-
2. For each(A,B,C) € T(X), compute hy-

1. Construct the séf (X) C S* defined as:

Sl stantiation for two types of features: words over a
pothese®)(X) by solving the equation: finite alphabet and sets of labelled trees.
O(X)=0(A): O(B) = 0(C) :? 3.1 Analogical proportions

This inference procedure shows lots of similari-Our starting point will .be analogical proportions in
ties with thek-nearest neighbors classifier-iN) & SetU, which we define as followsyz, y, 2,t €
which, given a new instance, (i) searches the trainirlg:  * ¥ =+ # : t ifand only if eitherz = y andz = ¢
set for close neighbors, (ii) compute the unknow@’ © = # andy = . In the sequel, we assume that
class label according to the neighbors’ labels. odf IS additionally provided with an associative inter-
model, however, does not use any metric betweéqri"lI composition Iaqu_, Wh'Ch makesU, @) asemi- ]
objects: we only rely on the definition of analogical@"®UP- The generalization of proportions to semi-
proportions, which reveal systemic, rather than SLgr(_)UpS |_nvolves two key |deas_: tldecompc_)snmm)f
perficial, similarities. Moreover, inputs and outputP/ects into smaller parts, subjectetternation con-
are regarded in a symmetrical way: outputs are néfra_unts To form_allz_e the idea ofdeco_mposmon, we
restricted to a set of labels, and can also be structur8§fine thefactorizationof an element: in U as:
objects such as sequences. The implementation Befinition 1 (Factorization)
the model still has to address two specific issues. A factorizationof v € U is a sequence .. . uy,,
with Vi,u; € U, such that:u; & ... & u, = wu.

. 3 . _ .
e When exploringS=, an exhaustive search eval Each termu; is afactorof u.

uates|S|? triples, which can prove to be in- ; _
tractable. Moreover, objects i§ may be The alternation constraint expresses the fact that
unequally relevant, and we might expect thénalogically related objects should be made of alter-

search procedure to treat them accordingly. Nating factors: for : y = 2 : ¢ to hold, each factor
in « should be found alternatively inand inz. This

e Whenever several competing hypotheses akgelds a first definition of analogical proportions:

—

proposed forO(X), a ranking must be per- pefinition 2 (Analogical proportion)

formed. In our current implementation, hy- (5 - ¢) € U form ananalogical proportionde-
potheses are ranked based on frequency counfigted by : y :: z : ¢ if and only if there exists some

These issues are well-known problems feNN ~ factorizationse1 @ ... ©zq = 2, )1® ... DYa = ¥,
classifiers. The second one does not appear to Be® --- ® 24 = 2, 1 @ ... @ {g = t such that
critical and is usually solved based on a majority’® (¥i> zi) € {(zi, 1), (ti, zi)}. The smallestl for
rule. In contrast, a considerable amount of effort ha¥hich such factorizations exist is termed thegree
been devoted to reduce and optimize the search pi@-the analogical proportion.
cess, via editing and condensing methods, as stud-This definition is valid for any semigroup, ard
ied e.g. in (Dasarathy, 1990; Wilson and Martinezfortiori for any richer algebraic structure. Thus, it
2000). Proposals for solving this problem are disreadily applies to the case of groups, vector spaces,
cussed in Section 3.4. free monoids, sets and attribute-value structures.
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3.2 Words over Finite Alphabets . w(l):e . w(k) : e
3.2.1 Analogical Proportions between Words e:w(l) C e:w(k) O

Let X be a finite alphabet®* denotes the set of
finite sequences of elementsXf calledwordsover Figure 1: The transducer,, computing comple-
¥. ¥*, provided with the concatenation operation mentary sets wri.
is a free monoid whose identity element is the empty
worde. Forw € ¥*, w(i) denotes the! symbol in
w. In this context, definition (2) can be re-stated as:

Definition 3 (Analogical proportion in ( X*,.))
(z,y,2,t) € X* form an analogical proportion, de-
noted byx : y :: z : tif and only if there exists some
integer d and some factorizations;...zy = =z, ueov = {ujviugvy ... Uy, St.u;,v; € 3%,
Y1 Yd =Y, 21...24 = Z, t1...tqg = t such that
Vi, (yi, Zi) S {(CE,, tz‘), (tz‘, .f,)}

An examp|e of ana|ogy between words is: The shuffle of two words andwv contains all the
wordsw which can be composed using all the sym-
bols in« and v, subject to the condition that if
with z; = €, zo = view, z3 = ing andt; = re, precedes in u (or in v), then it precedes in w.
ty = search, t3 = er. This definition generalizes Taking, for instancey = abc andv = def, the
the proposal of (Lepage, 1998). It does not ensuiords abcde f, abdefc, adbecf are inu e v; this
the existence of a solution to an analogical equatioi§ not the case witlubefcd. This operation gen-
nor its uniqueness when it exists. (Lepage, 199&yalizes straightforwardly to languages. The shuf-
gives a set of necessary conditions for a solution tiée of two regular languages is regular (Sakarovitch,
exist. These conditions also apply here. In particui2003); the automatod, computingK e L, is derived
lar, if ¢ is a solution ofr : y :: 2 :?, thent contains, from the automatalx = (%, Qk., ¢%, Fk,dx) and
in the same relative order, all the symbolgjiandz Az = (X,Qr,q}, Fr,dL) recognizing respectively
that are not inz. As a consequence, all solutions of K and L as the product automatd = (3, Qx x
an equation have the same length. Q. (4%, 4%), Fx x Fr,6), where§ is defined as:
3.2.2 AFinite-state Solver g((QK’QL)’f) - (TK’TL_) T-and only it e_ither

o i o K(qK,CL) =TK anqu = rg or 5L(qL,CL) =T

Definition (3) yields an efficient procedure forgngq,. = ry.

solving analogical equations, based on finite-state The notions of complementary set and shuffle are

sketched here. A full description can be found injjrect consequence of the definitions.

(Yvon, 2003). To start with, let us introduce the no-
tions of complementary setndshuffle product wEUSY S uE W\

Shuffle Theshuffleu, e v of two wordsu andv is
introduced e.g. in (Sakarovitch, 2003) as follows:

UL .o Uy = U, V] ... 0y =V}

viewing : reviewer :: searching : researcher

Complementary set If v is a subword ofw, the = solving analogical equations The notions of
complementary seif v with respect tow, denoted shyffle and complementary sets yield another
by w\v is the set of subwords af obtained by re- characterization of analogical proportion between

moving fromw, in a left-to-right fashion, the sym- \yords, based on the following proposition:
bols inv. For examplegea is a complementary sub-

word of xmplr with respect texemplar. Whenv is
not a subword ofv, w\v is empty. This notioncan v,  » te>* z:yuz:toretNyez£0
be generalized to any regular language.

Proposition 1.

The complementary set of with respect taw is An analogical proportion is thus established if the
a regular set: it is the output language of the finitesymbols inz andt are also found iy andz, and ap-
state transducér,, (see Figure 1) for the input pear in the same relative order. A corollary follows:
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Proposition 2. S
tisasolutionofr:y:: z:? &t e (yez)\z NP VP PP
NP VP NP+ o~ T~
o~ hiscax AUX VP by NP

he poli he VP P
i i I the ice nave IS car
The set of solutions of an analogical equation | haL/ebeen VP the police

x:y 2z :7is aregular set, which can be computed impounded o
with a finite-state transducer. It can also be shown . mpounded
that this analogical solver generalizes the approach S
based on edit distance proposed in (Lepage, 1998). N
3.3 Trees NP VP NP : i X i

’ T~ theca AUX VP by NP
Labelled trees are very common structures in NLp e e V|P heca e b Ve oo
tasks: they can represent syntactic structures, or eaten |

. . . eaten
terms in a logical representation of a sentence. To

express the definition of analogical proportion be- Figure 2: Analogical proportion between trees.
tween trees, we introduce the notion of substitution.

Definition 4 (Substitution)

A (single)substitutionis a pair (variable < tree).
The application of the substitutiqn — ¢') to a tree
t consists in replacing each leaf ofabelled byv by
the treet’. The result of this operation is denoted: The learning algorithm introduced in Section 2.2

t(v — t'). For each variablev, we define the binary IS & two-step procedure: a search step and a trans-
operator<, ast <, t' =t (v« t'). fer step. The latter step only involves the resolu-

tion of (a restricted number of) analogical equations.
When z, y and z are known, solvingr : y :: z :?
Definition 5 (Analogical proportion (trees)) amounts to computing the output language of the
(z,y,2,t) € U form an analogical propor- transducer representing e z)\z: the automaton
tion, denoted byr : y :: z : ¢ iff there exists some for this language has a number of states bounded by

If we use, for trees, the solver based on tree lin-
earizations, the resolution of an equation amounts,
in both cases, to solving analogies on words.

Definition 2 can then be extended as:

variables (vy,...,v,—1) and some factorizations | ;| x |y | x | z|. Given the typical length of words in
1y - Qo Tn =2, Y1 Wy -2 o Yn = Y our experiments, and given that the worst-case ex-
21, -« Qg Zn = 2, t1 <y oo Sy, by = TSUCh ponential bound for determinizing this automaton is
thatvi, (yi, 2i) € {(zi, t:), (ti; )} hardly met, the solving procedure is quite efficient.
An example of such a proportion is illustrated on  The problem faced during the search procedure
Figure 2 with syntactic parse trees. is more challenging: giver, we need to retrieve

This definition yields an effective algorithm all possible triples(y, z,¢) in a finite setL such
computing analogical proportions between treethat z: vy :: 2 : t. An exhaustive search requires
(Stroppa and Yvon, 2005). We consider here a simhe computation of the intersection of the finite-
pler heuristic approach, consisting in (i) linearizingstate automaton representing the output language of
labelled trees into parenthesized sequences of syiil; e L)\ x with the automaton fof.. Given the size
bols and (ii) using the analogical solver for wordsof L in our experiments (several hundreds of thou-
introduced above. This approach yields a faster, atands of words), a complete search is intractable and
beit approximative algorithm, which makes analogiwe resort to the following heuristic approach.
cal inference tractable even for large tree databases. ; ig first splitinto& bins{L1, ..., L}, with | L;

small with respect to L |. We then randomly select
k bins and compute, for each hin, the output lan-
We have seen how to compute analogical relatiomguage of(L; e L;)\z, which is then intersected with
ships for features whose values are words and treds. we thus only consider triples containing at least

3.4 Algorithmic issues
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two words from the same bin. It has to be noted thaif analysis makes it possible to reconstruct the series
the bins are not randomly constructed: training exaf morphological operations deriving a lemma, to
amples are grouped into inflectional or derivationatompute its root, its part-of-speech, and to identify
families. To further speed up the search, we also inmorpheme boundaries. This information is required,
pose an upper bound on the degree of proportionfar instance, to compute the pronunciation of an un-
All triples retrieved during thesg partial searches known word; or to infer the compositional meaning
are then merged and considered for the transfer stegd.a complex (derived or compound) lemma. Bins
The computation of analogical relationships hagather entries sharing a common root.
been implemented in a generic analogical solver;

this solver is based on Vaucanson, an automata ma- Input=acrobatically; output =

nipulation library using high performance generic B
rogramming (Lombardy et al., 2003).
prog g( y ) A BIA.
4 Experiments TN |
N AIN. ally
4.1 Methodology | |
acrobat ic

The main purpose of these experiments is to demop- ) :
strate the flexibility of the analogical learner. WeElgure 3: Input/output pair for task 2. Bound mor-

considered two different supervised learning taskghemes have a compositional typ@| A. denotes a

both aimed at performing the lexical analysis of iso-swcflx that turns adjectives into adverbs.

lated word forms. Each of these tasks represents aThese experiments use the English, German, and
possible instantiation of the learning procedure inButch morphological tables of the CELEX database
troduced in Section 2.2. (Burnage, 1990). For task 1, these tables contain
The first experiment consists in computing onéespectively 89 000, 342 000 and 324 000 different
or several vector(s) of morphosyntactic features te/ord forms, and the number of features to predict is
be associated with a form. Each vector comprisg€spectively 6, 12, and 10. For task 2, which was
the lemma, the part-of-speech, and, based on tealy conducted with English lemma, the total num-
part-of-speech, additional features such as numb&egr of different entries is 48 407.
gender, case, tense, mood, etc. An (English) in- For each experiment, we perform 10 runs, using
put/output pair for this tasks thus looks like: in-1 000 randomly selected entries for testingsen-
put=replying; output={reply; V-pp-- }, where the eralization performance is measured as follows: the
placeholder 2’ denotes irrelevant features. Lexi- System’s output is compared with the reference val-
cal analysis is useful for many applications: a POges (due to lexical ambiguity, a form may be asso-
tagger, for instance, needs to “guess” the posstiated in the database with several feature vectors
ble part(s)-of-speech of unknown words (MikheevQr parse trees). Per instanpeecisionis computed
1997). For this task, we use the definition of analogas the relative number of correct hypotheses, i.e.

ical proportions for “flat” feature vectors (see sechypotheses which exactly match the reference: for
tion 3.1) and for word strings (section 3.2). Thetask 1, all features have to be correct; for task 2, the

training data is a list of fully informed lexical en- parse tree has to be identical to the reference tree.
tries; the test data is a list of isolated word form&er instanceecall is the relative number of refer-
not represented in the lexicon. Bins are constructegnce values that were actually hypothesized. Preci-
based on inflectional families. sion and recall are averaged over the test set; num-
The second experiment consists in computing Bers reported below are averaged over the 10 runs.

morphological parse of unknown lemmas: for each Various parameters affect the performankethe
input lemma, the output of the system is one or se\pumber of randomly selected bins considered during
eral parse trees representing a possible hierarchi¢dBf search step (see Section 3.4) andhe upper

decomposition of the input into.(morphologi.call.y 'Due to lexical ambiguity, the number of tested instances is
categorized) morphemes (see Figure 3). This kingsually greater than 1 000.
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bound of the degree of extracted proportions. given bin all the members of the same derivational

(rather than inflectional) family. For Dutch, these
4.2 Experimental results results are comparable with the results reported in
Experimental results for task 1 are given in Tables A van den Bosch and Daelemans, 1999), who report
2 and 3. For each main category, two recall and prén accuracy of about 92% on the task of predicting
cision scores are computed: one for the sole lemnthe main syntactic category.
and POS attributes (left column); and one for the

lemma and all the morpho-syntactic features (on the Rec. | Prec.
right). In these experiments, parameters are set as Morphologlt}:]ally Complex ?ggé zggé
follows: k = 150 andd = 3. Ask grows, both recall ers - -

and precision increase (up to a limif);= 150 ap- Table 4: Results on task 2 for English

pears to be a reasonable trade-off between efficiency

and accuracy. A further increase @floes not sig-  The second task is more challenging since the ex-

nificantly improve accuracy: taking= 3 ord =4  act parse tree of a lemma must be computed. For

yields very comparable results. morphologically complex lemmas (involving affixa-

tion or compounding), it is nevertheless possible to

obtain acceptable results (see Table 4, showing that

some derivational phenomena have been captured.
Nouns | 76.66 | 94.64 | 75.26 | 9537 | pyrther analysis is required to assess more precisely
Verbs | 94.83 | 97.14 | 94.79 | 97.3T | e notential of this method.

Adjectives| 26.68 | 72.24 | 27.89 87.67 From a theoretical perspective, it is important to

realize that our model does not commit us to a

morpheme-based approach of morphological pro-

Lemma + POS| Lemma + Features cesses. This is obvious in task 1; and even if

Rec. | Prec. | Rec. Prec. task 2 aims at predicting a morphematic parse of in-
Nouns 71.39 | 92.17 | 54.59 74.75 put lemmas, this goal is achievedthout segment-
Verbs 96.75 | 97.85 | 93.26 94.36 ing the input lemma into smaller units For in-

Adjectives| 91.59 | 96.09 | 90.02 95.33 stance, our learner parses the lemegn&matically

as:[[[.N enigmal[.A|N ical]| B|A. ly], that is with-

out trying to decide to which morph the orthographic

t should belong. In this model, input and output

Lemma + POS| Lemma + Features SPaces are treated symmetrically and correspond to

D

Rec. | Prec. | Rec. Prec. | distinct levels of representation.

Nouns | 93.51 | 98.28 | 77.32 | 81.70 _ _
Verbs | 99.55 | 99.69 | 9050 | 90.63 | © Discussionand future work

Adjectives| 99.14 | 99.28 | 99.01 99.15

Lemma + POS| Lemma + Features
Rec. Prec. Rec. Prec.

Table 1: Results on task 1 for English

Table 2: Results on task 1 for Dutch

In this paper, we have presented a generic analog-
ical inference procedure, which applies to a wide
range of actual learning tasks, and we have detailed
As a general comment, one can note that higits instantiation for common feature types. Prelimi-
generalization performance is achieved for lannary experiments have been conducted on two mor-
guages and categories involving rich inflectionaphological analysis tasks and have shown promising
paradigms: this is exemplified by the performancgeneralization performance.
on all German categories. English adjectives, at These results suggest that our main hypotheses
the other end of this spectrum, are very difficult tcare valid: (i) searching for triples is tractable even
analyze. A simple and effective workaround fomwith databases containing several hundred of thou-
this problem consists in increasing the size the sulsands instances; (ii) formal analogical proportions
lexicons (; in Section 3.4) so as to incorporate in aare a reliable sign of deeper analogies between lin-

Table 3: Results on task 1 for German

126



guistic entities; they can thus be used to devise flex- Konikov, editors, The analogical mind pages 161-
ible and effective learners for NLP tasks. 195. The MIT Press, Cambridge, MA.

This work is currently being developed in variousy,qq Lepage. 1998. Solving analogies on words: An
directions: first, we are gathering additional experi- algorithm. InProceedings of COLING-ACL '980l-
mental results on several NLP tasks, to get a deeperume 2, pages 728-735, Moe#l, Canada.

understanding of the generalization capabilities of, . Lepage. 1999a. Analogy+tables=conjugation.

our analogical learner. One interesting issue, not |n G. Friedl and H.G. Mayr, editorProceedings of
addressed in this paper, is the integration of vari- NLDB 99, pages 197-201, Klagenfurt, Germany.

ous form§ of |IHQUIStI.C knowlgdge n the_qeflmtloanes Lepage. 1999b. Open set experiments with direct
of analogical proportions, or in the specification of nalysis by analogy. Iroceedings of NLPRS '99

the search procedure. We are also considering al-volume 2, pages 363-368, Beijing, China.
ternative heuristic search procedures, which coulg

. I)i/lvain Lombardy, Raplé Poss, Yann Bgis-Gianas,
improve or complement the approaches presented Mg jacques Sakarovitch. 2003. Introducing Vaucan-

this paper. A possible extension would be to define son. InProceedings of CIAA 200pages 96—107.
and take advantage of non-uniform distributions of

S . ._Andrei Mikheev. 1997. Automatic rule induction for
training instances, which could be used both during unknown word guessingComputational Linguistics

the searching and ranking steps. We finally believe 3(3):405-423.
that this approach might also prove useful in other

application domains involving structured data and/t© Pirrelli and Francois Yvon. 1999. Analogy in the
lexicon: a probe into analogy-based machine learning

are willing to experiment with other kinds of data.  4f janguage. IrProceedings of the 6th International
Symposium on Human Communicati®@antiago de
Cuba, Cuba.
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Abstract

We address the problem of learning a
morphological automaton directly from
a monolingual text corpus without re-
course to additional resources. Like pre-
vious work in this area, our approach ex-
ploits orthographic regularities in a search
for possible morphological segmentation
points. Instead of affixes, however, we
search for affix transformation rules that
express correspondences between term
clusters induced from the data. This
focuses the system on substrings hav-
ing syntactic function, and yields cluster-
to-cluster transformation rules which en-
able the system to process unknown mor-
phological forms of known words accu-
rately. A stem-weighting algorithm based
on Hubs and Authorities is used to clar-
ify ambiguous segmentation points. We
evaluate our approach using the CELEX
database.

1 Introduction

This paper presents a completely unsupervised
method for inducing morphological knowledge di-
rectly from a large monolingual text corpus. This
method works by searching for transformation rules
that express correspondences between term clusters
which are induced from the corpus in an initial step.
It covers both inflectional and derivational morphol-
ogy, and is able to process previously unseen morphs
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of a word, as long as one of its morphs has been as-
signed to a cluster.

Aside from its academic appeal, acquisition of
this morphological knowledge is a step toward the
goal of rapidly retargetable natural language pro-
cessing. Toward this end, we envisage two uses for
it:

1. It can be used to perform morphological nor-
malization (i.e., stemming (Porter, 1980)).

2. In the form of transformation rules, it can help
us classify unknown words, thereby enhancing
the utility of cluster-based features for applica-
tions such as information extraction (Miller et
al., 2004; Freitag, 2004).

There is a considerable literature on the problem
of morphology induction in general, and unsuper-
vised (or lightly supervised) induction in particular.
Much of the work attempts to exploit orthographic
regularities alone, seeking affixation patterns (or sig-
natures) that permit a compressive representation of
the corpus. Several researchers propose algorithms
based on the minimum description length (MDL)
principle, achieving reasonable success in discov-
ering regular morphological patterns (Brent et al.,
1995; Goldsmith, 2000; Creutz and Lagus, 2002;
Argamon et al., 2004). MDL has information the-
oretic underpinnings, and an information theoretic
objective function achieves similar success (Snover
et al., 2002). Note that none of these approaches at-
tempts to account for the syntactic dimension of af-
fixation. And all must adopt strategies to cope with a
very large search space (the power set of the vocab-

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 128-135, Ann Arbor, June 20082005 Association for Computational Linguistics



ulary, in the limit). Such strategies form a common
theme in these papers.

Our approach implicitly employs term co-
occurrence statistics in the form of statistically de-
rived term clusters. A number of researchers use
such statistics directly. A common technique is to
cast a word as a distribution over other words that
occur within some limited window across the cor-
pus. This definition of co-occurrence yields a se-
mantic distance measure which tends to draw to-
gether inflectional variants of a word. Combined
with heuristics such as string edit distance, it can be
used to find reliable conflation sets (Xu and Croft,
1998; Baroni et al., 2002). A somewhat tighter def-
inition of co-occurrence, which nevertheless yields
a semantic distance measure, serves as the basis of
a method that captures irregular inflectional trans-
formations in Yarowsky and Wicentowski (2001).%
Schone and Jurafsky (2001) employ distributions
over adjacent words (yielding a syntactic distance
metric) to improve the precision of their conflation
sets.

In contrast with these approaches, ours is predi-
cated on a strictly local notion of co-occurrence. It
is well known that clustering terms from a corpus
in English or a related language, using a distance
measure based on local co-occurrence, yields clus-
ters that correspond roughly to part of speech cate-
gories (Schiitze, 1995; Clark, 2000). The heart of
our idea is to search for affix transformation rules
mapping terms in one cluster to those in another.
The search for such rules has previously been con-
ducted in the context of supervised part-of-speech
tagging (Mikheev, 1997), but not to our knowledge
using word clusters. Basing the search for affix pat-
terns on a syntactic partition of the vocabulary, albeit
a noisy one, greatly reduces the size of the space of
possible conflation sets. Furthermore, the resulting
rules can be assigned a syntactic interpretation.

2 Clustering

A prerequisite of our method is a clustering of
terms in the corpus vocabulary into rough syntac-
tic groups. To achieve this, we first collect co-
occurrence statistics for each word, measuring the

INote that this method presupposes the availability of sev-

eral resources in addition to a corpus, including alist of canon-
ical inflectional suffixes.
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recently soon slightly quickly ...
underwriter designer commissioner ...
increased posted estimated raised ...
agreed declined expects wants ...

Table 1: Sample members of four clusters from the
Wall Street Journal corpus.

frequency of words found immediately adjacent to
it in the corpus, treating left occurrences as dis-
tinct from right occurrences. This co-occurrence
database serves as input to information theoretic co-
clustering (Dhillon et al., 2003), which seeks a par-
tition of the vocabulary that maximizes the mutual
information between term categories and their con-
texts. This approach to term clustering is closely
related to others from the literature (Brown et al.,
1992; Clark, 2000).2

Recall that the mutual information between ran-
dom variables X and Y can be written:

P(z,y)

PPy

Mxy = > P(z,y)In
zy

Here, X and Y correspond to term and context clus-
ters, respectively, each event z and y the observation
of some term and contextual term in the corpus. We
perform an approximate maximization of M xy us-
ing a simulated annealing procedure in which each
random trial move takes a word z or context y out
of the cluster to which it is tentatively assigned and
places it into another.

We performed this procedure on the Wall Street
Journal (WSJ) portion of the North American News
corpus, forming 200 clusters. Table 1 shows sample
terms from several hand-selected clusters.

3 Method

In our experiments and the discussion that follows,
stems are sub-strings of words, to which attach af-
fixes, which are sub-string classes denoted by perl-
style regular expressions (e.g., e?d$ or “re). A
transform is an affix substitution which entails a
change of clusters. We depict the affix part of the

2While we have not experimented with other clustering ap-
proaches, we assume that the accuracy of the derived mor-
phologica information is not very sensitive to the particular
methodol ogy.



transform using a perl-style s/// operator. For ex-
ample, the transform s/ed$/ing/ corresponds to
the operation of replacing the suffix ed with Ing.

3.1 Overview

The process of moving from term clusters to a trans-
form automaton capable of analyzing novel forms
consists of four stages:

1. Acquire candidate transformations. By
searching for transforms that align a large
number of terms in a given pair of clusters,
we quickly identify affixation patterns that are
likely to have syntactic significance.

2. Weighting stems and transforms. The output
of Step 1 is a set of transforms, some overlap-
ping, others dubious. This step weights them
according to their utility across the vocabulary,
using an algorithm similar to Hubs and Author-
ities (Kleinberg, 1998).

3. Culling transforms. We segment the words in
the vocabulary, using the transform weights to
choose among alternative segmentations. Fol-
lowing this segmentation step, we discard any
transform that failed to participate in at least
one segmentation.

4. Constructing an automaton. From the re-
maining transforms we construct an automaton,
the nodes of which correspond to clusters, the
edges to transforms. The resulting data struc-
ture can be used to construct morphological
parses.

The remainder of this section describes each of these
steps in detail.

3.2 Acquiring Transforms

Once we are in possession of a sufficiently large
number of term clusters, the acquisition of candidate
transforms is conceptually simple. For each pair of
clusters, we count the number of times each possible
transform is in evidence, then discard those trans-
forms occurring fewer than some small number of
times.

For each pair of clusters, we search for suffix
or prefix pairs, which, when stripped from match-
ing members in the respective clusters lead to as
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s/ful$/less/ pain harm use ...

s/~ /over/ charged paid hauled ...
s/cked$/wing/ | kno sho che ...

s/nd$/ts/ le se fi ..

s/s$/ed/ recall assert add ...
s/ts$/ted/ asser insis predic...
s/es$/ing/ argu declar acknowledg ...
s/s$/ing/ recall assert add ...

Table 2: Sample transforms and matching stems
from the Wall Street Journal after the acquisition
step.

large a cluster intersection as possible. For ex-
ample, if walked and talked are in Cluster 1,
and walking and talking are in Cluster 2, then
walk and talk are in the intersection, given the
transform s/ed$/ing/. In our experiments, we
retain any cluster-to-cluster transform producing an
intersection having at least three members.

Table 2 lists some transforms derived from the
WSJ as part of this process, along with a few of the
stems they match. These were chosen for the sake of
illustration; this list does not necessarily the reflect
the quality or distribution of the output. (For exam-
ple, transforms based on the pattern s/$/s/ easily
form the largest block.)

A frequent problem is illustrated by the trans-
forms s/s$/ed/ and s/ts$/ted/. Often,
we observe alternative segmentations for the same
words and must decide which to prefer. We resolve
most of these questions using a simple heuristic. If
one transform subsumes another—if the vocabulary
terms it covers is a strict superset of those covered
by the other transform—then we discard the sec-
ond one. In the table, all members of the transform
s/ts$/ted/ are also members of s/s$/ed/, so
we drop s/ts$/ted/ from the set.

The last two lines of the table represent an ob-
vious opportunity to generalize. In cases like this,
where two transforms are from the same cluster pair
and involve source or destination affixes that dif-
fer in a single letter, the other affixes being equal,
we introduce a new transform in which the elided
letter is optional (in this example, the transform
s/e?s$/ing/). The next step seeks to resolve
this uncertainty.



s/$/s/ 0.2
s/e?$/ed/ | 0.1
s/e?$/ing/ | 0.1
s/s$/ses/ | 1.6e-14
s/w$/ws/ 1.6e-14
s/ b/c/ 1.6e-14

Table 3: The three highest-weighted and lowest-

weighted transforms.

3.3 Weighting Stems and Transforms

The observation that morphologically significant af-
fixes are more likely to be frequent than arbitrary
word endings is central to MDL-based systems. Of
course, the same can be said about word stems: a
string is more likely to be a stem if it is observed
with a variety of affixes (or transforms). Moreover,
our certainty that it is a valid stem increases with our
confidence that the affixes we find attached to it are
valid.

This suggests that candidate affixes and stems
can “nominate” each other in a way analogous to
“hubs” and “authorities” on the Web (Kleinberg,
1998). In this step, we exploit this insight in order
to weight the “stem-ness” and “affix-ness” of can-
didate strings. Our algorithm is closely based on
the Hubs and Authorities Algorithm. We say that
a stem and transform are “linked” if we have ob-
served a stem to participate in a transform. Begin-
ning with a uniform distribution over stems, we zero
the weights associated with transforms, then propa-
gate the stem weights to the transforms. For each
stem S and transform 7', such that S and T are
linked, the weight of S is added to the weight of
T. Next, the stem weights are zeroed, and the trans-
form weights propagated to the stems in the same
way. This procedure is iterated a few times or until
convergence (five times in these experiments).

3.4 Culling Transforms

The output of this procedure is a weighting of can-
didate stems, on the one hand, and transforms, on
the other. Table 3 shows the three highest-weighted
and three lowest-weighted transforms from an ex-
periment involving the 10,000 most frequent words
in the WSJ.

Although these weights have no obvious linguis-
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1. procedure SEGMENT(w)

2 A[x] +~ @ > Expansions to transform sets
3 S[x] « 0 > Stems to scores
4 for each transform ¢ do

5: if there exists s s.t. w € s -t then

6: Als-t] « A[s-t] U {t}

7 end if

8 end for

9 for T € Range(A) do

10: B[x] + 0

11: fort € T'do

12: S+ w-+t

13: B(s] < B[s] + Weight(t)

14: end for

15: s < MaxArg, B[z]

16: S[s] < S[s] + BJs]

17: end for

18: return MaxArg, S[x]

19: end procedure

Table 4: The segmentation procedure.

tic interpretation, we nevertheless can use them to
filter further the transform set. In general, however,
there is no single threshold that removes all dubi-
ous transforms. It does appear to hold, though, that
correct transforms (e.g., s/$/s/) outweigh com-
peting incorrect transforms (e.g., s/w$/ws/). This
observation motivates our culling procedure: We ap-
ply the transforms to the vocabulary in a competitive
segmentation procedure, allowing highly weighted
transforms to “out-vote” alternative transforms with
lower weights. At the completion of this pass
through the vocabulary, we retain only those trans-
forms that contribute to at least one successful seg-
mentation.

Table 4 lists the segmentation procedure. In this
pseudocode, w is a word, ¢ a transform, and s a
stem. The operation s - ¢ produces the set of (two)
words generated by applying the affixes of ¢ to s; the
operation w =+ ¢ (the stemming operation) removes
the longest matching affix of ¢ from w. Given a
word w, we first find the set of transforms associ-
ated with w, grouping them by the pair of words
to which they correspond (Lines 4-8). For exam-
ple, given the word “created”, and the transforms
s/ed$/ing/, s/ted$/ting/, and s/s$/d/,



the first two transforms will be grouped together in
A (with index {created, creating}), while the third
will be part of a different group.

Once we have grouped associated transforms, we
use them to stem w, accumulating evidence for dif-
ferent stemmings in B. In Line 15, we then discard
all but the highest scoring stemming. The score of
this stemming is then added to its “global” score in
Line 16.

The purpose of this procedure is the suppression
of spurious segmentations in Line 15. Although this
pseudocode returns only the highest weighted seg-
mentation, it is usually the case that all candidate
segmentations stored in S are valid, i.e., that sev-
eral or all breakpoints of a product of multiple af-
fixation are correctly found. And it is a byproduct
of this procedure that we require for the final step in
our pipeline: In addition to accumulating stemming
scores, we record the transforms that contributed to
them. We refer to this set of transforms as the culled
set.

3.5 Constructing an Automaton

Given the culled set of transforms, creation of a
parser is straightforward. In the last two steps we
have considered a transform to be a pair of af-
fixes (As, Ap). Recall that for each such trans-
form there are one or more cluster-specific trans-
forms of the form (Cs, Ag,Cp, Ap) in which the
source and destination affixes correspond to clusters.
We now convert this set of specific transforms into
an automaton in which clusters form the nodes and
arcs are affixation operations. For every transform
(Cs,As,Cp, Ap), we draw an arc from Cg to Cp,
labeling it with the general transform (Ag, Ap), and
draw the inverse arc from Cp, to Cs.

We can now use this automaton for a kind of un-
supervised morphological analysis. Given a word,
we construct an analysis by finding paths through
the automaton to known (or possibly unknown) stem
words. Each step replaces one (possibly empty) af-
fix with another one, resulting in a new word form.
In general, many such paths are possible. Most of
these are redundant, generated by following given
affixation arcs to alternative clusters (there are typ-
ically several plural noun clusters, for example) or
collapsing compound affixations into a single oper-
ation.
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s/s$lors/ 177
staffers
workers

competitors
factories

families

slors$/ions/

187
re-engineering
leadership
confidentiality

Figure 1: A fragment of the larger automaton from
the Wall Street Journal corpus.

In our experiments, we generate all possible paths
under the constraint that an operation lead to a
known longer wordform, that it be a possible stem
of the given word, and that the operation not consti-
tute a loop in the search.2 We then sort the analy-
sis traces heuristically and return the top one as our
analysis. In comparing two traces, we use the fol-
lowing criteria, in order:

e Prefer the trace with the shorter starting stem.

e Prefer the trace involving fewer character ed-
its. (The number of edits is summed across
the traces, the trace with the smaller sum pre-
ferred.)

e Prefer the trace having more correct cluster as-
signments of intermediate wordforms.

e Prefer the longer trace.

Note that it is not always clear how to perform an
affixation. Consider the transform s/ing$/e?d/,
for example. In practice, however, this is not a
source of difficulty. We attempt both possible expan-
sions (with or without the “e”). If either produces a
known wordform which is found in the destination
cluster, we discard the other one. If neither result-
ing wordform can be found in the destination cluster,
both are added to the frontier in our search.

4 Evaluation

We evaluate by taking the highest-ranked trace, us-
ing the ordering heuristics described in the previ-
ous section, as the system’s analysis of a given

30Onewordform w is apossible stem of another wo, if after

stripping any of the affixes in the culled set the resulting string
isasub-string of ws.



word.  This analysis takes the form of a se-
quence of hypothetical wordforms, from a puta-
tive stem to the target wordform (e.g., decide,
decision, decisions). The CELEX morpho-
logical database (Baayen et al., 1995) is used to pro-
duce a reference analysis, by tracing back from the
target wordform through any inflectional affixation,
then through successive derivational affixations un-
til a stem is reached. Occasionally, this yields more
than one analysis. In such cases, all analyses are re-
tained, and the system’s analysis is given the most
optimistic score. In other words, if a CELEX analy-
sis is found which matches the system’s analysis, it
is judged to be correct.

4.1 Results

In evaluating an analysis, we distinguish the follow-
ing outcomes (ordered from most favorable to least):

e Cor. The system’s analysis matches CELEX’s.

e Over. The system’s analysis contains all the
wordforms in CELEX’s, also contains addi-
tional wordforms, and each of the wordforms
is a legitimate morph of the CELEX stem.

e Under. The system’s analysis contains some
of the wordforms in CELEX’s; it may con-
tain additional wordforms which are legitimate
morphs of the CELEX stem. This happens, for
example, when the CELEX stem is unknown to
the system.

e Fail. The system failed to produce an analysis
for a word for which CELEX produced a multi-
wordform analysis.

e Spur. The system produced an analysis for a
word which CELEX considered a stem.

e Incor. All other (incorrect) cases.

Note that we discard any wordforms which are not
in CELEX. Depending on the vocabulary size, any-
where from 15% to 30% are missing. These are of-
ten proper nouns.

In addition, we measure precision, recall, and
F1 as in Schone and Jurafsky (2001). These met-
rics reflect the algorithm’s ability to group known
terms which are morphologically related. Groups

133

1K 5K 10K | 10K+1K | 20K
Cor 074 | 0.74 | 0.75 0.64 0.71
Over 0 0.004 | 0.003 0.002 0.002
Under | 0.005 | 0.04 | 0.05 0.06 0.07
Fail 025 | 021 | 018 0.28 0.14
Spur 0 0.002 | 0.01 0.01 0.02
Incor 0 0.003 | 0.01 0.02 0.05
Prec 10 098 | 0.95 10 0.80
Rec 085 | 0.82 | 081 0.96 0.82
F1 092 | 090 | 087 0.98 0.81

Table 5: Results of experiments using the Wall
Street Journal corpus.

are formed by collecting all wordforms that, when
analyzed, share a root form. We report these num-
bers as Prec, Rec, and F1.

We performed the procedure outlined in Sec-
tion 3.1 using the k£ most frequent terms from the
Wall Street Journal corpus, for k ranging from 1000
to 20,000. The expense of performing these steps is
modest compared with that of collecting term co-
occurrence statistics and generating term clusters.
Our perl implementation of this procedure consumes
just over two minutes on a lightly loaded 2.5 GHz
Intel machine running Linux, given a collection of
10,000 wordforms in 200 clusters.

The header of each column in Table 5 displays the
size of the vocabulary. The column labeled 10K+1K
stands for an experiment designed to assess the abil-
ity of the algorithm to process novel terms. For this
column, we derived the morphological automaton
from the 10,000 most frequent terms, then used it
to analyze the next 1000 terms.

The surprising precision/recall scores in this
column—scores that are high despite an actual
degradation in performance—argues for caution in
the use and interpretation of the precision/recall met-
rics in this context. The difficulty of the morpho-
logical conflation set task is a function of the size
and constituency of a vocabulary. With a small sam-
ple of terms relatively low on the Zipf curve, high
precision/recall scores mainly reflect the algorithm’s
ability to determine that most of the terms are not
related—a Pyrrhic victory. Nevertheless, these met-
rics give us a point of comparison with Schone and
Jurafsky (2001) who, using a vocabulary of English
words occurring at least 10 times in a 6.7 million-
word newswire corpus, report F1 of 88.1 for con-



flation sets based only on suffixation, and 84.5 for
circumfixation. While a direct comparison would
be dubious, the results in Table 5 are comparable to
those of Schone and Jurafsky. (Note that we include
both prefixation and suffixation in our algorithm and
evaluation.)

Not surprisingly, precision and recall degrade as
the vocabulary size increases. The top rows of the
table, however, suggest that performance is reason-
able at small vocabulary sizes and robust across
the columns, up to 20K, at which point the system
increasingly generates incorrect analyses (more on
this below).

4.2 Discussion

A primary advantage of basing the search for af-
fixation patterns on term clusters is that the prob-
lem of non-morphological orthographic regularities
is greatly mitigated. Nevertheless, as the vocabu-
lary grows, the inadequacy of the simple frequency
thresholds we employ becomes clear. In this section,
we speculate briefly about how this difficulty might
be overcome.

At the 20K size, the system identifies and retains
a number of non-morphological regularities. An ex-
ample are the transforms s/$/e/ and s/$/0/,
both of which align members of a name cluster with
other members of the same cluster (Clark/Clarke,
Brook/Brooke, Robert/Roberto, etc.). As a conse-
guence, the system assigns the analysis tim =>
time to the word “time”, suggesting that it be
placed in the name cluster.

There are two ways in which we can attempt to
suppress such analyses. One is to adjust parameters
so that noise transforms are less likely. The proce-
dure for acquiring candidate transforms, described
in Section 3.2, discards any that match fewer than 3
stems. When we increase this parameter to 5 and run
the 20K experiment again, the incorrect rate falls to
0.02 and F1 rises to 0.84. While this does not solve
the larger problem of spurious transforms, it does
indicate that a search for a more principled way to
screen transforms should enhance performance.

The other way to improve analyses is to corrob-
orate predictions they make about the constituent
wordforms. If the tim => time analysis is cor-
rect, then the word “time” should be at home in the
name cluster. This is something we can check. Re-
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call that in our framework both terms and clusters
are associated with distributions over adjacent terms
(or clusters). We can hope to improve precision by
discarding analyses that assign a term to a cluster
from which it is too distributionally distant. Apply-
ing such a filter in the 20K experiment, has a similar
impact on performance as the transform filter of the
previous paragraph, with F1 rising to 0.84.4

Several researchers have established the utility of
a filter in which the broader context distributions
surrounding two terms are compared, in an effort to
insure that they are semantically compatible (Schone
and Jurafsky, 2001; Yarowsky and Wicentowski,
2001). This would constitute a straightforward ex-
tension of our framework.

Note that the system is often able to produce the
correct analysis, but ordering heuristics described in
Section 3.5 cause it to be discarded in favor of an
incorrect one. The analyses us => using and
use => using are an example, the former be-
ing the one favored for the word “using”.  Note,
though, that our automaton construction procedure
discards a potentially useful piece of information—
the amount of support each arc receives from the
data (the number of stems it matches). This might
be converted into something like a traversal proba-
bility and used in ordering analyses.

Of course, a further shortcoming of our approach
is its inability to account for irregular forms. It
shares this limitation with all other approaches based
on orthographic similarity (a notable exception is
Yarowsky and Wicentowski (2001)). However, there
is reason to believe that it could be extended to
accommodate at least some irregular forms. We
note, for example, the cluster pair 180/185, which
is dominated by the transform s/e?$/ed/. Clus-
ter 180 contains words like “make”, “pay”, and
“keep”, while Cluster 185 contains “made”, “paid”,
and “kept”. In other words, once a strong correspon-
dence is found between two clusters, we can search
for an alignment which covers the orphans in the re-
spective clusters.

4Specifically, we take the Hellinger distance between the
two distributions, scaled into the range [0, 1], and discard those
anaysesfor whichthetermisat adistance greater than 0.5 from
the proposed cluster.



5 Conclusion

We have shown that automatically computed term
clusters can form the basis of an effective unsuper-
vised morphology induction system. Such clusters
tend to group terms by part of speech, greatly sim-
plifying the search for syntactically significant af-
fixes. Furthermore, the learned affixation patterns
are not just orthographic features or morphological
conflation sets, but cluster-to-cluster transformation
rules. We exploit this in the construction of morpho-
logical automata able to analyze previously unseen
wordforms.

We have not exhausted the sources of evidence
implicit in this framework, and we expect that at-
tending to features such as transform frequency will
lead to further improvements. Our approach may
also benefit from the kinds of broad-context seman-
tic filters proposed elsewhere. Finally, we hope to
use the cluster assignments suggested by the mor-
phological rules in refining the original cluster as-
signments, particularly of low-frequency words.
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Abstract

We present a discrete optimization model based on
a linear programming formulation as an alternative
to the cascade of classifiers implemented in many
language processing systems. Since NLP tasks are
correlated with one another, sequential processing
does not guarantee optimal solutions. We apply our
model in an NLG application and show that it per-
forms better than a pipeline-based system.

1 Introduction

NLP applications involve mappings between com-
plex representations. In generation a representa-
tion of the semantic content is mapped onto the
grammatical form of an expression, and in analy-
sis the semantic representation is derived from the
linear structure of a text or utterance. Each such
mapping is typically split into a number of differ-
ent tasks handled by separate modules. As noted
by Daelemans & van den Bosch (1998), individ-
ual decisions that these tasks involve can be formu-
lated as classification problems falling in either of
two groups: disambiguation or segmentation. The
use of machine-learning to solve such tasks facil-
itates building complex applications out of many
light components. The architecture of choice for
such systems has become a pipeline, with strict or-
dering of the processing stages. An example of
a generic pipeline architecture is GATE (Cunning-
ham et al., 1997) which provides an infrastructure
for building NLP applications. Sequential process-
ing has also been used in several NLG systems (e.g.
Reiter (1994), Reiter & Dale (2000)), and has been
successfully used to combine standard preprocess-
ing tasks such as part-of-speech tagging, chunking
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and named entity recognition (e.g. Buchholz et al.
(1999), Soon et al. (2001)).

In this paper we address the problem of aggregat-
ing the outputs of classifiers solving different NLP
tasks. We compare pipeline-based processing with
discrete optimization modeling used in the field of
computer vision and image recognition (Kleinberg
& Tardos, 2000; Chekuri et al., 2001) and recently
applied in NLP by Roth & Yih (2004), Punyakanok
et al. (2004) and Althaus et al. (2004). Whereas
Roth and Yih used optimization to solve two tasks
only, and Punyakanok et al. and Althaus et al. fo-
cused on a single task, we propose a general for-
mulation capable of combining a large number of
different NLP tasks. We apply the proposed model
to solving numerous tasks in the generation process
and compare it with two pipeline-based systems.

The paper is structured as follows: in Section 2 we
discuss the use of classifiers for handling NLP tasks
and point to the limitations of pipeline processing.
In Section 3 we present a general discrete optimiza-
tion model whose application in NLG is described
in Section 4. Finally, in Section 5 we report on the
experiments and evaluation of our approach.

2 Solving NLP Tasks with Classifiers

Classification can be defined as the task 7T; of as-
signing one of a discrete set of m,; possible labels
L; = {li1, .-, lim, }" to an unknown instance. Since
generic machine-learning algorithms can be applied
to solving single-valued predictions only, complex

'Since we consider different NLP tasks with varying num-
bers of labels we denote the cardinality of L;, i.e. the set of
possible labels for task 773, as m;.
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Figure 1: Sequential processing as a graph.

structures, such as parse trees, coreference chains or
sentence plans, can only be assembled from the out-
puts of many different classifiers.

In an application implemented as a cascade of
classifiers the output representation is built incre-
mentally, with subsequent classifiers having access
to the outputs of previous modules. An important
characteristic of this model is its extensibility: it
is generally easy to change the ordering or insert
new modules at any place in the pipeline’>. A ma-
jor problem with sequential processing of linguis-
tic data stems from the fact that elements of linguis-
tic structure, at the semantic or syntactic levels, are
strongly correlated with one another. Hence clas-
sifiers that have access to additional contextual in-
formation perform better than if this information is
withheld. In most cases, though, if task 7} can use
the output of 7; to increase its accuracy, the reverse
is also true. In practice this type of processing may
lead to error propagation. If due to the scarcity of
contextual information the accuracy of initial clas-
sifiers is low, erroneous values passed as input to
subsequent tasks can cause further misclassifications
which can distort the final outcome (also discussed
by Roth and Yih and van den Bosch et al. (1998)).

As can be seen in Figure 1, solving classifica-
tion tasks sequentially corresponds to the best-first
traversal of a weighted multi-layered lattice. Nodes
at separate layers (11, ..., T},) represent labels of dif-
ferent classification tasks and transitions between
the nodes are augmented with probabilities of se-

2Both operations only require retraining classifiers with a
new selection of the input features.
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lecting respective labels at the next layer. In the se-
quential model only transitions between nodes be-
longing to subsequent layers are allowed. At each
step, the transition with the highest local probability
is selected. Selected nodes correspond to outcomes
of individual classifiers. This graphical representa-
tion shows that sequential processing does not guar-
antee an optimal context-dependent assignment of
class labels and favors tasks that occur later, by pro-
viding them with contextual information, over those
that are solved first.

3 Discrete Optimization Model

As an alternative to sequential ordering of NLP
tasks we consider the metric labeling problem for-
mulated by Kleinberg & Tardos (2000), and orig-
inally applied in an image restoration application,
where classifiers determine the true” intensity val-
ues of individual pixels. This task is formulated as a
labeling function f : P — L, that maps a set P of n
objects onto a set L of m possible labels. The goal
is to find an assignment that minimizes the overall
cost function Q(f), that has two components: as-
signment costs, i.e. the costs of selecting a particular
label for individual objects, and separation costs, i.e.
the costs of selecting a pair of labels for two related
objects®. Chekuri et al. (2001) proposed an integer
linear programming (ILP) formulation of the met-
ric labeling problem, with both assignment cost and
separation costs being modeled as binary variables
of the linear cost function.

Recently, Roth & Yih (2004) applied an ILP
model to the task of the simultaneous assignment
of semantic roles to the entities mentioned in a sen-
tence and recognition of the relations holding be-
tween them. The assignment costs were calculated
on the basis of predictions of basic classifiers, i.e.
trained for both tasks individually with no access to
the outcomes of the other task. The separation costs
were formulated in terms of binary constraints, that
specified whether a specific semantic role could oc-
cur in a given relation, or not.

In the remainder of this paper, we present a more
general model, that is arguably better suited to hand-
ling different NLP problems. More specifically, we

3These costs were calculated as the function of the metric
distance between a pair of pixels and the difference in intensity.



put no limits on the number of tasks being solved,
and express the separation costs as stochastic con-
straints, which for almost any NLP task can be cal-
culated off-line from the available linguistic data.

3.1 ILP Formulation

We consider a general context in which a specific
NLP problem consists of individual linguistic de-
cisions modeled as a set of n classification tasks
T = {T1,...,T,}, that potentially form mutually
related pairs. Each task T; consists in assigning a
label from L; = {li1,...,lim, } to an instance that
represents the particular decision. Assignments are
modeled as variables of a linear cost function. We
differentiate between simple variables that model in-
dividual assignments of labels and compound vari-
ables that represent respective assignments for each
pair of related tasks.

To represent individual assignments the following
procedure is applied: for each task 7T;, every label
from L; is associated with a binary variable x(l;;).
Each such variable represents a binary choice, i.e. a
respective label [;; is selected if 2(l;;) = 1 or re-
jected otherwise. The coefficient of variable x(l;;),
that models the assignment cost ¢([;;), is given by:

c(lij) = —log2(p(lij))

where p(l;;) is the probability of /;; being selected as
the outcome of task 7;. The probability distribution
for each task is provided by the basic classifiers that
do not consider the outcomes of other tasks*.

The role of compound variables is to provide pair-
wise constraints on the outcomes of individual tasks.
Since we are interested in constraining only those
tasks that are truly dependent on one another we first
apply the contingency coefficient C' to measure the
degree of correlation for each pair of tasks>.

In the case of tasks 7; and 7} which are sig-
nificantly correlated, for each pair of labels from

*In this case the ordering of tasks is not necessary, and the
classifiers can run independently from each other.

5C is a test for measuring the association of two nominal
variables, and hence adequate for the type of tasks that we con-
sider here. The coefficient takes values from O (no correlation)
to 1 (complete correlation) and is calculated by the formula:
C = (x*/(N 4 x?))/2, where x? is the chi-squared statistic
and NV the total number of instances. The significance of C' is
then determined from the value of x? for the given data. See
e.g. Goodman & Kruskal (1972).
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L; x Ly, we build a single variable x(l;;, ly,). Each
such variable is associated with a coefficient repre-
senting the constraint on the respective pair of labels
l;j, lp calculated in the following way:

c(lijy lep) = —loga(p(lij,lrp))

with p(l;;,lxp) denoting the prior joint probability of
labels I;; and [y, in the data, which is independent
from the general classification context and hence can
be calculated off-line®.

The ILP model consists of the target function and
a set of constraints which block illegal assignments
(e.g. only one label of the given task can be se-
lected)’. In our case the target function is the cost
function Q(f), which we want to minimize:

min Q(f) = Z Z c(liy) - z(liy)

T,€T li;eL;

>

Lijlp €L X L,

c(lijs lep) - 2(lij, lip)

D>
T;, TR €T,i<k
Constraints need to be formulated for both the
simple and compound variables. First we want to
ensure that exactly one label /;; belonging to task 7;
is selected, i.e. only one simple variable x(l;;) rep-
resenting labels of a given task can be set to 1:

Z z(li;) =1,

L jEL;

Vie{l,..,n}

We also require that if two simple variables x(l;;)
and x(lyp), modeling respectively labels ;; and [,
are set to 1, then the compound variable (l;;, lxp),
which models co-occurrence of these labels, is also
set to 1. This is done in two steps: we first en-
sure that if x(l;;) = 1, then exactly one variable
x(lij, lgp) must also be set to 1:

D @l ) =0,

Lp€LK

x(lij) —

Vi,k € {l,...,nhi<k A je{l,..,m;}
and do the same for variable z(l)):

®In Section 5 we discuss an alternative approach which con-
siders the actual input.

"For a detailed overview of linear programming and differ-
ent types of LP problems see e.g. Nemhauser & Wolsey (1999).
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Figure 2: Graph representation of the ILP model.

x(lkp) — Z 2(lij, lkp) = 0,

li;€L;
Vi,ke{l,...,n}, i<k A pe{l,..mg}

Finally, we constrain the values of both simple
and compound variables to be binary:

z(li;) € {0, 1} A x(lij, lip) € {0, 1},
Vi,k € {1,...,n} A je{l,..,mi} A pe{l,..,my}

3.2 Graphical Representation

We can represent the decision process that our ILP
model involves as a graph, with the nodes corre-
sponding to individual labels and the edges marking
the association between labels belonging to corre-
lated tasks. In Figure 2, task 77 is correlated with
task 75 and task 75 with task 7;,. No correlation
exists for pair 77,7,. Both nodes and edges are
augmented with costs. The goal is to select a sub-
set of connected nodes, minimizing the overall cost,
given that for each group of nodes T4, 15, ..., T, ex-
actly one node must be selected, and the selected
nodes, representing correlated tasks, must be con-
nected. We can see that in contrast to the pipeline
approach (cf. Figure 1), no local decisions determine
the overall assignment as the global distribution of
costs is considered.

4 Application for NL Generation Tasks

We applied the ILP model described in the previous
section to integrate different tasks in an NLG ap-
plication that we describe in detail in Marciniak &
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Strube (2004). Our classification-based approach to
language generation assumes that different types of
linguistic decisions involved in the generation pro-
cess can be represented in a uniform way as clas-
sification problems. The linguistic knowledge re-
quired to solve the respective classifications is then
learned from a corpus annotated with both seman-
tic and grammatical information. We have applied
this framework to generating natural language route
directions, e.g.:

(a) Standing in front of the hotel (b) fol-
low Meridian street south for about 100
meters, (c) passing the First Union Bank
entrance on your right, (d) until you see
the river side in front of you.

We analyze the content of such texts in terms of
temporally related situations, i.e. actions (b), states
(a) and events (c,d), denoted by individual discourse
units®. The semantics of each discourse unit is fur-
ther given by a set of attributes specifying the se-
mantic frame and aspectual category of the pro-
filed situation. Our corpus of semantically anno-
tated route directions comprises 75 texts with a to-
tal number of 904 discourse units (see Marciniak &
Strube (2005)). The grammatical form of the texts
is modeled in terms of LTAG trees also represented
as feature vectors with individual features denoting
syntactic and lexical elements at both the discourse
and clause levels. The generation of each discourse
unit consists in assigning values to the respective
features, of which the LTAG trees are then assem-
bled. In Marciniak & Strube (2004) we implemented
the generation process sequentially as a cascade of
classifiers that realized incrementally the vector rep-
resentation of the generated text’s form, given the
meaning vector as input. The classifiers handled the
following eight tasks, all derived from the LTAG-
based representation of the grammatical form:

T1: Discourse Units Rank is concerned with or-
dering discourse units at the local level, i.e. only
clauses temporally related to the same parent clause
are considered. This task is further split into a series
of binary precedence classifications that determine
the relative position of two discourse units at a time

8The temporal structure was represented as a tree, with dis-
course units as nodes.



Discourse Unit T3 Ty Ts
Pass the First Union Bank ... null vp bare inf.
It is necessary that you pass ... null | np+vp | bare inf.
Passing the First Union Bank ... | null vp gerund
After passing ... after vp gerund
After your passing . .. after | np+vp | gerund
As you pass ... as | np+vp | fin. pres.
Until you pass ... until | np+vp | fin. pres.
Until passing . .. until vp gerund

Table 1: Different realizations of tasks: Connective, Verb

Form and S Exp. Rare but correct constructions are in italics.

Ti: Disc. Units Rank

Tg: Phrase Rank To: Disc. Units Dir.

T,: Phrase Type Ts: Connective

Tg: Verb Lex

T5: Verb Form

Figure 3: Correlation network for the generation tasks. Cor-

related tasks, are connected with lines.

(e.g. (a) before (c), (c) before (d), etc.). These partial
results are later combined to determine the ordering.
T2: Discourse Unit Position specifies the position
of the child discourse unit relative to the parent one
(e.g. (a) left of (b), (c) right of (b), etc.).

T3: Discourse Connective determines the lexical
form of the discourse connective (e.g. null in (a), un-
til in (d)).

T4: S Expansion specifies whether a given dis-
course unit would be realized as a clause with the
explicit subject (i.e. np+vp expansion of the root S
node in a clause) (e.g. (d)) or not (e.g. (a), (b)).

Tpy: Verb Form determines the form of the main
verb in a clause (e.g. gerund in (a), (c), bare infini-
tive in (b), finite present in (d)).

Tg: Verb Lexicalization provides the lexical form
of the main verb (e.g. stand, follow, pass, etc.).

T7: Phrase Type determines for each verb argu-
ment in a clause its syntactic realization as a noun
phrase, prepositional phrase or a particle.

Tg: Phrase Rank determines the ordering of verb
arguments within a clause. Asin T'; this task is split
into a number binary classifications.
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To apply the LP model to the generation problem
discussed above, we first determined which pairs of
tasks are correlated. The obtained network (Fig-
ure 3) is consistent with traditional analyses of the
linguistic structure in terms of adjacent but sepa-
rate levels: discourse, clause, phrase. Only a few
correlations extend over level boundaries and tasks
within those levels are correlated. As an example
consider three interrelated tasks: Connective, S Exp.
and Verb Form and their different realizations pre-
sented in Table 1. Apparently different realization
of any of these tasks can affect the overall meaning
of a discourse unit or its stylistics. It can also be seen
that only certain combinations of different forms are
allowed in the given semantic context. We can con-
clude that for such groups of tasks sequential pro-
cessing may fail to deliver an optimal assignment.

S Experiments and Results

In order to evaluate our approach we conducted
experiments with two implementations of the ILP
model and two different pipelines (presented below).
Each system takes as input a tree structure, repre-
senting the temporal structure of the text. Individ-
ual nodes correspond to single discourse units and
their semantic content is given by respective feature
vectors. Generation occurs in a number of stages,
during which individual discourse units are realized.

5.1 Implemented Systems

We used the ILP model described in Section 3 to
build two generation systems. To obtain assignment
costs, both systems get a probability distribution for
each task from basic classifiers trained on the train-
ing data. To calculate the separation costs, modeling
the stochastic constraints on the co-occurrence of la-
bels, we considered correlated tasks only (cf. Figure
3) and applied two calculation methods, which re-
sulted in two different system implementations.

In ILP1, for each pair of tasks we computed the
joint distribution of the respective labels consider-
ing all discourse units in the training data before the
actual input was known. Such obtained joint distri-
butions were used for generating all discourse units
from the test data. An example matrix with joint dis-
tribution for selected labels of tasks Connective and
Verb Form is given in Table 2. An advantage of this



T5 Connective
T5 Verb Form

null  and as after until

040 0.18 0 0 0 bare_inf

0 0 0 004 0.01 gerund
0.05 0.01 006 003 0.06 fin_pres
0.06 0.05 0 0 0 will_inf

Table 2: Joint distribution matrix for selected labels of tasks
Connective (horizontal) and Verb Form (vertical), computed for
all discourse units in a corpus.

null and as after until | T3 Connective
Ts Verb Form
0.13  0.02 0 0 0 bare_inf
0 0 0 0 0 gerund
0 0 005 002 0.27 fin_pres
036 0.13 0 0 0 will_inf

Table 3: Joint distribution matrix for tasks Connective and
Verb Form, considering only discourse units similar to (c): until
you see the river side in front of you, at Phi-threshold > 0.8.

approach is that the computation can be done in an
offline mode and has no impact on the run-time.

In ILP2, the joint distribution for a pair of tasks
was calculated at run-time, i.e. only after the actual
input had been known. This time we did not con-
sider all discourse units in the training data, but only
those whose meaning, represented as a feature vec-
tor was similar to the meaning vector of the input
discourse unit. As a similarity metric we used the
Phi coefficient®, and set the similarity threshold at
0.8. As can be seen from Table 3, the probability
distribution computed in this way is better suited to
the specific semantic context. This is especially im-
portant if the available corpus is small and the fre-
quency of certain pairs of labels might be too low to
have a significant impact on the final assignment.

As a baseline we implemented two pipeline sys-
tems. In the first one we used the ordering of
tasks most closely resembling the conventional NLG
pipeline (see Figure 4). Individual classifiers had ac-
cess to both the semantic features, and those output
by the previous modules. To train the classifiers,
the correct feature values were extracted from the
training data and during testing the generated, and
hence possibly erroneous, values were taken. In the

°Phi is a measure of the extent of correlation between two
sets of binary variables, see e.g. Edwards (1976). To represent
multi-class features on a binary scale we applied dummy cod-
ing which transforms multi class-nominal variables to a set of
dummy variables with binary values.

141

other pipeline system we wanted to minimize the
error-propagation effect and placed the tasks in the
order of decreasing accuracy. To determine the or-
dering of tasks we applied the following procedure:
the classifier with the highest baseline accuracy was
selected as the first one. The remaining classifiers
were trained and tested again, but this time they had
access to the additional feature. Again, the classi-
fier with the highest accuracy was selected and the
procedure was repeated until all classifiers were or-
dered.

5.2 Evaluation

We evaluated our system using leave-one-out cross-
validation, i.e. for all texts in the corpus, each
text was used once for testing, and the remaining
texts provided the training data. To solve individ-
ual classification tasks we used the decision tree
learner C4.5 in the pipeline systems and the Naive
Bayes algorithm'® in the ILP systems. Both learn-
ing schemes yielded highest results in the respec-
tive configurations'!. For each task we applied
a feature selection procedure (cf. Kohavi & John
(1997)) to determine which semantic features should
be taken as the input by the respective basic classi-
fiers'?. We started with an empty feature set, and
then performed experiments checking classification
accuracy with only one new feature at a time. The
feature that scored highest was then added to the fea-
ture set and the whole procedure was repeated itera-
tively until no performance improvement took place,
or no more features were left.

To evaluate individual tasks we applied two met-
rics: accuracy, calculated as the proportion of cor-
rect classifications to the total number of instances,
and the k statistic, which corrects for the propor-
tion of classifications that might occur by chance!?

1Both implemented in the Weka machine learning software
(Witten & Frank, 2000).

""We have found that in direct comparison C4.5 reaches
higher accuracies than Naive Bayes but the probability distri-
bution that it outputs is strongly biased towards the winning la-
bel. In this case it is practically impossible for the ILP system
to change the classifier’s decision, as the costs of other labels
get extremely high. Hence the more balanced probability dis-
tribution given by Naive Bayes can be easier corrected in the
optimization process.

12e. trained using the semantic features only, with no access
to the outputs of other tasks.

BHence the « values obtained for tasks of different difficul-



Pipeline 1 Pipeline 2 ILP1 ILP2
Tasks Pos.  Accuracy K Pos.  Accuracy K Accuracy K Accuracy K
Dis.Un. Rank 1 96.81%  90.90% 2 96.81%  90.90% | 97.43%  92.66% | 97.43%  92.66%
Dis.Un. Pos. 2 98.04%  89.64% 1 98.04%  89.64% | 96.10%  T77.19% | 97.95%  89.05%
Connective 3 78.64%  60.33% 7 79.10%  61.14% | 79.15%  61.22% | 79.36%  61.31%
S Exp. 4 95.90%  89.45% 3 96.20%  90.17% | 99.48%  98.65% | 99.49%  98.65%
Verb Form 5 86.76%  77.01% 4 87.83%  7890% | 92.81%  87.60% | 93.22%  88.30%
Verb Lex 6 64.58%  60.87% 8 67.40%  64.19% | 75.87%  73.69% | 76.08%  74.00%
Phr. Type 7 86.93%  75.07% 5 87.08%  75.36% | 87.33%  76.75% | 88.03%  77.17%
Phr. Rank 8 84.73%  75.24% 6 86.95%  78.65% | 90.22%  84.02% | 91.27%  85.72%
Phi 0.85 0.87 0.89 0.90

Table 4: Results reached by the implemented ILP systems and two baselines. For both pipeline systems, Pos. stands for the

position of the tasks in the pipeline.

(Siegel & Castellan, 1988). For end-to-end evalua-
tion, we applied the Phi coefficient to measure the
degree of similarity between the vector representa-
tions of the generated form and the reference form
obtained from the test data. The Phi statistic is sim-
ilar to x as it compensates for the fact that a match
between two multi-label features is more difficult to
obtain than in the case of binary features. This mea-
sure tells us how well all the tasks have been solved
together, which in our case amounts to generating
the whole text.

The results presented in Table 4 show that the ILP
systems achieved highest accuracy and x for most
tasks and reached the highest overall Phi score. No-
tice that for the three correlated tasks that we consid-
ered before, i.e. Connective, S Exp. and Verb Form,
ILP2 scored noticeably higher than the pipeline sys-
tems. It is interesting to see the effect of sequential
processing on the results for another group of cor-
related tasks, i.e. Verb Lex, Phrase Type and Phrase
Rank (cf. Figure 3). Verb Lex got higher scores
in Pipeline2, with outputs from both Phrase Type
and Phrase Rank (see the respective pipeline posi-
tions), but the reverse effect did not occur: scores
for both phrase tasks were lower in Pipelinel when
they had access to the output from Verb Lex, con-
trary to what we might expect. Apparently, this was
due to the low accuracy for Verb Lex which caused
the already mentioned error propagation'#. This ex-
ample shows well the advantage that optimization
processing brings: both ILP systems reached much

ties can be directly compared, which gives a clear notion how
well individual tasks have been solved.

14 Apparantly, tasks which involve lexical choice get low
scores with retrieval measures as the semantic content allows
typically more than one correct form
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higher scores for all three tasks.

5.3 Technical Notes

The size of an LP model is typically expressed in the
number of variables and constraints. In the model
presented here it depends on the number of tasks in
T, the number of possible labels for each task, and
the number of correlated tasks. For n different tasks
with the average of m labels, and assuming every
two tasks are correlated with each other, the num-
ber of variables in the LP target functions is given
by: num(var) = n-m + 1/2 - n(n — 1) - m?
and the number of constraints by: num(cons) =
n+mn-(n —1)-m. To solve the ILP models in our
system we use Ip_solve, an efficient GNU-licence
Mixed Integer Programming (MIP) solver'>, which
implements the Branch-and-Bound algorithm. In
our application, the models varied in size from: 557
variables and 178 constraints to 709 variables and
240 constraints, depending on the number of ar-
guments in a sentence. Generation of a text with
23 discourse units took under 7 seconds on a two-
processor 2000 MHz AMD machine.

6 Conclusions

In this paper we argued that pipeline architectures in
NLP can be successfully replaced by optimization
models which are better suited to handling corre-
lated tasks. The ILP formulation that we proposed
extends the classification paradigm already estab-
lished in NLP and is general enough to accommo-
date various kinds of tasks, given the right kind of
data. We applied our model in an NLG applica-
tion. The results we obtained show that discrete

Shttp://www.geocities.com/Ipsolve/



optimization eliminates some limitations of sequen-
tial processing, and we believe that it can be suc-
cessfully applied in other areas of NLP. We view
our work as an extension to Roth & Yih (2004) in
two important aspects. We experiment with a larger
number of tasks having a varying number of labels.
To lower the complexity of the models, we apply
correlation tests, which rule out pairs of unrelated
tasks. We also use stochastic constraints, which are
application-independent, and for any pair of tasks
can be obtained from the data.

A similar argument against sequential modular-
ization in NLP applications was raised by van den
Bosch et al. (1998) in the context of word pronun-
ciation learning. This mapping between words and
their phonemic transcriptions traditionally assumes
a number of intermediate stages such as morpho-
logical segmentation, graphemic parsing, grapheme-
phoneme conversion, syllabification and stress as-
signment. The authors report an increase in gener-
alization accuracy when the the modular decompo-
sition is abandoned (i.e. the tasks of conversion to
phonemes and stress assignment get conflated and
the other intermediate tasks are skipped). It is inter-
esting to note that a similar dependence on the inter-
mediate abstraction levels is present in such applica-
tions as parsing and semantic role labelling, which
both assume POS tagging and chunking as their pre-
ceding stages.

Currently we are working on a uniform data for-
mat that would allow to represent different NLP ap-
plications as multi-task optimization problems. We
are planning to release a task-independent Java API
that would solve such problems. We want to use this
generic model for building NLP modules that tradi-
tionally are implemented sequentially.
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Abstract (Argamon-Engelson and Dagan, 1999), and parsing
(Thompson et al., 1999).

We employ a committee-based method where the
degree of deviation of different classifiers with re-
spect to their analysis can tell us if an example is
potentially useful. In a companion paper (Becker et
al., 2005), we present active learning experiments
for NER in radio-astronomical texts following this
approach. These experiments prove the utility of
selective sampling and suggest that parameters for a
new domain can be optimised in another domain for
which annotated data is already available.

However there are some provisos for active learn-
ing. An important point to consider is what effect
informativeexamples have on the annotators. Are
these examples more difficult? Will they affect the
annotators’ performance in terms of accuracy? Will
they affect the annotators performance in terms of
_ time? In this paper, we explore these questions us-
1 Introduction ing doubly annotated data. We find that selective

Supervised training of named entity recognitiorf@mpling does have an adverse effect on annotator
(NER) systems requires large amounts of manuallgccuracy and efficiency.

annotated data. However, human annotation is typ- In section 2, we present standard active learn-
ically costly and time-consuming. Active learn-ing results showing that good performance can be
ing promises to reduce this cost by requesting onlgchieved using fewer examples than random sam-
those data points for human annotation which areling. Then, in section 3, we address the questions
highly informative. Example informativity can be above, looking at the relationship between inter-
estimated by the degree of uncertainty of a singlgnnotator agreement and annotation time and the ex-
learner as to the correct label of a data point (Cohamples that are selected by active learning. Finally,
et al., 1995) or in terms of the disagreement of &ection 4 presents conclusions and future work.
committee of learners (Seung et al., 1992). Ac-

tive learning has been successfully applied to a va- 'Please refer to the companion paper for details of the

. e selective sampling approach with experimental adaptation re-
riety of tasks such as document classification (M

> ’ Gsults as well as more information about the corpus of radio-
Callum and Nigam, 1998), part-of-speech taggingstronomical abstracts.

We report on an active learning experi-
ment for named entity recognition in the

astronomy domain. Active learning has
been shown to reduce the amount of la-
belled data required to train a supervised
learner by selectively sampling more in-
formative data points for human annota-
tion. We inspect double annotation data
from the same domain and quantify poten-
tial problems concerning annotators’ per-
formance. For data selectively sampled
according to different selection metrics,
we find lower inter-annotator agreement
and higher per token annotation times.
However, overall results confirm the util-

ity of active learning.
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2 Bootstrapping NER The seed and test data sets were annotated by two

astrophysics PhD students. In addition, they anno-

The work rt?]p%rteti hert(_e was faf[r.”,?d out 'rl ordter t?ated 1000 randomly sampled sentences from the
assess methods ot porting a statis system o pool to provide a random baseline for active learn-

anew domain. We started witf\gR system trained ing. These sentences were doubly annotated and ad-

on biomedical literature and built a new system t?udicated and form the basis for our calculations in

identify four novel entities in abstracts from astron—S ection 3
omy articles. This section introduces the Astronomy '

Bootstrapping Corpus (ABC) which was develope@.2 Inter-Annotator Agreement

for the task, describes our active learning approagh o der to ensure consistency in annotation projects,
to bootstrapping, and gives a brief overview of thecorpora are often annotated by more than one an-

experiments. notator, e.g. in the annotation of the Penn Treebank
(Marcus et al., 1994). In these cases, inter-annotator

] ) agreement is frequently reported between different
The ABC corpus consists of abstracts of radio astroynnotated versions of a corpus as an indicator for

nomical papers from the NASA Astrophysics Datgpe difficulty of the annotation task. For example,

System archivg a digital library for physics, as- grans (2000) reports inter-annotator agreement in

trophysics, and instrumentation. Abstracts were Xgrmgs of accuracy and f-score for the annotation of
tracted from the years 1997-2003 that matched thRe German NEGRA treebank.

query “quasar AND line”. A set of 50 abstracts gyq|uation metrics for named entity recognition

from the year 2002 were annotated as seed malgrs standardly reported as accuracy on the token
rial and 159 abstracts from 2003 were annotated &vel. and as f-score on the phrasal level, e.g.

testing material. A further 778 abstracts from thes,ng (2002), where token level annotation refers to
years 1997-2001 were provided as an unannotatgdh g_|.o coding schem®. Likewise, we will use

pool for bootstrapping. On average, these abstracta . racy to report inter-annotator agreement on the
contain 10 sentences with a length of 30 tokens. Th§ken level. and f-score for the phrase level. We

annotation marks up four entity types: may arbitrarily assign one annotator’s data as the

Instrument-name (IN) Names of telescopes andgold standar_d, since both accuracy and f-score are
other measurement instruments, gperconduct- SYmmetric with respect to the test and gold set. To
ing Tunnel Junction (STJ) camera, Plateau de Buré®€ Why this is the case, note that accuracy can sim-
Interferometer, Chandra, XMM-Newton ReflectioP!y be defined as the ratio of the number of tokens

Grating Spectrometer (RGS), Hubble Space Tel@" which the annotators agree over the total number
scope. of tokens. Also the f-score is symmetric, since re-

call(A,B) = precision(B,A) and (balanced) f-score is
Source-name ¢N) Names of celestial objects, the harmonic mean of recall and precision (Brants,
e.g. NGC 7603, 3C 273, BRI 1335-0417, SDSSp000). The pairwise f-score for the ABC corpus is
J104433.04-012502.2, PCO953+ 4749. 85.52 (accuracy of 97.15) with class information and

. 86.15 (accuracy of 97.28) without class information.
S -t T f objects, e.g: Il Su- . . . .
ource-type 67) Types of objects, e.gype [l Su The results in later sections will be reported using

pernovae (SNe ll), radio-loud quasar, type 2 QSO, . T .
. o this pairwise f-score for measuring agreement.
starburst galaxies, low-luminosity AGNs.

For NER, it is also common to compare an anno-
Spectral-feature (SF) Features that can be tator’'s tagged document to the final, reconciled ver-
pointed to on a spectrum, elgg Il emission, broad sion of the document, e.g. Robinson et al. (1999)
emission lines, radio continuum emission at 1.4and Strassel et al. (2003). The inter-annotator f-
GHz, CO ladder from (2-1) up to (7-6), non-LTEscore agreement calculated this way for MUC-7 and

2.1 The Astronomy Bootstrapping Corpus

line. Hub 4 was measured at 97 and 98 respectively. The
2http://adsabs.harvard.edu/preprint_ 3B-X marks the beginning of a phrase of type X, I-X denotes
service.html the continuation of an X phrase, and O a non-phrasal token.
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doubly annotated data for the ABC corpus was redundant, already known structures for which know-
solved by the original annotators in the presenceg the manual annotation may not be very useful.
of an astronomy adjudicator (senior academic staffp the given setting, we decided that the best granu-
and a computational linguist. This approach givekrity is the sentence.

an f-score of 91.89 (accuracy of 98.43) with clas% le Selection Metric Th oty of
information for the ABC corpus. Without class in- ample selection Metric ere are a variety o

formation, we get an f-score of 92.22 (accuracy O?netrics that could be used to quantify the degree

98.49), indicating that most of our errors are due t%f ddeylatlon betv_vien CI?SS'ﬁe:jST n allccommlttee %g'
boundary problems. These numbers suggest that o 'r vergence, information radius, f-measure). The

task is more difficult than the geneneR tasks from vyorkbrepcc)lrted }?Erg uses two sintenci-levzl me];[-
the MUC and HUB evaluations. rics based on KL-divergence and one based on f-

Another common agreement metric is the ka Qeasure.
. . gre: PP KL-divergencehas been used for active learning
coefficient which normalises token level accuraC)( : ) .
o quantify the disagreement of classifiers over the

by chance, e.g. Carletta et al. (1997). This met- S
ric showed that the human annotators distinguisPnrObab'“ty distribution of output labels (McCallum

the four categories with a reproducibility of K=.925anOI ngam, 1998; Jones et al, 20(.).3)' !t measures
(N=44775, k=2: where K is the kappa coefﬁcientthe divergence between two probability distributions

N is the number of tokens and k is the number of andq over the same event spage
annotators). p(x)

D(pllg) = Y _ p(x)log p(z) (1)

2.3 Active Learning TEX a(@)
We have already mentioned that there are two main KL-divergence is a non-negative metric. It is zero
approaches in the literature to assessing the informfor identical distributions; the more different the two
tivity of an example: the degree of uncertainty of alistributions, the higher the KL-divergence. Intu-
single learner and the disagreement between a coitively, a high KL-divergence score indicates an in-
mittee of learners. For the current work, we employormative data point. However, in the current formu-
guery-by-committee (QBC). We use a conditionalation, KL-divergence only relates to individual to-
Markov model (CMM) tagger (Klein et al., 2003; kens. In order to turn this into a sentence score, we
Finkel et al., 2005) to train two different models onneed to combine the individual KL-divergences for
the same data by splitting the feature set. In this sethe tokens within a sentence into one single score.
tion we discuss several parameters of this approatkle employed mean and max.
for the current task. The f-complemenhas been suggested for active

learning in the context of NP chunking as a struc-
Level of annotation For the manual annotation of ;4 comparison between the different analyses of
named entity examples, we needed to decide on thecommittee (Ngai and Yarowsky, 2000). It is the

level of granularity. The question arises of what conpajrwise f-measure comparison between the multi-
stitutes an example that will be submitted to the ans|e analyses for a given sentence:

notators. Paossible levels include the document level,

the sentence level and the token level. The mostfine- o« 1 /

grained annotation would certainly be on the token Jomp=75 2. (1= RM(@0),M(1) @)
level. However, it seems unnatural for the annota-

tor to label individual tokens. Furthermore, our mawhere F; is the balanced f-measure éf (¢) and
chine learning tool models sequences at the sentent£ (¢), the preferred analyses of data pdimiccord-
level and does not allow to mix unannotated tokenig to different members\/, M’ of ensembleM.
with annotated ones. At the other extreme, one mai/e take the complement so that it is oriented the
submit an entire document for annotation. A possisame as KL-divergence with high values indicating
ble disadvantage is that a document with some inteligh disagreement. This is equivalent to taking the
esting parts may well contain large portions with reinter-annotator agreement betwdgvt | classifiers.

M,M'eM
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80 figure 1 The randomly sampled data was dou-

f . .
79 vy f bly annotated and the learning curve is averaged be-
i v tween the two annotators.
76 " s Comparing the selective sampling performance to
~3e-X . . . .
g 75 /f ox o the baseline, we confirm that active learning pro-
g7 L vides a significant reduction in the number of exam-
X .
;2 / ples that need annotating. In fact, the random curve
7 2K reaches an f-score of 76 after approximately 39000
70 [ 4 Ave KL-divergence —+— _ tokens have been annotated while the selective sam-
% Random sampling ---x--- . .
69 ' ' ' pling curve reaches this level of performance after
10000 15000 20000 25000 30000 35000 40000 45000 . .
Number of Tokens in Training Data only ~ 24000 tokens. This represents a substantial

reduction in tokens annotated of 38.5%. In addition,
Figure 1: Learning curve of the real AL experimentat 39000 tokens, selectively sampling offers an error
reduction of 21.4% with a 3 point improvement in

. f-score.
2.4 Experiments

To tune the active learning parameters discuss&l Evaluating Selective Sampling

in section 2.3, we ran detailed simulated experi- _ _ _
ments on the named entity data from the BioNLpotandardly, the evaluation of active learning meth-

shared task of the COLING 2004 InternationaPds a@nd the comparison of sample selection metrics
Joint Workshop on Natural Language Processing ifiraws on experiments over gold-standard annotated
Biomedicine and its Applications (Kim et al., 2004).COrPora, where a set of annotated data is at our dis-

These results are treated in detail in the companidiPS&) €.9. McCallum and Nigam (1998), Osborne
paper (Becker et al., 2005). and Baldridge (2004). This assumes implicitly that

We used the CMM tagger to train two different2nnotators will always produce gold-standard qual-
models by splitting the feature set to give muItipIéty annotations, which is typically not the case, as we

views of the same data. The feature set was hangi_scussed in Section 2.2. What is more, we speculate
crafted such that it comprises different views whildat annotators might have an even higher error rate
empirically ensuring that performance is sufficiently”" the suppqsedly more informative, but.p055|bly
similar. On the basis of the findings of the simulatiorf!SC More difficult examples. However, this would
experiments we set up the real active learning ann8-°t be reflected in the carefully annotated and veri-
tation experiment using: average KL-divergence acd examples of a gold standard corpus. In the fol-
the selection metric and a feature split that divide!?Wing analysis, we leverage information from dou-

the full feature set roughly into features of word<!Y @nnotated data to explore the effects on annota-

and features derived from external resources. AN of selectively sampled examples.

smaller batch sizes require more retraining iterations 10 €valuate the practicality and usefuiness of ac-
and larger batch sizes increase the amount of ann.€ learming as a generally applicable methodology,
tation necessary at each round and could lead to uft-S desirable to be able to observe the behaviour
necessary strain for the annotators, we settled or®h the annotators. In this section, we will report on
batch size of 50 sentences for the real AL experi'® évaluation of various subsets of the doubly an-
ment as a compromise between computational cdiptated portion of the ABC corpus comprising 1000
and work load for the annotator. sentences, which we sample according to a sample

We developed an active annotation tool and rafelection metric. That is, examples are added to the
real annotation experiments on the astronomy aS4PSets according to the sample selection metric, se-
stracts described in section 2.1. The tool was giveffcting those with higher disagreement first. This

to the same astronomy PhD students for annotati@HlOWS us to trace changes in inter-annotator agree-

. her———
who were responsible for the seed and test data. T e“Learnmg curves reflect the performance on the test set us-

learning curve for selective sampling is plotted iring the full feature set.
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ment between the full corpus and selected subsets 100: A2

thereof. Also, we will inspect timing information. IN SN sT sF O
This novel methodology allows us to experiment IN | 12.0] 0.0 | 0.0 | 0.0 | 0.4
with different sample selection metrics without hav- SN| 00| 104| 0.0 | 0.0 | 0.4
ing to repeat the actual time and resource intensive Al sT| 0.0 | 0.4 | 30.3| 0.0 | 1.0
annotation. SF| 00| 00| 00 |311] 3.9
O| 02|04 29| 64| —
3.1 Error Analysis
. . e L 1000: A2
To investigate the types of _cIaSS|f|c'at|on errors, it is N SN ST sSE O
common 'Fo set up a confusion matrix. One approach N[ 947 00T 00T 00103
is to o!o this at the token level. ngever, we are deal- sN 007101 02 T 01 103
ing with phra_ses and our analysis should_ reflect that. Al sT 00l 01 419 01 16
T_hus we (_JIeV|sed a method for c_onstructlng a confu- sE 00l 00T 01251130
sion matrix based on phrasal alignment. These con- 00302 24 48 —

fusion matrices are constructed by giving a double

count for each phrase that has matching boundari":I\'gble 1: Phrasal confusion matrices for document

and a single count for each phrase that does nothaye, .+ o 100 sentences sorted by average KL-

matching boundaries. To illustrate, consider the fo'divergence and for full random document sub-set of

lowing sentences—-annotated with phrases, and 1000 sentences (Al: Annotator 1, A2: Annotator 2).
c for annotator 1 on top and annotator 2 on bottom—

as sentence 1 and sentence 2 respectively: ’ Entity ‘ 100 ‘ 1000 ‘
[ A \ [ A \ Instrument-name 12.4%| 9.7%
L [N B B Source-name 10.8% | 10.7%

A A Source-type 31.7%| 43.7%
Spectral-feature 35.0% | 28.2%

A B c O 9.9% | 7.7%

Sentence 1 will get a count of 2 for/a and for Taple 2: Normalised distributions of agreed entity
A/B and a count of 1 for @, while sentence 2 gnnotations.
will get 2 counts ofa/O, and 1 count each of @/
O/B, and OC€. Table 1 contains confusion matrices
for the first 100 sentences sorted by averaged Kilthere is a tendency for the averaged KL-divergence
divergence and for the full set of 1000 random serselection metric to choose sentences where phrase
tences from the pool data. (Note that these confusidioundary identification is difficult.
matrices contain percentages instead of raw countsFurthermore, comparing the confusion matrices
so they can be directly compared.) for 100 sentences and for the full set of 1000 shows
We can make some interesting observations lookhat sentences containing less common entity types
ing at these phrasal confusion matrices. The matend to be selected first while sentences containing
effect we observed is the same as was suggestedthg most common entity types are dispreferred. Ta-
the f-score inter-annotator agreement errors in sebte 2 contains the marginal distribution for annotator
tion 2.1. Specifically, looking at the full random set1 (A1) from the confusion matrices for the ordered
of 1000 sentences, almost all errors (Wheisany sub-set of 100 and for the full random set of 1000
entity phrase type:. O;;l f[:ofgm’”s = 95.43%) are sentences. So, for example, the sorted sub-set con-
due to problems with phrase boundaries. Compatains 12.4%nstrument-name  annotations (the
ing the full random set to the 100 sentences witkeast common entity type) while the full set con-
the highest averaged KL-divergence, we can see thains 9.7%. And, 31.7% of agreed entity annota-
this is even more the case for the sub-set of 100 setiens in the first sub-set of 100 aBource-type
tences (97.43%). Therefore, we can observe thé&he most common entity type), whereas the propor-
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Figure 2: Raw agreement plotted against KL-sorteBligure 3: Human disagreement plotted against se-
document subsets. lection metric-sorted document subsets.

tion of agreedSource-type  annotations in the kens which are easily identified as being outside an
full random set is 43.7%. Looking at the O row, weentity phrase. If we look just at tokens that at least
also observe that sentences with difficult phrases as@e of the annotators posits as being part of an en-
preferred. A similar effect can be observed in theity phrase, we observe a larger effect with a Pear-
marginals for annotator 2. son correlation coefficient 6£0.120, indicating that
agreement tends to be low when KL-divergence is
high. Figure 2 illustrates this effect even more dra-
So far, the behaviour we have observed is what yawatically. Here we plot accuracy against token sub-
would expect from selective sampling; there is &ets of size 000, 2000, .., N where tokens are added
marked improvement in terms of cost and error ratg the subsets according to their KL-divergence, se-
reduction over random sampling. However, seledecting those with the highest values first. This
tive sampling raises questions of cognitive load andemonstrates clearly that tokens with higher KL-
the quality of annotation. In the following sectiondivergence have lower inter-annotator agreement.
we investigate the relationship between informativ- However, as discussed in sections 2.3 and 2.4,
ity, inter-annotator agreement, and annotation timewe decided on sentences as the preferred annota-
While reusability of selective samples for othetion level. Therefore, it is important to explore these
learning algorithms has been explored (Baldridgeelationships at the sentence level as well. Again,
and Osborne, 2004), no effort has been made {ge start by looking at the Pearson correlation coeffi-
quantify the effect of selective sampling on annocient between f-score inter-annotator agreement (as

tator performance. We concentrate first on the quegescribed in section 2.1) and our active learning se-
tion: Are informative examples more difficult to anHection metrics:

notate? One way to quantify this effect is to look
at the correlation between human agreement and the Ave KL Max KL 1-F
token-level KL-divergence. The Pearson correlation All Tokens  —0.090  —0.145 —0.143
coefficient indicates the degree to which two vari- O Removed —0.042 —0.092 -0.101
ables are related. It ranges betweehand1, where
1 means perfectly positive correlation, anrd per-
fectly negative correlation. A value @findicates no
correlation. The Pearson correlation coefficient o
all tokens gives a very weak correlation coefficien

of —0.009.°> However, this includes many trivial to- ment a numeric representation by assigningo tokens on
- which the annotators agree atdo tokens on which they dis-
5In order to make this calculation, we give token-level agreeagree.

3.2 Annotator Performance

HereO Removedneans that sentences are removed
for which the annotators agree that there are no en-
th phrases (i.e. all tokens are labelled as being
9utside an entity phrase). This shows a relation-
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0.95 4 Conclusions and Future Work

IAve KIL—divelrgencle —
Max KL-divergence ---x---
0.9 F-complement ---*--- -

We have presented active learning experiments in
0.85 a novelNER domain and investigated negative side
effects. We investigated the relationship between
FE RN informativity of an example, as determined by se-
075 |- B lective sampling metrics, and inter-annotator agree-
o ) \ ment. This effect has been quantified using the Pear-
' SO, o son correlation coefficient and visualised using plots
X that illustrate the difficulty and time-intensiveness of
examples chosen first by selective sampling. These
measurements clearly demonstrate that selectively
r§ampled examples are in fact more difficult to anno-
tate. And, while sentence length and entities per sen-
tence are somewhat confounding factors, we have
also shown that selective sampling of informative
ship very similar to what we observed at the tokeexamples appears to increase the time spent on in-
level: a negative correlation indicating that agreedividual examples.

ment is low when KL-divergence is high. Again, nigh quality annotation is important for building
the effect of selecting informative examples is bettet .. ,rate models and for reusability. While anno-
illustrated with a plot. Figure 3 plots f-score agreeagion quality suffers for selectively sampled exam-
ment against sentence subsets sorted by our sentepes selective sampling nevertheless provided a dra-
level selection metrics. Lower agreement at the leff,5tic cost reduction of 38.5% in a real annotation

of these plots indicates that the more informative eXsyperiment, demonstrating the utility of active learn-
amples according to our selection metrics are moriﬁg for bootstrappingieR in a new domain.

difficult to annotate. In future work, we will perform further investi-

i So, active !eammg makes the annptatlon more d'{jations of the cost of resolving annotations for se-
ficult. But, this raises a further questionhat effect lectively sampled examples. And, in related work

do more difficult examples have on annotation time? ., \ " /se timing information to assess token, en-

To ;:westlgate this, vvle pnce a%fqln starth_by _IOOk'Sgity and sentence cost metrics for annotation. This
at the Pearson correlation coefficient, this time bes 1 150 lead to a better understanding of the re-

tween the annotation time and our sele_ct|on m_emcisationship between timing information and sentence
However, as our sentence-level selection metrics "’\fe'ngth for different selection metrics

fect the length of sentences selected, we normalise
sentence-level annotation times by sentence length:

kv

0.8

Average time per token

0.65 Lk
100 200 300 400 500 600 700 800 900 1000

Size (Sents) of Selection Metric-sorted Subset

Figure 4. Annotation time plotted against selectio
metric-sorted document subsets.
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Abstract

In this paper we describe the CoNLL-
2005 shared task on Semantic Role La-
beling. We introduce the specification and
goals of the task, describe the data sets and
evaluation methods, and present a general
overview of the 19 systems that have con-
tributed to the task, providing a compara-
tive description and results.

1 Introduction

In the few last years there has been an increasing
interest in shallow semantic parsing of natural lan-
guage, which is becoming an important component
in all kind of NLP applications. As a particular case,
Semantic Role Labeling (SRL) is currently a well-
defined task with a substantial body of work and
comparative evaluation. Given a sentence, the task
consists of analyzing the propositions expressed by
some target verbs of the sentence. In particular, for
each target verb all the constituents in the sentence
which fill a semantic role of the verb have to be rec-
ognized. Typical semantic arguments include Agent,
Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc.

Last year, the CoNLL-2004 shared task aimed
at evaluating machine learning SRL systems based
only on partial syntactic information. In (Carreras
and Marquez, 2004) one may find a detailed review
of the task and also a brief state-of-the-art on SRL
previous to 2004. Ten systems contributed to the
task, which was evaluated using the PropBank cor-
pus (Palmer et al., 2005). The best results were

152

around 70 in F; measure. Though not directly com-
parable, these figures are substantially lower than the
best results published up to date using full parsing
as input information (F; slightly over 79). In addi-
tion to the CoNLL-2004 shared task, another evalua-
tion exercise was conducted in the Senseval-3 work-
shop (Litkowski, 2004). Eight systems relying on
full parsing information were evaluated in that event
using the FrameNet corpus (Fillmore et al., 2001).
From the point of view of learning architectures and
study of feature relevance, it is also worth mention-
ing the following recent works (Punyakanok et al.,
2004; Moschitti, 2004; Xue and Palmer, 2004; Prad-
han et al., 2005a).

Following last year’s initiative, the CONLL-2005
shared task® will concern again the recognition of
semantic roles for the English language. Compared
to the shared task of CONLL-2004, the novelties in-
troduced in the 2005 edition are:

e Aiming at evaluating the contribution of full
parsing in SRL, the complete syntactic trees
given by two alternative parsers have been pro-
vided as input information for the task. The
rest of input information does not vary and cor-
responds to the levels of processing treated in
the previous editions of the CoNLL shared task,
i.e., words, PoS tags, base chunks, clauses, and
named entities.

e The training corpus has been substantially en-
larged. This allows to test the scalability of

The official CoNLL-2005 shared task web page, in-
cluding data, software and systems’ outputs, is available at
http://ww.l si.upc.edu/ ~srlconll.

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 152-164, Ann Arbor, June 200%2005 Association for Computational Linguistics



learning-based SRL systems to big datasets and
to compute learning curves to see how much
data is necessary to train. Again, we concen-
trate on the PropBank corpus (Palmer et al.,
2005), which is the Wall Street Journal part
of the Penn TreeBank corpus enriched with
predicate—argument structures.

e In order to test the robustness of the pre-
sented systems, a cross-corpora evaluation is
performed using a fresh test set from the Brown
corpus.

Regarding evaluation, two different settings were
devised depending if the systems use the informa-
tion strictly contained in the training data (closed
challenge) or they make use of external sources
of information and/or tools (open challenge). The
closed setting allows to compare systems under
strict conditions, while the open setting aimed at ex-
ploring the contributions of other sources of infor-
mation and the limits of the current learning-based
systems on the SRL task. At the end, all 19 systems
took part in the closed challenge and none of them
in the open challenge.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general setting of the task. Sec-
tion 3 provides a detailed description of training,
development and test data. Participant systems are
described and compared in section 4. In particular,
information about learning techniques, SRL strate-
gies, and feature development is provided, together
with performance results on the development and
test sets. Finally, section 5 concludes.

2 Task Description

As in the 2004 edition, the goal of the task was to
develop a machine learning system to recognize ar-
guments of verbs in a sentence, and label them with
their semantic role. A verb and its set of arguments
form a proposition in the sentence, and typically, a
sentence contains a number of propositions.

There are two properties that characterize the
structure of the arguments in a proposition. First, ar-
guments do not overlap, and are organized sequen-
tially. Second, an argument may appear split into
a number of non-contiguous phrases. For instance,
in the sentence “[a1 The apple], said John, [c_a1
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is on the table]”, the utterance argument (labeled
with type Al) appears split into two phrases. Thus,
there is a set of non-overlapping arguments labeled
with semantic roles associated with each proposi-
tion. The set of arguments of a proposition can be
seen as a chunking of the sentence, in which chunks
are parts of the semantic roles of the proposition
predicate.

In practice, number of target verbs are marked
in a sentence, each governing one proposition. A
system has to recognize and label the arguments of
each target verb. To support the role labeling task,
sentences contain input annotations, that consist of
syntactic information and named entities. Section 3
describes in more detail the annotations of the data.

2.1 Evaluation

Evaluation is performed on a collection of unseen
test sentences, that are marked with target verbs and
contain only predicted input annotations.

A system is evaluated with respect to precision,
recall and the F; measure of the predicted argu-
ments. Precision (p) is the proportion of arguments
predicted by a system which are correct. Recall (r)
is the proportion of correct arguments which are pre-
dicted by a system. Finally, the F; measure com-
putes the harmonic mean of precision and recall, and
is the final measure to compare the performance of
systems. It is formulated as: F3—; = 2pr/(p + 7).

For an argument to be correctly recognized, the
words spanning the argument as well as its semantic
role have to be correct. 2

As an exceptional case, the verb argument of each
proposition is excluded from the evaluation. This ar-
gument is the lexicalization of the predicate of the
proposition. Most of the time, the verb corresponds
to the target verb of the proposition, which is pro-
vided as input, and only in few cases the verb par-
ticipant spans more words than the target verb. Ex-
cept for non-trivial cases, this situation makes the
verb fairly easy to identify and, since there is one
verb with each proposition, evaluating its recogni-
tion over-estimates the overall performance of a sys-
tem. For this reason, the verb argument is excluded
from evaluation.

2The srl -eval . pl program is the official program to

evaluate the performance of a system. It is available at the
Shared Task web page.
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Figure 1. An example of an annotated sentence, in columns. Input consists of words (1st column), PoS
tags (2nd), base chunks (3rd), clauses (4th), full syntactic tree (5th) and named entities (6th). The 7th
column marks target verbs, and their propositions are found in remaining columns. According to the
PropBank Frames, for at t r act (8th), the AO annotates the attractor, and the Al the thing attracted; for
i nt er sper se (9th), A0 is the arranger, and Al the entity interspersed.

2.2 Closed Challenge Setting

The organization provided training, development
and test sets derived from the standard sections of
the Penn TreeBank (Marcus et al., 1993) and Prop-
Bank (Palmer et al., 2005) corpora.

In the closed challenge, systems have to be built
strictly with information contained in the training
sections of the TreeBank and PropBank. Since this
collection contains the gold reference annotations
of both syntactic and predicate-argument structures,
the closed challenge allows: (1) to make use of any
preprocessing system strictly developed within this
setting, and (2) to learn from scratch any annotation
that is contained in the data. To support the former,
the organization provided the output of state-of-the-
art syntactic preprocessors, described in Section 3.

The development set is used to tune the parame-
ters of a system. The gold reference annotations are
also available in this set, but only to evaluate the per-
formance of different parametrizations of a system,
and select the optimal one. Finally, the test set is
used to evaluate the performance of a system. It is
only allowed to use predicted annotations in this set.

Since all systems in this setting have had access to
the same training and development data, the evalua-
tion results on the test obtained by different systems
are comparable in a fair manner.
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3 Data

The data consists of sections of the Wall Street Jour-
nal part of the Penn TreeBank (Marcus et al., 1993),
with information on predicate-argument structures
extracted from the PropBank corpus (Palmer et al.,
2005). In this edition of the CoNLL shared task,
we followed the standard partition used in syntactic
parsing: sections 02-21 for training, section 24 for
development, and section 23 for test. In addition, the
test set of the shared task includes three sections of
the Brown corpus (hamely, ck01-03). The predicate-
argument annotations of the latter test material were
kindly provided by the PropBank team, and are very
valuable, as they allow to evaluate learning systems
on a portion of data that comes from a different
source than training.

We first describe the annotations related to argu-
ment structures. Then, we describe the preprocess-
ing systems that have been selected to predict the
input part of the data. Figure 1 shows an example of
a fully-annotated sentence.

3.1 PropBank

The Proposition Bank (PropBank) (Palmer et al.,
2005) annotates the Penn TreeBank with verb argu-
ment structure. The semantic roles covered by Prop-
Bank are the following:



e Numbered arguments (A0O-A5, AA): Argu-
ments defining verb-specific roles. Their se-
mantics depends on the verb and the verb us-
age in a sentence, or verb sense. The most
frequent roles are AO and Al and, commonly,
AO stands for the agent and Al corresponds to
the patient or theme of the proposition. How-
ever, no consistent generalization can be made
across different verbs or different senses of the
same verb. PropBank takes the definition of
verb senses from VerbNet, and for each verb
and each sense defines the set of possible roles
for that verb usage, called the roleset. The def-
inition of rolesets is provided in the PropBank
Frames files, which is made available for the
shared task as an official resource to develop
systems.

e Adjuncts (AM): General arguments that any
verb may take optionally. There are 13 types of
adjuncts:

AM ADV : general-purpose  AM- MOD : modal verb

AM CAU : cause AM NEG: negation marker
AM DI R: direction AM PNC : purpose

AM DI S : discourse marker AM PRD: predication

AM EXT : extent AM REC: reciprocal

AM LOC: location AM TMP : temporal
AM- MNR : manner

e References (R-): Arguments representing ar-
guments realized in other parts of the sentence.
The role of a reference is the same as the role of
the referenced argument. The label isan R- tag
prefixed to the label of the referent, e.g. R- AL.

e \erbs (V): Argument corresponding to the verb
of the proposition. Each proposition has exa-
clty one verb argument.

We used PropBank-1.0. Most predicative verbs
were annotated, although not all of them (for exam-
ple, most of the occurrences of the verb “to have”
and “to be” were not annotated). We applied proce-
dures to check consistency of propositions, looking
for overlapping arguments, and incorrect semantic
role labels. Also, co-referenced arguments were an-
notated as a single item in PropBank, and we au-
tomatically distinguished between the referent and
the reference with simple rules matching pronomi-
nal expressions, which were tagged as R arguments.
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Train.  Devel. tWSJ  tBrown
Sentences 39,832 1,346 2,416 426
Tokens 950,028 32,853 56,684 7,159
Propositions 90,750 3,248 5,267 804
\Verbs 3,101 860 982 351
Arguments 239,858 8,346 14,077 2,177
A0 61,440 2,081 3,563 566
Al 84,917 2,994 4,927 676
A2 19,926 673 1,110 147
A3 3,389 114 173 12
A4 2,703 65 102 15
A5 68 2 5 0
AA 14 1 0 0
AM 7 0 0 0
AM- ADV 8,210 279 506 143
AM CAU 1,208 45 73 8
AM DI R 1,144 36 85 53
AM DI S 4,890 202 320 22
AM EXT 628 28 32 5
AM LCC 5,907 194 363 85
AM- MNR 6,358 242 344 110
AM- MOD 9,181 317 551 91
AM NEG 3,225 104 230 50
AM PNC 2,289 81 115 17
AM PRD 66 3 5 1
AM REC 14 0 2 0
AM TMP 16,346 601 1,087 112
R- A0 4,112 146 224 25
R- Al 2,349 83 156 21
R- A2 291 5 16 0
R- A3 28 0 1 0
R- A4 7 0 1 0
R- AA 2 0 0 0
R- AVt ADV 5 0 2 0
R- AM CAU 41 3 4 2
R-AM DI R 1 0 0 0
R- AM EXT 4 1 1 0
R- AM LCC 214 9 21 4
R- AM MNR 143 6 6 2
R- AM PNC 12 0 0 0
R- AM TMP 719 31 52 10

Table 1: Counts on the data sets.

A total number of 80 propositions were not compli-
ant with our procedures (one in the Brown files, the
rest in WSJ) and were filtered out from the CoNLL
data sets.

Table 1 provides counts of the number of sen-
tences, tokens, annotated propositions, distinct
verbs, and arguments in the four data sets.

3.2 Preprocessing Systems

In this section we describe the selected processors
that computed input annotations for the SRL sys-
tems. The annotations are: part-of-speech (PoS)
tags, chunks, clauses, full syntactic trees and named
entities. As it has been noted, participants were also



allowed to use any processor developed within the
same WSJ partition.

The preprocessors correspond to the following
state-of-the-art systems:

e UPC processors, consisting of:

— PoS tagger: (Giménez and Marquez,
2003), based on Support Vector Machines,
and trained on WSJ sections 02-21.

— Base Chunker and Clause Recognizer:
(Carreras and Marquez, 2003), based on
Voted Perceptrons, trained on WSJ sec-
tions 02-21. These two processors form a
coherent partial syntax of a sentence, that
is, chunks and clauses form a partial syn-
tactic tree.

o Full parser of Collins (1999), with "model 2”.
Predicts WSJ full parses, with information of
the lexical head for each syntactic constituent.
The PoS tags (required by the parser) have been
computed with (Giménez and Marquez, 2003).

e Full parser of Charniak (2000). Jointly predicts
PoS tags and full parses.

e Named Entities predicted with the Maximum-
Entropy based tagger of Chieu and Ng (2003).
The tagger follows the CoNLL-2003 task set-
ting (Tjong Kim Sang and De Meulder, 2003),
and thus is not developed with WSJ data. How-
ever, we allowed its use because there is no
available named entity recognizer developed
with WSJ data. The reported performance on
the CoNLL-2003 test is F; = 88.31, with
Prec/Rec. at 88.12/88.51.

Tables 2 and 3 summarize the performance of
the syntactic processors on the development and test
sets. The performance of full parsers on the WSJ
test is lower than that reported in the correspond-
ing papers. The reason is that our evaluation fig-
ures have been computed in a strict manner with re-
spect to punctuation tokens, while the full parsing
community usually does not penalize for punctua-
tion wrongly placed in the tree.® As it can be ob-

3Before evaluating Collins’, we raised punctuation to the
highest point in the tree, using a script that is available at the

shared task webpage. Otherwise, the performance would have
Prec./Recall figures below 37.
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Dev. tWSJ tBrown
UPC PoS-tagger | 97.13 97.36  94.73
Charniak (2000) | 92.01 92.29 87.89

Table 2: Accuracy (%) of PoS taggers.

served, the performance of all syntactic processors
suffers a substantial loss in the Brown test set. No-
ticeably, the parser of Collins (1999) seems to be the
more robust when moving from WSJ to Brown.

4 A Review of Participant Systems

Nineteen systems participated in the CoNLL-2005
shared task. They approached the task in several
ways, using different learning components and la-
beling strategies. The following subsections briefly
summarize the most important properties of each
system and provide a qualitative comparison be-
tween them, together with a quantitative evaluation
on the development and test sets.

4.1 Learning techniques

Up to 8 different learning algorithms have been ap-
plied to train the learning components of partici-
pant systems. See the “ML-method” column of ta-
ble 4 for a summary of the following information.
Log-linear models and vector-based linear classi-
fiers dominated over the rest. Probably, this is due to
the versatility of the approaches and the availability
of very good software toolkits.

In particular, 8 teams used the Maximum En-
tropy (ME) statistical framework (Che et al., 2005;
Haghighi et al., 2005; Park and Rim, 2005; Tjong
Kim Sang et al., 2005; Sutton and McCallum, 2005;
Tsai et al., 2005; Yi and Palmer, 2005; Venkatapathy
et al., 2005). Support Vector Machines (SVM) were
used by 6 teams. Four of them with the standard
polynomial kernels (Mitsumori et al., 2005; Tjong
Kim Sang et al., 2005; Tsai et al., 2005; Pradhan et
al., 2005b), another one using Gaussian kernels (Oz-
gencil and McCracken, 2005), and a last group using
tree-based kernels specifically designed for the task
(Moschitti et al., 2005). Another team used also a re-
lated learning approach, SNoW, which is a Winnow-
based network of linear separators (Punyakanok et
al., 2005).

Decision Tree learning (DT) was also represented



Devel. Test WSJ Test Brown
P(%) R(%) Fi P(%) R(%) Fi P(%) R(%) Fi
UPC Chunker 94.66 93.17 93.91 | 95.26 9452 94.89 | 92.64 90.85 91.73
UPC Clauser 90.38 84.73 87.46 | 90.93 8594 88.36 | 84.21 74.32 78.95
Collins (1999) 85.02 83.55 84.28 | 85.63 85.20 85.41 | 82.68 81.33 82.00
Charniak (2000) | 87.60 87.38 87.49 | 88.20 88.30 88.25 | 80.54 81.15 80.84

Table 3: Results of the syntactic parsers on the development, and WSJ and Brown test sets. Unlike in full
parsing, the figures have been computed on a strict evaluation basis with respect to punctuation.

by Ponzetto and Strube (2005), who used CA4.5.
Ensembles of decision trees learned through the
AdaBoost algorithm (AB) were applied by Marquez
et al. (2005) and Surdeanu and Turmo (2005). Tjong
Kim Sang et al. (2005) applied, among others,
Memory-Based Learning (MBL).

Regarding novel learning paradigms not applied
in previous shared tasks, we find Relevant Vector
Machine (RVM), which is a kernel-based linear dis-
criminant inside the framework of Sparse Bayesian
Learning (Johansson and Nugues, 2005) and Tree
Conditional Random Fields (T-CRF) (Cohn and
Blunsom, 2005), that extend the sequential CRF
model to tree structures. Finally, Lin and Smith
(2005) presented a proposal radically different from
the rest, with very light learning components. Their
approach (Consensus in Pattern Matching, CPM)
contains some elements of Memory-based Learning
and ensemble classification.

From the Machine Learning perspective, system
combination is another interesting component ob-
served in many of the proposals. This fact, which is
a difference from last year shared task, is explained
as an attempt of increasing the robustness and cover-
age of the systems, which are quite dependent on in-
put parsing errors. The different outputs to combine
are obtained by varying input information, chang-
ing learning algorithm, or considering n-best solu-
tion lists. The combination schemes presented in-
clude very simple voting-like combination heuris-
tics, stacking of classifiers, and a global constraint
satisfaction framework modeled with Integer Linear
Programming. Global models trained to re-rank al-
ternative outputs represent a very interesting alter-
native that has been proposed by two systems. All
these issues are reviewed in detail in section 4.2.
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4.2 SRL approaches

SRL is a complex task, which may be decomposed
into a number of simpler decisions and annotating
schemes in order to be addressed by learning tech-
niques. Table 4 contains a summary of the main
properties of the 19 systems presented. In this sec-
tion we will explain the contents of that table by
columns (from left-to-right).

One first issue to consider is the input structure
to navigate in order to extract the constituents that
will form labeled arguments. The majority of sys-
tems perform parse tree node labeling, searching
for a one-to—one map between arguments and parse
constituents. This information is summarized in the
“synt” column of Table 4. “col”, “cha”, “upc” stand
for the syntactic parse trees (the latter is partial) pro-
vided as input by the organization. Additionally,
some teams used lists of n-best parsings generated
by available tools (“n-cha” by Charniak parser; “n-
bikel” by Bikel’s implementation of Collins parser).
Interestingly, Yi and Palmer (2005) retrained Rat-
naparkhi’s parser using the WSJ training sections
enriched with semantic information coming from
PropBank annotations. These are referred to as AN
and AM parses. As it can be seen, Charniak parses
were used by most of the systems. Collins parses
were used also in some of the best performing sys-
tems based on combination.

The exceptions to the hierarchical processing are
the systems by Pradhan et al. (2005b) and Mitsumori
et al. (2005), which perform a chunking-based se-
guential tokenization. As for the former, the system
is the same than the one presented in the 2004 edi-
tion. The system by Marquez et al. (2005) explores
hierarchical syntactic structures but selects, in a pre-
process, a sequence of tokens to perform a sequen-
tial tagging afterwards.



ML-method synt pre label | embed | glob | post comb type
punyakanok SNoW n-cha,col X&p i+c defer yes no n-cha+col ac-ILP
haghighi ME n-cha ? i+c | dp-prob | yes no n-cha re-rank
marquez AB cha,upc seq bio Ineed no no cha+upc s-join
pradhan SVM cha,col/chunk ? c/bio ? no no cha+col—chunk stack
surdeanu AB cha prun c g-top no | yes no -
tsai ME,SVM cha X&p o defer yes no ME+SVM ac-ILP
che ME cha no c g-score no yes no -
moschitti SVM cha prun i+c Ineed no no no -
tjongkimsang | ME,SVM,TBL cha prun i+c Ineed no yes | ME+SVM+TBL | s-join
yi ME cha,AN,AM X&p i+c defer no no cha+tAN+AM ac-join
ozgencil SVM cha prun i+c | g-score | no no no -
johansson RVM cha softp i+C ? no no no -
cohn T-CRF col X&p c g-top yes no no -
park ME cha prun i+c ? no no no -
mitsumori SVM chunk no bio Ineed no no no -
venkatapathy ME col prun i+C frames | yes no no -
ponzetto DT col prun c g-top no | yes no -
lin CPM cha gt-para | i+c Ineed no no no -
sutton ME n-bikel X&p i+c | dp-prob | yes no n-bikel re-rank

Table 4: Main properties of the SRL strategies implemented by the participant teams, sorted by F; per-

formance on the WSJ+Brown test set. synt stands

for the syntactic structure explored; pre stands for

pre-processing steps; label stands for the labeling strategy; embed stands for the technique to ensure non-
embedding of arguments; glob stands for global optimization; post stands for post-processing; comb stands
for system output combination, and type stands for the type of combination. Concrete values appearing in

the table are explained in section 4.1. The symbol “?”
description papers.

In general, the presented systems addressed the
SRL problem by applying different chained pro-
cesses. In Table 4 the column “pre” summarizes pre-
processing. In most of the cases this corresponds to
a pruning procedure to filter out constituents that are
not likely to be arguments. As in feature develop-
ment, the related bibliography has been followed for
pruning. For instance, many systems used the prun-
ing strategy described in (Xue and Palmer, 2004)
(“x&p™) and other systems used the soft pruning
rules described in (Pradhan et al., 2005a) (“softp™).
Remarkably, Park and Rim (2005) parametrize the
pruning procedure and then study the effect of be-
ing more or less aggressive at filtering constituents.
In the case of Marquez et al. (2005), pre-processing
corresponds to a sequentialization of syntactic hier-
archical structures. As a special case, Lin and Smith
(2005) used the GT-PARA analyzer for converting
parse trees into a flat representation of all predicates
including argument boundaries.

The second stage, reflected in column “label” of
Table 4, is the proper labeling of selected candi-
dates. Most of the systems used a two-step proce-
dure consisting of first identifying arguments (e.g.,
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stands for unknown values not reported by the system

with a binary “null” vs. “non-null” classifier) and
then classifying them. This is referred to as “i+c” in
the table. Some systems address this phase in a sin-
gle classification step by adding a “null” category
to the multiclass problem (referred to as “c’). The
methods performing a sequential tagging use a BIO
tagging scheme (“bio”). As a special case, Mos-
chitti et al. (2005) subdivide the “i+c” strategy into
four phases: after identification, heuristics are ap-
plied to assure compatibility of identified arguments;
and, before classifying arguments into roles, a pre-
classification into core vs. adjunct arguments is per-
formed. Venkatapathy et al. (2005) use three labels
instead of two in the identification phase : “null”,
“mandatory”, and “optional”.

Since arguments in a solution do not embed and
most systems identify arguments as nodes in a hier-
archical structure, non-embedding constraints must
be resolved in order to generate a coherent argu-
ment labeling. The “embed” column of Table 4 ac-
counts for this issue. The majority of systems ap-
plied specific greedy procedures that select a subset
of consistent arguments. The families of heuristics
to do that selection include prioritizing better scored



constituents (*“g-score”), or selecting the arguments
that are first reached in a top-down exploration (“g-
top”). Some probabilistic systems include the non-
embedding constraints within the dynamic program-
ming inference component, and thus calculate the
most probable coherent labeling (“dp-prob”). The
“defer” value means that this is a combination sys-
tem and that coherence of the individual system pre-
dictions is not forced, but deferred to the later com-
bination step. As a particular case, Venkatapathy et
al. (2005) use PropBank subcategorization frames to
force a coherent solution. Note that tagging-based
systems do not need to check non-embedding con-
straints (*!need” value).

The “glob” column of Table 4 accounts for the lo-
cality/globality of the process used to calculate the
output solution given the argument prediction candi-
dates. Systems with a “yes” value in that column de-
fine some kind of scoring function (possibly proba-
bilistic) that applies to complete candidate solutions,
and then calculate the solution that maximizes the
scoring using an optimization algorithm.

Some systems use some kind of postprocessing to
improve the final output of the system by correct-
ing some systematic errors, or treating some types
of simple adjunct arguments. This information is in-
cluded in the “post” column of Table 4. In most of
the cases, this postprocess is performed on the basis
of simple ad-hoc rules. However, it is worth men-
tioning the work of Tjong Kim Sang et al. (2005)
in which spelling error correction techniques are
adapted for improving the resulting role labeling. In
that system, postprocessing is applied before system
combination.

Most of the best performing systems included a
combination of different base subsystems to increase
robustness of the approach and to gain coverage and
independence from parse errors. Last 2 columns of
Table 4 present this information. In the “comb” col-
umn the source of the combination is reported. Basi-
cally, the alternative outputs to combine can be gen-
erated by different input syntactic structures or n-
best parse candidates, or by applying different learn-
ing algorithms to the same input information.

The type of combination is reported in the last col-
umn. Marquez et al. (2005) and Tjong Kim Sang
et al. (2005) performed a greedy merging of the ar-
guments of base complete solutions (“s-join”). Yi
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and Palmer (2005) did also a greedy merging of ar-
guments but taking into account not complete so-
lutions but all candidate arguments labeled by base
systems (“ac-join”). In a more sophisticated way,
Punyakanok et al. (2005) and Tsai et al. (2005) per-
formed global inference as constraint satisfaction
using Integer Linear Programming, also taking into
account all candidate arguments (“ac-ILP”). It is
worth noting that the generalized inference applied
in those papers allows to include, jointly with the
combination of outputs, a number of linguistically-
motivated constraints to obtain a coherent solution.

Pradhan et al. (2005b) followed a stacking ap-
proach by learning a chunk-based SRL system in-
cluding as features the outputs of two syntax-based
systems. Finally, Haghighi et al. (2005) and Sut-
ton and McCallum (2005) performed a different ap-
proach by learning a re-ranking function as a global
model on top of the base SRL models. Actually,
Haghighi et al. (2005) performed a double selection
step: an inner re-ranking of n-best solutions coming
from the base system on a single tree; and an outer
selection of the final solution among the candidate
solutions coming from n-best parse trees. The re-
ranking approach allows to define global complex
features applying to complete candidate solutions to
train the rankers.

4.3 Features

Looking at the description of the different systems, it
becomes clear that the general type of features used
in this edition is strongly based on previous work on
the SRL task (Gildea and Jurafsky, 2002; Surdeanu
et al., 2003; Pradhan et al., 2005a; Xue and Palmer,
2004). With no exception, all systems have made
intensive use of syntax to extract features. While
most systems work only on the output of a parser
—Charniak’s being the most preferred— some sys-
tems depend on many syntactic parsers. In the latter
situation, either a system is a combination of many
individual systems (each working with a different
parser), or a system extracts features from many dif-
ferent parse trees while exploring the nodes of only
one parse tree. Most systems have also considered
named entities for extracting features.

The main types of features seen in this SRL edi-
tion can be divided into four general categories: (1)
Features characterizing the structure of a candidate



sources argument verb arg-verb p
synt ne[at aw ab ac ai pp sd|[v sc|rp di ps pv pi sf|as
punyakanok cha,colupc  + | + h + t + o+ S+ o+ |+ c + . + o+ ] -
haghighi cha - |+ h +  ps S+ + |+ + |+ t + 4+ . S
marquez cha,upc + | + h + t + . + |+ + |+ w,C + + + .
pradhan chacolupc + | + hec + pst + + R c,t + o+ + 4
surdeanu cha + |+ hc + p,s + . + |+ + |+ w;t + + +
tsai cha,upc + |+ h + pst - . S+ o+ |+ w + . .
che cha + + h + . . + +  + + t + +
moschitti cha - + h + p + o+ + o+ |+ t + o+ +
tjongkimsang cha + |+ . + pt . + + o+ |+ wt + + o+
yi cha,an,am - + hc - p.s + + o+ |+ w + - +
ozgencil cha . + h p . + o+ |+ + o+ .
johansson cha,upc + |+ h . - . + o+ |+ . + o+
cohn col . + h + p,s + + 4+ |+ w + . + o+
park cha . + hc - p . S . + . +
mitsumori upc,cha + | + . + t + |+ . + c,t . + .
venkatapathy col + |+ h + - . -+ + . + . .
ponzetto col,upc + |+ h + + + -oowet - . +
lin cha . + h + . . + + w
sutton bik + h + p,s + + + . . . +

Table 5: Main feature types used by the 19 participating systems in the CoNLL-2005 shared task, sorted by
performance on the WSJ+Brown test set. Sources: synt: use of parsers, namely Charniak (cha), Collins
(cal), UPC partial parsers (upc), Bikel’s Collins model (bik) and/or argument-enriched parsers (an,am); ne:
use of named entities. On the argument: at: argument type; aw: argument words, namely the head (h)
and/or content words (c); ab: argument boundaries, i.e. form and PoS of first and/or last argument words; ac:
argument context, capturing features of the parent (p) and/or left/right siblings (s), or the tokens surrounding
the argument (t); ai: indicators of the structure of the argument (e,g., on internal constituents, surround-
ing/boundary punctuation, governing category, etc.); pp: specific features for prepositional phrases; sd:
semantic dictionaries. On the verb: v: standard verb features (voice, word/lemma, PoS); sc: subcatego-
rization. On the arg-verb relation: rp: relative position; di: distance, based on words (w), chunks (c) or
the syntactic tree (t); ps: standard path; pv: path variations; pi: scalar indicator variables on the path (of
chunks, clauses, or other phrase types), common ancestor, etc.; sf: syntactic frame (Xue and Palmer, 2004);
On the complete proposition: as: sequence of arguments of a proposition.

argument; (2) Features describing properties of the
target verb predicate; (3) Features that capture the
relation between the verb predicate and the con-
stituent under consideration; and (4) Global features
describing the complete argument labeling of a pred-
icate. The rest of the section describes the most com-
mon feature types in each category. Table 5 summa-
rizes the type of features exploited by systems.

To represent an argument itself, all systems make
use of the syntactic type of the argument. Almost
all teams used the heuristics of Collins (1999) to ex-
tract the head word of the argument, and used fea-
tures that capture the form, lemma and PoS tag of
the head. In the same line, some systems also use
features of the content words of the argument, using
the heuristics of Surdeanu et al. (2003). Very gen-
erally also, many systems extract features from the
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first and last words of the argument. Regarding the
syntactic elements surrounding the argument, many
systems working on full trees have considered the
parent and siblings of the argument, capturing their
syntactic type and head word. Differently, other
systems have captured features from the left/right
tokens surrounding the argument, which are typi-
cally words, but can be chunks or general phrases in
systems that sequentialize the task (Marquez et al.,
2005; Pradhan et al., 2005b; Mitsumori et al., 2005).
Many systems use a variety of indicator features that
capture properties of the argument structure and its
local syntactic annotations. For example, indicators
of the immediate syntactic types that form the argu-
ment, flags raised by punctuation tokens in or nearby
the argument, or the governing category feature of
Gildea and Jurafsky (2002). It is also somewhat gen-



eral the use of specific features that apply when the
constituent is a prepositional phrase, such as look-
ing for the head word of the noun phrase within it.
A few systems have also built semantic dictionaries
from training data, that collect words appearing fre-
quently in temporal, locative or other arguments.

To represent the predicate, all systems have used
features codifying the form, lemma, PoS tag and
voice of the verb. It is also of general use the subcat-
egorization feature, capturing the syntactic rule that
expands the parent of the predicate. Some systems
captured statistics related to the frequency of a verb
in training data (not in Table 5).

Regarding features related to an argument-verb
pair, almost all systems use the simple feature de-
scribing the relative position between them. To
a lesser degree, systems have computed distances
from one to the other, based on the number of words
or chunks between them, or based on the syntactic
tree. Not surprisingly, all systems have extracted the
path from the argument to the verb. While almost
all systems use the standard path of (Gildea and Ju-
rafsky, 2002), many have explored variations of it.
A common one consists of the path from the argu-
ment to the lowest common ancestor of the verb and
the argument. Another variation is the partial path,
that is built of chunks and clauses only. Indicator
features that capture scalar values of the path are
also common, and concentrate mainly on looking
at the common ancestor, capturing the difference of
clausal levels, or looking for punctuation and other
linguistic elements in the path. In this category, it is
also noticeable the use of the syntactic frame feature,
proposed by Xue and Palmer (2004).

Finally, in this edition two systems apply learn-
ing at a global context (Haghighi et al., 2005; Sut-
ton and McCallum, 2005) and, consequently, they
are able to extract features from a complete labeling
of a predicate. Basically, the central feature in this
context extracts the sequential pattern of predicate
arguments. Then, this pattern can be enriched with
syntactic categories, broken down into role-specific
indicator variables, or conjoined with the predicate
lemma.

Apart from basic feature extraction, combination
of features has also been explored in this edition.
Many of the combinations depart from the manually
selected conjunctions of Xue and Palmer (2004).
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4.4 Evaluation

A baseline rate was computed for the task. It
was produced using a system developed in the past
shared task edition by Erik Tjong Kim Sang, from
the University of Amsterdam, The Netherlands. The
baseline processor finds semantic roles based on the
following seven rules:

e Tag target verb and successive particles as V.

e Tag not and n’t in target verb chunk as
AM NEG

e Tag modal verbs in target verb chunk as
AM MOD.

e Tag first NP before target verb as AO.

e Tag first NP after target verb as Al.

e Tagt hat, whi ch and who before target verb
as R- AO.

e Switch AO and Al, and R- AO and R- Al if the
target verb is part of a passive VP chunk. A
VP chunk is considered in passive voice if it
contains a form of t 0 be and the verb does
notend ini ng.

Table 6 presents the overall results obtained by
the nineteen systems plus the baseline, on the de-
velopment and test sets (i.e., Development, Test
WSJ, Test Brown, and Test WSJ+Brown). The sys-
tems are sorted by the performance on the combined
WSJ+Brown test set.

As it can be observed, all systems clearly outper-
formed the baseline. There are seven systems with a
final F; performance in the 75-78 range, seven more
with performances in the 70-75 range, and five with
a performance between 65 and 70. The best perfor-
mance was obtained by Punyakanok et al. (2005),
which almost reached an F; at 80 in the WSJ test
set and almost 78 in the combined test. Their results
on the WSJ test equal the best results published so
far on this task and datasets (Pradhan et al., 2005a),
though they are not directly comparable due to a
different setting in defining arguments not perfectly
matching the predicted parse constituents. Since the
evaluation in the shared task setting is more strict,
we believe that the best results obtained in the shared
task represent a new breakthrough in the SRL task.

It is also quite clear that the systems using com-
bination are better than the individuals. It is worth
noting that the first 4 systems are combined. The



Development Test WSJ Test Brown Test WSJ+Brown
P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1
punyakanok 80.05 74.83 7735 | 8228 76.78 79.44 | 7338 6293 67.75 | 81.18 7492 77.92
haghighi 7766 7572 76.68 | 79.54 77.39 7845 | 70.24 6537 67.71 | 7834 75.78 77.04
marquez 7839 7553 7693 | 7955 76.45 77.97 | 70.79 6435 67.42 | 7844 7483 76.59
pradhan 80.90 75.38 78.04 | 81.97 73.27 7737 | 73.73 6151 67.07 | 8093 71.69 76.03
surdeanu 79.14 7157 7517 | 80.32 7295 76.46 | 7241 59.67 6542 | 79.35 7117 75.04
tsai 81.13 7242 7653 | 82.77 7090 76.38 | 73.21 5949 65.64 | 8155 69.37 74.97
che 79.65 7134 7527 | 8048 7279 76.44 | 7113 59.99 65.09 | 79.30 71.08 74.97
moschitti 7495 7310 74.01 | 7655 7524 7589 | 6592 6183 63.81 | 7519 7345 7431
tjongkimsang | 76.79 70.01 73.24 | 79.03 72.03 75.37 | 70.45 60.13 64.88 | 77.94 7044 74.00
yi 75.70 69.99 7273 | 7751 7297 75.17 | 67.88 59.03 63.14 | 76.31 71.10 73.61
ozgencil 7357 7187 7271 | 7466 7421 7444 | 6552 6293 64.20 | 7348 7270 73.09
johansson 7340 70.85 7210 | 7546 73.18 7430 | 65.17 6059 62.79 | 7413 7150 72.79
cohn 7351 68.98 7117 | 7581 7058 73.10 | 67.63 60.08 63.63 | 7476 69.17 71.86
park 72.68 69.16 70.87 | 7469 70.78 72.68 | 6458 60.31 62.38 | 73.35 69.37 7131
mitsumori 7168 64.93 6814 | 7415 6825 71.08 | 63.24 5420 5837 | 7277 66.37 69.43
venkatapathy | 71.88 64.76 68.14 | 73.76 6552 69.40 | 65.25 55.72 60.11 | 72.66 6421 68.17
ponzetto 7182 61.60 66.32 | 75.05 64.81 6956 | 66.69 5214 5852 | 7402 63.12 68.13
lin 70.11 61.96 6578 | 71.49 64.67 67.91 | 6575 5282 5858 | 70.80 63.09 66.72
sutton 64.43 63.11 63.76 | 6857 6499 66.73 | 6291 5485 58.60 | 67.86 63.63 65.68
baseline 50.00 28.98 36.70 | 51.13 29.16 37.14 | 62.66 33.07 43.30 | 5258 29.69 37.95

Table 6: Overall precision, recall and F; rates obtained by the 19 participating systems in the CoONLL-2005
shared task on the development and test sets. Systems sorted by F; score on the WSJ+Brown test set.

best individual system on the task is that of Sur-
deanu and Turmo (2005), which obtained F;=75.04
on the combined test set, about 3 points below than
the best performing combined system. On the de-
velopment set, that system achieved a performace
of 75.17 (slightly below than the 75.27 reported by
Che et al. (2005) on the same dataset). Accord-
ing to the description papers, we find that other
individual systems, from which the combined sys-
tems are constructed, performed also very well. For
instance, Tsai et al. (2005) report F1=75.76 for a
base system on the development set, Marquez et al.
(2005) report F1=75.75, Punyakanok et al. (2005)
report F1=74.76, and Haghighi et al. (2005) report
F1=74.52.

The best results in the CoNLL-2005 shared task
are 10 points better than those of last year edition.
This increase in performance should be attributed to
a combination of the following factors: 1) training
sets have been substantially enlarged; 2) predicted
parse trees are available as input information; and 3)
more sophisticated combination schemes have been
implemented. In order to have a more clear idea of
the impact of enriching the syntactic information,
we refer to (Marquez et al., 2005), who developed
an individual system based only on partial parsing
(“upc” input information). That system performed
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F1=73.57 on the development set, which is 2.18
points below the F1=75.75 obtained by the same ar-
chitecture using full parsing, and 4.47 points below
the best performing combined system on the devel-
opment set (Pradhan et al., 2005b).

Comparing the results across development and
WSJ test corpora, we find that, with two exceptions,
all systems experienced a significant increase in per-
formance (normally between 1 and 2 F; points).
This fact may be attributed to the different levels of
difficulty found across WSJ sections. The linguistic
processors and parsers perform slightly worse in the
development set. As a consequence, the matching
between parse nodes and actual arguments is lower.

Regarding the evaluation using the Brown test
set, all systems experienced a severe drop in perfor-
mance (about 10 F; points), even though the base-
line on the Brown test set is higher than that of
the WSJ test set. As already said in previous sec-
tions, all the linguistic processors, from PoS tag-
ging to full parsing, showed a much lower perfor-
mance than in the WSJ test set, evincing that their
performance cannot be extrapolated across corpora.
Presumably, this fact is the main responsible of the
performace drop, though we do not discard an ad-
ditional overfitting effect due to the design of spe-
cific features that do not generalize well. More im-



portantly, this results impose (again) a severe criti-
cism on the current pipelined architecture for Natu-
ral Language Processing. Error propagation and am-
plification through the chained modules make the fi-
nal output generalize very badly when changing the
domain of application.

5 Conclusion

We have described the CoNLL-2005 shared task
on semantic role labeling. Contrasting with the
CoNLL-2004 edition, the current edition has in-
corporated the use of full syntax as input to the
SRL systems, much larger training sets, and cross-
corpora evaluation. The first two novelties have
most likely contributed to an improvement of re-
sults. The latter has evinced a major drawback of
natural language pipelined architectures.

Nineteen teams have participated to the task, con-
tributing with a variety of learning algorithms, la-
beling strategies, feature design and experimenta-
tion. While, broadly, all systems make use of the
same basic techniques described in existing SRL
literature, some novel aspects have also been ex-
plored. A remarkable aspect, common in the four
top-performing systems and many other, is that
of combining many individual SRL systems, each
working on different syntactic structures. Combin-
ing systems improves robustness, and overcomes
the limitations in coverage that working with a sin-
gle, non-correct syntactic structure imposes. The
best system, presented by Punyakanok et al. (2005),
achieves an Fy at 79.44 on the WSJ test. This per-
formance, of the same order than the best reported
in literature, is still far from the desired behavior of
a natural language analyzer. Furthermore, the per-
formance of such SRL module in a real application
will be about ten points lower, as demonstrated in
the evaluation on the sentences from Brown.

We conclude with two open questions. First, what
semantic knowledge is needed to improve the qual-
ity and performance of SRL systems. Second, be-
yond pipelines, what type of architectures and lan-
guage learning methodology ensures a robust per-
formance of processors.
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Abstract

In this paper, we propose an approach
for inferring semantic role using sub-
categorization frames and maximum
entropy model. Our approach aims to
use the sub-categorization information
of the verb to label the mandatory ar-
guments of the verb in various possi-
ble ways. The ambiguity between the
assignment of roles to mandatory argu-
ments is resolved using the maximum
entropy model. The unlabelled manda-
tory arguments and the optional argu-
ments are labelled directly using the
maximum entropy model such that their
labels are not one among the frame el-
ements of the sub-categorization frame
used. Maximum entropy model is pre-
ferred because of its novel approach
of smoothing. Using this approach,
we obtained an F-measure of 68.14%
on the development set of the data
provided for the CONLL-2005 shared
task. We show that this approach per-
forms well in comparison to an ap-
proach which uses only the maximum
entropy model.

1 Introduction

Semantic role labelling is the task of assigning
appropriate semantic roles to the arguments of
a verb. The semantic role information is impor-
tant for various applications in NLP such as Ma-
chine Translation, Question Answering, Informa-
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tion Extraction etc. In general, semantic role in-
formation is useful for sentence understanding.
We submitted our system for closed challenge
at CONLL-2005 shared task. This task encour-
ages participants to use novel machine learning
techniques suited to the task of semantic role la-
belling. Previous approaches on semantic role
labelling can be classified into three categories
(1) Explicit Probabilistic methods (Gildea and
Jurafsky, 2002). (2) General machine learning
algorithms (Pradhan et al., 2003) (Lim et al.,
2004) and (3) Generative model (Thompson et
al., 2003).

Our approach has two stages; first, identifica-
tion whether the argument is mandatory or op-
tional and second, the classification or labelling
of the arguments. In the first stage, the arguments
of a verb are put into three classes, (1) mandatory,
(2) optional or (3) null. Null stands for the fact
that the constituent of the verb in the sentence is
not an semantic argument of the verb. It is used to
rule out the false argument of the verb which were
obtained using the parser. The maximum entropy
based classifier is used to classify the arguments
into one of the above three labels.

After obtaining information about the nature of
the non-null arguments, we proceed in the second
stage to classify the mandatory and optional ar-
guments into their semantic roles. The propbank
sub-categorization frames are used to assign roles
to the mandatory arguments. For example, in the
sentence John saw a tree”, the sub-categorization
frame "AO0 v A1” would assign the roles A0 to
John and A1l to tree respectively. After using
all the sub-categorization frames of the verb irre-
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spective of the verb sense, there could be ambigu-
ity in the assignment of semantic roles to manda-
tory arguments. The unlabelled mandatory argu-
ments and the optional arguments are assigned
the most probable semantic role which is not one
of the frame elements of the sub-categorization
frame using the maximum entropy model. Now,
among all the sequences of roles assigned to the
non-null arguments, the sequence which has the
maximum joint probability is chosen. We ob-
tained an accuracy of 68.14% using our approach.
We also show that our approach performs better
in comparision to an approach with uses a simple
maximum entropy model. In section 4, we will
talk about our approach in greater detail.

This paper is organised as follows, (2) Features,
(3) Maximum entropy model, (4) Description of
our system, (5) Results, (6) Comparison with our
other experiments, (7) Conclusion and (8) Future
work.

2 Features

The following are the features used to train the
maximum entropy classifier for both the argument
identification and argument classification. We
used only simple features for these experiments,
we are planning to use richer features in the near
future.

1. Verb/Predicate.
2. \Voice of the verb.
Constituent head and Part of Speech tag.

Label of the constituent.

a > w

Relative position of the constituent with re-
spect to the verb.

6. The path of the constituent to the verb
phrase.

7. Preposition of the constituent, NULL if it
doesn’t exist.

3 Maximum entropy model

The maximum entropy approach became the pre-
ferred approach of probabilistic model builders
for its flexibility and its novel approach to
smoothing (Ratnaparakhi, 1999).
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Many classification tasks are most naturally
handled by representing the instance to be classi-
fied as a vector of features. We represent features
as binary functions of two arguments, f(a,H),
where "2’ is the observation or the class and "H’ is
the history. For example, a feature f;(a, H) is true
if o’ is Ram and "H’ is ’AGENT of a verb’. Ina
log linear model, the probability function P(a|H )
with a set of features f1, fo, .... f; that connects "a’
to the history "H’, takes the following form.

ezi Ai(a,H)x*f;(a,H)
Z(H)

P(alH) =

Here \;’s are weights between negative and
positive infinity that indicate the relative impor-
tance of a feature: the more relevant the feature to
the value of the probability, the higher the abso-
lute value of the associated lambda. Z(H), called
the partition function, is the normalizing constant
(for a fixed H).

4 Description of our system

Our approach labels the semantic roles in two
stages, (1) argument identification and (2) ar-
gument classification. As input to our sys-
tem, we use full syntactic information (Collins,
1999), Named-entities, Verb senses and Propbank
frames. For our experiments, we use Zhang Le’s
Maxent Toolkit !, and the L-BFGS parameter esti-
mation algorithm with Gaussian prior smoothing
(Chen and Rosenfield, 1999).

4.1 Argument identification

The first task in this stage is to find the candidate
arguments and their boundaries using a parser.
We use Collins parser to infer a list of candidate
arguments for every predicate. The following are
some of the sub-stages in this task.

e Convert the CFG tree given by Collins parser
to a dependency tree.

e Eliminate auxilliary verbs etc.

e Mark the head of relative clause as an argu-
ment of the verb.

Lhttp://www.nl plab.cn/zhangle/maxent _toolkit.html



e If a verb is modified by another verb, the
syntactic arguments of the superior verb
are considered as shared arguments between
both the verbs.

o If a prepositional phrase attached to a verb
contains more than one noun phrase, attach
the second noun phrase to the verb.

The second task is to filter out the constituents
which are not really the arguments of the pred-
icate. Given our approach towards argument
classification, we also need information about
whether an argument is mandatory or optional.
Hence, in this stage the constituents are marked
using three labels, (1) MANDATORY argument,
(2) OPTIONAL argument and (3) NULL, using a
maximum entropy classifier. For example, a sen-
tence ”John was playing football in the evening”,
”John” is marked MANDATORY, "football” is
marked MANDATORY and in the evening” is
marked OPTIONAL.

For training, the Collins parser is run on the
training data and the syntactic arguments are
identified. Among these arguments, the ones
which do not exist in the propbank annotation of
the training data are marked as null. Among the
remaining arguments, the arguments are marked
as mandatory or optional according to the prop-
bank frame information. Mandatory roles are
those appearing in the propbank frames of the
verb and its sense, the rest are marked as optional.
A propbank frame contains information as illus-
trated by the following example:

If Verb = play, sense =01,
then the roles AO, Al are MANDATORY.

4.2 Argument classification

Argument classification is done in two steps. In
the first step, the propbank sub-categorization
frames are used to assign the semantic roles to the
mandatory arguments in the order specified by the
sub-categorization frames. Sometimes, the num-
ber of mandatory arguments of a verb in the sen-
tence may be less than the number of roles which
can be assigned by the sub-categorization frame.
For example, in the sentence

"MAN1 MAN2 V MAN3 OPT1", roles could
be assigned in the following two possible ways by
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the sub-categorization frame "A0 v Al” of verb
V1.

e AO[MAN1] MAN2 V1 A1[MAN3] OPT1

e MAN1 AO[MANZ2] V AL[MAN3] OPT1

In the second step, the task is to label the un-
labelled mandatory arguments and the arguments
which are marked as optional. This is done by
marking these arguments with the most probable
semantic role which is not one of the frame ele-
ments of the sub-categorization frame "A0 v A1”.
In the above example, the unlabelled mandatory
arguments and the optional arguments cannot be
labelled as either AO or AL. Hence, after this step,
the following might be the role-labelling for the
sentence "MAN1 MAN2 V1 MAN3 OPT1".

e AO[MAN1]  AM-TMP[MAN2] V1
A1[MAN3] AM-LOC[OPT1]

e AM-MNC[MAN1]  AO[MAN2] V1
A1[MAN3] AM-LOC[OPT1]

The best possible sequence of semantic roles
(R) is decided by the taking the product of prob-
abilities of individual assignments. This also dis-
ambiguates the ambiguity in the assignment of
mandatory roles. The individual probabilities are
computed using the maximum entropy model.
For a sequence R, the product of the probabilities
is defined as

P(R) =11, _zP(Ri|Arg;)

The best sequence of semantic roles R is de-

fined as

—

R = argmaz P(R)

For training the maximum entropy model, the
outcomes are all the possible semantic roles. The
list of sub-categorization frames for a verb is ob-
tained from the training data using information
about mandatory roles from the propbank. The
propbank sub-categorization frames are also ap-
pended to this list.

We present our results in the next section.



Precision Recal | Fg—:
Development 71.88% | 64.76% | 68.14
Test WSJ 73.76% | 65.52% | 69.40
Test Brown 65.25% | 55.72% | 60.11
Test WSJ+Brown 72.66% | 64.21% | 68.17
Test WSJ Precision Recal | Fg=1
Overal 73.76% | 65.52% | 69.40
A0 85.17% | 73.34% | 78.81
Al 74.08% | 66.08% | 69.86
A2 54.51% | 48.47% | 51.31
A3 52.54% | 35.84% | 42.61
A4 71.13% | 67.65% | 69.35
A5 25.00% | 20.00% | 22.22
AM ADV 52.18% | 47.23% | 49.59
AM CAU 60.42% | 39.73% | 47.93
AM DI R 45.65% | 24.71% | 32.06
AM DI S 75.24% | 73.12% | 74.17
AM EXT 73.68% | 43.75% | 54.90
AM LCC 50.80% | 43.53% | 46.88
AM- MNR 47.24% | 49.71% | 48.44
AM- MOD 93.67% | 91.29% | 92.46
AM NEG 94.67% | 92.61% | 93.63
AM- PNC 42.02% | 43.48% | 42.74
AM PRD 0.00% 0.00% 0.00
AM REC 0.00% 0.00% 0.00
AM TMP 74.13% | 66.97% | 70.37
R- AO 82.27% | 80.80% | 81.53
R- Al 73.28% | 61.54% | 66.90
R- A2 75.00% | 37.50% | 50.00
R- A3 0.00% 0.00% 0.00
R- A4 0.00% 0.00% 0.00
R- AM ADV 0.00% 0.00% 0.00
R- AM CAU 0.00% 0.00% 0.00
R- AM EXT 0.00% 0.00% 0.00
R- AM LOC | 100.00% | 57.14% | 72.73
R- AM MNR 25.00% | 16.67% | 20.00
R- AM TMP 70.00% | 53.85% | 60.87
[V | 97.28% | 97.28% [ 97.28 |

Table 1: Overall results (top) and detailed results
on the WSJ test (bottom).

5 Results

The results of our approach are presented in table
1.

When we used an approach which uses a sim-
ple maximum entropy model, we obtained an F-
measure of 67.03%. Hence, we show that the
sub-categorization frames help in predicting the
semantic roles of the mandatory arguments, thus
improving the overall performance.

6 Conclusion

In this paper, we propose an approach for in-
ferring semantic role using sub-categorization
frames and maximum entropy model. Using this
approach, we obtained an F-measure of 68.14%
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on the development set of the data provided for
the CONLL-2005 shared task.

7 Futurework

We have observed that the main limitation of our
system was in argument identification. Currently,
the recall of the arguments inferred from the out-
put of the parser is 75.52% which makes it the up-
per bound of recall of our system. In near future,
we would focus on increasing the upper bound
of recall. In this direction, we would also use
the partial syntactic information. The accuracy
of the first stage of our approach would increase
if we include the mandatory/optional information
for training the parser (Yiand Palmer, 1999).
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Abstract

In this paper we apply conditional

random fields (CRFs) to the semantic
role labelling task. We define a random
field over the structure of each sentence’s
syntactic parse tree. For each node
of the tree, the model must predict a
semantic role label, which is interpreted
as the labelling for the corresponding
syntactic constituent. We show how
modelling the task as a tree labelling
problem allows for the use of efficient

and pcbl@csse.unimelb.ed.au

been applied with impressive empirical results to the
tasks of named entity recognition (McCallum and
Li, 2003; Cohn et al., 2005), part-of-speech (PoS)
tagging (Lafferty et al., 2001), noun phrase chunk-
ing (Sha and Pereira, 2003) and extraction of table
data (Pinto et al., 2003), among other tasks.

While CRFs have not been used to date for SRL,
their close cousin, the maximum entropy model has
been, with strong generalisation performance (Xue
and Palmer, 2004; Lim et al.,, 2004). Most CRF
implementations have been specialised to work with
chain structures, where the labels and observations

form a linear sequence. Framing SRL as a linear
tagging task is awkward, as there is no easy model
of adjacency between the candidate constituent
phrases.

Our approach simultaneously performs both con-
stituent selection and labelling, by defining an undi-
rected random field over the parse tree. This allows
the modelling of interactions between parent and
child constituents, and the prediction of an optimal
argument labelling for all constituents in one pass.
The semantic role labelling task (SRL) involvesThe parse tree forms an acyclic graph, meaning that
identifying which groups of words act as argumentsfficient exact inference in a CRF is possible using
to a given predicate. These arguments mus$elief propagation.
be labelled with their role with respect to the
predicate, indicating how the proposition should bg Data
semantically interpreted. The data used for this task was taken from the

We apply conditional random fields (CRFs) topropbank corpus, which supplements the Penn
the task of SRL proposed by the CoNLL sharedreebank with semantic role annotation. Full details
task 2005 (Carreras andavjuez, 2005). CRFs are of the data set are provided in Carreras aratddiez
undirected graphical models which define a condi2005).
tional distribution over labellings given an obser- .
vation (Lafferty et al., 2001). These models allow?-1 Data Representation
for the use of very large sets of arbitrary, overfrom each training instance we derived a tree, using
lapping and non-independent features. CRFs hatlee parse structure from the Collins parser. The

CRF inference algorithms, while also
increasing generalisation performance
when compared to the equivalent
maximum entropy classifier. We have
participated in the CoNLL-2005 shared
task closed challenge with full syntactic
information.

1 Introduction
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nodes in the trees were relabelled with a semant@ Model
role_ label |r_1d|cat|ng how their corres_pondlng syn-We define a CRF over the labelling given the
tactic constituent relates to each predicate, as showB . .

in Figure 1. The role labels are shown as subscripPs servation tre as:
in the figure, and both the syntactic categories and 1

the worgs at the leaves areyshown for ciqarity only (yx) = Z(x) exp D D Mifi(eYe.x)
— these were not included in the tree. Addition-

ally, the dashed lines show those edges which wepdhereC is the set of cliques in the observation tree,
pruned, following Xue and Palmer (2004) — onlyAx are the model's parameters ayid-) is the fea-
nodes which are siblings to a node on the path froitire function which maps a clique labelling to a vec-
the verb to the root are included in the tree. Childor of scalar values. The functiof(-) is the nor-
nodes of included prepositional phrase nodes afalising function, which ensures thatis a valid
also included. This reduces the size of the resultaRfobability distribution. This can be restated as:

ceC k

tree whilst only very occasionally excluding nodes

which should be labelled as an argument. p(ylx) = Z(lx) exp { Z Z Mgk (0, o, X)
The tree nodes were labelled such that only argu- veC1 k

ment constituents received the argument label while

all argument children were labelled as outside, + Z Z)\jhj(u,v,yu,ymx)}

Where there were parse errors, such that no con- u,v€Cy j

stituent exactly covered the token span of an argl&\?herecl are the vertices in the graph add are

ment, the smaller subsumed constituents were QHe maximal cliques in the graph, consisting of all
given the argument label. (parent, child)pairs. The feature function has been
We experimented with two alternative labellingsplit into ¢ and h, each dealing with one and two
strategies: labelling a constituent’s children with aode cliques respectively.
new ‘inside’ label, and labelling the children with  Preliminary  experimentation ~ without any
the parent’s argument label. In the figure, the IN angair-wise features /), was used to mimic a
NP children of the PP would be affected by thesgimple maximum entropy classifier. This model
changes, both receiving either the insidéabel or performed considerably worse than the model
AM-LOClabel under the respective strategies. Thaith the pair-wise features, indicating that the
inside strategy performed nearly identically to theadded complexity of modelling the parent-child
standard (outside) strategy, indicating that either thiateractions provides for more accurate modelling
model cannot reliably predict the inside argumenif the data.
or that knowing that the children of a given node are The log-likelihood of the training sample was
inside an argument is not particularly useful in preeptimised using limited memory variable metric
dicting its label. The second (duplication) strategfl MVM), a gradient based technique. This required
performed extremely poorly. While this allowed thethe repeated calculation of the log-likelihood and
internal argument nodes to influence their ancestiws derivative, which in turn required the use of
towards a particular labelling, it also dramaticallydynamic programming to calculate the marginal
increased the number of nodes given an argumeptobability of each possible labelling of every clique
label. This lead to spurious over-prediction of arguusing the sum-product algorithm (Pearl, 1988).

ments.

The model is used for decoding by predicting the4 Features

maximum probability argument label assignment té\s the conditional random field is conditioned on
each of the unlabelled trees. When these predithe observation, it allows feature functions to be
tions were inconsistent, and one argument subsumddfined over any part of the observation. The tree
another, the node closest to the root of the tree wasructure requires that features incorporate either a
deemed to take precedence over its descendants. node labelling or the labelling of a parent and its
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10 NE’AM-TMP VPO
VA N 7\
7’ / \ \ / \
/ \

/ N\
/ \
/ \
DT NNP
The luxury auto maker last year sold 1,é14 cars in the us

Figure 1: Syntax tree labelled for semantic roles with respect to the predidat&he subscripts show the
role labels, and the dotted and dashed edges are those which are pruned from the tree.

child. We have defined node and pairwise clique fea+eature conjunctionsThe following features were
tures using data local to the corresponding syntactic  conjoined:{ predicate lemma + syntactic cate-
node(s), as well as some features on the predicate gory, predicate lemma + relative position, syn-
itself. tactic category + first word of the phrase

Each feature type has been made into binary fea-
ture functionsg and k. by combining(feature type, Default feature This feature is always on, which
value) pairs with a label, or label pair, where this  allows the classifier to model the prior prob-
combination was seen at least once in the training  @bility distribution over the possible argument
data. The following feature types were employed, labels.

most of which were inspired by previous works: . .
P yp Joint features These features were only defined

Basic features: {Head word, head PoS, phrase  over pair-wise cliques:{whether the parent
syntactic category, phrase path, position rel-  and child head words do not match, parent syn-
ative to the predicate, surface distance to the  tactic category + and child syntactic category,
predicate, predicate lemma, predicate token, Pparent relative position + child relative posi-
predicate voice, predicate sub-categorisation,  tion, parent relative position + child relative
syntactic framé. These features are common  Position + predicate PoS + predicate lemma

to many SRL systems and are described in Xue .

Context features{Head word of first NP in prepo- 1€ model was trained on the full training set
sition phrase, left and right sibling head words2ft€r removing unparsable sentences, yielding
and syntactic categories, first and last word®0,388 predicates and 1,971,985 binary features. A
in phrase yield and their PoS, parent syntacticGa“SS'an prior was used to regularise the model,

category and head wojd These features are with variances? = 1. Training was performed on
described in Pradhan et al. (2005). a 20 node PowerPC cluster, consuming a total of

62Gb of RAM and taking approximately 15 hours.
Common ancestor of the verbThe syntactic cate- Decoding required only 3Gb of RAM and about 5
gory of the deepest shared ancestor of both thainutes for the 3,228 predicates in the development
verb and node. set. Results are shown in Table 1.
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Precision| Recall | Fg=1
Development 73.51% | 68.98% | 71.17 ACknOWIedgementS
Test WSJ 75.81% | 70.58% | 73.10 ;
Test Brown 67.63% | 60.08% | 6363 We would both like to .thank our research super-
Test WSJ+Brown| 74.76% | 69.17% | 71.86 visor Steven Bird for his comments and feedback
on this work. The research undertaken for this
TestWSJ [ Precision] Recall | Fs— paper was supported by an Australian Postgraduate
Overall 5.81% | 70.58% ) 73.10 Award scholarship, a Melbourne Research Scholar-
AO 82.21% | 79.48% | 80.82 / P, toour
Al 74.56% | 71.26% | 72.87 ship and a Melbourne University Postgraduate Over-
A2 63.93% | 56.85% | 60.18 seas Research Experience Scholarship.
A3 63.95% | 54.34% | 58.75
A4 68.69% | 66.67% | 67.66
A5 0.00% | 0.00% | 0.00
AM-ADV 54.73% | 48.02% | 51.16 References
AM-CAU 75.61% | 42.47% | 54.39 Xavier Carreras and Lls Marquez. 2005. Introduction to
AM-DIR 54.17% | 30.59% | 39.10 the CoNLL-2005 Shared Task: Semantic Role Labeling. In
AM-DIS 77.74% | 73.12% | 75.36 Proceedings of the CoNLL-2005
AM-EXT 65.00% | 40.62% | 50.00
AM-LOC 60.67% | 54.82% | 57.60 Trevor Cohn, Andrew Smith, and Miles Osborne. 2005. Scal-
AM-MNR 54.66% | 49.42% | 51.91 ing conditional random fields using error correcting codes.
AM-MOD 98.34% | 96.55% | 97.44 In Proceedings of the 43rd Annual Meeting of the Associa-
AM-NEG 99.10% | 96.09% | 97.57 tion for Computational LinguisticsTo appear.
AM-PNC 49.47% | 40.87% | 44.76
AM-PRD 0.00% | 0.00% | 0.00 John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
AM-REC 0.00% | 0.00% | 0.00 Conditional random fields: Probabilistic models for seg-
AM-TMP 77.20% | 68.54% | 72.61 menting and labelling sequence data.Pimceedings of the
R-AO 87.78% | 86.61% | 87.19 18th International Conference on Machine Learnipages
R-Al 82.39% | 75.00% | 78.52 282-289.
R-A2 0.00% | 0.00% | 0.00 )
R-A3 0.00% | 0.00% | 0.00 Joon-Ho Lim, Young-Sook Hwang, So-Young Pe_lrk, and_Hae-
R-A4 0.00% | 0.00% | 0.00 Chang Rim. 2004. Semantic role labeling using maximum
R-AM-ADV 0.00% | 0.00% | 0.00 entropy model. IrProceedings of the CoNLL-2004 Shared
R-AM-CAU | 0.00% | 0.00% | 0.00 Task
R-AM-EXT 0.00% | 0.00% | 0.00 o
R-AM-LOC 0.00% | 0.00% | 0.00 Andreyv McCaIIu‘n.] and.Wel Li. 2903. Early resqlts for named
R-AM-MNR 0.00% | 0.00% | 0.00 entity recognition with condltlona}I random flelds_, feature
R-AM-TMP 71.05% | 51.92% | 60.00 |2duct|hor(1:anfd web-enhanced IIeX|cons. FPmceed.lngs of
v [ 08.73% 98.63%] 98.68| t1868—7§91 onference on Natural Language Learnipgges

Table 1: Overall results (top) and detailed results ofj'dea Pearl. 198&robabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inferenddorgan Kaufmann.
the WSJ test (bottom).

David Pinto, Andrew McCallum, Xing Wei, and Bruce Croft.
2003. Table extraction using conditional random fields.
In Proceedings of the Annual International ACM SIGIR
. Conference on Research and Development in Information
6 Conclusion Retrieva) pages 235-242.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne
Ward, James Martin, and Daniel Jurafsky. 2005. Sup-

Conditional random fields proved useful in mod- port vector learning for semantic argument classification. In

l h . f h ided To appear in Machine Learning journal, Special issue on
elling the semantic structure of text when provided gpeech and Natural Language Processing
with a parse tree. Our novel use of a tree structure haand J b o

: ; -ei Sha and Fernando Pereira. 2003. Shallow parsing with con-

de_nve,d from ,the syntactic parse, allowed for pargnf ditional random fields. IrProceedings of the Human Lan-
child interactions to be accurately modelled, which guage Technology Conference and North American Chap-
provided an improvement over a standard maximum tzelrsszt;g Association for Computational Linguistigsages
entropy classifier. In addition, the parse constituent =~ =™
structure proved quite appropriate to the task, momganwen Xue and Martha Palmer. 2004. Calibrating features
so than modelling the data as a sequence of words orfor semantic role labeling. IRroceedings of EMNLP

chunks, as has been done in previous approaches.
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Abstract

We present a semantic role labeling sys-
tem submitted to the closed track of the
CoNLL-2005 shared task. The system, in-
troduced in (Toutanova et al., 2005), im-
plements a joint model that captures de-
pendencies among arguments of a predi-
cate using log-linear models in a discrimi-
native re-ranking framework. We also de-
scribe experiments aimed at increasing the
robustness of the system in the presence
of syntactic parse errors. Our final system
achieves F1-Measures of 76.68 and 78.45
on the development and the WSJ portion
of the test set, respectively.

1 Introduction

It is evident that there are strong statistical patterns
in the syntactic realization and ordering of the argu-
ments of verbs; for instance, if an active predicate
has an AO argument it is very likely to come before
an Al argument. Our model aims to capture such de-
pendencies among the labels of nodes in a syntactic
parse tree.

However, building such a model is computation-
ally expensive. Since the space of possible joint la-
belings is exponential in the number of parse tree
nodes, a model cannot exhaustively consider these
labelings unless it makes strong independence as-
sumptions. To overcome this problem, we adopt
a discriminative re-ranking approach reminiscent of
(Collins, 2000). We use a local model, which la-
bels arguments independently, to generate a smaller
number of likely joint labelings. These candidate la-
belings are in turn input to a joint model which can
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use global features and re-score the candidates. Both
the local and global re-ranking models are log-linear
(maximum entropy) models.

In the following sections, we briefly describe our
local and joint models and the system architecture
for combining them. We list the features used by our
models, with an emphasis on new features, and com-
pare the performance of a local and a joint model on
the CoNLL shared task. We also study an approach
to increasing the robustness of the semantic role la-
beling system to syntactic parser errors, by consid-
ering multiple parse trees generated by a statistical
parser.

2 Loca Models

Our local model labels nodes in a parse tree inde-
pendently. We decompose the probability over la-
bels (all argument labels plus NONE), into a product
of the probability over ARG and NONE, and a prob-
ability over argument labels given that a node is an
ARG, This can be seen as chaining an identification
and a classification model. The identification model
classifies each phrase as either an argument or non-
argument and our classification model labels each
potential argument with a specific argument label.
The two models use the same features.

Previous research (Gildea and Jurafsky, 2002;
Pradhan et al., 2004; Carreras and Marquez, 2004)
has identified many useful features for local iden-
tification and classification. Below we list the fea-
tures and hand-picked conjunctions of features used
in our local models. The ones denoted with asterisks
(*) were not present in (Toutanova et al., 2005). Al-
though most of these features have been described in
previous work, some features, described in the next
section, are — to our knowledge — novel.

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
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e Phrase-Type Syntactic category of node
e Predicate Lemma Stemmed target verb

Path Sequence of phrase types between the predicate and
node, with T, | to indicate direction

Position Before or after predicate

Voice Voice of predicate

Head-Word of Phrase

Head-POS POS tag of head word

Sub-Cat CFG expansion of predicate’s parent
First/Last Word

L eft/Right Sister Phrase-Type

L eft/Right Sister Head-Word/Head-POS
Parent Phrase-Type

Parent POS/Head-Word

Ordinal Tree Distance Phrase-type concatenated with the
length of the Path feature

e Node-LCA Partial Path Path from the node to the lowest
common ancestor of the predicate and the node

e PP Parent Head-Word If the parent of the node is a PP, the
parent’s head-word

o PP NP Head-Word/Head-POS For a PP, retrieve the head-
word /head-POS of its rightmost NP

e Temporal Keywords* Is the head of the node a temporal
word e.g ‘February’ or ‘afternoon’

e Missing subject* Is the predicate missing a subject in
the“standard” location

e Projected path* Path from the maximal extended projection
of the predicate to the node

Predicate Lemma & Path

Predicate Lemma & Head-Word
PredicateLemma & Phrase-Type

Voice & Position

Predicate Lemma & PP Parent Head-Word
Path & Missing subject*

e Projected path & Missing subject*

2.1 Additional Local Features

We found that a large source of errors for AO and Al
stemmed from cases such as those illustrated in Fig-
ure 1, where arguments were dislocated by raising
or controlling verbs. Here, the predicate, expected,
does not have a subject in the typical position — in-
dicated by the empty NP — since the auxiliary is has
raised the subject to its current position. In order to
capture this class of examples, we use a binary fea-
ture, Missing Subject, indicating whether the pred-
icate is “missing” its subject, and use this feature in
conjunction with the Path feature, so that we learn
typical paths to raised subjects conditioned on the
absence of the subject in its typical position.

In the particular case of Figure 1, there is an-
other instance of an argument being quite far from
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NP;-Al VP
A /\
the trade gap is S
/\
NP;-Al VP
| /\
-NONE- expected VP
to widen

Figure 1: Example of displaced arguments

its predicate. The predicate widen shares the trade
gap with expect as a A1 argument. However, as ex-
pect is a raising verb, widen’s subject is not in its
typical position either, and we should expect to find
it in the same positions as expected’s subject. This
indicates it may be useful to use the path relative to
expected to find arguments for widen. In general,
to identify certain arguments of predicates embed-
ded in auxiliary and infinitival VPs we expect it to
be helpful to take the path from the maximum ex-
tended projection of the predicate — the highest VP
in the chain of VP’s dominating the predicate. We
introduce a new path feature, Projected Path, which
takes the path from the maximal extended projec-
tion to an argument node. This feature applies only
when the argument is not dominated by the maxi-
mal projection, (e.g., direct objects). These features
also handle other cases of discontinuous and non-
local dependencies, such as those arising due to con-
troller verbs. For a local model, these new features
and their conjunctions improved F1-Measure from
73.80 to 74.52 on the development set. Notably, the
F1-Measure of AO increased from 81.02 to 83.08.

3 Joint Modd

Our joint model, in contrast to the local model, col-
lectively scores a labeling of all nodes in the parse
tree. The model is trained to re-rank a set of V likely
labelings according to the local model. We find the
exact top IV consistent! most likely local model la-
belings using a simple dynamic program described
in (Toutanova et al., 2005).

LA labeling is consistent if satisfies the constraint that argu-
ment phrases do not overlap.
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NP1-Al VP
I
Crude oil prices VBD-V PP:-A3 PP.-A4 NP3-AM TMP
I — T \
fell TO NP FROM NP yesterday
I | I |
to $27.80 from $37.80

Figure 2: An example tree with semantic role annotations.

Most of the features we use are described in more
detail in (Toutanova et al., 2005). Here we briefly
describe these features and introduce several new
joint features (denoted by *). A labeling L of all
nodes in the parse tree specifies a candidate argu-
ment frame — the sequence of all nodes labeled with
a non-NONE label according to L. The joint model
features operate on candidate argument frames, and
look at the labels and internal features of the candi-
date arguments. We introduce them in the context
of the example in Figure 2. The candidate argument
frame corresponding to the correct labeling for the
tree is: [NP;-A1,VBD-V,PP;-A3,PP,-A4,NP2-AM TMVP|.

e Core arguments label sequence: The sequence
of labels of core arguments concatenated with
the predicate voice. Example: [voice:active:
Al,V,A3,A4] A back-off feature which substitutes
specific argument labels with a generic argument
(A) label is also included.

e Flattened core arguments label sequence*:
Same as the previous but merging consecutive
equal labels.

e Core arguments label and annotated phrase
type sequence: The sequence of labels of core
arguments together with annotated phrase types.
Phrase types are annotated with the head word for
PP nodes, and with the head POS tag for S and VP
nodes. Example: [voice:active: NP-A1,V,PP-to-
A3,PP-from-A4]. A back-off to generic A labels
is also included. Also a variant that adds the pred-
icate stem.

e Repeated core argument labels with phrase
types. Annotated phrase types for nodes with
the same core argument label. This feature cap-
tures, for example, the tendency of WHNP refer-
ring phrases to occur as the second phrase having
the same label as a preceding NP phrase.

e Repeated core argument labels with phrase
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types and sister/adjacency information*: Sim-
ilar to the previous feature, but also indicates
whether all repeated arguments are sisters in the
parse tree, or whether all repeated arguments are
adjacent in terms of word spans. These features
can provide robustness to parser errors, making it
more likely to label adjacent phrases incorrectly
split by the parser with the same label.

4 Combining Local and Joint Models

It is useful to combine the joint model score with
a local model score, because the local model has
been trained using all negative examples, whereas
the joint model has been trained only on likely
argument frames . Our final score is given by
a mixture of the local and joint model’s log-
probabilities: scoresrr(L|t) = « scorey(L|t) +
score j(L|t), where scorey(L|t) is the local score of
L, score y(L|t) is the corresponding joint score, and
« is a tunable parameter. We search among the top
N candidate labelings proposed by the local model,
for the labeling that maximizes the final score.

5 Increasing Robustnessto Parser Errors

It is apparent that role labeling is very sensitive to the
correctness of the given parse tree. If an argument
does not correspond to a constituent in a parse tree,
our model will not be able to consider the correct
phrase.

One way to address this problem is to utilize alter-
native parses. Recent releases of the Charniak parser
(Charniak, 2000) have included an option to provide
the top & parses of a given sentence according to
the probability model of the parser. We use these
alternative parses as follow: Suppose t1,...,t; are
trees for sentence s with given probabilities P(¢;]s)
by the parser. Then for a fixed predicate v, let L;



Precision Recall | Fg=1
Development 77.66% | 75.72% | 76.68
Test WSJ 79.54% | 77.39% | 78.45
Test Brown 70.24% | 65.37% | 67.71
Test WSJ+Brown 78.34% | 75.78% | 77.04
Test WSJ Precision Recall | Fg=1
Overall 79.54% | 77.39% | 78.45
A0 88.32% | 88.30% | 88.31
Al 78.61% | 78.40% | 78.51
A2 72.55% | 68.11% | 70.26
A3 73.08% | 54.91% | 62.71
Ad 77.42% | 70.59% | 73.85
A5 100.00% | 80.00% | 88.89
AM ADV 58.20% | 51.19% | 54.47
AM CAU 63.93% | 53.42% | 58.21
AM DI R 52.56% | 48.24% | 50.31
AM DI S 76.56% | 80.62% | 78.54
AM EXT 73.68% | 43.75% | 54.90
AM LOC 61.52% | 55.92% | 58.59
AM MNR 58.33% | 56.98% | 57.65
AM MOD 97.85% | 99.09% | 98.47
AM NEG 97.41% | 98.26% | 97.84
AM PNC 49.50% | 43.48% | 46.30
AM PRD 100.00% | 20.00% | 33.33
AM REC 0.00% | 0.00% | 0.00
AM TWP 74.85% | 67.34% | 70.90
R- AO 92.63% | 89.73% | 91.16
R- Al 81.53% | 82.05% | 81.79
R- A2 61.54% | 50.00% | 55.17
R- A3 0.00% | 0.00% | 0.00
R- Ad 0.00% | 0.00% | 0.00
R- AM ADV 0.00% | 0.00% | 0.00
R- AM CAU | 100.00% | 50.00% | 66.67
R- AM EXT 0.00% | 0.00% | 0.00
R-AM LOC | 85.71% | 57.14% | 68.57
R-AM MNR | 28.57% | 33.33% | 30.77
R- AM TMP 61.54% | 76.92% | 68.38
[V | 97.32% [ 97.32% [ 97.32 |

Table 1: Overall results (top) and detailed results
on the WSJ test (bottom) on the closed track of the
CoNLL shared task.

denote the best joint labeling of tree ¢;, with score
scoresgrr(L;|t;) according to our final joint model.
Then we choose the labeling L which maximizes:

arg max 3 log P(t;|S) + scoresrr(Li|t;)
ie{l,....k}

(1)

Considering top k& = 5 parse trees using this al-
gorithm resulted in up to 0.4 absolute increase in
F-Measure. In future work, we plan to experiment
with better ways to combine information from mul-
tiple parse trees.
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6 Experimentsand Results

For our final results we used a joint model with o =
1.5 (local model weight), 5 = 1 (parse tree log-
probability weight) , N = 15 (candidate labelings
from the local model to consider) , and k& = 5 (hum-
ber of alternative parses). The whole training set for
the CoNLL-2005 task was used to train the mod-
els. It takes about 2 hours to train a local identifi-
cation model, 40 minutes to train a local classifica-
tion model, and 7 hours to train a joint re-ranking
model.?

In Table 1, we present our final development and
test results using this model. The percentage of
perfectly labeled propositions for the three sets is
55.11% (development), 56.52% (test), and 37.06%
(Brown test). The improvement achieved by the
joint model relative to the local model is about 2
points absolute in F-Measure, similar to the im-
provement when gold-standard syntactic parses are
used (Toutanova et al., 2005). The relative error re-
duction is much lower for automatic parses, possi-
bly due to a lower upper bound on performance. It
is clear from the drop in performance from the WSJ
to Brown test set that our learned model’s features
do not generalize very well to related domains.
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Abstract Also, the output of the decision function of the
SVM is not probabilistic. There are methods to map

We present an application of Sparse  the decision function onto a probability output using
Bayesian Learning to the task of semantic  the sigmoid function, but they are considered some-
role labeling, and we demonstrate that this ~ What ad-hoc (see (Tipping, 2001) for a discussion).
method produces smaller classifiers than In this paper, we apply a recent learning
the popular Support Vector approach. paradigm, namelySparse Bayesian learningor
more specifically theRelevance Vectotearning
method, to the problem of role classification. Its
principal advantages compared to the SVM ap-
proach are:

We describe the classification strategy and
the features used by the classifier. In par-
ticular, the contribution of six parse tree
path features is investigated.
o |t typically utilizes fewer examples compared
to the SVM, which makes the classifier faster.

1 Introduction .
e |t uses naC parameter, which reduces the need

Generalized linear classifiers, in particular Support  for cross-validation.
Vector Machines (SVMs), have recently been suc-
cessfully applied to the task of semantic role iden-
tification and classification (Pradhan et al., 2005),
inter alia. e Arbitrary basis functions can be used.

Although the SVM approach has a number of ¢ gjgnificant drawback is that the training pro-
properties that make it attractive (above all, excelze 1o relies heavily on dense linear algebra, and is

lent software packages exist), it also has drawbackgy s gificult to scale up to large training sets and
First, the resulting classifier is slow since it make§nay be prone to numerical difficulties

heavy_ use of kernel_funcnon evaluatlons._ Thls_ is For a description of the task and the data, see (Car-
especially the case in the presence of noise (sm?gras and Marquez, 2005).

each misclassified example has to be stored as a

bound support vector). The number of support ve@ Sparse Bayesian Learning and the

tors typically grows with the number of training ex-  Relevance Vector Machine

les. Although th ist optimizati thod . . , : o
amples ough there ex1st oplimization Mewo Sf’he Sparse Bayesian method is described in detail in

that speed up the computations, the main drawback. ™~ : _ _
of the SVM approach is still the classification spee ']flpplng, 2001). Like other generalized linear learn-

Another point is that it is necessary to tune th?mg methods, the resulting binary classifier has the
: . . orm
parameters (typically’ and~). This makes it nec- -
essary to train repeatedly using cross-validation to sianf(z) = sianS " a £ (z
. . = i 1 +b
find the best combination of parameter values. gn/(z) = sig ; ifi(e)

e The decision function is adapted for probabilis-
tic output.
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where the f; are basis functions. Training the We implemented the RVM training method using
model then consists of finding a suitable = the ATLAS (Whaley et al., 2000) implementation
(b,aq,...,qn) given a data s€tX,Y). of the BLAS and LAPACK standard linear algebra
Analogous with the SVM approach, we can letAPIs. To make the algorithm scale up, we used a
fi(x) = k(z,z;), wherex; is an example from the working-set strategy that used the results of partial
training set and: a function. We have then arrived solutions to train the final classifier. Our implemen-
at theRelevance Vector Machin®VYM). There are tation is based on the original description of the al-
however no restrictions on the functidgn(such as gorithm (Tipping, 2001) rather than the greedy opti-
Mercer’s condition for SVM). We use the Gaussiamized version (Tipping and Faul, 2003), since pre-
kernelk(z,y) = exp(—v||z — y||?) throughout this liminary experiments suggested a decrease in clas-
work. sification accuracy. Our current implementation can
We first model the probability of a positive ex- handle training sets up to about 30000 examples.
ample as a sigmoid applied tb(x). This can be  We used the conventional one-versus-one method
used to write the likelihood functio®(Y | X, ). for multiclass classification. Although the Sparse
Instead of a conventional ML approach (maximizBayesian paradigm is theoretically not limited to bi-
ing the likelihood with respect tex, which would nary classifiers, this is of little use in practice, since
give an overfit model), we now adopt a Bayesiathe size of the Hessian matrix (used while maximiz-
approach and encode the model preferences usiitgy the likelihood and updating) grows with the
priors ona. For eacha;, we introduce a parame- number of classes.
ter s; and assume that; € N(0,s; ') (i.e. Gaus-
sian). This is in effect an “Occam penalty” that en3 System Description
codes our preference for sparse models. We should

finally specify the distributions of the,. However, L_ike previous _s_ystgms for semantic role identifica-
we make the simplifying assumption that their distion and classification, we used an approach based
tribution is flat (noninformative). on classification of nodes in the constituent tree.

We now find the maximum of thearginal likeli- 10 SIMPplify training, we used the soft-prune ap-
hood or “evidence”, with respect ts, that is proach as described in (Pradhan et al., 2005), which
means that before classification, the nodes were fil-
p(Y|X,s) = /P(Y|X,a)p(a|s)da. tered through a binary classifier that classifies them
as having a semantic role or natgN-NuLL or

This integral is not tractable, hence we approximatyULL): The NuLL nodes missed by the filter were
the integrand using a Gaussian centered at the molfgluded in the training set for the final classifier.

of the integrand (Laplace’s approximation). The Since our current implementation of the RVM
marginal likelihood can then be differentiated withrining algorithm does not scale up to large training

respect tas, and maximized using iterative methodsSets, training on the whole PropBank was infeasible.
such as gradient descent. We instead trained the multiclass classifier on sec-

The algorithm thus proceeds iteratively as follions 15—18, and used an SVM for the soft-pruning
lows: First maximize the penalized likelihood func-classifier, which was then trained on the remaining
tion P(Y|X,a)p(cs) with respect toa (for ex- sections. The excellent LIBSV_M (Chang and Lin,
ample via the Newton-Raphson method), then ut001) package was used to train the SVM.
date the parameters. This goes on until a con- The features used by the classifiers can be
vergence criterion is met, for example that the 9rouped into predicate and node features. Of the
changes are small enough. During iteration, ¢he node features, we here pay most attention to the
parameters for redundant examples tend to infinitparse tree path features.

They (and the corresponding columns of the kernel i

matrix) are then removed from the model. This i53'1 Predicate Features

necessary because of numerical stability and also ré/e used the following predicate features, all of
duces the training time considerably. which first appeared in (Gildea and Jurafsky, 2002).
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e Predicate lemma e Dependency tree path We believe that la-
beled dependency paths provide more informa-

* Subcategorization frame tion about grammatical functions (and, implic-

e \oice itly, semantic relationships) than the raw con-
stituent structure. Since the grammatical func-

3.2 Node Features tions are not directly available from the parse

e Head wordandhead POSLike most previous trees, we investigated two approximations of
work, we used the head rules of Collins to ex-  dependency arc labels: first, the POSs of the
tract this feature. head tokens; secondly, the PTs of the head node

and its immediate parent (such labels were used
¢ Position A binary feature that describes if the in (Ahn et al., 2004)).

node is before or after the predicate token.
e Shallow path Since the UPC shallow parsers

o Phrase typgPT), that is the label of the con- were expected to be more robust than the full

stituent. parsers, we used a shallow path feature. We

o Named entity Type of the first contained NE. first built a parse tree using clause and chunk
bracketing, and the shallow path feature was

e Governing category As in (Gildea and Juraf- then constructed like the constituent tree path.

sky, 2002), this was used to distinguish subjects
from objects. For an NP, this is either S or VP. e SubpathsAll subpaths of the constituent path.

* Path features(See next subsection.) We used the parse trees from Charniak’s parser to

For prepositional phrases, we attached the prepgérive all paths except for the shallow path.
sition to the PT and replaced head word and head
POS with those of the first contained NP. 4 Results

3.3 Parse Tree Path Features 4.1 Comparison with SVM

Previous studies have shown that the parse tree pdife binary classifiers that comprise the one-versus-
feature, used by almost all systems since (Gildea afiie multiclass classifier were 89% — 98% smaller
Jurafsky, 2002), is salient for argument identificawhen using RVM compared to SVM. However, the
tion. However, it is extremely sparse (which makegerformance dropped by about 2 percent. The rea-
the system learn slowly) and is dependent on thgon for the drop is possibly that the classifier uses a
quality of the parse tree. We therefore investigategumber of features with extremely sparse distribu-
the contribution of the following features in ordertions (two word features and three path features).
to come up with a combination of path features that o
leads to a robust system that generalizes well. ~ 4-2 Path Feature Contributions
. . . To estimate the contribution of each path feature, we
* Constituent tree _path As in (Gildea and Ju- easured the difference in performance between a
rafsky, .2002)’ this fe?‘t““? represents the patgg/stem that used all six features and one where one
(consisting of step directions and PTs Of. theof the features had been removed. Table 2 shows
nodes traversed) from the node tq the pr_ed'catﬁﬂe results for each of the six features. For the final
for example NPVP|VB for a typical object. system, we used the dependency tree path with PT

Removing the direction (as in (Pradhan et al., . :
airs, the shallow path, and the partial path.
2005)) improved neither precision nor recall. P P P P

e Partial path To reduce sparsity, we introduced4'3 Final System Results

a partial path feature (as in (Pradhan et alThe results of the complete system on the test sets
2005)), which consists of the path from theare shown in Table 1. The smaller training set (as
node to the lowest common ancestor. mentioned above, we used only sections 15 — 18
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Precision| Recall | Fz—: P R | Fs=1

Development 73.40% | 70.85% | 72.10 Const. tree -02% | -0.6%| -0.4

Test WSJ 75.46% | 73.18% | 74.30 Partial -0.4% | +0.4% 0

Test Brown 65.17% | 60.59% | 62.79 Dep. w/ POSs 0.1% | -04% | -03

Test WSJ+Brown| 74.13% | 71.50% | 72.79 Dep. W/ PT pairs| +0.4% | +0.4% | +0.4

Shallow -0.1% | +0.4% | +0.1
Test WSJ [ Precision| Recall | Fs—1 Const. subpaths| -10.9% | +2.5% -4.5
Overall 75.46% | 73.18% | 74.30
A0 84.56% | 85.18% | 84.87 Table 2: Contribution of path features
Al 73.40% | 73.35% | 73.37
A2 61.99% | 57.30% | 59.55
A3 71.43% | 46.24% | 56.14 path features suggests that dependency tree paths are
Ad 72.53% | 64.71% | 68.39 . .
A 100.000% | 40.000% | 5714 mqre useful fpr semantic role labeling than the tra-
AM-ADV 58.13% | 51.58% | 54.66 ditional constituent tree path.
ﬁm-gﬁ{U ;8'233’ 32'2%’ ig-gg In the future, we will investigate if it is possible
- . 0 . 0 . H H 1;

AM-DIS 8179% | 71.56% | 7633 to mcorporate_ they parameter into the proba_blllt_y
AM-EXT 72.220 | 40.62% | 52.00 model, thus eliminating the need for cross-validation
AM-LOC 54.05% 55.10% 54.57 completely. In addition, the training algorithm will
ﬁm_mgg gg:ggoﬁ gg%oﬁ g?:g% need to be redesigned to scale up to larger training
AM-NEG 96.96% | 96.96% | 96.96 sets. The learning paradigm is still young and op-
AM-PNG 36.75% 37.39% 37.07 timized methods (such as for SVM) have yet to ap-
AM-PRD 0.00% | 0.00% | 0.00 : . L
AM-REC 0.00% | 0.00% | 0.00 pear. One possible direction is the greedy method
AM-TMP 76.00% | 70.19% | 72.98 described in (Tipping and Faul, 2003).
R-AO 83.33% | 84.82% | 84.07
R-Al 68.75% | 70.51% | 69.62
R-A2 57.14% | 25.00% | 34.78
R-A3 0.00% | 0.00%| 0.00 References
R-A4 0.00% | 0.00% | 0.00

David Ahn, Sisay Fissaha, Valentin Jijkoun, and Maarten
de Rijke. 2004. The university of Amsterdam at

R-AM-CAU | 100.00% | 25.00% | 40.00 . : :

R-AM-EXT 0.00% | 000%| 000 Senseval-3: Semantic roles and logic forms.Plo-

R-AM-LOC | 92.31%| 57.14% | 70.59 ceedings of SENSEVAL-3
R-AM-MNR| 40.00% | 33.33% | 36.36
R-AM-TMP |  75.00% | 69.23% | 72.00

v [ 98.82%] 98.82%] 98.82 |

R-AM-ADV 0.00% | 0.00% | 0.00

Xavier Carreras and Lluis Marquez. 2005. Introduction
to the CoNLL-2005 Shared Task: Semantic Role La-
beling. InProceedings of CONLL-2005

Table 1: Overall results (top) and detailed results offhih-Chung Chang and Chih-Jen Lin, 2001BSVM: a
the WSJ test (bottom). library for support vector machines

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
N ~__ beling of semantic rolesComputational Linguistics
for the role classifier) causes the result to be signifi- 28(3):245-288.

cantly lower than state of the art (F-measure of79.z§ameelr Pradhan, Kadri Hacioglu, Valerie Krugler

reported in (Pradhan et al., 2005)). Wayne Ward, James Martin, and Dan Jurafsky. 2005.
] Support vector learning for semantic argument classi-
5 Conclusion and Future Work fication. Machine Learning To appear.

We have provided an application of Relevance Vedvichael E. Tipping and Anita Faul. 2003. Fast marginal
tor Machines to a large-scale NLP task. The re- likelihood maximisation for sparse bayesian models.
. . . ) In 9th International Workshop on Al and Statistics

sulting classifiers are drastically smaller that those .
produced by the SV training methods. On the othdWlichael E. Tipping. 2001. Sparse bayesian learning
hand, the classification accuracy is lower, probably Eggmiéellqee\gaen;&\{?g;o{T;‘ZE'de’“mal of Machine
because of the use of lexicalized features. ' '
The results on the Brown test set shows that th'@-zcé)'gg Vxhr’tﬂe% f\r&tome.P_etlltet, tf'm_d J?Ck J.fDor;tgarra.
I . . Automated empirical optimizations of software
genre has a significant impact on the performance. and th ;
. o . e ATLAS project.
An evaluation of the contribution of six parse tree prol
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Abstract

We present an approach to semantic role
labeling (SRL) that takes the output of
multiple argument classifiers and com-
bines them into a coherent predicate-
argument output by solving an optimiza-
tion problem. The optimization stage,
which is solved via integer linear pro-
gramming, takes into account both the rec-
ommendation of the classifiers and a set
of problem specific constraints, and is thus
used both to clean the classification results
and to ensure structural integrity of the fi-
nal role labeling. We illustrate a signifi-
cant improvement in overall SRL perfor-

ploits the heuristic introduced by (Xue and Palmer,
2004) to filter out very unlikely constituents. The
heuristic is a recursive process starting from the verb
whose arguments are to be identified. It first returns
the siblings of the verb; then it moves to the parent of
the verb, and collects the siblings again. The process
goes on until it reaches the root. In addition, if a con-
stituent is aPP (propositional phrase), its children
are also collected. Candidates consisting of only a
single punctuation mark are not considered.

This heuristic works well with the correct parse
trees. However, one of the errors by automatic
parsers is due to incorreBP attachment leading to
missing arguments. To attempt to fix this, we con-
sider as arguments the combination of any consec-
utive NP and PP, and the split oNP andPP inside

mance through this inference.

1 SRL System Architecture 1.2

Our SRL system consists of four stageprun-

the NP that was chosen by the previous heuristics.

Argument Identification

The argument identification stage utilizes binary

ing, argument identificationargument classifica- classification to identify whether a candidate is an

tion, andinference In particular, the goal of pruning argument or not. We train and apply the binary clas-

and argument identification is to identify argumensifiers on the constituents supplied by the pruning

candidates for a given verb predicate. The systefifage. Most of the features used in our system are
only classifies the argument candidates into thefitandard features, which include

types during the argument classification stage. Lin-
guistic and structural constraints are incorporated
in the inference stage to resolve inconsistent global
predictions. The inference stage can take as its input
the output of the argument classification of a single
system or of multiple systems. We explain the infer-
ence for multiple systems in Sec. 2.

1.1 Pruning

Only the constituents in the parse tree are considered
as argument candidates. In addition, our system ex-
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Predicate and POS tag of predicaténdicate the lemma
of the predicate and its POS tag.

Voice indicates tbe voice of the predicate.
Phrase typeof the constituent.

e Head word and POS tag of the head wordnclude head

word and its POS tag of the constituent. We use rules
introduced by (Collins, 1999) to extract this feature.

First and last words and POS tagf the constituent.
Two POS tags before and aftethe constituent.

Position feature describes if the constituent is before or
after the predicate relative to the position in the sentence.
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» Path records the traversal path in the parse tree from thenost one argument of each type.” This knowledge is
predicate to the constituent. used to resolve any inconsistencies of argument clas-
* Subcategorizationfeature describes the phrase structurssification in order to generate final legitimate pre-
around the predicate’s parent. It records the immediata. ti Wi the inf introd d
structure in the parse tree that expands to its parent. ictions. € use tnhe interence process m_ roduce
e \erb classfeature is the class of the active predicate de-by (Punyakgnok et a_l" 2004). The prpcess is formu-
scribed in PropBank Frames. lated as an integer linear programming (ILP) prob-
e Lengthsofthe target constituent, in the numbers of worddem that takes as inputs the confidences over each
and chunks separately. type of the arguments supplied by the argument clas-
e Chunk tells if the target argument is, embeds, overlapssifier. The output is the optimal solution that maxi-
oris embedded in a chunk with its type. mizes the linear sum of the confidence scores (e.g.,
e Chunk pattern length feature counts the number of the conditional probabilities estimated by the argu-
chunks from the predicate to the argument. e . .
_ o . ment classifier), subject to the constraints that en-
e Clause relative positionis the position of the target word de the d in Kk led
relative to the predicate in the pseudo-parse tree corfZ00€ the domain knowledge.
structed only from clause constituent. There are four Formally speaking, the argument classifier at-
configurations—target constituent and predicate share ”t%mpts to assign labels to a set of argumeﬁf‘sM
same parent, target constituent parent is an ancestor 0 ; '
predicate, predicate parent is an ancestor of target worjdexed from 1 toM/. Each argument® can take
or otherwise. any label from a set of argument label’, and the
e Clause coveragelescribes how much of the local clauseindexed set of arguments can take a set of labels,
(from the predicate) is covered by the argument. It iscle c PM _|f we assume that the argument classi-
round to the multiples of /4. . ' . . e
fier returns an estimated conditional probability dis-
1.3 Argument Classification tribution, Prob(S* = ¢), then, given a sentence, the

This stage assigns the final argument labels to the Ap_ference procedure seeks an global assignment that

gument candidates supplied from the previous stag%".‘f’lx'mIzes the following objective function,

A multi-class classifier is trained to classify the M
_types_ _of t_he arguments supplied by the fargumen_t &M — aremax meb(si = ),
identification stage. To reduce the excessive candi- M epM T

dates mistakenly output by the previous stage, the

classifier can also classify the argumentNidLL  subject to linguistic and structural constraints. In

(“not an argument”) to discard the argument. other words, this objective function reflects the ex-
The features used here are the same as those upedted number of correct argument predictions, sub-

in the argument identification stage with the follow4ect to the constraints. The constraints are encoded

ing additional features. as the followings.

e Syntactic frame describes the sequential pattern of the ¢ N overlapping or embedding arguments.
noun phrases and the predicate in the sentence. This is .
the feature introduced by (Xue and Palmer, 2004). e No duplicate argument classes for A0-A5.

o Propositional phrase heads the head of the first phrase e Exactly one V argument per predicate considered.
after the preposition insideP.

e NEG and MOD feature indicate if the argument is a
baseline for AM-NEG or AM-MOD. The rules of the e [f there is an Rarg argument, then there has to beaag
NEG andMOD features are used in a baseline SRL sys- argument.
tem developed by Erik Tjong Kim Sang (Carreras and
Marquez, 2004).

e NE indicates if the target argument is, embeds, overlaps,
or is embedded in a named-entity along with its type.

e Ifthere is C-V, then there has to be a V-A1-CV pattern.

e If there is a Carg argument, there must be ang argu-
ment; moreover, the @rg argument must occur aftarg.

e Given the predicate, some argument types are illegal (e.g.
predicate ‘stalk’ can take only AO or Al). The illegal
types may consist of A0-A5 and their corresponding C-

1.4 Inference arg and Rarg arguments. For each predicate, we look

The purpose of this stage is to incorporate some [OF the minimum value of such that the classiAs men-
tioned in its frame file as well as its maximum valye

prior linguistic and structural knowledge, such as Al argument types A such thatk < i or k > j are
“arguments do not overlap” or “each verb takes at  considered illegal.
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2 |nfe rence W|th MUItlple SRL Systems ..., traders say, unable twol  the selling panic in both stocks and future:

The inference process allows a natural way to com-  —5 3
bine the outputs from multiple argument classi-
fiers. Specifically, givenk argument classifiers % %
which perform classification o# argument sets,
{S1,...,S;}. The inference process aims to opti- b b, b
mize the objective function: b,
N .
aliN _ argmaxz Pmb(si _ Ci% Figure 1. Two SRL systems’ output, a4, by, ba,
NepN S andbs), and phantom candidates;( a3, andb,).

1:N _ k .
whereS™ = Ui, S, and identification, and argument classification. Then a

k joint inference stage is used to resolve the incon-
mebj(si =), sistency of the output of argument classification in
=1 these systems.

Prob(S' = ¢') =

| =

whereProb; is the probability output by systesn 3 Learning and Evaluation

Note that all systems may not output with the ) . . .
same set of argument candidates due to the pruniA- e learning algorlthm used is a_varlatlon of the
and argument identification. For the systems that d innow update rulg incorporated in .SNOW (ROth.’
not output for any candidate, we assign the prob 998; Roth and Yih, 2002), a multi-class classi-

bility with a prior to thisphantomcandidate. In par- SIT\Ir Tvaf is tailored for Iar?e sl((:alfl_learm?g t?SkS'
ticular, the probability of th&lULL class is set to be OV iearns a sparse network of finear functions,
which the targets (argument border predictions

0.6 based on empirical tests, and the probabilities <l

the other classes are set proportionally to their o argtur(;\ent Ipre pfredlf'tlons, in this case) a:ce rte P-
currence frequencies in the training data. resented as linear functions over a common feature

For example, Figure 1 shows the two candidatPace: It improves the basic Winnow multiplicative
sets for a fragr’nent of a sentence, “traders say update rule with a regularization term, which has the

unable tocool the selling panic in both stocks andeﬁeCt oftrying to separate the data with a large mar-
futures” In this example, system A has two argu-gln separator (Grove and Roth,_2001; Hang et al.,
ment candidates,; = “traders” anda, = “the sell- 2002) and voted (averaged) weight vector (Freund

ing panic in both stocks and futures”; system B hagng Sftchap|][e, 1?99) .B' hop. 1995) i dqt
three argument candidatés,= “traders”,b, = “the oftmax function (Bishop, ) is used to con-

selling panic’, andbs — “in both stocks and fu- vert raw activation to conditional probabilities. If

tures”. The phantom candidates are createdifor _there aren classe_s and .the raw activaf[i.on of class
a3, andb, of which probability is set to the prior. 'S @¢ti» the posterior estimation for classs
Specifically for this implementation, we first train e
two SRL systems that use Collins’ parser and Char- Prob(i) = S e
niak's parser respectively. In fact, these two parsers 1sjsn
have noticeably different output. In evaluation, we |n summary, training used both full and partial
run the system that was trained with Charniak'syntactic information as described in Section 1. In
parser 5 times with the top-5 parse trees output hyaining, SNoW'’s default parameters were used with
Charniak’s parsér Together we have six different the exception of the separator thickness 1.5, the use
outputs per predicate. Per each parse tree output, Weaverage weight vector, and 5 training cycles. The
ran the first three stages, namely pruning, argumephrameters are optimized on the development set.
Topmrse tree were from the official output by CoNLL. Training for each system took about 6 hours. The
The 2nd-5th parse trees were output by Charniak’s parser. ~ evaluation on both test sets which included running

act;
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Precision| Recall | Fg=1
Development 80.05% | 74.83% | 77.35
Test WSJ 82.28% | 76.78% | 79.44
Test Brown 73.38% | 62.93% | 67.75
Test WSJ+Brown| 81.18% | 74.92% | 77.92
Test WSJ | Precision| Recall | Fg=;
Overall 82.28% | 76.78% | 79.44
A0 88.22% | 87.88% | 88.05
Al 82.25% | 77.69% | 79.91
A2 78.27% | 60.36% | 68.16
A3 82.73% | 52.60% | 64.31
A4 83.91% | 71.57% | 77.25
A5 0.00% | 0.00% | 0.00
AM ADV 63.82% | 56.13% | 59.73
AM CAU 64.15% | 46.58% | 53.97
AM DI R 57.89% | 38.82% | 46.48
AM DI S 75.44% | 80.62% | 77.95
AM EXT 68.18% | 46.88% | 55.56
AM LOC 66.67% | 55.10% | 60.33
AM MNR 66.79% | 53.20% | 59.22
AM MOD 96.11% | 98.73% | 97.40
AM NEG 97.40% | 97.83% | 97.61
AM PNC 60.00% | 36.52% | 45.41
AM PRD 0.00% | 0.00% | 0.00
AM REC 0.00% | 0.00% | 0.00
AM TVP 78.16% | 76.72% | 77.44
R- AO 89.72% | 85.71% | 87.67
R- A1 70.00% | 76.28% | 73.01
R- A2 85.71% | 37.50% | 52.17
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM: ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R-AMLOC | 85.71% | 57.14% | 68.57
R- AM MNR 0.00% | 0.00% | 0.00
R- AM TMP 72.34% | 65.38% | 68.69
[V [ 98.92%] 97.10% | 98.00 |

individual systems and the improvement gained by
the joint inference on the development set.

4 Conclusions

We present an implementation of SRL system which
composed of four stages—1) pruning, 2) argument
identification, 3) argument classification, and 4) in-
ference. The inference provides a natural way to
take the output of multiple argument classifiers and
combines them into a coherent predicate-argument
output. Significantimprovement in overall SRL per-
formance through this inference is illustrated.
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Abstract

This paper describes a system for semantic
role labeling for the CoNLL2005 Shared
task. We divide the task into two sub-tasks:
boundary recognition by a general tree-
based predicate-argument recognition algo-
rithm to convert a parse tree into a flat rep-
resentation of all predicates and their
related boundaries, and role labeling by a
consensus model using a pattern-matching
framework to find suitable roles for core
constituents and adjuncts. We describe the
system architecture and report results for
the CoNLL2005 development dataset.

1 Introduction

Semantic role labeling is to find all arguments for
all predicates in a sentence, and classify them by
semantic roles such as A0, A1, AM-TMP and so
on. The performance of semantic role labeling can
play a key role in Natural Language Processing
applications, such as Information Extraction, Ques-
tion Answering, and Summarization (Pradhan et al.,
2004).

Most existing systems separate semantic role la-
beling into two sub-problems, boundary recogni-
tion and role classification, and use feature-based
models to address both (Carreras et al., 2004). Our
strategy is to develop a boundary analyzer by a
general tree-based predicate-argument recognition
algorithm (GT-PARA) for boundary recognition,
and a pattern-matching model for role classifica-
tion. The only information used in our system is
Charniak’s annotation with words, which contains
all useful syntactic annotations. Five features,
which are Headword, Phrase type, Voice, Target
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verb, and Preposition (of the first word), and a Pat-
tern set, which includes numbers and types of roles
in a pattern, are used for the pattern-matching ap-
proach. We develop a Pattern Database, trained by
Wall Street Journal section 02 to 21, as our knowl-
edge/Data base. The system outline is described in
the following section.

2 System Description

An overview of the system architecture is shown in

Figure 1. The input is a full parse tree for each

sentence. We convert a sentence with words, and

Charniak’s information into a parsed tree as the

input of GT-PARA. GT-PARA then converts the

parse tree into a flat representation with all predi-
cates and arguments expressed in [GPLVR] for-
mat; where

G: Grammatical function — 5 denotes subject, 3
object, and 2 others;

P: Phrase type of this boundary — 00 denotes ADJP,
01 ADVP, 02 NP, 03 PP, 04 S, 05 SBAR, 06
SBARQ, 07 SINV, 08 SQ, 09 VP, 10 WHADVP,
11 WHNP, 12 WHPP, and 13 Others

L: Distance (and position) of the argument with
respect to the predicate that follows

V: Voice of the predicate, O: active 1: passive

R: Distance (and position) of the argument
with respect to the preceding predicate (n.b.
L and R are mutually exclusive).

An example of the output of GT-PARA is
shown in Figure 2. There is one predicate “take”
in the sample input sentence. There are 4 argu-
ments for that predicate, denoted as “3021107,
“AM-MOD”, “203011”, and “302012” respec-
tively. “302110” symbolizes the NP Object of
distance 1 prior to the passive predicate. “203011”
symbolizes an undefined PP argument (which

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 185-188, Ann Arbor, June 20082005 Association for Computational Linguistics



Member Role
Generator Classifier

Data Base|

GT-PARA Consensus Output

Figure 1: System Architecture

means it can be a core argument or an adjunct)
with distance 1 after the passive predicate. And
“302012” symbolizes a NP Object with distance 2
after the passive predicate.

For all boundaries extracted by GT-PARA, we
simply denote all boundaries with noun phrases
(NP) or similar phrases, such as WHNP, SBAR,
and so on, as core pattern candidates and all
boundaries with prepositional phrases (PP), ADJP,
ADVP, or similar phrases, such as WHADIP,
WHADVP, and so on, as adjunct candidates. But
there is no exact rule for defining a core role or an
adjunct explicitly in a boundary span, for example,
given a sentence where
(1) P1 is done by P2. (P1 and P2 are two groups of

words or phrases)

We can guess P1 might be labeled with “A1”, and
P2 with ”AQ” if there is no further feature informa-
tion. But if the “head word” feature of P2 is
“hour”, for example, P2 can be labeled with “AM-
TMP” instead. Because there are some uncertain-
ties between core roles and adjuncts before label-
ing, we use the Member Generator (in Figure 1) to
create all possible combinations, called members,
from the output of GT-PARA by changing ANs
(Core Role Candidates) into AMs (Adjunct Candi-
dates), or AMs into ANs, except core candidates
before predicates. All possible combinations
(members) for the example in Figure 1 are

Ml: [AN1, AM-MOD, V, AMIl<points>(from), AN2]
(original)

M2: [AN1 AM-MOD V AN3 (from) AN2]

(change AM1 as AN3)

M3: [AN1 AM-MOD V  AMIl<point>(from)
AM?2<week>] (change AN2 as AM2)

M4: [AN1 AM-MOD V  AN3<point>(from)
AM2<week>]

(change AM1 as AN3 and one AN2 as AM2)

The output from the Member Generator is

passed to the Role Classifier, which finds all pos-
sible roles for each member with suitable core
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Words POS Full Tree Syntax Predicate Boundaries
The DT (S1(S(NP(NP* - (302110%*
economy NN * - *

's POS *) - *
temperature NN *) - *)

will MD (Vp* - (AM-MOD¥)
be AUX (Vp* - *

taken VBN (VP* take (V*V)
from IN (PP* - (203011°%*
several JJ (NP* - *

vantage NN * - *

points  NNS *)) - *)

this DT (NP* - (302012%*
week NN *) - *)

) -

Figure 2: Illustration of an output of GT-PARA of a sen-
tence, “The economy ’s temperature will be taken from several
vantage points this week.”

roles and adjuncts according to a Database built up

by training data, in which each predicate has dif-

ferent patterns associated with it, each pattern has
different semantic roles, and each role has the fol-
lowing format.

Role {Phrase type} < Head Word> (preposition)
There is an additional Boolean voice for a predi-
cate to show if the predicate is passive or active (0:
denotes active, 1: denotes passive). Each pattern
includes a count on the number of the same pat-
terns learned from the training data (denoted as
“[statistical figure]”). For example, eight patterns
for a predicate lemma ““take” are
1. [30] AO{NP}<buyers> V{VP}<take>-0

A1{NP}<stake>

2.[1] AO{NP}<U.S.> V{VP}<take>-0 A1{NP}<%>
A2{PP}<Canada>(from) AM-
ADV{ADVP}<up>(up)

. [2] AO{NP}<Confidence> V{VP}<take>-0
Al{NP}<dive> AM-ADV {SBAR }< figures>(if)

.[11 A1{NP}<it> AM-MOD{VP}<could>
V{VP}<take>-0 A2{NP}<place> AM-
TMP{NP}<today> AM-LOC{PP }<Express>(at)

. [1] AM-TMP{NP}< week> AO{NP}<government>
V{VP}<take>-0 A1{NP}<bills> AM-
DIR{PP}<to>(to)

.[3] A1{NP}<cells> V{VP}<take>-1
A2{PP }<tissue>(from)

. [6] A1{NP}<action> V{VP}<take>-1

. [1] AM-TMP{ADVP }<far> A1{NP }<festivities>
V{VP}<take>-1 AM-EXT{PP}<entirely>
AO{NP}<eating>(by)

(98]
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Role Classifier consists of two parts, AN classi-
fier and AM classifier, which process core argu-



ments and adjuncts respectively. AN classifier
finds a suitable core pattern for labeled core pattern
candidates in each member generated by Member
Generator according to

(1) the same numbers of core roles

(2) the same prepositions for each core role

(3) the same phrase types for each core role

(4) the same voice (active or passive)

AM classifier finds a suitable adjunct role for
any labeled adjunct candidate in each member
generated by Member Generator according to
(1) the same Head Word
(2) the same Phrase type
(3) the highest statistical probability learned from

the training data
The followings are the results for each member
after Role Classification
M1: [AN1, AM-MOD, V, AMI<points>(from), AN2]
(no pattern applied)
M2: [AN1 AM-MOD V ANI1 (from) AN2] (no pattern
applied)
M3: [Al AM-MOD V AMl<point>(from) AM-
TMP<week>] ( ANs by pattern 7, AM-TMP by pattern
5) [stat: 6]
M4: [Al AM-MOD V A2 (from) AM-TMP<week>]
( ANs by pattern 6, AM-TMP by pattern 5) [stat: 3]

Decision-making in the Consensus component
(see Figure 1) handles the final selection by select-
ing the highest score using the following formula.
Score;, = (a* Ry + a,* Vi . as* S¢) for each X;
(k=1 .. K, generated by Member Generator and
Role Classifier), where

R, : numbers of all roles being labeled

Vi : votes of a pattern with the same roles

S : statistical figure learned from trained data

X, : different pattern by Member General and

Role Classifier

ai,a,,and aj;are weights (a,>>a,>>a;) used
to rank the relative contribution of R , V; , and ;.
Empirical studies led to the use of a so-called Max-
labeled-role Heuristic to derive suitable values for
these weights.

The final consensus decision for role classifica-
tion is determined by calculating

K

Consensus = Max Score;
k=1

There are 3 roles labeled in M3, which are AN1

as Al, AM-MOD, AM2 as AM-TMP respectively.
And there are 4 roles labeled in M4, which are
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ANI1 as Al, AM-MOD, AN3 as A2, and AM2 as
AM-TMP respectively. Consensus scores for M3,
and M4 are
(a1*3 satl a3*6),and
(a1*4 sax* 1l L as® 3)

So the pattern [A1 AM-MOD V A2(from) AM-
TMP<week>] in M4 applied by Pattern 6 and Pat-
tern 5 is selected due to the most roles labeled.

3 Data and Evaluation

We extracted patterns from the training data (WSJ
Section 02 to 21) to build up a pattern database.
Table 1 reveals sparseness of the pattern database.
Twenty-six percent of predicates contain only one
pattern, and fifteen two patterns. Seventy-five per-
cents of predicates contain no more than 10 pat-
terns.

No | 1 2 3 4 5 5-10 11-5051-100 >100
% |26 15 10 7 5 13 20 4 2

A%| 26 40 50 57 62 75 94 98 100
Table 1: Statistical figures on the number of patterns

collected from training, WSJ Section 02-21

The evaluation software, srl-eval.pl, is available
from CoNLL2005 Shared Task', which is the offi-
cial script for evaluation of CoNLL-2005 Shared
Task systems. In order to test boundary perform-
ance of GT-PARA, we simply convert all correct
propositional arguments into AOs, except AM-
MOD and AM-NEG for both the training dataset
(WSIJ Sections 15-18) and the development dataset
(WSJ Section 24).

4 Experimental Results

The results of classification on the development,
and test data of the CoNLL2005 shared task are
outlined in Table 2. The overall results on the De-
velopment, Test-WSJ, Test-Brown, and Test-
WSJ+Brown datasets for F-score are 65.78, 67.91,
58.58 and 66.72 respectively, which are moderate
compared to the best result reported in
CoNLL2004 Shared Task (Carreras et al., 2004)
using partial trees and the result in (Pradhan et al.,
2004). The results for boundary recognition via
GT-PARA are summarized in Table 3.

! http://www.lsi.upc.edu/~srlconll/soft.html




Precision | Recall | Fs_;
Development(WSJ24)[ 70.11% |61.96% |65.78
Test WSJ 71.49% |64.67% |67.91
Test Brown 65.75% |52.82% |58.58
Test WSJ + Brown 70.80% |63.09% |66.72

Test WSJ Precision | Recall | Fs_;
Overall 71.49% |64.67% |67.91
A0 81.74% |81.53% |81.64
Al 71.61% |69.54% |70.56
A2 63.73% |40.36% |49.42
A3 68.60% |34.10% |45.56
Ad 33.93% (18.63% (24.05
A5 0.00% | 0.00% | 0.00
AA 0.00% | 0.00% | 0.00
AM-ADV 36.26% |31.82% |33.89
AM-CAU 52.00% |35.62% |42.28
AM-DIR 20.11% |42.35% |27.27
AM-DIS 73.91% |63.75% |68.46
AM-EXT 12.90% |12.50% (12.70
AM-LOC 60.80% |33.33% |43.06
AM-MNR 43.57% |30.52% |35.90
AM-MOD 99.21% 190.93% |94.89
AM-NEG 96.38% |92.61% |94.46
AM-PNC 13.69% |31.30% |19.05
AM-PRD 0.00% | 0.00% | 0.00
AM-REC 0.00% | 0.00% | 0.00
AM-TMP 71.62% |54.55% |61.93
R-A0 93.37% 169.20% |79.49
R-Al 82.24% |56.41% |66.92
R-A2 100.00% (25.00% (40.00
R-A3 0.00% | 0.00% | 0.00
R-A4 0.00% | 0.00% | 0.00
R-AM-ADV 0.00% | 0.00% | 0.00
R-AM-CAU 0.00% | 0.00% | 0.00
R-AM-EXT 0.00% | 0.00% | 0.00
R-AM-LOC 0.00% | 0.00% | 0.00
R-AM-MNR 0.00% | 0.00% | 0.00
R-AM-TMP 0.00% | 0.00% | 0.00
[ Vv | 97.34% [95.25% [96.29 |

Table 2: Overall results (top) and detailed results
on the WSJ test (bottom), obtained by the system.

The overall performance (F1: 76.43) on the WSJ
Section 24 is not as good as on the WSJ Section 21
(F1: 85.78). The poor performance for the devel-
opment was caused by more parser errors in the
WSIJ Section 24. Most parser errors are brought on
by continuous phrases with commas and/or quota-
tion marks.

One interesting fact is that when we tested our
system using the data in CoNLL2004 shared task,
we found the result with the train data WSJ 15-18
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on the WSJ 21 is 73.48 shown in Table 4, which
increases about 7 points in the F1 score, compared
to WSJ 24 shown in Table 2. We found the label-
ing accuracy for WSJ 24 is 87.73, which is close to
89.30 for WSJ Section 21. But the results of
boundary recognition in Table 3 for the two data
are 9.14 points different, which leads to the better
performance in WSJ Section 21. Boundary recog-
nition as mentioned in CoNLLO004 does play a very
important role in this system as well.

Precision| Recall Fs_;
WSJ 15-18 87.23% | 83.98% 85.57
WSJ 21 86.89% | 84.70% 85.78
WSJ 24 78.88% | 74.12% 76.43

Table 3: Boundary Recognition results by GT-PARA
on WSJ 15-18, WSJ 21 and WSJ 24 sets

WSJ 21 Precision Recall Fs-

| Overall 78.06% | 69.41% | 73.48
Table 4: System results by the training data WSJ 15-18
on the WSJ Section 21

5 Conclusion

We have described a semantic role labeling archi-
tecture via consensus in a pattern-matching system.
The pattern-matching system is based on linear
pattern matching utilising statistical consensus for
decision-making. A General Tree-based Predicate-
Argument Boundary Recognition Algorithm (GT-
PARA) handles the conversion process, turning a
parse tree into a flat representation with all predi-
cates and their arguments labeled with some useful
features, such as phrase types. Label accuracy of
Consensus model for role classification is stable
but performance results of GT-PARA vary on dif-
ferent datasets, which is the key role for the overall
results. Although the results seem moderate on
test data, this system offers a decidedly different
approach to the problem of semantic role labeling.
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Abstract

A maximum entropy classifier is used in
our semantic role labeling system, which
takes syntactic constituents as the labeling
units. The maximum entropy classifier is
trained to identify and classify the predi-
cates’ semantic arguments together. Only
the constituents with the largest probabil-
ity among embedding ones are kept. Af-
ter predicting all arguments which have
matching constituents in full parsing trees,
a simple rule-based post-processing is ap-
plied to correct the arguments which have
no matching constituents in these trees.
Some useful features and their combina-
tions are evaluated.

1 Introduction

The semantic role labeling (SRL) is to assign syn-
tactic constituents with semantic roles (arguments)
of predicates (most frequently verbs) in sentences.
A semantic role is the relationship that a syntactic
constituent has with a predicate. Typical semantic
arguments include Agent, Patient, Instrument, etc.
and also adjunctive arguments indicating Locative,
Temporal, Manner, Cause, etc. It can be used in
lots of natural language processing application sys-
tems in which some kind of semantic interpretation
is needed, such as question and answering, informa-
tion extraction, machine translation, paraphrasing,
and so on.

*This research was supported by National Natural Science
Foundation of China via grant 60435020
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Last year, CoONLL-2004 hold a semantic role la-
beling shared task (Carreras and Marquez, 2004)
to test the participant systems’ performance based
on shallow syntactic parser results. In 2005, SRL
shared task is continued (Carreras and Marquez,
2005), because it is a complex task and now it is
far from desired performance.

In our SRL system, we select maximum en-
tropy (Berger et al., 1996) as a classifier to im-
plement the semantic role labeling system. Dif-
ferent from the best classifier reported in litera-
tures (Pradhan et al., 2005) — support vector ma-
chines (SVMs) (Vapnik, 1995), it is much eas-
ier for maximum entropy classifier to handle the
multi-class classification problem without additional
post-processing steps. The classifier is much faster
than training SVMs classifiers. In addition, max-
imum entropy classifier can be tuned to minimize
over-fitting by adjusting gaussian prior. Xue and
Palmer (2004; 2005) and Kwon et al. (2004) have
applied the maximum entropy classifier to semantic
role labeling task successfully.

In the following sections, we will describe our
system and report our results on development and
test sets.

2 System Description

2.1 Constituent-by-Constituent

We use syntactic constituent as the unit of labeling.
However, it is impossible for each argument to find
its matching constituent in all auto parsing trees. Ac-
cording to statistics, about 10% arguments have no
matching constituents in the training set of 245,353
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constituents. The top five arguments with no match-
ing constituents are shown in Table 1. Here, Char-
niak parser got 10.08% no matching arguments and
Collins parser got 11.89%.

Table 1: The top five arguments with no matching
constituents.

Args Cha parser | Col parser | Both
AM-MOD 9179 9205 9153
Al 5496 7273 3822
AM-NEG 3200 3217 3185
AM-DIS 1451 1482 1404
A0 1416 2811 925

Therefore, we can see that Charniak parser got a
better result than Collins parser in the task of SRL.
So we use the full analysis results created by Char-
niak parser as our classifier’s inputs. Assume that
we could label all AM-MOD and AM-NEG arguments
correctly with simple post processing rules, the up-
per bound of performance could achieve about 95%
recall.

At the same time, we can see that for some ar-
guments, both parsers got lots of no matchings such
as AM-MOD, AM-NEG, and so on. After analyzing
the training data, we can recognize that the perfor-
mance of these arguments can improve a lot after
using some simple post processing rules only, how-
ever other arguments’ no matching are caused pri-
marily by parsing errors. The comparison between
using and not using post processing rules is shown
in Section 3.2.

Because of the high speed and no affection in the
number of classes with efficiency of maximum en-
tropy classifier, we just use one stage to label all ar-
guments of predicates. It means that the “NULL”
tag of constituents is regarded as a class like “ArgN”
and “ArgM”.

2.2 Features

The following features, which we refer to as the
basic features modified lightly from Pradhan et
al. (2005), are provided in the shared task data for
each constituent.

o Predicate lemma

e Path: The syntactic path through the parse tree from the
parse constituent to the predicate.

o Phrase type
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e Position: The position of the constituent with respect to
its predicate. It has two values, “before” and “after”,
for the predicate. For the situation of “cover”, we use
a heuristic rule to ignore all of them because there is no
chance for them to become an argument of the predicate.

e Voice: Whether the predicate is realized as an active or
passive construction. We use a simple rule to recognize
passive voiced predicates which are labeled with part of
speech — VBN and sequences with AUX.

e Head word stem: The stemming result of the con-
stituent’s syntactic head. A rule based stemming algo-
rithm (Porter, 1980) is used. Collins Ph.D thesis (Collins,
1999)[Appendix. A] describs some rules to identify the
head word of a constituent. Especially for prepositional
phrase (PP) constituent, the normal head words are not
very discriminative. So we use the last noun in the PP
replacing the traditional head word.

e Sub-categorization

We also use the following additional features.

e Predicate POS

e Predicate suffix: The suffix of the predicate. Here, we
use the last 3 characters as the feature.

o Named entity: The named entity’s type in the constituent
if it ends with a named entity. There are four types: LOC,
ORG, PER and MISC.

o Path length: The length of the path between a constituent
and its predicate.

e Partial path: The part of the path from the constituent
to the lowest common ancestor of the predicate and the
constituent.

o Clause layer: The number of clauses on the path between
a constituent and its predicate.

e Head word POS

e Last word stem: The stemming result of the last word of
the constituent.

e Last word POS

We also use some combinations of the above fea-
tures to build some combinational features. Lots of
combinational features which were supposed to con-
tribute the SRL task of added one by one. At the
same time, we removed ones which made the per-
formance decrease in practical experiments. At last,
we keep the following combinations:

Position + Voice

Path length + Clause layer
Predicate + Path

Path + Position + Voice

Path + Position + Voice + Predicate
Head word stem + Predicate

Head word stem + Predicate + Path
Head word stem + Phrase

Clause layer + Position + Predicate

All of the features and their combinations are used
without feature filtering strategy.



2.3 Classifier

Le Zhang’s Maximum Entropy Modeling Toolkit !,
and the L-BFGS parameter estimation algorithm
with gaussian prior smoothing (Chen and Rosenfeld,
1999) are used as the maximum entropy classifier.
We set gaussian prior to be 2 and use 1,000 itera-
tions in the toolkit to get an optimal result through
some comparative experiments.

2.4 No Embedding

The system described above might label two con-
stituents even if one embeds in another, which is not
allowed by the SRL rule. So we keep only one ar-
gument when more arguments embedding happens.
Because it is easy for maximum entropy classifier to
output each prediction’s probability, we can label the
constituent which has the largest probability among
the embedding ones.

2.5 Post Processing Stage

After labeling the arguments which are matched
with constituents exactly, we have to handle the ar-
guments, such as AM-MOD, AM-NEG and AM-DIS,
which have few matching with the constituents de-
scribed in Section 2.1. So a post processing is given
by using some simply rules:

e Tag target verb and successive particles as V.

e Tag “not” and “n’t” in target verb chunk as AM-NEG.

e Tag modal verbs in target verb chunk, such as words with

POS of “MD”, “going to”, and so on, as AM-MOD.

e Tag the words with POS of “CC” and “RB” at the start of
a clause which include the target verb as AM-DIS.

3 Experiments

3.1 Data and Evaluation Metrics

The data provided for the shared task is a part of
PropBank corpus. It consists of the sections from
the Wall Street Journal part of Penn Treebank. Sec-
tions 02-21 are training sets, and Section 24 is devel-
opment set. The results are evaluated for precision,
recall and Fg—1 numbers using the srl-eval.pl script
provided by the shared task organizers.

3.2 Post Processing

After using post processing rules, the final Fg— is
improved from 71.02% to 75.27%.

"http://homepages.inf.ed.ac.uk/s0450736/maxent _toolkit.html
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3.3 Performance Curve

Because the training corpus is substantially en-
larged, this allows us to test the scalability of
learning-based SRL systems to large data set and
compute learning curves to see how many data are
necessary to train. We divide the training set, 20
sections Penn Treebank into 5 parts with 4 sections
in each part. There are about 8,000 sentences in each
part. Figure 1 shows the change of performance as
a function of training set size. When all of training
data are used, we get the best system performance as
described in Section 3.4.

75. 50%

75.00%

74. 50%

74.00%

73.50%

73.00%

72.50%

<
72.00%
4 8 12 16 20

#Sections in training set

Figure 1: Our SRL system performance curve (of
Fs—_1) effecting of the training set size.

We can see that as the training set becomes larger
and larger, so does the performance of SRL system.
However, the rate of increase slackens. So we can
say that at present state, the larger training data has
favorable effect on the improvement of SRL system
performance.

3.4 Best System Results

In all the experiments, all of the features and their
combinations described above are used in our sys-
tem. Table 2 presents our best system performance
on the development and test sets.

From the test results, we can see that our system
gets much worse performance on Brown corpus than
WSJ corpus. The reason is easy to be understood
for the dropping of automatic syntactic parser per-
formance on new corpus but WSJ corpus.

The training time on PIV 2.4G CPU and 1G Mem
machine is about 20 hours on all 20 sections, 39,832-



Precision Recall | Fg—;

Development 79.65% | 71.34% | 75.27
Test WSJ 80.48% | 72.719% | 76.44
Test Brown 71.13% | 59.99% | 65.09
Test WSJ+Brown 79.30% | 71.08% | 74.97
Test WSJ Precision Recall | Fg—1
Overall 80.48% | 72.19% | 76.44

A0 88.14% | 83.61% | 85.81

Al 79.62% | 72.88% | 76.10

A2 73.67% | 65.05% | 69.09

A3 76.03% | 53.18% | 62.59

A4 78.02% | 69.61% | 73.58

AS 100.00% | 40.00% | 57.14
AM-ADV 59.85% | 48.02% | 53.29
AM-CAU 68.18% | 41.10% | 51.28
AM-DIR 56.60% | 35.29% | 43.48
AM-DIS 76.32% | 72.50% | 74.36
AM-EXT 83.33% | 46.88% | 60.00
AM-LOC 65.31% | 52.89% | 58.45
AM-MNR 58.28% | 51.16% | 54.49
AM-MOD 98.52% | 96.37% | 97.43
AM-NEG 97.79% | 96.09% | 96.93
AM-PNC 43.68% | 33.04% | 37.62
AM-PRD 50.00% | 20.00% | 28.57
AM-REC 0.00% 0.00% 0.00
AM-TMP 78.38% | 66.70% | 72.07
R-A0Q 81.70% | 85.71% | 83.66
R-Al 77.62% | 71.15% | 74.25
R-A2 60.00% | 37.50% | 46.15
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU | 100.00% | 25.00% | 40.00
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 83.33% | 47.62% | 60.61
R-AM-MNR 66.67% | 33.33% | 44.44
R-AM-TMP 77.27% | 65.38% | 70.83

[V [ 98.71% [ 98.71% | 98.71 |

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

sentences training set with 1,000 iterations and more
than 1.5 million samples and 2 million features.
The predicting time is about 160 seconds on 1,346-
sentences development set.

4 Conclusions

We have described a maximum entropy classifier
is our semantic role labeling system, which takes
syntactic constituents as the labeling units. The
fast training speed of the maximum entropy clas-
sifier allows us just use one stage of arguments
identification and classification to build the system.
Some useful features and their combinations are
evaluated. Only the constituents with the largest
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probability among embedding ones are kept. Af-
ter predicting all arguments which have matching
constituents in full parsing trees, a simple rule-
based post-processing is applied to correct the ar-
guments which have no matching constituents. The
constituent-based method depends much on the syn-
tactic parsing performance. The comparison be-
tween WSJ and Brown test sets results fully demon-
strates the point of view.
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Abstract

In this paper we present a semantic role
labeling system submitted to the CoNLL-
2005 shared task. The system makes
use of partial and full syntactic informa-
tion and converts the task into a sequen-
tial BIO-tagging. As a result, the label-
ing architecture is very simple . Build-
ing on a state-of-the-art set of features, a
binary classifier for each label is trained
using AdaBoost with fixed depth decision
trees. The final system, which combines
the outputs of two base systems performed
F1=76.59 on the official test set. Addi-
tionally, we provide results comparing the
system when using partial vs. full parsing
input information.

1 Goals and System Architecture

The goal of our work is twofold. On the one hand,
we want to test whether it is possible to implement
a competitive SRL system by reducing the task to a
sequential tagging. On the other hand, we want to
investigate the effect of replacing partial parsing in-
formation by full parsing. For that, we built two dif-
ferent individual systems with a shared sequential
strategy but using UPC chunks-clauses, and Char-
niak’s parses, respectively. We will refer to those
systems as PPypc and FPcn A, hereinafter.

Both partial and full parsing annotations provided
as input information are of hierarchical nature. Our
system navigates through these syntactic structures
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in order to select a subset of constituents organized
sequentially (i.e., non embedding). Propositions are
treated independently, that is, each target verb gen-
erates a sequence of tokens to be annotated. We call
this pre-processing step sequentialization.

The sequential tokens are selected by exploring
the sentence spans or regions defined by the clause
boundaries®. The top-most syntactic constituents
falling inside these regions are selected as tokens.
Note that this strategy is independent of the input
syntactic annotation explored, provided it contains
clause boundaries. It happens that, in the case of
full parses, this node selection strategy is equivalent
to the pruning process defined by Xue and Palmer
(2004), which selects sibling nodes along the path of
ancestors from the verb predicate to the root of the
tree?. Due to this pruning stage, the upper-bound re-
call figures are 95.67% for PPypc and 90.32% for
FPcua. These values give F; performance upper
bounds of 97.79 and 94.91, respectively, assuming
perfect predictors (100% precision).

The nodes selected are labeled with B-I-O tags
depending if they are at the beginning, inside, or out-
side of a verb argument. There is a total of 37 argu-
ment types, which amount to 37*2+1=75 labels.

Regarding the learning algorithm, we used gen-
eralized AdaBoost with real-valued weak classifiers,
which constructs an ensemble of decision trees of
fixed depth (Schapire and Singer, 1999). We con-
sidered a one-vs-all decomposition into binary prob-

Regions to the right of the target verb corresponding to an-
cestor clauses are omitted in the case of partial parsing.

2\With the unique exception of the exploration inside sibling
PP constituents proposed by (Xue and Palmer, 2004).
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lems to address multi-class classification.

AdaBoost binary classifiers are used for labeling
test sequences in a left-to-right tagging scheme us-
ing a recurrent sliding window approach with infor-
mation about the tag assigned to the preceding to-
ken. This tagging module ensures some basic con-
straints, e.g., BIO correct structure, arguments do
not cross clause boundaries nor base chunk bound-
aries, AO-A5 arguments not present in PropBank
frames for a certain verb are not allowed, etc. We
also tried beam search on top of the classifiers’ pre-
dictions to find the sequence of labels with highest
sentence-level probability (as a summation of indi-
vidual predictions). But the results did not improve
the basic greedy tagging.

Regarding feature representation, we used all
input information sources, with the exception of
verb senses and Collins’ parser. We did not con-
tribute with significantly original features. Instead,
we borrowed most of them from the existing liter-
ature (Gildea and Jurafsky, 2002; Carreras et al.,
2004; Xue and Palmer, 2004). Broadly speaking, we
considered features belonging to four categories®:
(1) On the verb predicate:

e Form; Lemma; POS tag; Chunk type and Type of
verb phrase in which verb is included: single-word or
multi-word; Verb voice: active, passive, copulative, in-
finitive, or progressive; Binary flag indicating if the verb
is a start/end of a clause.

e Subcategorization, i.e., the phrase structure rule expand-
ing the verb parent node.

(2) On the focus constituent:

e Type, Head: extracted using common head-word rules;
if the first element is a PP chunk, then the head of the first
NP is extracted;

e First and last words and POS tags of the constituent.

e POSsequence: if it is less than 5 tags long; 2/3/4-grams
of the POS sequence.

e Bag-of-words of nouns, adjectives, and adverbs in the
constituent.

e TOP sequence: sequence of types of the top-most syn-
tactic elements in the constituent (if it is less than 5 ele-
ments long); in the case of full parsing this corresponds to
the right-hand side of the rule expanding the constituent
node; 2/3/4-grams of the TOP sequence.

e Governing category as described in (Gildea and Juraf-
sky, 2002).

3Features extracted from partial parsing and Named Enti-
ties are common to PPypc and FPcaa models, while features
coming from Charniak parse trees are implemented exclusively
in the FPcua model.
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e NamedEnt, indicating if the constituent embeds or
strictly-matches a named entity along with its type.

e TMP, indicating if the constituent embeds or strictly
matches a temporal keyword (extracted from AM TMP ar-
guments of the training set).

(3) Context of the focus constituent:
e Previousand following wor ds and POStags of the con-
stituent.

e The same features characterizing focus constituents are
extracted for the two previous and following tokens,
provided they are inside the clause boundaries of the cod-
ified region.

(4) Relation between predicate and constituent:

e Relative position; Distance in words and chunks; Level
of embedding with respect to the constituent: in number
of clauses.

e Constituent path as described in (Gildea and Jurafsky,
2002); All 3/4/5-grams of path constituents beginning at
the verb predicate or ending at the constituent.

e Partial parsing path as described in (Carreras et al.,
2004); All 3/4/5-grams of path elements beginning at the
verb predicate or ending at the constituent.

e Syntactic frame as described by Xue and Palmer (2004)

2 Experimental Setting and Results

We trained the classification models using the com-
plete training set (sections from 02 to 21). Once con-
verted into one sequence per target predicate, the re-
sulting set amounts 1,049,049 training examples in
the PPypc model and 828,811 training examples in
the FPca model. The average number of labels per
argument is 2.071 and 1.068, respectively. This fact
makes “I” labels very rare in the FPca model.

When running AdaBoost, we selected as weak
rules decision trees of fixed depth 4 (i.e., each branch
may represent a conjunction of at most 4 basic fea-
tures) and trained a classification model per label for
up to 2,000 rounds.

We applied some simplifications to keep training
times and memory requirements inside admissible
bounds. First, we discarded all the argument la-
bels that occur very infrequently and trained only
the 41 most frequent labels in the case of PPypc
and the 35 most frequent in the case of FPcpya.
The remaining labels where joined in a new label
“ot her ” in training and converted into “O’ when-
ever the SRL system assigns a “ot her ” label dur-
ing testing. Second, we performed a simple fre-
quency filtering by discarding those features occur-
ring less than 15 times in the training set. As an



exception, the frequency threshold for the features
referring to the verb predicate was set to 3. The final
number of features we worked with is 105,175 in the
case of PPypc and 80,742 in the case of FPcya.

Training with these very large data and feature
sets becomes an issue. Fortunately, we could split
the computation among six machines in a Linux
cluster. Using our current implementation combin-
ing Perl and C++ we could train the complete mod-
els in about 2 days using memory requirements be-
tween 1.5GB and 2GB. Testing with the ensembles
of 2,000 decision trees per label is also not very effi-
cient, though the resulting speed is admissible, e.g.,
the development set is tagged in about 30 minutes
using a standard PC.

The overall results obtained by our individual
PPypc and FPcpa SRL systems are presented in ta-
ble 1, with the best results in boldface. As expected,
the FPcpa system significantly outperformed the
PPypc system, though the results of the later can
be considered competitive. This fact is against the
belief, expressed as one of the conclusions of the
CoNLL-2004 shared task, that full-parsing systems
are about 10 F; points over partial-parsing systems.
In this case, we obtain a performance difference of
2.18 points in favor of FPcpa.

Apart from resulting performance, there are addi-
tional advantages when using the FPca approach.
Due to the coarser granularity of sequence tokens,
FPcra sequences are shorter. There are 21% less
training examples and a much lower quantity of “I”
tags to predict (the mapping between syntactic con-
stituents and arguments is mostly one-to-one). As
a consequence, FPcpa classifiers train faster with
less memory requirements, and achieve competitive
results (near the optimal) with much less rounds of
boosting. See figure 1. Also related to the token
granularity, the number of completely correct out-
puts is 4.13 points higher in FPgpa, showing that
the resulting labelings are structurally better than
those of PPypc.

Interestingly, the PPypc and FPcpa Systems
make quite different argument predictions. For in-
stance, FPcua is better at recognizing A0 and Al
arguments since parse constituents corresponding to
these arguments tend to be mostly correct. Compar-
atively, PPypc is better at recognizing A2-A4 argu-
ments since they are further from the verb predicate
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Figure 1: Overall F; performance of individual sys-
tems on the development set with respect to the num-

ber of learning rounds

Perfect props | Precision | Recall | Fg—;
PPupc 47.38% 76.86% | 70.55% | 73.57
FPcuA 51.51% 78.08% | 73.54% | 75.75
Combined 51.39% 78.39% | 75.53% | 76.93

Table 1: Overall results of the individual systems on
the development set.

and tend to accumulate more parsing errors, while
the fine granularity of the PPypc sequences still al-
low to capture them®. Another interesting observa-
tion is that the precision of both systems is much
higher than the recall.

The previous two facts suggest that combining the
outputs of the two systems may lead to a significant
improvement. We experimented with a greedy com-
bination scheme for joining the maximum number of
arguments from both solutions in order to increase
coverage and, hopefully, recall. It proceeds depart-
ing from an empty solution by: First, adding all the
arguments from FPcya in which this method per-
forms best; Second, adding all the arguments from
PPypc in which this method performs best; and
Third, making another loop through the two meth-
ods adding the arguments not considered in the first
loop. At each step, we require that the added argu-
ments do not overlap/embed with arguments in the
current solution and also that they do not introduce
repetitions of AO-A5 arguments. The results on the

4As an example, the F; performance of PPypc on AO and
A2 arguments is 79.79 and 65.10, respectively. The perfor-
mance of FPcia on the same arguments is 84.03 and 62.36.



Precision Recall | Fg=1
Development 78.39% | 75.53% | 76.93
Test WSJ 79.55% | 76.45% | 77.97
Test Brown 70.79% | 64.35% | 67.42
Test WSJ+Brown 78.44% | 74.83% | 76.59
Test WSJ Precision Recall | Fg=1
Overall 79.55% | 76.45% | 77.97
A0 87.11% | 86.28% | 86.69
Al 79.60% | 76.72% | 78.13
A2 69.18% | 67.75% | 68.46
A3 76.38% | 56.07% | 64.67
Ad 79.78% | 69.61% | 74.35
A5 0.00% | 0.00% | 0.00
AM ADV 59.15% | 52.37% | 55.56
AM CAU 73.68% | 57.53% | 64.62
AM DI R 71.43% | 35.29% | 47.24
AM DI S 77.14% | 75.94% | 76.54
AM EXT 63.64% | 43.75% | 51.85
AM LOC 62.74% | 54.27% | 58.20
AM MNR 54.33% | 52.91% | 53.61
AM MOD 96.16% | 95.46% | 95.81
AM NEG 99.13% | 98.70% | 98.91
AM PNC 53.49% | 40.00% | 45.77
AM PRD 0.00% | 0.00% | 0.00
AM REC 0.00% | 0.00% | 0.00
AM TMP 77.68% | 78.75% | 78.21
R- A0 86.84% | 88.39% | 87.61
R- Al 75.32% | 76.28% | 75.80
R- A2 54.55% | 37.50% | 44.44
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R- AM LCC 0.00% | 0.00% | 0.00
R- AM MNR 0.00% | 0.00% | 0.00
R- AM TMP 69.81% | 71.15% | 70.48
[V | 99.16% | 99.16% [ 99.16 |

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

development set (presented in table 1) confirm our
expectations, since a performance increase of 1.18
points over the best individual system was observed,
mainly caused by recall improvement. The final sys-
tem we presented at the shared task performs exactly
this solution merging procedure. When applied on
the WSJ test set, the combination scheme seems to
generalize well, since an improvement is observed
with respect to the development set. See the offi-
cial results of our system, which are presented in ta-
ble 2. Also from that table, it is worth noting that the
F1 performance drops by more than 9 points when
tested on the Brown test set, indicating that the re-
sults obtained on the WSJ corpora do not generalize
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well to corpora with other genres. The study of the
sources of this lower performance deserves further
investigation, though we do not believe that it is at-
tributable to the greedy combination scheme.

3 Conclusions

We have presented a simple SRL system submit-
ted to the CoNLL-2005 shared task, which treats
the SRL problem as a sequence tagging task (us-
ing a BIO tagging scheme). Given the simplic-
ity of the approach, we believe that the results are
very good and competitive compared to the state-
of-the-art. We also provided a comparison between
two SRL systems sharing the same architecture, but
build on partial vs. full parsing, respectively. Al-
though the full parsing approach obtains better re-
sults and has some implementation advantages, the
partial parsing system shows also a quite competi-
tive performance. The results on the development
set differ in 2.18 points, but the outputs generated
by the two systems are significantly different. The
final system, which scored F1=76.59 in the official
test set, is a combination of both individual systems
aiming at increasing coverage and recall.
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Abstract

In this paper, we describe our systems for
the CoNLL-2005 shared task. The aim of
the task is semantic role labeling using a
machine-learning algorithm. We apply the
Support Vector Machines to the task. We
added new features based on full parses
and manually categorized words. We also
report on system performance and what
effect the newly added features had.

1 Introduction

The CoNLL-2005 shared task (Carreras and
Marquez, 2005) concerns the recognition of au-
tomatic semantic roles for the English language.
Given a sentence, the task consists of analyzing the
propositions expressed by various target verbs of the
sentence. The semantic roles of constituents of the
sentence are extracted for each target verb. There
are semantic arguments such as Agent, Patient, and
Instrument and also adjuncts such as Locative and
Temporal. We performed the semantic role labeling
using Support Vector Machines (SVMs). Systems
that used SVMs achieved good performance in the
CoNLL-2004 shared task, and we added data on full
parses to it. We prepared a feature used by the full
parses, and we also categorized words that appeared
in the training set and added them as features. Here,
we report on systems for automatically labeling se-
mantic roles in a closed challenge in the CoNLL-
2005 shared task.

This paper is arranged as follows. Section 2 de-
scribes the SVMs. Our system is described Sec-
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tion 3, where we also describe methods of data rep-
resentation, feature coding, and the parameters of
SVMs. The experimental results and conclusion are
presented in Sections 4 and 5.

2 Support Vector Machines

SVMs are one of the binary classifiers based on
the maximum margin strategy introduced by Vap-
nik (Vapnik, 1995). This algorithm has achieved
good performance in many classification tasks, e.g.
named entity recognition and document classifica-
tion. There are some advantages to SVMs in that
(i) they have high generalization performance inde-
pendent of the dimensions of the feature vectors and
(i) learning with a combination of multiple features
is possible by using the polynomial kernel func-
tion (Yamada and Matsumoto, 2003). SVMs were
used in the CoNLL-2004 shred task and achieved
good performance (Hacioglu et al., 2004) (Kyung-
Mi Park and Rim, 2004). We used YamCha (Yet
Another Multipurpose Chunk Annotator)! (Kudo
and Matsumoto, 2001), which is a general purpose
SVM-based chunker. We also used TinySVM? as a
package for SVMs.

3 System Description

3.1 Data Representation

We changed the representation of original data ac-
cording to Hacioglu et al. (Hacioglu et al., 2004) in
our system.

http://chasen.org/™ taku/software/yamcha/
2http://chasen.org/™ taku/software/TinySVM/
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e Bracketed representation of roles was con-
verted into IOB2 representation (Ramhsaw and
Marcus, 1995) (Sang and Veenstra, 1999).

e Word-by-word was changed to the phrase-by-
phrase method (Hacioglu et al., 2004).

Word tokens were collapsed into base phrase (BP)
tokens. The BP headwords were rightmost words.
Verb phrases were not collapsed because some in-
cluded more the one predicate.

3.2 Feature Coding

We prepared the training and development set by us-
ing files corresponding to: words, predicated partial
parsing (part-of-speech, base chunks), predicate full
parsing trees (Charniak models), and named entities.
We will describe feature extraction according to Fig.
1. Figure 1 shows an example of an annotated sen-
tence.

1st Words (Bag of Words): All words appearing in
the training data.

2nd Part of Speech (POS) Tags

3rd Base Phrase Tags: Partial parses (chunks +
clauses) predicted with UPC processors.
4th Named Entities

5th Token Depth : This means the degree of depth
from a predicate (see Fig. 2). We used full
parses predicted by the Charniak parser. In this

figure, the depth of |paid|, which is a predicate,
April |is -2.

is zero and the depth of

6th Words of Predicate

7th Position of Tokens: The position of the current
word from the predicate. This has three value

of “before”, “after”, and “-” (for the predicate).

8th Phrase Distance on Flat Path: This means the
distance from the current token to the predi-
cate as a number of the phrase on flat path.
For example, the phrase distance of “April” is
4, because two “NP” and one “PP” exist from
“paid”(predicate) to “April” (see 3rd column in

Fig.1).
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Table 1: Five most frequently categorized BP head-
words appearing in training set.

Class Examples

Person he, I, people, investors, we

Organization | company, Corp., Inc., companies, group
Time year, years, time, yesterday, months
Location Francisco, York, California, city, America
Number %, million, billion, number, quarter
Money price, prices, cents, money, dollars

9th Flat Path: This means the path from the current
word to the predicate as a chain of the phrases.
The chain begins from the BP of the current
word to the BP of the predicate.

10th Semantic Class : We collected the most fre-
quently occurring 1,000 BP headwords appear-
ing in the training set and tried to manually
classified. The five classes (person, organiza-
tion, time, location, number and money) were
relatively easy to classify. In the 1,000 words,
the 343 words could be classified into the five
classes. Remainder could not be classified. The
details are listed in Table 1.

Preceding class: The class (e.g. B-AO0 or I-Al) of
the token(s) preceding the current token. The
number of preceding tokens is dependent on the
window size. In this paper, the left context con-
sidered is two.

1 _DT ___ NN __

Figure 2: Parsing results obtained with Charniak
parser and token depth.

3.3 Machinelearning with YamCha

YamCha (Kudo and Matsumoto, 2001) is a general
purpose SVM-based chunker. After inputting the
training and test data, YamCha converts them for



(1st) (2nd) (3rd) (4th) (5th) (6th) (7th) (8th) (9th) (10th)  (11th)
The DT B-NP O 0 pay before -1 NP|VP - B-A0
company NN [-NP (0] 0 pay before -1 NP|VP organization [-A0
paid VBD B-VP o 0 pay - 0 - - B-V
five CD B-NP O 2 pay after 1 VP|NP - B-A1
cents NNS [-NP (0] 2 pay after 1 VP|NP money [-A1
a DT B-NP O 2 pay after 2 VPINP - -A1
share NN [-NP o 2 pay after 2  VPINP - [-A1
in IN B-PP O 1 pay after 3 VPINP|PP - B-AM-TMP
April NNP B-NP O 2 pay after 4 VP|NP|PP|NP time [-AM-TMP
. (o} O -1 pay after 4 VPINPIPPINP|O - o}
Data representation ﬂ
company NN B-NP (0] 0 pay before -1 NP|VP organization B—A0
paid VBD B-VP o 0 pay - 0 - - B-V
cents NNS B-NP (0] 2 pay after 1 VPINP money B-Al
share NN B-NP (0] 2 pay after 2 VPINP - [-A1
in IN B-PP O 1 pay after 3 VP|NPlPP - B-AM-TMP
April NNP B-NP O 2 pay after 4 VP|NP|PP|NP time [-AM-TMP
0 O -1 pay after 4 VP|NP|PPINP|O - 0

Figure 1. Example annotated sentence. Input features are words (1st), POS tags (2nd), base phrase chunks
(3rd), named entities (4th), token depth (5th), predicate (6th), position of tokens (7th), phrase distance (8th),
flat paths (9th), semantic classes (10th), argument classes (11th).

the SVM. The YamCha format for an example sen-
tence is shown in Fig. 1. Input features are writ-
ten in each column as words (1st), POS tags (2nd),
base phrase chunks (3rd), named entities (4th), token
depth (5th), predicate (6th), the position of tokens
(7th), the phrase distance (8th), flat paths (9th), se-
mantic classes (10th), and argument classes (11th).
The boxed area in Fig. 1 shows the elements of
feature vectors for the current word, in this case
“share”. The information from the two preceding
and two following tokens is used for each vector.

3.4 Parametersof SVM

e Degree of polynomial kernel (natural number):
We can only use a polynomial kernel in Yam-
Cha. In this paper, we adopted the degree of
two.

e Range of window (integer): The SVM can use
the information on tokens surrounding the to-
ken of interest as illustrated in Fig. 1. In this
paper, we adopted the range from the left two
tokens to the right two tokens.

e Method of solving a multi-class problem: We
adopted the one-vs.-rest method. The BIO
class is learned as (B vs. other), (I vs. other),
and (O vs. other).
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e Cost of constraint violation (floating number):
There is a trade-off between the training error
and the soft margin for the hyper plane. We
adopted a default value (1.0).

4 Reaults

41 Data

The data provided for the shared task consisted of
sections from the Wall Street Journal (WSJ) part of
Penn TreeBank Il. The training set was WSJ Sec-
tions 02-21, the development set was Section 24, and
the test set was Section 23 with the addition of fresh
sentences. Our experiments were carried out using
Sections 15-18 for the training set, because the en-
tire file was too large to learn.

4.2 Experiments

Our final results for the CoNLL-2005 shared task are
listed in Table 2. Our system achieved 74.15% pre-
cision, 68.25% recall and 71.08 F3—; on the overall
results of Test WSJ. Table 3 lists the effects of the
token-depth and semantic-class features. The token-
depth feature had a larger effect than that for the se-
mantic class.



Precision Recall | Fp=1
Development 71.68% | 64.93% | 68.14
Test WSJ 74.15% | 68.25% | 71.08
Test Brown 63.24% | 54.20% | 58.37
Test WSJ+Brown 72.77% | 66.37% | 69.43
Test WSJ Precision Recall | Fp=1
Overall 74.15% | 68.25% | 71.08
AO 81.38% | 76.93% | 79.09
Al 73.16% | 70.87% | 72.00
A2 64.53% | 59.01% | 61.65
A3 61.16% | 42.77% | 50.34
A 68.18% | 58.82% | 63.16
A5 100.00% | 80.00% | 88.89
AM- ADV 55.09% | 43.87% | 48.84
AM CAU 60.00% | 28.77% | 38.89
AM DI R 45.10% | 27.06% | 33.82
AM DI S 72.70% | 69.06% | 70.83
AM EXT 70.59% | 37.50% | 48.98
AM LOC 55.62% | 50.41% | 52.89
AM M\R 51.40% | 42.73% | 46.67
AM MOD 97.04% | 95.28% | 96.15
AM NEG 96.92% | 95.65% | 96.28
AM PNC 56.00% | 36.52% | 44.21
AM PRD 0.00% | 0.00% | 0.00
AM REC 0.00% | 0.00% | 0.00
AM TWP 73.39% | 62.93% | 67.76
R- AO 81.31% | 71.88% | 76.30
R- Al 59.69% | 49.36% | 54.04
R- A2 60.00% | 18.75% | 28.57
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R-AM LOC | 85.71% | 28.57% | 42.86
R-AM M\R | 100.00% | 16.67% | 28.57
R- AM TMP 72.34% | 65.38% | 68.69
[V | 97.55% [ 96.05% ] 96.80 |

Table 2: Overall results (top) and detailed results on
the WSJ test (bottom).

5 Conclusion

This paper reported on semantic role labeling using
SVMs. Systems that used SVMs achieved good per-
formance in the CoNLL-2004 shared task, and we
added data on full parses to it. We applied a token-
depth feature to SVM learning and it had a large ef-
fect. We also added a semantic-class feature and it
had a small effect. Some classes were similar to the
named entities, e.g., the PERSON or LOCATION
of the named entities. Our semantic class feature
also included not only proper names but also com-
mon words. For example, “he” and “she” also in-
cluded the PERSON semantic class. Furthermore,
we added a time, number, and money class. The
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Table 3: Effects Token Depth (TD) and Semantic
Class (SC) had on feature development set.

Precision Recall | Fp=1
Without DF and SC 68.07% | 59.71% | 63.62
With DF 71.36% | 64.13% | 67.55
With DF and SC 71.68% | 64.93% | 68.14

semantic class feature was manually categorized on
the most frequently occurring 1,000 words in the
training set. More effort of the categorization may
improve the performance of our system.
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Abstract In the enhanced configuration, the boundary an-
notation is subdivided in two steps: a first pass in
We present a four-step hierarchical SRL ~ which we label argument boundary and a second
strategy which generalizes the classical  pass in which we apply a simple heuristic to elimi-
two-level approach (boundary detection nate the argument overlaps. We have also tried some
and classification). To achieve this, we strategies to learn such heuristics automatically. In
have split the classification step by group-  order to do this we used a tree kernel to classify the
ing together roles which share linguistic subtrees associated with correct predicate argument
properties (e.g. Core Roles versus Ad-  structures (see (Moschitti et al., 2005)). The ratio-
juncts). The results show that the non- nale behind such an attempt was to exploit the cor-

optimized hierarchical approach is com-  relation among potential arguments.

putationally more efficient than the tradi- Also, the role labeler is divided into two steps:
tional systems and it preserves their accu- (1) we assign to the arguments one out of four possi-
racy. ble class labelsCore RolesAdjuncts Continuation

Argumentsand Co-referring Argumentsand (2) in
_ each of the above class we apply the set of its spe-
1 Introduction cific classifiers, e.g. A0,..,A5 within the Core Role

For accomplishing the CoNLL 2005 Shared Task!ass. As such grouping is relatively new, the tradi-
on Semantic Role Labeling (Carreras andriyuez, tional features may not be sufficient to characterize
2005), we capitalized on our experience on the s&ach class. Thus, to generate a large set of features
mantic shallow parsing by extending our system@utomatically, we again applied tree kernels.
widely experimented on PropBank and FrameNet Since our SRL system exploits the PropBank for-
(Giuglea and Moschitti, 2004) data, with a two-malism for internal data representation, we devel-
step boundary detection and a hierarchical argume@ped ad-hoc procedures to convert back and forth
classification strategy. to the CoNLL Shared Task format. This conversion
Currently, the system can work in both basic angtep gave us useful information about the amount
enhanced configuration. Given the parse tree of &nd the nature of the parsing errors. Also, we could
input sentence, the basic system applies (1) a bouri@easure the frequency of the mismatches between
ary classifier to select the nodes associated with cagyntax and role annotation.
rect arguments and (2) a multi-class labeler to assign In the remainder of this paper, Section 2 describes
the role type. For such models, we used some of thibe basic system configuration whereas Section 3 il-
linear (e.g. (Gildea and Jurasfky, 2002; Pradhan éistrates its enhanced properties and the hierarchical
al., 2005)) and structural (Moschitti, 2004) featurestructure. Section 4 describes the experimental set-
developed in previous studies. ting and the results. Finally, Section 5 summarizes
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our conclusions.

"""""" S .
2 The Basic Semantic Role Labeler Q=)
In the last years, several machine learning ap- v BOUNDARIES
proaches have been developed for automatic role la- C B >
beling, e.g. (Gildea and Jurasfky, 2002; Pradhan | =~/ N ~__ . $
et al.,, 2005). Their common characteristic is the
adoption of flat feature representations for predicate- ( *

X AM CX RX
argument structures. Our basic system is similar to | £/ =X 4N N YN ciSsmcaron

the one proposed in (Pradhan et al., 2005) and it is ‘ 52 Individual PB-Role Classifiers
described hereafter.

We divided the predicate argument labeling in two
subtasks: (a) the detection of the arguments relat&digure 1:Architecture of the Hierarchical Semantic Role La-
to a target, i.e. all the compounding words of sucheler.
argument, and (b) the classification of the argumer\;g Hierarchical Semantic Role Labeler

type, e.g.A0 or AM To learn both tasks we used the

following algorithm: Having two phases for argument labeling provides

. - two main advantages: (1) the efficiency is increased
L. Givena s_entence from theaining-set generate as the negative boundary examples, which are al-
a full syntactic parse-tree; most all parse-tree nodes, are used with one clas-

2. LetP andA be respectively the set of preCIICatessifier only (i.e. the boundary classifier), and (2) as

and the set of parse-tree nodes (i.e. the potential é}:\rr'guments share common features that do not occur

guments); . in the non-arguments, a preliminary classification

3. For each paip,a> € P x A: _ between arguments and non-arguments advantages
- extract the feature representation dgt.; the boundary detection of roles with fewer training

- if the subtree rooted im covers exactly the examples (e.g.A4). Moreover, it may be simpler

words of one argument gf, put £, in T g classify the type of roles when the not-argument
(positive examples), otherwise put it IFF  odes are absent.

(negative examples).

Following this idea, we generalized the above two

We trained the SVM boundary classifier @t and level strategy to a four-step role labeling by group-
T~ sets and the role labeleon theT'", i.e. its pos- NG together the arguments sharing similar proper-
itive examples and’", i.e. its negative examples, tiés. Figure 1, shows the hierarchy employed for ar-
whereT+ = T;* U T;", according to the ONE-vs.- gument classification:

ALL scheme. To implement the multi-class clas- During the first phase, we select the parse tree
sifiers we select the argument associated with tHgodes which are likely predicate arguments. An

maximum among the SVM scores. SVM with mOderater hlgh recall is applled for such
To represent thé), , pairs we used the following PUrPose.
features: In the second phase, a simple heuristic which se-

- the Phrase Type Predicate Word Head Word lects non-overlappingnodes from those derived in
Governing CategoryPositionand Voicedefined in the previous step is applied. Two nodesandn
(Gildea and Jurasfky, 2002); do not overlap ifn; is not ancestor ofi; and vicev-

- the Partial Path, Compressed PaftNo Direction €rsa. Our heuristic simply eliminates the nodes that
Path Constituent Tree Distancédead Word POS cause the highest number of overlaps. We have also
First and Last Word/POS in ConstituerBubCate- Studied how to train an overlap resolver by means of
gorizationandHead Word of Prepositional Phrases(ree kernels; the promising approach and results can

proposed in (Pradhan et al., 2005); and be found in (Moschitti et al., 2005).
- the Syntactic Framelesigned in (Xue and Palmer, In the third phase, we classify the detected argu-
2004). ments in the following four classes: AX, i.&€Core
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Arguments AM, i.e. Adjuncts CX, i.e. Continua- ularization parameter;, to 1 and the cost factor,
tion Argumentand RX, i.e. theCo-referring Argu- j to 7 (to have a slightly higher recall). To re-
ments The above classification relies on linguisticduce the learning time, we applied a simple heuristic
reasons. For examplgore argumentslass contains which removes the nodes covering the target predi-
the arguments specific to the verb frames white  cate node. From the initial 4,683,777 nodes (of sec-
junct Argumentslass contains arguments that argions 02-21), the heuristic removed 1,503,100 nodes
shared across all verb frames. with a loss of 2.6% of the total arguments. How-

In the fourth phase, we classify the membersver, as we started the experiments in late, we used
within the classes of the previous level, e&0 vs. only the 992,819 nodes from the sections 02-08. The
Al, ...,A5. classifier took about two days and half to converge
4 The Experiments on a 64 bits machine (2.4 GHz and 4Gb Ram).

We experimented our approach with the CoNLL The multiclassifier was built with 52 binary ar-
2005 Shared Task standard dataset, i.e. the Péiment classifiers. Their training on all arguments
nTree Bank, where sections from 02 to 21 are usdfPm sec 02-21, (i.e. 242,957), required about a half
as training set, Section 24 as development set (De§y O0n a machine with 8 processors (32 bits, 1.7
and Section 23 as the test set (WSJ). AdditionallyzHz and overll 4Gb Ram).
the Brown corpus’ sentences were also used as theVVe run the role multiclassifier on the output of the
test set (Brown). As input for our feature extractoPoundary classifier. The results on the Dev, WSJ and
we used only the Charniak’s parses with their POSSrown test data are shown in Table 1. Note that, the
The evaluations were carried out with the SvM-Overlapping nodes cause the generation of overlap-
light-TK software (Moschitti, 2004) available at ping constituents in the sentence annotation. This
http:/ai-nlp.info.uniroma2.it/moschitti/ prevents us to use the CoNLL evaluator. Thus, we
which encodes the tree kernels in the SVM-light!'Sed the overlap resolution algorithm also for the ba-
software (Joachims, 1999). We used the defaufC System.

polynomial kernel (degree=3) for the linear featureil_2 Hierarchical Role Labeling Evaluation

representations and the tree kernelsforthestructutg\ll he fi h fthe hi hical label
feature processing. s the first two phases of the hierarchical labeler are

As our feature extraction module was designegjentical to the basic system, we focused on the last

to work on the PropBank project annotation forma{WO phases. We carried out our studies over the Gold

(i.e. theprop.txtindex file), we needed to generateStandard boundaries in the presence of arguments

it from the CoNLL data. Each PropBank annota 13t do nothave perfect-coveringiode in the Char-
tion refers to a parse tree node which exactly CO\ﬂ'ak trees. _ , _

ers the target argument but when using automatic To accomplish th.e third phase, we re-organized
parses such node may not exist. For example, dpe flat arguments !nto the AX, AN_I’ CX gpd RX
the CONLL Charniak’s parses, (sections 02-21 anglasses and we built a.smgle rr_1u|t|-cl<'_a§smer. For
24), we discovered that this problem affects 10,29§1e fourth phase, we built a multi-classifier for each
out of the 241,121 arguments (4.3%) and 9,741 sefif the above classes: only the examples rela_ted to
tences out of 87,257 (11.5%). We have found ouf'€ target class were used, e.g. the AX mutliclas-
that most of the errors are due to wrong parsing atc‘—'_f'er was dgs_|gned with the AD,..,A5 ONE-vs-ALL
tachments. This observation suggests that the cagiiPa’y classifiers.

bility of discriminating between correct and incor- N rows 2 and 3, Table 2 shows the numbers of
rect parse trees is a key issue in the boundary g&@ining and development set instances. Row 4 con-

tection phase and it must be properly taken into adains theF; of the binary classifiers of the third
count. phase whereas Row 5 reports the of the result-

ing multi-classifier. Row 6 presents tlgs of the
4.1 Basic System Evaluation multi-classifiers of the fourth phase.
For the boundary classifier we used a SVM with Row 7 illustrates thef; measure of the fourth
the polynomial kernel of degree 3. We set the regphase classifier applied to the third phase output. Fi-
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Precision| Recall | Fg=1 [ AX T T AM [ CX | RX ]

Development 74.95% | 73.10% 74.01 #train. examples 172,457 50,473 2,954 7,928
%2{ \é\/rg\fv . gg-gg 0//0 gi-gg 0//0 gg-gi) # devel. examples 5930 | 2,132 | 105 | 284
. 0 . ()} . =
Test WSJ+Brown| 75.19% | 73.45% | 74.31 } ﬁ:ase ::: binary C'assll 97.29 | 97-:55 91970-86 [ 93.15 }
ase .
Test WSJ [ Precision] Recall| Fs—; [ Phase IV | 9250 [ 85.88 [ 91.43[ 9155
Overall 76.55% | 75.24%| 75.89 [ Phase Il &IV [ 88.15 ]
A0 81.05% | 84.37%| 82.67 [ Basic System [ 38.61 ]
Al 77.21% | 74.12%| 75.63
A2 67.02% | 68.11%| 67.56
A3 69.63% | 54.34%| 61.04 Table 2: Hierarchical Semantic Role Labeler Results
Ad 74.75% | 72.55% | 73.63
ﬁfﬂ AV 15?2'3(3)3//0 gg-gg? gg%g whereas the PAF tree kernel seems more suited for
AM-CAU ce07% | noes| 5736 the classification within the other classes, e.g. AM.
AM-DIR 50.62% | 48.24% | 49.40 Future work on the optimization of each phase is
QM'E;(ST g-gég" ;g-‘l“z‘z‘) ;g-g; needed to study the potential accuracy limits of the
- . 0 . 0 . . .
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Semantic Role Labeling using libSVM
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Abstract

We describe a system for the CoNLL-
2005 shared task of Semantic Role Label-
ing. The system implements a two-layer
architecture to first identify the arguments
and then to label them for each predicate.
The components are implemented as
SVM classifiers using 1ibSVM. Features
were adapted and tuned for the system,
including a reduced set for the identifier
classifier. Experiments were conducted to
find kernel parameters for the Radial Ba-
sis Function (RBF) kernel. An algorithm
was defined to combine the results of the
argument labeling classifier according to
the constraints of the argument labeling
problem.

1 Introduction and Strategy

The Semantic Role Labeling (SRL) problem has
been the topic of the both the CoNLL-2004 and the
CoNLL-2005 Shared Tasks (Carreras and
Marquez, 2005). The SRL system described here
depends on a full syntactic parse from the Charniak
parser, and investigates aspects of using Support
Vector Machines (SVMs) as the machine learning
technique for the SRL problem, using the 1ibSVM
package.

In common with many other systems, this sys-
tem uses the two-level strategy of first identifying
which phrases can be arguments to predicates in
general, and then labeling the arguments according
to that predicate. The argument identification
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phase is a binary classifier that decides whether
each constituent in the full syntax tree of the sen-
tence is a potential argument. These potential ar-
guments are passed into the argument labeling
classifier, which uses binary classifiers for each
label to decide if that label should be given to that
argument. A post-processing phase picks the best
labeling that satisfies the constraints of labeling the
predicate arguments.

For overall classification strategy and for
suggestions of features, we are indebted to the
work of Pradhan et al (2005) and to the work of
many authors in both the CoNLL-2004 shared task
and the similar semantic roles task of Senseval-3.
We used the results of their experiments with
features, and worked primarily on features for the
identifying classifier and with the constraint
satisfaction problem on the final argument output.

2 System Description

2.1 Input Data

In this system, we chose to use full syntax trees
from the Charniak parser, as the constituents of
those trees more accurately represented argument
phrases in the training data at the time of the data
release. Within each sentence, we first map the
predicate to a constituent in the syntax tree. In the
cases that the predicate is not represented by a con-
stituent, we found that these were verb phrases of
length two or more, where the first word was the
main verb (carry out, gotten away, served up, etc.).
In these cases, we used the first word constituent as
the representation of the predicate, for purposes of
computing other features that depended on a rela-
tive position in the syntax tree.
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We next identify every constituent in the tree as
a potential argument, and label the training data
accordingly. Although approximately 97% of the
arguments in the training data directly matched
constituents in the Charniak tree, only 91.3% of the
arguments in the development set match constitu-
ents. Examination of the sentences with incorrect
parses show that almost all of these are due to
some form of incorrect attachment, e.g. preposi-
tional attachment, of the parser. Heuristics can be
derived to correct constituents with quotes, but this
only affected a small fraction of a percent of the
incorrect arguments. Experiments with corrections
to the punctuation in the Collins parses were also
unsuccessful in identifying additional constituents.
Our recall results on the development directory are
bounded by the 91.3% alignment figure.

We also did not use the the partial syntax,
named entities or the verb senses in the
development data.

2.2 Learning Components: SVM classifiers

For our system, we chose to use libSVM, an open
source SVM package (Chang and Lin, 2001).

In the SRL problem, the features are nominal,
and we followed the standard practice of represent-
ing a nominal feature with n discrete values as n
binary features. Many of the features in the SRL
problem can take on a large number of values, for
example, the head word of a constituent may take
on as many values as there are different words pre-
sent in the training set, and these large number of
features can cause substantial performance issues.

The 1ibSVM package has several kernel func-
tions available, and we chose to use the radial basis
functions (RBF). For the argument labeling prob-
lem, we used the binary classifiers in libSVM, with
probability estimates of how well the label fits the
distribution. These are normally combined using
the “one-against-one” approach into a multi-class
classifier. Instead, we combined the binary classi-
fiers in our own post-processing phase to get a la-
beling satisfying the constraints of the problem.

2.3  The Identifier Classifier Features

One aspect of our work was to use fewer features
for the identifier classifier than the basic feature set
from (Gildea and Jurafsky, 2002). The intuition
behind the reduction is that whether a constituent
in the tree is an argument depends primarily on the

206

structure and is independent of the lexical items of
the predicate and headword. This reduced feature
set is:

Phrase Type: The phrase label of the argument.

Position: Whether the phrase is before or after
the predicate.

Voice: Whether the predicate is in active or
passive voice. Passive voice is recognized if a past
participle verb is preceded by a form of the verb
“be” within 3 words.

Sub-categorization: The phrase labels of the
children of the predicate’s parent in the syntax tree.

Short Path: The path from the parent of the
argument position in the syntax tree to the parent
of the predicate.

The first four features are standard, and the short
path feature is defined as a shorter version of the
standard path feature that does not use the
argument phrase type on one end of the path, nor
the predicate type on the other end.

The use of this reduced set of features was
confirmed experimentally by comparing the effect
of this reduced feature set on the F-measure of the
identifier classifier, compared to feature sets that
also added the predicate, the head word and the
path features, as normally defined.

Reduced | + Pred + Head | + Path

F-measure | 81.51 81.31 72.60 81.19

Table 1: Additional features reduce F-measure for the
identifier classifier.

2.4 Using the Identifier Classifier for Train-

ing and Testing

Theoretically, the input for training the identifier
classifier is that, for each predicate, all constituents
in the syntax tree are training instances, labeled
true if it is any argument of that predicate, and
false otherwise. However, this leads to too many
negative (false) instances for the training. To cor-
rect this, we experimented with two filters for
negative instances. The first filter is simply a ran-
dom filter; we randomly select a percentage of ar-
guments for each argument label. Experiments
with the percentage showed that 30% yielded the
best F-measure for the identifier classifier.

The second filter is based on phrase labels from
the syntax tree. The intent of this filter was to re-
move one word constituents of a phrase type that
was never used. We selected only those phrase




labels whose frequency in the training was higher
than a threshold. Experiments showed that the best
threshold was 0.01, which resulted in approxi-
mately 86% negative training instances.

However, in the final experimentation, compari-
son of these two filters showed that the random
filter was best for F-measure results of the identi-
fier classifier.

The final set of experiments for the identifier
classifier was to fine tune the RBF kernel training
parameters, C and gamma. Although we followed
the standard grid strategy of finding the best pa-
rameters, unlike the built-in grid program of
libSVM with its accuracy measure, we judged the
results based on the more standard F-measure of
the classifier. The final values are that C = 2 and
gamma = 0.125.

The final result of the identifier classifier trained
on the first 10 directories of the training set is:

Precision: 78.27% Recall: 89.01%

(F-measure: 83.47)

Training on more directories did not substan-

tially improve these precision and recall figures.

2.5 Labeling Classifier Features

The following is a list of the features used in the
labeling classifiers.

Predicate: The predicate lemma from the
training file.

Path: The syntactic path through the parse tree
from the argument constituent to the predicate.

Head Word: The head word of the argument
constituent, calculated in the standard way, but
also stemmed. Applying stemming reduces the
number of unique values of this feature
substantially, 62% in one directory of training data.

Phrase Type, Position, Voice, and Sub-
categorization: as in the identifier classifier.

In addition, we experimented with the following
features, but did not find that they increased the
labeling classifier scores.

Head Word POS: the part of speech tag of the
head word of the argument constituent.

Temporal Cue Words: These words were
compiled by hand from ArgM-TMP phrases in the
training data.

Governing Category: The phrase label of the
parent of the argument.

Grammatical Rule: The generalization of the
subcategorization feature to show the phrase labels
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of the children of the node that is the lowest parent
of all arguments of the predicate.

In the case of the temporal cue words, we
noticed that using our definition of this feature
increased the number of false positives for the
ARGM-TMP label; we guess that our temporal cue
words included too many words that occured in
other labels. Due to lack of time, we were not
able to more fully pursue these features.

2.6  Using the Labeling Classifier for Train-

ing and Testing

Our strategy for using the labeling classifier is
that in the testing, we pass only those arguments to
the labeling classifier that have been marked as
true by the identifier classifier. Therefore, for
training the labeling classifier, instances were con-
stituents that were given argument labels in the
training set, i.e. there were no “null” training ex-
amples.

For the labeling classifier, we also found the
best parameters for the RBF kernel of the classi-
fier. For this, we used the grid program of 1ibSVM
that uses the multi-class classifier, using the accu-
racy measure to tune the parameters, since this
combines the precision of the binary classifiers for
each label. The final values are that C = 0.5 and
gamma = 0.5.

In order to show the contribution of the labeling
classifier to the entire system, a final test was done
on the development set, but passing it the correct
arguments. We tested this with a labeling classi-
fier trained on 10 directories and one trained on 20
directories, showing the final F-measure:

10 directories: 83.27

20 directories: 84.51

2.7 Post-processing the classifier labels

The final part of our system was to use the results
of the binary classifiers for each argument label to
produce a final labeling subject to the labeling con-
straints.

For each predicate, the constraints are: two con-
stituents cannot have the same argument label, a
constituent cannot have more than one label, if two
constituents have (different) labels, they cannot
have any overlap, and finally, no argument can
overlap the predicate.



Precision | Recall | Fy_,
Development 73.57% | 71.87% | 72.71
Test WSJ 74.66% | 74.21% | 74.44
Test Brown 65.52% | 62.93% | 64.20
Test WSJ+Brown 73.48% | 72.70% | 73.09
Test WSJ Precision | Recall | Fj
Overall 74.66% | 74.21% 74.44
A0 83.59% | 85.07% 84.32
Al 77.00% | 74.35% 75.65
A2 66.97% | 66.85% 66.91
A3 66.88% | 60.69% 63.64
A4 77.66% | 71.57% 74.49
A5 80.00% | 80.00% 80.00
AM-ADV 55.13% | 50.99% 52.98
AM-CAU 52.17% | 49.32% 50.70
AM-DIR 27.43% | 56.47% 36.92
AM-DIS 73.04% | 72.81% 72.93
AM-EXT 57.69% | 46.88% 51.72
AM-LOC 50.00% | 49.59% 49.79
AM-MNR 54.00% | 54.94% 54.47
AM-MOD 92.02% | 94.19% 93.09
AM-NEG 96.05% | 95.22% 95.63
AM-PNC 35.07% | 40.87% 37.75
AM-PRD 50.00% | 20.00% 28.57
AM-REC 0.00% | 0.00% 0.00
AM-TMP 68.69% | 63.57% 66.03
R-A0 77.61% | 89.73% 83.23
R-Al 71.95% | 75.64% 73.75
R-A2 87.50% | 43.75% 58.33
R-A3 0.00% | 0.00% 0.00
R-A4 0.00% | 0.00% 0.00
R-AM-ADV 0.00% | 0.00% 0.00
R-AM-CAU | 100.00% | 50.00% 66.67
R-AM-EXT 0.00% | 0.00% 0.00
R-AM-LOC | 66.67% | 85.711% 75.00
R-AM-MNR 8.33% | 16.67% 11.11
R-AM-TMP | 66.67% | 88.46% 76.03
\ 97.32% | 97.32% 97.32

Table 2: Overall results (top) and detailed results on the
WS test (bottom).

To achieve these constraints, we used the prob-
abilities produced by 1ibSVM for each of the bi-
nary argument label classifiers. We produced a
constraint satisfaction module that uses a greedy
algorithm that uses probabilities from the matrix of
potential labeling for each constituent and label.
The algorithm iteratively chooses a label for a node
with the highest probability and removes any po-
tential labeling that would violate constraints with
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that chosen label. It continues to choose labels for
nodes until all probabilities in the matrix are lower
than a threshold, determined by experiments to be
.3. In the future, it is our intent to replace this
greedy algorithm with a dynamic optimization al-
gorithm.

3 Experimental Results

3.1 Final System and Results

The final system used an identifier classifier
trained on (the first) 10 directories, in approxi-
mately 7 hours, and a labeling classifier trained on
20 directories, in approximately 23 hours. Testing
took approximately 3.3 seconds per sentence.

As a further test of the final system, we trained
both the identifier classifier and the labeling classi-
fier on the first 10 directories and used the second
10 directories as development tests. Here are some
of the results, showing the alignment and F-
measure on each directory, compared to 24.

Directory: | 12 14 16 18 20 24
Alignment | 95.7 | 96.1 | 959 | 96.5 | 959 | 91.3
F-measure | 80.4 | 79.6 | 79.0 | 80.5 | 79.7 | 71.1

Table 3: Using additional directories for testing

Finally, we note that we did not correctly antici-
pate the final notation for the predicates in the test
set for two word verbs. Our system assumed that
two word verbs would be given a start and an end,
whereas the test set gives just the one word predi-
cate.
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1 Introduction

The semantic role labeling (SRL) refers to finding
the semantic relation (e.g. Agent, Patient, etc.) be-
tween a predicate and syntactic constituents in the
sentences. Especially, with the argument informa-
tion of the predicate, we can derive the predicate-
argument structures, which are useful for the appli-
cations such as automatic information extraction. As
previous work on the SRL, there have been many
machine learning approaches. (Gildea and Jurafsky,
2002; Pradhan et al., 2003; Lim et al., 2004).

In this paper, we present a two-phase SRL method
based on a maximum entropy (ME) model. We first
identify parse constituents that represent valid se-
mantic arguments of a given predicate, and then as-
sign appropriate semantic roles to the the identified
parse constituents. In the two-phase SRL method,
the performance of the argument identification phase
is very important, because the argument classifica-
tion is performed on the region identified at the iden-
tification phase. In this study, in order to improve the
performance of identification, we try to incorporate
clause boundary restriction and tree distance restric-
tion into pre-processing of the identification phase.

Since features for identifying arguments are dif-
ferent from features for classifying a role, we need
to determine different feature sets appropriate for the
tasks. We determine final feature sets for each phase
with experiments. We participate in the closed chal-
lenge of the CoONLL-2005 shared task and report re-
sults on both development and test sets. A detailed
description of the task, data and related work can be
found in Carreras and Marquez (2005).

209

ri mp@l p. kor ea. ac. kr

2 System Description

In this section, we describe our system that iden-
tifies and classifies semantic arguments. First, we
explain pre-processing of the identification phase.
Next, we describe features employed. Finally, we
explain classifiers used in each phase.

2.1 Pre-processing

We thought that the occurrence of most semantic
arguments are sensitive to the boundary of the im-
mediate clause or the upper clauses of a predicate.
Also, we assumed that they exist in the uniform dis-
tance on the parse tree from the predicate’s parent
node (called P,) to the parse constituent’s parent
node (called P.). Therefore, for identifying seman-
tic arguments, we do not need to examine all parse
constituents in a parse tree. In this study, we use
the clause boundary restriction and the tree distance
restriction, and they can provide useful information
for spotting the probable search space which include
semantic arguments.

In Figure 1 and Table 1, we show an example of
applying the tree distance restriction. We show the
distance between P,=VP and the nonterminals of a
parse tree in Figure 1. For example, NP5:d=3 means
3 times downward movement through the parse tree
from P,=VP to P.=NP3. NP, does not have the dis-
tance from P, because we allow to move only up-
ward or only downward through the tree from P, to
P.. In Table 1, we indicate all 14 argument can-
didates that correspond to tree distance restriction
(d<3). Only 2 of the 14 argument candidates are
actually served to semantic arguments (NP4, PP).

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 209-212, Ann Arbor, June 20082005 Association for Computational Linguistics



PP(ARG):d=1

Pyd=2

NP,:d=3 CONJIP:d=3 P:d=3

VEN 1 ] NNS N RIB I NTS I\ﬂN

|

sed | on daily sales rate rather than sa

es volume

Figure 1: Distance between P,=VP and P..

distance | direction | P, argument candidates
d=1 UP S NP4

d=0 - VP PP

d=1 DOWN PP IN, NP3

d=2 DOWN NP3 NP1, CONJP, NP4
d=3 DOWN NPy JJ, NNS, NN

d=3 DOWN CONJP | RB, IN

d=3 DOWN NP4 NNS, NN

Table 1: Probable argument candidates (d<3).

2.2
The

Features
following features describe properties of the

verb predicate. These featues are shared by all the
parse constituents in the tree.

pred_lex: this is the predicate itself.
pred_POS: this is POS of the predicate.
pred_phr: this is the syntactic category of P,,.

pred_type: this represents the predicate usage
such as to-infinitive form, the verb predicate of
a main clause, and otherwise.

voice: this is a binary feature identifying
whether the predicate is active or passive.

sub_cat: this is the phrase structure rule ex-
panding the predicate’s parent node in the tree.

pt+pl: this is a conjoined feature of pred_type
and pred_lex. Because the maximum entropy
model assumes the independence of features,
we need to conjoin the coherent features.

The following features characterize the internal
structure of a argument candidate. These features
change with the constituent under consideration.
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e head_lex: this is the headword of the argument
candidate. We extracts the headword by using
the Collins’s headword rules.

e head_POS this is POS of the headword.
e head_phr: this is the syntactic category of P..

e cont_lex: this is the content word of the argu-
ment candidate. We extracts the content word
by using the head table of the chunklink.pl 1.

e cont_POS: this is POS of the content word.

e gov: this is the governing category introduced
by Gildea and Jurafsky (2002).

The following features capture the relations be-
tween the verb predicate and the constituent.

e path: this is the syntactic path through the parse
tree from the parse constituent to the predicate.

e pos:. this is a binary feature identifying whether
the constituent is before or after the predicate.

e postclau: this, conjoined with pos, indicates
whether the constituent is located in the imme-
diate clause, in the first upper clause, in the sec-
ond upper clause, or in the third upper clause.

e post+VP, postNP, post BAR: these are nu-
meric features representing the number of the
specific chunk types between the constituent
and the predicate.

e postCC, postcomma, post+colon, postquote:
these are numeric features representing the
number of the specific POS types between the
constituent and the predicate .

e pl+hl (pred_lex + head_lex), pl+cl (pred_lex +
cont_lex), v+gov (voice + gov).

2.3 Classifier

The ME classifier for the identification phase clas-
sifies each parse constituent into one of the follow-
ing classes: ARG class or NON-ARG class. The ME
classifier for the classification phase classifies the
identified argument into one of the pre-defined se-
mantic roles (e.g. AO, A1, AM-ADV, AM-CAU, etc.).

Yhttp://pi0657.kub.nl/3abine/chunklink/chunklink_2-2-
2000_for_conll.pl



| [ #exa. | %can. | #can. | %arg. [[ Fs—1 | | | Prec. [ Recall | Fs—1 [[ Accu. |
no restriction [ Al [ 8257 | 78.41 [ 80.44 || 86.00 |
All, 3,709,080 ~ [ 233,394 | 96.06 || 79.37 All-(pred_Iex) 82.80 | 77.78 | 80.21 || 84.93
All; | 2,579,278 - | 233,004 | 95.90 || 79.52 All-(ored POS) | 8340 | 76.72 | 79.92 || 8595
All; 1,598,726 | 100.00 | 231,120 | 95.13 || 79.92 All-(pred_phr) 83.11 | 7757 | 80.24 || 85.87
restriction on clause boundary All-(pred_type) 82.76 | 77.91 | 80.26 | 85.99
1/0 1,303,596 | 81.54 | 222,238 | 91.47 || 78.97 All-(voice) 82.87 | 77.88 | 80.30 || 85.88
11 1,370,760 | 85.74 | 223571 | 92.02 | 79.14 All-(sub_cat) 82.48 | 77.68 | 80.00 || 84.88
2/0 1,403,630 | 87.80 | 228,891 | 94.21 | 79.66 All-(pt+pl) 83.20 | 77.40 | 80.20 || 85.62
2/11 1,470,794 | 92.00 | 230,224 | 94.76 || 79.89 All-(head_Tex) 8258 | 77.87 | 80.16 || 85.61
3/0 1,439,755 | 90.06 | 229,548 | 94.48 || 79.63 All-(head_POS) | 82.66 | 77.88 | 80.20 | 85.89
3/1 1,506,919 | 94.26 | 230,881 | 95.03 || 79.79 All-(head_phr) 83.52 | 76.82 | 80.03 || 85.81
restriction on tree distance All-(cont_lex) 82.57 | 77.87 | 80.15 || 85.64
6/1 804,413 | 50.32 | 226,875 | 93.38 || 80.17 All-(cont_POS) 82.65 | 77.92 | 80.22 || 86.09
6/2 936,021 | 58.55 | 227,637 | 93.69 || 79.94 All-(gov) 82.69 | 78.34 | 80.46 || 85.91
7/1 842,453 | 52.70 | 228,129 | 93.90 || 80.44 All-(path) 7839 | 67.96 | 72.80 || 85.69
712 974,061 | 60.93 | 228,891 | 94.21 || 80.03 All-(pos) 82.70 | 77.74 | 80.14 || 85.85
8/1 871,541 | 54.51 | 228,795 | 94.17 || 80.24 All-(pos+clau) 82.94 | 78.34 | 80.57 || 86.19
8/2 1,003,149 | 62.75 | 229,557 | 94.48 | 80.04 All-(pos+VP) 82.69 | 77.87 | 80.20 || 85.87
restriction on clause boundary & tree distance All-(post+NP) 82.78 | 77.69 | 80.15 | 85.77
211,771 | 786,951 | 49.02 | 227,523 | 93.65 || 80.12 All-(pos+SBAR) | 82.51 | 78.00 | 80.19 || 85.83
2/1,8/1 | 803,040 | 50.23 | 228,081 | 93.88 || 80.11 All-(pos+CC) 82.84 | 78.10 | 80.40 | 85.70
3/1,7/1 | 800,740 | 50.09 | 227,947 | 93.82 || 80.28 All-(pos+comma) | 82.78 | 77.69 | 80.15 || 85.70
3/1,8/1 | 822,225 | 51.43 | 228,599 | 94.09 | 80.06 All-(pos+colon) | 82.67 | 77.96 | 80.25 || 85.72
All-(pos+quote) | 82.63 | 77.98 | 80.24 || 85.66
All-(pl+hl) 82.62 | 77.71 | 80.09 || 84.98
Table 2: Different ways of reducing candidates. All-(pl+cl) 82.72 | 77.79 | 80.18 || 85.24
All-(v+gov) 82.93 | 77.81 | 80.29 || 85.85
3 Experiments | | Prec. [ Recall T Fs=1 [ Accu. |
Iden. 8256 | 78.72 | 80.59 -
To test the proposed method, we have experimented clas. - . - | 8716
' Iden.+Clas. | 72.68 | 69.16 | 70.87 -

with CoNLL-2005 datasets (Wall Street sections 02-
21 as training set, Charniak’ trees). The results have
been evaluated by using the srl-eval.pl script pro-
vided by the shared task organizers. For building
classifiers, we utilized the Zhang le’s MaxEnt toolkit
2, and the L-BFGS parameter estimation algorithm
with Gaussian Prior smoothing.

Table 2 shows the different ways of reducing the
number of argument candidates. The 2nd and 3rd
columns (#can., %can.) indicate the number of ar-
gument candidates and the percentage of argument
candidates that satisfy each restriction on the train-
ing set. The 4th and 5th columns (#arg., %arg.)
indicate the number of correct arguments and the
percentage of correct arguments that satisfy each re-
striction on the training set. The last column (F—1)
indicates the performance of the identification task
on the development set by applying each restriction.

In norestriction, All; extracts candidates from all
the nonterminals’s child nodes of a tree. All, fil-
ter the nonterminals which include at least one non-

2http://www.nlplab.cn/zhangle/maxent _toolkit.html
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Table 3: Performance of various feature combina-
tions (top) and performance of each phase (bottom).

terminal child 3. All; filter the nonterminals which
include at least one nonterminal child and have dis-
tance from P,,. We use All3 as a baseline.

In restriction on clause boundary, for example,
2/0 means that the left search boundary for identi-
fying the argument is set to the left boundary of the
second upper clause, and the right search boundary
is set to the right boundary of the immediate clause.

In restriction on tree distance, for example, 7/1
means that it is possible to move up to 7 times up-
ward (d<7) through the parse tree from P, to P., and
it is possible to move up to once downward (d<1)
through the parse tree from P, to P...

In clause boundary & tree distance, for example,
3/1,7/1 means the case when we use both the clause
boundary (3/1) and the tree distance (7/1).

3We ignore the nonterminals that have only pre-terminal
children (e.g. in Figure 1, NP1, CONJP, NP>).



Precision Recall | Fg=1
Development 72.68% | 69.16% | 70.87
Test WSJ 74.69% | 70.78% | 72.68
Test Brown 64.58% | 60.31% | 62.38
Test WSJ+Brown 73.35% | 69.37% | 71.31
Test WSJ Precision Recall | Fg=1
Overall 74.69% | 70.78% | 72.68
A0 85.02% | 81.53% | 83.24
Al 73.98% | 72.25% | 73.11
A2 63.20% | 57.57% | 60.25
A3 62.96% | 49.13% | 55.19
A4 73.40% | 67.65% | 70.41
A5 100.00% | 40.00% | 57.14
AM ADV 56.73% | 50.00% | 53.15
AM CAU 70.21% | 45.21% | 55.00
AM DI R 46.48% | 38.82% | 42.31
AM DI S 70.95% | 65.62% | 68.18
AM EXT 87.50% | 43.75% | 58.33
AM LCOC 44.09% | 46.28% | 45.16
AM MNR 55.56% | 52.33% | 53.89
AM MOD 97.59% | 95.64% | 96.61
AM NEG 96.05% | 95.22% | 95.63
AM PNC 40.68% | 41.74% | 41.20
AM PRD 50.00% | 20.00% | 28.57
AM REC 0.00% | 0.00% | 0.00
AM TMP 70.11% | 61.73% | 65.66
R- A0 84.68% | 83.93% | 84.30
R- A1 73.33% | 70.51% | 71.90
R- A2 50.00% | 31.25% | 38.46
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM: ADV 0.00% | 0.00% | 0.00
R- AM CAU | 100.00% | 25.00% | 40.00
R- AM EXT 0.00% | 0.00% | 0.00
R-AM LOC | 85.71% | 57.14% | 68.57
R- AM M\NR 16.67% | 16.67% | 16.67
R- AM TMP 72.50% | 55.77% | 63.04
[V | 97.32% | 97.32% [ 97.32 |

Table 4: Overall results (top) and detailed results on
the WSJ test (bottom).

| | Precision [ Recall | Fs—1 |

one-phase 71.94 | 68.70 | 70.29
two-phase 72.68 | 69.16 | 70.87

Table 5: Performance of one-phase vs. two-phase.

According to the experimental results, we use
7/1 tree distance restriction for all following ex-
periments. By applying the restriction, we can re-
move about 47.3% (%can.=52.70%) of total argu-
ment candidates as compared with Alls. 93.90%
(%arg.) corresponds to the upper bound on recall.

In order to estimate the relative contribution of
each feature, we measure performance of each phase
on the development set by leaving out one feature at
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a time, as shown in the top of Table 3. Precision,
Recall, and Fz—; represent the performance of the
identification task, and Accuracy represent the per-
formance of the classification task only with 100%
correct argument identification respectively. All rep-
resents the performance of the experiment when all
26 features introduced by section 2.2 are considered.
Finally, for identification, we use 24 features except
gov and pos+clau, and obtain an F3—; of 80.59%, as
shown in the bottom of Table 3. Also, for classifica-
tion, we use 23 features except pred_type, cont_POS
and pos+clau, and obtain an Accuracy of 87.16%.
Table 4 presents our best system performance on
the development set, and the performance of the
same system on the test set. Table 5 shows the
performance on the development set using the one-
phase method and the two-phase method respec-
tively. The one-phase method is implemented by in-
corporating the identification into the classification.
one-phase shows the performance of the experiment
when 25 features except pos+clau are used. Exper-
imental results show that the two-phase method is
better than the one-phase method in our evaluation.

4 Conclusion

We have presented a two-phase SRL method based
on a ME model. In the two-phase method, in order to
improve the performance of identification that dom-
inate the overall performance, we have performed
pre-processing. Experimental results show that our
system obtains an Fz—; of 72.68% on the WS]J test
and that the introduction of pre-processing improves
the performance, as compared with the case when
all parse constituents are considered.
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Abstract

Our system for semantic role labeling is

multi-stage in nature, being based on tree
pruning techniques, statistical methods for
lexicalised feature encoding, and a C4.5
decision tree classifier. We use both shal-
low and deep syntactic information from

automatically generated chunks and parse

statistical encoding of lexicalised features such as
predicates, head words, local contexts and PoS by
means of probability distributions provides an effi-
cient way of representing the data, with the feature
vectors having a small dimensionality and allowing
to abstract from single words.

2 System description

2.1 Preprocessing

trees, and develop a model for learning
the semantic arguments of predicates as a
multi-class decision problem. We evalu-
ate the performance on a set of relatively
‘cheap’ features and report an Bcore of
68.13% on the overall test set.

During preprocessing the predicates’ semantic argu-
ments are mapped to the nodes in the parse trees, a
set of hand-crafted shallow tree pruning rules are ap-
plied, probability distributions for feature represen-
tation are generated from training dgtand feature
vectors are extracted. Those are finally fed into the
classifier for semantic role classification.

1 Introduction 2.1.1 Tree node mapping of semantic

This paper presents a system for the CoNLL 2005 arguments and named entities
Semantic Role Labeling shared task (Carreras &ollowing Gildea & Jurafsky (2002), (i) labels
Marquez, 2005), which is based on the current renatching more than one constituent due to non-
lease of the English PropBank data (Palmer et abranching nodes are taken as labels of higher con-
2005). For the 2005 edition of the shared task argtituents, (ii) in cases of labels with no correspond-
available both syntactic and semantic informationing parse constituent, these are assigned to the par-
Accordingly, we make use of both clausal, chunkial match given by the constituent spanning the
and deep syntactic (tree structure) features, namsHortest portion of the sentence beginning at the la-
entity information, as well as statistical representabel’s span left boundary and lying entirely within it.
tions for lexical item encoding. We drop the role or named entity label if such suit-
The set of features and their encoding reflect thable constituent could not be fouhd
necessity of limiting the complexity and dimension- 1 gther processing steps assume a uniform treatment of
ality of the input space. They also provide the classoth training and test data.

sifier with enough information. We explore here the “The percentage of roles for which no valid tree node could
be found amounts to 3% for the training and 7% for the devel-

U_SG ofa mlnl'mz_al set of compact features for SeMalyyment set. These results are compatible with the performance
tic role prediction, and show that a feature-baseef the employed parser (Collins, 1999).
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2.1.2 Tree pruning those labels which account for at least 0.1% of
The tagged trees are further processed by applying the overall available semantic arguments in the
the following pruning rules: training data. We replace the label for every

phrase type category below this threshold with

¢ All punctuation nodes are removed. This is for a generidNKIlabel. This reduces the number
removing punctuation information, as well as of labels from 72 to 18.

for aligning spans or%the syntactic nodes withbosition: the position of the constituent with re-
PropBank constituents _ ~ spect to the target predicatafore or after).

e Ifanode is unary pranchlng and its qathter Ii\djacency: whether the right (if before) or left (if
als_o unary branching, the daughter is removed. after) boundary of the constituent asljacent
This allows to remove redundant nodes span- non-adjacent or inside the predicate’s chunk.
ning the same tokens in the sentence. _ ]

. . Clause: whether the constituent belongs to the
¢ If a node has only preterminal children, these clause of the predicate or not

are removed. This allows to internally collapse - _ _ _
base phrases such as base NPs. Proposition size: measures relative to the proposi-

tion size, such as (i) the number of constituents
Tree pruning was carried out in order to reduce the  and (ii) predicates in the proposition.
number of nodes from which features were to be exzonstituent size: measures relative to the con-
tracted later. This limits the number of candidate  stituent size, namely (i) the number of tokens
constituents for role labeling, and removes redun-  and (ji) subconstituents (viz., non-leaf rooted
dant information produced by the pipeline of previ-  gyptrees) of the constituent.

ous components (i.e. PoStags of preterminal label redicate: the predicate lemma, represented as the

as "‘;e('; o fhe sparseness and fragme”:ﬁ“o” Ofkf € probability distributionP(r|p) of the predicate
input data. €se simple rules reduce the number p of taking one of the available semantic

. . o
of ct?]ns:[[nu_el_wts g'an b)(/jtge 2??3 qu[:ﬁt b(;/ 38i4/° roles. For unseen predicates we assume a uni-
on the training set, and by 38.7% on the develop- . Gistribution.

ment set, at the cost of limiting the coverage of the =~ hether th di L .
system by removing approximately 2% of the tar-Vo'ce' whether t_ epre 'C"_’Itef IS mr_:t_lve or passive.
form. Passive voice is identified if the predi-

get role labeled constituents. On the development ) i X )
set, the number of constituents remaining on top of ~ Cat€’s PoS tag i¥BNand either it follows a
form of to be or to get, or it does not belong to

pruning is 81,193 of which 7,558 are semantic ar- o ;
guments, with a performance upper-bound of 90.6% a VP chunk, or is immediately preceded by an

F, NP chunk.
Head word: the head word of the constituent,
2.1.3 Features represented as the probability distribution

Given the pruned tree structures, we traverse the tree  P(r|hw) of the head wordhw of heading a
bottom-up left-to-right. For each non-terminal node  phrase filling one of the available seman-
whose span does not overlap the predicate we extract tic roles. For unseen words we back off on a
the following features: phrasal model by using the probability distri-
bution P(r|pt) of the phrase typgt of filling a

Phrase type: the syntactic category of the con- semantic slot.

stituent (NP, PP, ADVP, etc.). In order to reduce dword PoS: th S of the head word of th
the number of phrase labels, we retained onI{/_|ea word Pos: the Pos of the head word of the

- constituent, similarly represented as the proba-
We noted during prototyping that in many cases no tree bility distribution P(r|pos) of a PoSpos of be-

node fully matching a role constituent could be found, as the | ina t tit t filli fth i
latter did not include punctuation tokens, whereas in Collins’ onging 1o a constituent nifing one o € avall-

trees the punctuation terminals are included within the preced-  abler semantic roles.

ing phrases. This precludespriori the output to align to the . . . .
gold standard PropBank annotation and we use therefore prulnQCaI lexical context: the words in the constituent

ing as a recovery strategy. other than the head word, represented as the
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averaged probability distributions of eadh dual processor server with 2GB memaryraining

th non-head wordw; of occurring in one time was of approximately 17 minutes. The final

of the availabler semantic roles, namely system was trained using all of the available training

L5 P(r|w;) for m non-head words in the data from sections 221 of the Penn TreeBank. This
constituent. For each unseen word we back ofimounts to 2,250,887 input constituents of which
by using the probability distributio®(r|pos;)  10% are norNULL examples. Interestingly, during
of the PoSpos; of filling a semantic role*. prototyping we first limited ourselves to training and

Named entities: the label of the named entity drawing probability distributions for feature repre-
which spans the same words as the constituersigntation from sections 15-18 only. This yielded
as well as the label of the largest named er very low performance (57.23%, Fdevelopment
tity embedded within the constituent. Both val- set). A substantial performance increase was given
ues are set tdlULL if such labels could not be by still training on sections 15-18, but using the
found. probability distributions generated from sections 2—

Path: the number of intervening NPB, NP, VP, VP-21 (64.43% Ir, development set). This suggests that
A, PP, PP-A, S, S-A and SBAR nodes along théhe system is only marginally sensitive to the train-
path from the constituent to the predicate. ~ ing dataset size, but pivotally relies on taking proba-

Distance: the distance from the target predicatebility distributions from a large amount of data.
measured as (i) the number of nodes from the In order to make the task easier and overcome the

constituent to the lowest node in the tree domuneven role class distribution, we limited the learner

inating both the constituent and the predicatd? classify only those 16 roles accounting for at least
(i) the number of nodes from the predicate td-5% of the total number of semantic arguments in
the former common dominating ncddiii) the ~ the training dat?
number of chunks between the base phrase of _
the constituent’s head and the predicate chung3 Post-processing
(iv) the number of tokens between the head oAs our system does not build an overall sen-
the constituent and the predicate. tence contextual representation, it systematically
22 Classifier proqluced errors such as empedqled role labeling. In
) ] particular, since no embedding is observed for the
We used the YaD_GI'|mpIem.entat|on of the C4.5 de- o mantic arguments of predicates, in case of (multi-
cision tree algorithm (Quinlan, 1993). Parameteqy empeddings the classifier output was automat-
selection (99% pruning confidence, at least 10 ing41y nost-processed to retain only the largest em-
stances per leaf node) was carried out by performingy, yqing constituent. Evaluation on the development
10-fold cross-vallda_ltlon on the development set. _set has shown that this does not significantly im-
Data preprocessing and feature vector generatiof, e performance, sl it provides a much more
took approximately 2.5 hours (training set, includinggy ! output. Besides, we make use of a simple
probability distribution generation), 5 minutes (de'technique for avoiding multiplé0 or Al role as-
velopment) and 7 minutes (test) on a 2GHz Opteroggnments within the same proposition, based on

“This feature was introduced as the information provided bgonstituent position and predicate voice. In case of

lexical heads does not seem to suffice in many cases. Thisdsltinle AO | Is. if the predi isin ive form
shown by head word ambiguities, such lB8C and TMP ar- ultiple AD labels, if the predicate is in active form,

guments occurring in similar prepositional syntactic configufh€ Secondh0 occurrence is replaced withl, else
rations — i.e. the prepositiom, which can be head of both we replace the first occurrence. Similarly, in case of

AM-TMPand AM-LOC constituents, as iin October andin ; ; ; P :
New York. The idea is therefore to look at the words in the con-mUItIpIeAl labels, if the predicate is in active form,

stituents other than the head, and build up an overall constitueti€ firstAl occurrence is replaced withO, else we

representation, thus making use of statistical lexical information

for role disambiguation. "We used only a single CPU at runtime, since the implemen-
SThese distance measures along the tree path between th#on is not parallelised.

constituent and the predicate were kept separate, in order to in- 8These include numbered argument® (to A4), adjuncts

directly includeembedding level information into the model. (ADV, DIS, LOG MNRMODNEG PNG TMB, and references
Shttp:/Awww.di.unipi.it ruggieri/software.html (R-AO0 andR-Al).
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Precision| Recall | Fg=1

Development 71.82% | 61.60% | 66.32
Test WSJ 75.05% | 64.81% | 69.56
Test Brown 66.69% | 52.14% | 58.52
Test WSJ+Brown| 74.02% | 63.12% | 68.13
Test WSJ Precision] Recall | Fg=1
Overall 75.05% | 64.81% | 69.56

AO 78.52% | 72.52% | 75.40

Al 75.53% | 65.39% | 70.10

A2 62.28% | 52.07% | 56.72

A3 63.81% | 38.73% | 48.20

A4 73.03% | 63.73% | 68.06

A5 0.00% | 0.00% | 0.00
AM-ADV 60.00% | 42.69% | 49.88
AM-CAU 0.00% | 0.00% | 0.00
AM-DIR 0.00% | 0.00% | 0.00
AM-DIS 75.97% | 73.12% | 74.52
AM-EXT 0.00% | 0.00% | 0.00
AM-LOC 54.09% | 47.38% | 50.51
AM-MNR 58.67% | 46.22% | 51.71
AM-MOD 97.43% | 96.37% | 96.90
AM-NEG 97.78% | 95.65% | 96.70
AM-PNC 42.17% | 30.43% | 35.35
AM-PRD 0.00% | 0.00% | 0.00
AM-REC 0.00% | 0.00% | 0.00
AM-TMP 75.41% | 71.11% | 73.20
R-AO 82.09% | 73.66% | 77.65
R-Al 72.03% | 66.03% | 68.90
R-A2 0.00% | 0.00% | 0.00
R-A3 0.00% | 0.00% | 0.00
R-A4 0.00% | 0.00% | 0.00
R-AM-ADV 0.00% | 0.00% | 0.00
R-AM-CAU 0.00% | 0.00% | 0.00
R-AM-EXT 0.00% | 0.00% | 0.00
R-AM-LOC 0.00% | 0.00% | 0.00
R-AM-MNR 0.00% | 0.00% | 0.00
R-AM-TMP 0.00% | 0.00% | 0.00
[V | 98.63% | 98.63%] 98.63 ]

case, the most informative features were both dis-
tance/position metrics (distance and adjacency) and
lexicalized features (head word and predicate).

4 Conclusion

Semantic role labeling is a difficult task, and accord-
ingly, how to achieve an accurate and robust perfor-
mance is still an open question. In our work we
used a limited set of syntactic tree based distance
and size metrics coupled with raw lexical statistics,
and showed that such ‘lazy learning’ configuration
can still achieve a reasonable performance.

We concentrated on reducing the complexity
given by the number and dimensionality of the in-
stances to be classified during learning. This is the
core motivation behind performing tree pruning and
statistical feature encoding. This also helped us to
avoid the use of sparse features such as the explicit
path in the parse tree between the candidate con-
stituent and the predicate, and the predicate’s sub-
categorization rule (cf. e.g. Pradhan et al. (2004)).

Future work will concentrate on benchmarking
this approach within alternative architectures (i.e.
two-phase with filtering) and different learning
schemes (i.e. vector-based methods such as Support
Vector Machines and Artificial Neural Networks).

Acknowledgements: This work has been funded
by the Klaus Tschira Foundation, Heidelberg, Ger-
many. The first author has been supported by a KTF

Table 1: Overall results (top) and detailed results ogrant (09.003.2004).
the WSJ test (bottom).

replace the second occurrence.

3 Results

References

Carreras, Xavier & Llis Marquez (2005). Introduction to the
CoNLL-2005 Shared Task: Semantic Role LabelingPto-
ceedings of CoNLL-2005.

Collins, Michael (1999)Head-driven statistical modelsfor nat-
ural language parsing, (Ph.D. thesis). Philadelphia, Penn.,

Table 1 shows the results on the test set. ProblemsUSA: University of Pennsylvania.

are inherently related with the skewed distribution of

ildea, Daniel & Daniel Jurafsky (2002). Automatic labeling of
semantic rolesComputational Linguistics, 28(3):245-288.

role classes, so that roles which have a limited nunpaimer, Martha, Dan Gildea & Paul Kingsbury (2005). The
ber of occurrences are harder to classify correctly. proposition bank: An annotated corpus of semantic roles.

This explains the performance gap on the and
Al roles on one hand, and t#&, A3, A4, AM- ar-

guments on the other.
On_e ad_vantag_e of using a decisior_1 tree learning | anguage Processing. To appear.
algorithm is that it outputs a model which includes &uinlan, J. Ross (1993)C4.5: programs for machine learn-

feature ranking, since the most informative features

Computational Linguistics, 31(1):71-105.

Pradhan, Sameer, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin & Daniel Jurafsky (2004). Support vec-
tor learning for semantic argument classificatiodournal
of Machine Learning, Special issue on Speech and Natural

ing. San Francisco, Cal., USA: Morgan Kaufmann Publish-
ersInc.

are those close to the root of the tree. In the present



Semantic Role Chunking Combining Complementary Syntactic Views

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H. Martin and Daniel Jurafsky'
Center for Spoken Language Research, University of Colorado, Boulder, CO 80303
fDepartment of Linguistics, Stanford University, Stanford, CA 94305

{spr adhan, haci ogl u, whw, marti n}@sl r. col or ado. edu, j ur af sky@t anf or d. edu

Abstract

This paper describes a semantic role la-
beling system that uses features derived
from different syntactic views, and com-
bines them within a phrase-based chunk-
ing paradigm. For an input sentence, syn-
tactic constituent structure parses are gen-
erated by a Charniak parser and a Collins
parser. Semantic role labels are assigned
to the constituents of each parse using
Support Vector Machine classifiers. The
resulting semantic role labels are con-
verted to an IOB representation. These
I0B representations are used as additional
features, along with flat syntactic chunks,
by a chunking SVM classifier that pro-
duces the final SRL output. This strategy
for combining features from three differ-
ent syntactic views gives a significant im-
provement in performance over roles pro-
duced by using any one of the syntactic
views individually.

1 Introduction

The task of Semantic Role Labeling (SRL) involves
tagging groups of words in a sentence with the se-
mantic roles that they play with respect to a particu-
lar predicate in that sentence. Our approach is to use
supervised machine learning classifiers to produce
the role labels based on features extracted from the
input. This approach is neutral to the particular set
of labels used, and will learn to tag input according
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to the annotated data that it is trained on. The task
reported on here is to produce PropBank (Kingsbury
and Palmer, 2002) labels, given the features pro-
vided for the CoNLL-2005 closed task (Carreras and
Marquez, 2005).

We have previously reported on using SVM clas-
sifiers for semantic role labeling. In this work, we
formulate the semantic labeling problem as a multi-
class classification problem using Support Vector
Machine (SVM) classifiers. Some of these systems
use features based on syntactic constituents pro-
duced by a Charniak parser (Pradhan et al., 2003;
Pradhan et al., 2004) and others use only a flat syn-
tactic representation produced by a syntactic chun-
ker (Hacioglu et al., 2003; Hacioglu and Ward,
2003; Hacioglu, 2004; Hacioglu et al., 2004). The
latter approach lacks the information provided by
the hierarchical syntactic structure, and the former
imposes a limitation that the possible candidate roles
should be one of the nodes already present in the
syntax tree. We found that, while the chunk based
systems are very efficient and robust, the systems
that use features based on full syntactic parses are
generally more accurate. Analysis of the source
of errors for the parse constituent based systems
showed that incorrect parses were a major source
of error. The syntactic parser did not produce any
constituent that corresponded to the correct segmen-
tation for the semantic argument. In Pradhan et al.
(2005), we reported on a first attempt to overcome
this problem by combining semantic role labels pro-
duced from different syntactic parses. The hope is
that the syntactic parsers will make different errors,
and that combining their outputs will improve on

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 217-220, Ann Arbor, June 20082005 Association for Computational Linguistics



either system alone. This initial attempt used fea-
tures from a Charniak parser, a Minipar parser and a
chunk based parser. It did show some improvement
from the combination, but the method for combin-
ing the information was heuristic and sub-optimal.
In this paper, we report on what we believe is an im-
proved framework for combining information from
different syntactic views. Our goal is to preserve the
robustness and flexibility of the segmentation of the
phrase-based chunker, but to take advantage of fea-
tures from full syntactic parses. We also want to
combine features from different syntactic parses to
gain additional robustness. To this end, we use fea-
tures generated from a Charniak parser and a Collins
parser, as supplied for the CONLL-2005 closed task.

2 System Description

We again formulate the semantic labeling problem
as a multi-class classification problem using Sup-
port Vector Machine (SVM) classifiers. TinySVM?!
along with YamCha? (Kudo and Matsumoto, 2000;
Kudo and Matsumoto, 2001) are used to implement
the system. Using what is known as the ONE vs
ALL classification strategy, n binary classifiers are
trained, where n is number of semantic classes in-
cluding a NuLL class.

The general framework is to train separate seman-
tic role labeling systems for each of the parse tree
views, and then to use the role arguments output by
these systems as additional features in a semantic
role classifier using a flat syntactic view. The con-
stituent based classifiers walk a syntactic parse tree
and classify each node as NuLL (no role) or as one
of the set of semantic roles. Chunk based systems
classify each base phrase as being the B(eginning)
of a semantic role, I(nside) a semantic role, or
O(utside) any semantic role (ie. NuLL). This
is referred to as an 1OB representation (Ramshaw
and Marcus, 1995). The constituent level roles are
mapped to the OB representation used by the chun-
ker. The IOB tags are then used as features for a
separate base-phase semantic role labeler (chunker),
in addition to the standard set of features used by
the chunker. An n-fold cross-validation paradigm
is used to train the constituent based role classifiers

1http ://chasen.org/ taku/software/TinySVM/
2http ://chasen.org/taku/software/yamcha/
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and the chunk based classifier.

For the system reported here, two full syntactic
parsers were used, a Charniak parser and a Collins
parser. Features were extracted by first generating
the Collins and Charniak syntax trees from the word-
by-word decomposed trees in the CONLL data. The
chunking system for combining all features was
trained using a 4-fold paradigm. In each fold, sepa-
rate SVM classifiers were trained for the Collins and
Charniak parses using 75% of the training data. That
is, one system assigned role labels to the nodes in
Charniak based trees and a separate system assigned
roles to nodes in Collins based trees. The other 25%
of the training data was then labeled by each of the
systems. Iterating this process 4 times created the
training set for the chunker. After the chunker was
trained, the Charniak and Collins based semantic la-
belers were then retrained using all of the training
data.

Two pieces of the system have problems scaling
to large training sets — the final chunk based clas-
sifier and the NuLL vs NoON-NuLL classifier for
the parse tree syntactic views. Two techniques were
used to reduce the amount of training data — active
sampling and NuLL filtering. The active sampling
process was performed as follows. We first train
a system using 10k seed examples from the train-
ing set. We then labeled an additional block of data
using this system. Any sentences containing an er-
ror were added to the seed training set. The sys-
tem was retrained and the procedure repeated until
there were no misclassified sentences remaining in
the training data. The set of examples produced by
this procedure was used to train the final NuLL vs
NON-NuULL classifier. The same procedure was car-
ried out for the chunking system. After both these
were trained, we tagged the training data using them
and removed all most likely NuLLs from the data.

Table 1 lists the features used in the constituent
based systems. They are a combination of features
introduced by Gildea and Jurafsky (2002), ones pro-
posed in Pradhan et al. (2004), Surdeanu et al.
(2003) and the syntactic-frame feature proposed in
(Xue and Palmer, 2004). These features are ex-
tracted from the parse tree being labeled. In addition
to the features extracted from the parse tree being
labeled, five features were extracted from the other
parse tree (phrase, head word, head word POS, path



PREDICATE LEMMA

PATH: Path from the constituent to the predicate in the parse tree.
PosITION: Whether the constituent is before or after the predicate.
PREDICATE SUB-CATEGORIZATION

HEAD WORD: Head word of the constituent.

HEAD WoRD POS: POS of the head word

NAMED ENTITIES IN CONSTITUENTS: Person, Organization, Location
and Miscellaneous.

PARTIAL PATH: Path from the constituent to the lowest common ancestor
of the predicate and the constituent.

HEAD WORD OF PP: Head of PP replaced by head word of NP inside it,
and PP replaced by PP-preposition

FIRST AND LAST WORD/POS IN CONSTITUENT

ORDINAL CONSTITUENT POSITION

CONSTITUENT TREE DISTANCE

CONSTITUENT RELATIVE FEATURES: Nine features representing

the phrase type, head word and head word part of speech of the

parent, and left and right siblings of the constituent.

SYNTACTIC FRAME

CONTENT WORD FEATURES: Content word, its POS and named entities
in the content word

CLAUSE-BASED PATH VARIATIONS:

1. Replacing all the nodes in a path other than clause nodes with an “*”.
For example, the path NPTSTVPTSBARTNPTVP|VBD

becomes NP1ST*ST*1* | VBD

11. Retaining only the clause nodes in the path, which for the above
example would produce NPTSTS|VBD,

111. Adding a binary feature that indicates whether the constituent

is in the same clause as the predicate,

1V. collapsing the nodes between S nodes which gives NPTSTNPTVP|VBD.
PATH N-GRAMS: This feature decomposes a path into a series of trigrams.
For example, the path NPTSTVPTSBARTNPTVP|VBD becomes:
NP1STVP, STVPTSBAR, VPTSBARTNP, SBARTNPTVP, etc. We
used the first ten trigrams as ten features. Shorter paths were padded
with nulls.

SINGLE CHARACTER PHRASE TAGS: Each phrase category is clustered
to a category defined by the first character of the phrase label.
PREDICATE CONTEXT: Two words and two word POS around the
predicate and including the predicate were added as ten new features.
PUNCTUATION: Punctuation before and after the constituent were

added as two new features.

FEATURE CONTEXT: Features for argument bearing constituents

were added as features to the constituent being classified.

Table 1: Features used by the constituent-based sys-
tem

and predicate sub-categorization). So for example,
when assigning labels to constituents in a Charniak
parse, all of the features in Table 1 were extracted
from the Charniak tree, and in addition phrase, head
word, head word POS, path and sub-categorization
were extracted from the Collins tree. We have pre-
viously determined that using different sets of fea-
tures for each argument (role) achieves better results
than using the same set of features for all argument
classes. A simple feature selection was implemented
by adding features one by one to an initial set of
features and selecting those that contribute signifi-
cantly to the performance. As described in Pradhan
et al. (2004), we post-process lattices of n-best de-
cision using a trigram language model of argument
sequences.

Table 2 lists the features used by the chunker.
These are the same set of features that were used
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in the CoNLL-2004 semantic role labeling task by
Hacioglu, et al. (2004) with the addition of the two
semantic argument (I0OB) features. For each token
(base phrase) to be tagged, a set of features is created
from a fixed size context that surrounds each token.
In addition to the features in Table 2, it also uses pre-
vious semantic tags that have already been assigned
to the tokens contained in the linguistic context. A
5-token sliding window is used for the context.
SVMs were trained for begin (B) and inside (1)
classes of all arguments and an outside (O) class.

WORDS

PREDICATE LEMMAS

PART OF SPEECH TAGS

BP PosITIONS: The position of a token in a BP using the 10B2
representation (e.g. B-NP, I-NP, O, etc.)

CLAUSE TAGS: The tags that mark token positions in a sentence

with respect to clauses.

NAMED ENTITIES: The I0OB tags of named entities.

TOKEN POSITION: The position of the phrase with respect to

the predicate. It has three values as “before”, “after” and “-” (for

the predicate)

PATH: It defines a flat path between the token and the predicate
HIERARCHICAL PATH: Since we have the syntax tree for the sentences,
we also use the hierarchical path from the phrase being classified to the
base phrase containing the predicate.

CLAUSE BRACKET PATTERNS

CLAUSE POSITION: A binary feature that identifies whether the

token is inside or outside the clause containing the predicate
HEADWORD SUFFIXES: suffixes of headwords of length 2, 3 and 4.
DisTANCE: Distance of the token from the predicate as a number

of base phrases, and the distance as the number of VP chunks.

LENGTH: the number of words in a token.

PREDICATE POS TAG: the part of speech category of the predicate
PREDICATE FREQUENCY: Frequent or rare using a threshold of 3.
PREDICATE BP CONTEXT: The chain of BPs centered at the predicate
within a window of size -2/+2.

PREDICATE POS CONTEXT: POS tags of words immediately preceding
and following the predicate.

PREDICATE ARGUMENT FRAMES: Left and right core argument patterns
around the predicate.

DyNAMIC CLASS CONTEXT: Hypotheses generated for two preceeding
phrases.

NUMBER OF PREDICATES: This is the number of predicates in

the sentence.

CHARNIAK-BASED SEMANTIC IOB TAG: This is the IOB tag generated
using the tagger trained on Charniak trees

COLLINS-BASED SEMANTIC IOB TAG: This is the IOB tag generated
using the tagger trained on Collins’ trees

Table 2: Features used by phrase-based chunker.

3 Experimental Results

Table 3 shows the results obtained on the WSJ de-
velopment set (Section 24), the WSJ test set (Section
23) and the Brown test set (Section ck/01-03)
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Precision Recal | Fg=1
Development 80.90% | 75.38% | 78.04
Test WSJ 81.97% | 73.27% | 77.37
Test Brown 73.73% | 61.51% | 67.07
Test WSHBrown 80.93% | 71.69% | 76.03
Test WSJ Precision Recal | Fg=1
Overal 81.97% | 73.27% | 77.37
A0 91.39% | 82.23% | 86.57
Al 79.80% | 76.23% | 77.97
A2 68.61% | 62.61% | 65.47
A3 73.95% | 50.87% | 60.27
A4 78.65% | 68.63% | 73.30
A5 75.00% | 60.00% | 66.67
AM ADV 61.64% | 46.05% | 52.71
AM CAU 76.19% | 43.84% | 55.65
AM DI R 53.33% | 37.65% | 44.14
AM DI S 80.56% | 63.44% | 70.98
AM EXT 100.00% | 46.88% | 63.83
AM LCC 64.48% | 51.52% | 57.27
AM MNR 62.90% | 45.35% | 52.70
AM MOD 98.64% | 92.38% | 95.41
AM NEG 98.21% | 95.65% | 96.92
AM PNC 56.67% | 44.35% | 49.76
AM PRD 0.00% | 0.00% | 0.00
AM REC 0.00% | 0.00% | 0.00
AM TMP 83.37% | 71.94% | 77.23
R- AO 94.29% | 88.39% | 91.24
R- Al 85.93% | 74.36% | 79.73
R- A2 100.00% | 37.50% | 54.55
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AVt ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R- AM LCC 90.00% | 42.86% | 58.06
R- AM MNR 66.67% | 33.33% | 44.44
R- AM TP 75.00% | 40.38% | 52.50
[V | 98.86% | 98.86% | 98.86 |

Table 3: Overall results (top) and detailed results on
the WSJ test (bottom).
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Semantic Role L abeling Using Complete Syntactic Analysis

Mihai Surdeanu
Technical University of Catalunya
surdeanu@ si . upc. edu

Abstract

In this paper we introduce a semantic role
labeling system constructed on top of the
full syntactic analysis of text. The la-
beling problem is modeled using a rich
set of lexical, syntactic, and semantic at-
tributes and learned using one-versus-all
AdaBoost classifiers.

Our results indicate that even a simple ap-
proach that assumes that each semantic ar-
gument maps into exactly one syntactic
phrase obtains encouraging performance,
surpassing the best system that uses par-
tial syntax by almost 6%.

1 Introduction

Most current semantic role labeling (SRL) ap-
proaches can be classified in one of two classes:
approaches that take advantage of complete syntac-
tic analysis of text, pioneered by (Gildea and Juraf-
sky, 2002), and approaches that use partial syntac-
tic analysis, championed by the previous CoNLL
shared task evaluations (Carreras and Marquez,
2004).

However, to the authors’ knowledge, a clear anal-
ysis of the benefits of using full syntactic analysis
versus partial analysis is not yet available. On one
hand, the additional information provided by com-
plete syntax should intuitively be useful. But, on
the other hand, the state-of-the-art of full parsing
is known to be less robust and perform worse than
the tools used for partial syntactic analysis, which
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would decrease the quality of the information pro-
vided. The work presented in this paper contributes
to this analysis by introducing a model that is en-
tirely based on the full syntactic analysis of text,
generated by a real-world parser.

2 System Description

2.1 Mapping Arguments to Syntactic
Constituents

Our approach maps each argument label to one syn-
tactic constituent, using a strategy similar to (Sur-
deanu et al., 2003). Using a bottom-up approach,
we map each argument to the first phrase that has the
exact same boundaries and climb as high as possible
in the syntactic tree across unary production chains.
Unfortunately, this one-to-one mapping between
semantic arguments and syntactic constituents is not
always possible. One semantic argument may be
mapped to many syntactic constituents due to: (a)
intrinsic differences between the syntactic and se-
mantic representations, and (b) incorrect syntactic
structure. Figure 1 illustrates each one of these sit-
uations: Figure 1 (a) shows a sentence where each
semantic argument correctly maps to one syntac-
tic constituent; Figure 1 (b) illustrates the situation
where one semantic argument correctly maps to two
syntactic constituents; and Figure 1 (c) shows a one-
to-many mapping caused by an incorrect syntactic
structure: argument AO maps to two phrases, the ter-
minal “by” and the noun phrase “Robert Goldberg”,
due to the incorrect attachment of the last preposi-
tional phrase, “at the University of California”.
Using the above observations, we separate one-
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S

N

NP NP VP
—_— NP
NP PP

VBG

NN

The luxury auto maker last year sold 1,214 cars in the U.S.

N

NNS

rising consumer prices

VP
PP

developed by Robert Goldberg at the University of California

A0 AM-TMP P AL AM-LOC P Al
(@) (b)

P A0 AM-LOC
(©)

Figure 1: Mapping semantic arguments to syntactic constituents: (a) correct one—to-one mapping; (b) correct
one-to-many mapping; (c) one-to-many mapping due to incorrect syntax.

(a) (b) (©
Training 96.06% | 2.49% | 1.45%
Development | 91.36% | 4.83% | 3.81%

Table 1: Distribution of semantic arguments accord-
ing to their mapping to syntactic constituents ob-
tained with the Charniak parser: (a) one-to-one, (b)
one-to-many, all syntactic constituents have same
parent, (C) one-to-many, syntactic constituents have
different parents.

to-many mappings in two classes: (a) when the syn-
tactic constituents mapped to the semantic argument
have the same parent (Figure 1 (b)) the mapping is
correct and/or could theoretically be learned by a
sequential SRL strategy, and (b) when the syntac-
tic constituents mapped to the same argument have
different parents, the mapping is generally caused
by incorrect syntax. Such cases are very hard to be
learned due to the irregularities of the parser errors.

Table 1 shows the distribution of semantic argu-
ments into one of the above classes, using the syn-
tactic trees provided by the Charniak parser. For the
results reported in this paper, we model only one-
to-one mappings between semantic arguments and
syntactic constituents. A subset of the one-to-many
mappings are addressed with a simple heuristic, de-
scribed in Section 2.4.

2.2 Features

The features incorporated in the proposed model
are inspired from the work of (Gildea and Juraf-
sky, 2002; Surdeanu et al., 2003; Pradhan et al.,
2005; Collins, 1999) and can be classified into five
classes: (a) features that capture the internal struc-
ture of the candidate argument, (b) features extracted
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The syntactic label of the candidate constituent.

The constituent head word, suffixes of length 2, 3, and 4,
lemma, and POS tag.

The constituent content word, suffixes of length 2, 3, and
4, lemma, POS tag, and NE label. Content words, which
add informative lexicalized information different from
the head word, were detected using the heuristics

of (Surdeanu et al., 2003).

The first and last constituent words and their POS tags.
NE labels included in the candidate phrase.

Binary features to indicate the presence of temporal cue
words, i.e. words that appear often in AM TMP phrases
in training.

For each TreeBank syntactic label we added a feature to
indicate the number of such labels included in the
candidate phrase.

The sequence of syntactic labels of the constituent
immediate children.

Table 2: Argument structure features

The phrase label, head word and POS tag of the
constituent parent, left sibling, and right sibling.

Table 3: Argument context features

from the argument context, (c) features that describe
properties of the target predicate, (d) features gener-
ated from the predicate context, and (e) features that
model the distance between the predicate and the ar-
gument. These five feature sets are listed in Tables 2,
3,4,5, and 6.

2.3 Classifier

The classifiers used in this paper were devel-
oped using AdaBoost with confidence rated predic-
tions (Schapire and Singer, 1999). AdaBoost com-
bines many simple base classifiers or rules (in our
case decision trees of depth 3) into a single strong
classifier using a weighted-voted scheme. Each base
classifier is learned sequentially from weighted ex-
amples and the weights are dynamically adjusted ev-
ery learning iteration based on the behavior of the



The predicate word and lemma.

The predicate voice. We currently distinguish five voice
types: active, passive, copulative, infinitive, and progressive.
A binary feature to indicate if the predicate is frequent - i.e.
it appears more than twice in the training partition - or not.

Table 4: Predicate structure features

Sub-categorization rule, i.e. the phrase structure rule that
expands the predicate immediate parent, e.g.
NP — VBG NN NNS for the predicate in Figure 1 (b).

Table 5: Predicate context features

The path in the syntactic tree between the argument phrase
and the predicate as a chain of syntactic labels along with
the traversal direction (up or down).

The length of the above syntactic path.

The number of clauses (S* phrases) in the path.

The number of verb phrases (VP) in the path.

The subsumption count, i.e. the difference between the
depths in the syntactic tree of the argument and predicate
constituents. This value is 0 if the two phrases share the
same parent.

The governing category, which indicates if NP

arguments are dominated by a sentence (typical for
subjects) or a verb phrase (typical for objects).

We generalize syntactic paths with more than 3

elements using two templates:

(@) Arg T Ancestor | N; | Pred, where Ar g is the
argument label, Pr ed is the predicate label, Ancest or
is the label of the common ancestor, and N; is instantiated
with all the labels between Pr ed and Ancest or in

the full path; and

(b) Arg T N; T Ancest or | Pred, where N; is
instantiated with all the labels between Ar g and

Ancest or in the full path.

The surface distance between the predicate and the
argument phrases encoded as: the number of tokens, verb
terminals (VB* ), commas, and coordinations (CC) between
the argument and predicate phrases, and a binary feature to
indicate if the two constituents are adjacent.

A binary feature to indicate if the argument starts with a
predicate particle, i.e. a token seen with the RP* POS
tag and directly attached to the predicate in training.

Table 6: Predicate-argument distance features

previously learned rules.

We trained one-vs-all classifiers for the top 24
most common arguments in training (including
R- A* and C- A*). For simplicity we do not la-
bel predicates. Following the strategy proposed
by (Carreras et al., 2004) we select training exam-
ples (both positive and negative) only from: (a) the
first S* phrase that includes the predicate, or (b)
from phrases that appear to the left of the predicate
in the sentence. More than 98% of the arguments
fall into one of these classes.

At prediction time the classifiers are combined us-
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ing a simple greedy technique that iteratively assigns
to each predicate the argument classified with the
highest confidence. For each predicate we consider
as candidates all AMattributes, but only numbered
attributes indicated in the corresponding PropBank
frame.

2.4 Argument Expansion Heuristics

We address arguments that should map to more
than one terminal phrase with the following post-
processing heuristic: if an argument is mapped to
one terminal phrase, its boundaries are extended
to the right to include all terminal phrases that are
not already labeled as other arguments for the same
predicate. For example, after the system tags “con-
sumer” as the beginning of an A1l argument in Fig-
ure 1, this heuristic extends the right boundary of
the Al argument to include the following terminal,
“prices”.

To handle inconsistencies in the treatment of
quotes in parsing we added a second heuristic: argu-
ments are expanded to include preceding/following
quotes if the corresponding pairing quote is already
included in the argument constituent.

3 Evaluation

3.1 Data

We trained our system using positive examples ex-
tracted from all training data available. Due to mem-
ory limitations on our development machines we
used only the first 500,000 negative examples. In the
experiments reported in this paper we used the syn-
tactic trees generated by the Charniak parser. The
results were evaluated for precision, recall, and F}
using the scoring script provided by the task orga-
nizers.

3.2 Results and Discussion

Table 7 presents the results obtained by our system.
On the WSJ data, our results surpass with almost 6%
the results obtained by the best SRL system that used
partial syntax in the CONLL 2004 shared task eval-
uation (Hacioglu et al., 2004). Even though these
numbers are not directly comparable (this year’s
shared task offers more training data), we consider
these results encouraging given the simplicity of
our system (we essentially model only one-to-one



Precision Recall | Fg=1
Development 79.14% | 71.57% | 75.17
Test WSJ 80.32% | 72.95% | 76.46
Test Brown 72.41% | 59.67% | 65.42
Test WSJ+Brown 79.35% | 71.17% | 75.04
Test WSJ Precision Recall | Fg=1
Overall 80.32% | 72.95% | 76.46
A0 87.09% | 85.21% | 86.14
Al 79.80% | 72.23% | 75.83
A2 74.74% | 58.38% | 65.55
A3 83.04% | 53.76% | 65.26
A4 77.42% | 70.59% | 73.85
A5 0.00% | 0.00% | 0.00
AM ADV 57.82% | 46.05% | 51.27
AM CAU 49.38% | 54.79% | 51.95
AM DI R 62.96% | 40.00% | 48.92
AM DI S 72.19% | 76.25% | 74.16
AM EXT 60.87% | 43.75% | 50.91
AM LCOC 64.19% | 52.34% | 57.66
AM MNR 63.90% | 44.77% | 52.65
AM MOD 98.09% | 93.28% | 95.63
AM NEG 96.15% | 97.83% | 96.98
AM PNC 55.22% | 32.17% | 40.66
AM PRD 0.00% | 0.00% | 0.00
AM REC 0.00% | 0.00% | 0.00
AM TMP 79.17% | 73.41% | 76.18
R- A0 84.85% | 87.50% | 86.15
R- A1 75.00% | 71.15% | 73.03
R- A2 60.00% | 37.50% | 46.15
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM: ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R-AM LOC | 68.00% | 80.95% | 73.91
R- AM M\NR 30.00% | 50.00% | 37.50
R- AM TMP 60.81% | 86.54% | 71.43
[V [ 0.00% | 0.00% [ 0.00 |

Table 7: Overall results (top) and detailed results on
the WSJ test (bottom).

mappings between semantic arguments and syntac-
tic constituents). Only 0.14% out of the 75.17% F
measure obtained on the development partition are
attributed to the argument expansion heuristics in-
troduced in Section 2.4.

4 Conclusions

This paper describes a semantic role labeling sys-
tem constructed on top of the complete syntactic
analysis of text. We model semantic arguments that
map into exactly one syntactic phrase (about 90%
of all semantic arguments in the development set)
using a rich set of lexical, syntactic, and semantic
attributes. We trained AdaBoost one-versus-all clas-
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sifiers for the 24 most common argument types. Ar-
guments that map to more than one syntactic con-
stituent are expanded with a simple heuristic in a
post-processing step.

Our results surpass with almost 6% the results ob-
tained by best SRL system that used partial syntax in
the CoNLL 2004 shared task evaluation. Although
the two evaluations are not directly comparable due
to differences in training set size, the current results
are encouraging given the simplicity of our proposed
system.
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Joint Parsing and Semantic Role Labeling
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Abstract previous work, it has been shown that SRL systems
that use full parse information perform better than
those that use shallow parse information, but that
machine-generated parses still perform much worse
than human-corrected gold parses.

The goal of this investigation is to narrow the gap
between SRL results from gold parses and from au-
tomatic parses. We aim to do this by jointly perform-
ing parsing and semantic role labeling in a single
probabilistic model. In both parsing and SRL, state-
of-the-art systems are probabilistic; therefore, their
predictions can be combined in a principled way by
multiplying probabilities. In this paper, we rerank
the k-best parse trees from a probabilistic parser us-
ing an SRL system. We compare two reranking ap-
proaches, one that linearly weights the log proba-
bilities, and the other that learns a reranker over
parse trees and SRL frames in the manner of Collins
1 Introduction (2000).

Although much effort has gone into developing 'Currently, neither method performs better than

statistical parsing models and they have improve .mply selecting the top predlcted. parse tree. We
iscuss some of the reasons for this; one reason be-

steadily over the years, in many applications tha that the ranking over parse trees induced by the

use parse trees errors made by the parser are a semantic role labeling score is unreliable, because
jor source of errors in the final output. A promising . ; 9 '
the model is trained locally.

approach to this problem is to perform both pars-
ing_ gnd the higher—I(_eveI task in a singjeint prob_— 2 Base SRL System
abilistic model. This not only allows uncertainty
about the parser output to be carried upward, suddur approach to joint parsing and SRL begins with
as through ark-best list, but also allows informa- a base SRL system, which uses a standard architec-
tion from higher-level processing to improve parsiure from the literature. Our base SRL system is a
ing. For example, Miller et al. (2000) showed thattascade of maximum-entropy classifiers which se-
performing parsing and information extraction in dect the semantic argument label for each constituent
joint model improves performance on both tasks. lof a full parse tree. As in other systems, we use
particular, one suspects that attachment decisiorthree stages: pruning, identification, and classifica-
which are both notoriously hard and extremely imtion. First, inpruning we use a deterministic pre-
portant for semantic analysis, could benefit greatlprocessing procedure introduced by Xue and Palmer
from input from higher-level semantic analysis.  (2004) to prune many constituents which are almost
The recent interest in semantic role labeling proeertainly not arguments. Second, identification
vides an opportunity to explore how higher-level sea binary MaxEnt classifier is used to prune remain-
mantic information can inform syntactic parsing. Ining constituents which are predicted to be null with

A striking feature of human syntactic pro-
cessing is that it isontext-dependenthat

is, it seems to take into account seman-
tic information from the discourse con-
text and world knowledge. In this paper,
we attempt to use this insight to bridge
the gap between SRL results from gold
parses and from automatically-generated
parses. To do this, we jointly perform
parsing and semantic role labeling, using
a probabilistic SRL system to rerank the
results of a probabilistic parser. Our cur-
rent results are negative, because a locally-
trained SRL model can return inaccurate
probability estimates.
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Base featurefGJ02] Base featurefGJ02]
Path to predicate Head word
Constituent type Constituent type
Head word Position
Position Predicate
Predicate \oice
Head POS [SHWAO3] Head POS [SHWAO3]
All conjunctions of above From [PWHMJO04]
Parent Head POS
Table 1: Features used in base identification classi- | Firstword/POS
. Last word / POS
fier. Sibling constituent type / head word / head POS
ConjunctiongXPO3]
Voice & Position
i ili i i ificati i- Predicate & Head word
high probability. Finally, inclassification a multi Prodicate & Constituent type

class MaxEnt classifier is used to predict the argu-

ment type of the remaining constituents. This clasraple 2: Features used in baseline labeling classifier.
sifer also has the option to outputUNL.

It can happen that the returned semantic arguf parse Trees Used SRL F1L
ments overlap, because the local classifiers take nogg[q 771
global constraints into account. This is undesirable, 1_pest 63.90
because no overlaps occur in the gold semantic an-Reranked by gold parse F1 68.1
notations. We resolve overlaps using a simple recurr Reranked by gold frame F1 74.2
sive algorithm. For each parent node that overlaps gjmpje SRL combinatiofic = 0.5) | 56.9
with one of its descendents, we check which pré1 cposen using trained reranker 63.6

dicted probability is greater: that the parent has it

locally-predicted argument label and all its descenfable 3: Comparison of Overall SRL F1 on devel-

dants are null, or that the descendants have their opment set by the type of parse trees used.
timal labeling, and the parent is null. This algorithm

returns the non-overlapping assignment with glob-
ally highest confidence. Overlaps are uncommon, In this paper, we choogé™, t*) to approximately
however; they occurred only 68 times on the 1346nhaximize the probability( F' t|x) using a reranking
sentences in the development set. approach. To do the reranking, we generate a list of
We train the classifiers on PropBank sections 02k-best parse trees for a sentence, and for each pre-
21. If a true semantic argument fails to matchdicted tree, we predict the best frame using the base
any bracketing in the parse tree, then it is ignoredSRL model. This results in a lit £, )} of parse
Both the identification and classification models ar&ree / SRL frame pairs, from which the reranker
trained using gold parse trees. All of our features arehooses. Thus, our different reranking methods vary
standard features for this task that have been usedly in which parse tree is selected; given a parse
in previous work, and are listed in Tables 1 and 2Zree, the frame is always chosen using the best pre-
We use the maximum-entropy implementation in théiction from the base model.
Mallet toolkit (McCallum, 2002) with a Gaussian The k-best list of parses is generated using Dan

prior on parameters. Bikel's (2004) implementation of Michael Collins’
parsing model. The parser is trained on sections 2—
3 Reranking Parse Trees Using SRL 21 of the WSJ Treebank, which does not overlap
Information with the development or test sets. Thdest list is

_ generated in Bikel's implementation by essentially
Here we give the general framework for the rerankfuming off dynamic programming and doing very
ing methods that we present in the next section. Weggressive beam search. We gather a maximum of
write a joint probabi.lity model over semantic framessg pest parses, but the limit is not usually reached
I and parse treesgiven a sentence as using feasible beam widths. The mean number of

parses per sentence is 176.
p(F, t|X) = p(F|t7 X)p(t‘x)v (1)

o 4 Results and Discussion
where p(t|x) is given by a standard probabilistic
parsing model, ang(F'|t,x) is given by the base- In this section we present results on several rerank-
line SRL model described previously. ing methods for joint parsing and semantic role la-
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beling. Table 3 compares F1 on the development sagainst predicted frames that are missing key argu-
of our different reranking methods. The first fourments. But such features depend globally on the en-
rows in Table 3 are baseline systems. We presetite frame, and cannot be represented by local clas-
baselines using gold trees (row 1 in Table 3) andifiers. One way to train these global features is to
predicted trees (row 2). As shown in previous worklearn a linear classifier that selects a parse / frame
gold trees perform much better than predicted treepair from the ranked list, in the manner of Collins
We also report two cheating baselines to explor€000). Reranking has previously been applied to
the maximum possible performance of a rerankingemantic role labeling by Toutanova et al. (2005),
system. First, we report SRL performance of ceilfrom which we use several features. The difference
ing parse trees (row 3), i.e., if the parse tree from thieetween this paper and Toutanova et al. is that in-
k-best list is chosen to be closest to the gold trestead of reranking:-best SRL frames of a single
This is the best expected performance of a pargarse tree, we are reranking 1-best SRL frames from
reranking approach that maximizes parse F1. Sethek-best parse trees.
ond, we report SRL performance where the parse Because of the the computational expense of
tree is selected to maximize SRL F1, computingraining onk-best parse tree lists for each of 30,000
using the gold frame (row 4). There is a signifi-sentences, we train the reranker only on sections 15—
cant gap both between parse-F1-reranked trees an@l of the Treebank (the same subset used in previ-
SRL-F1-reranked trees, which shows promise fasus CoNLL competitions). We train the reranker
joint reranking. However, the gap between SRLusing LogLoss, rather than the boosting loss used
F1-reranked trees and gold parse trees indicates thgt Collins. We also restrict the reranker to consider
reranking of parse lists cannot by itself completelynly the top 25 parse trees.
close the gap in SRL performance between gold and This globally-trained reranker uses all of the fea-
predicted parse trees. tures from the local model, and the following global
features: (apequence featurgs.e., the linear se-
qguence of argument labels in the sentence (e.g.
Equation 1 suggests a straightforward method fok0_V_A1), (b) the log probability of the parse tree,
reranking: simply pick the parse tree from thdest (c) has-argfeatures, that is, for each argument type
list that maximize®(F, t|x), in other words, add the a binary feature indicating whether it appears in the
log probabilities from the parser and the base SRframe, (d) the conjunction of the predicate and has-
system. More generally, we consider weighting tharg feature, and (e) the number of nodes in the tree

4.1 Reranking based on score combination

individual probabilities as classified as each argument type.
. The results of this system on the development set
s(F,t) = p(F|t,x)"“p(t[x)". (2) are given in Table 3 (row 6). Although this performs

better than the score combination method, it is still

Such a weighted combination is often used in thfo better than simply taking the 1-best parse tree.
speech community to combine acoustic and lanfhis may be due to the limited training set we used
guage models. in the reranking model. A base SRL model trained
This reranking method performs poorly, howevergnly on sections 15-18 has 61.26 F1, so in com-
No choice ofa performs better tham = 1, i.e., parison, reranking provides a modest improvement.
choosing the 1-best predicted parse tree. Indeed, riI?fﬁis system is the one that we submitted as our offi-

more weight given to the SRL score, the worse thgjal submission. The results on the test sets are given
combined system performs. The problem is that ofn Table 4.

ten a bad parse tree has many nodes which are obvi-

ously not constituents: thyg F'|¢, x) for such abad g Summing over parse trees

tree is very high, and therefore not reliable. As more

weight is given to the SRL score, the unlabeled remn this section, we sketch a different approach to

call drops, from 55% whew = 0 to 71% when joint SRL and parsing that does not use rerank-

a = 1. Most of the decrease in F1 is due to the drojng at all. Maximizing over parse trees can mean

in unlabeled recall. that poor parse trees can be selected if their se-
mantic labeling has an erroneously high score. But
we are not actually interested in selecting a good

One potential solution to this problem is to addoarse tree; all we want is a good semantic frame.
features of the entire frame, for example, to votdhis means that we should select the semantic frame

4.2 Training a reranker using global features
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e e e oml gnooal | Fosl 6 Conclusion and Related Work

Test WSJ 68.57% | 64.99% | 66.73 : :

Test Brown 62.91% | 54.85% | 58.60 In this paper, we have con_S|de_red sevgral methods

Test WSJ+Brown| 67.86% | 63.63% | 65.68 for reranking parse trees using information from se-

mantic role labeling. So far, we have not been

Test WSJ PreCISICOm Recaoll Fa=1 able to show improvement over selecting the 1-best
Overall 68.57% | 64.99% | 66.73 parse tree. Gildea and Jurafsky (Gildea and Jurafsky,
AD 69.47% | 74.35% | 71.83 : :
Al 66.90% | 64.91% | 65.89 2002) also report results on reranking parses using
A2 64.42% | 61.17% | 62.75 an SRL system, with negative results. In this paper,
3 62.14% | 50.29%| 55.59 we confirm these results with a MaxEnt-trained SRL
A4 72.73% | 70.59% | 71.64 o or
A5 50.00% | 20.00% | 28.57 model, and we extend them to show that weighting
AM-ADV 59.90% | 49.60% | 52.57 the probabilities does not help either.
AM-CAU 76.60% | 49.32% | 60.00 Op its with Colli tpl i ¢
AM-DIR 57.89% | 38.82% | 4648 ur results wi ollins-style reranking are too
AM-DIS 79.73% | 73.75% | 76.62 preliminary to draw definite conclusions, but the po-
AM-EXT 66.67% | 43.75% | 52.83 ial i
AMLOC £0.269 | 53.17% | 167 tential improvement does not appear to be great. In
AM-MNR 54.32% | 51.16% | 52.69 future work, we will explore the max-sum approach,
AM-MOD 98.50% | 95.46% | 96.96 which has promise to avoid the pitfalls of max-max
AM-NEG 98.20% | 94.78% | 96.46 -
AM-PNC | 46.08% | 40.87% | 43.32 reranking approaches.
AM-PRD 0.00% | 0.00% | 0.00
AM-REC 0.00% | 0.00% | 0.00 Acknowledgements
AM-TMP 72.15% | 67.43% | 69.71 This work was supported in part by the Center for Intelligent
R-AO 0.00% | 0.00% | 0.00 Information Retrieval, in part by National Science Foundation
R-Al 0.00% | 0.00% | 0.00 under NSF grants #11S-0326249 ond #1S-0427594, and in part
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R-AM-ADV | 0.00% | 0.00% | 0.00 opinions, findings and conclusions or recommendations ex-
R-AM-CAU 0.00% | 0.00% | 0.00 pressed in this material are the author(s) and do not necessarily
R-AM-EXT 0.00% | 0.00% | 0.00 reflect those of the sponsor.
R-AM-LOC 0.00% | 0.00% | 0.00
R-AM-MNR|  0.00% | 0.00% | 0.00
R-AM-TMP 0.00% | 0.00% | 0.00 References

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model.

. Computational Linguistics
Table 4: Overall results (top) and detailed results on P g

the WSJ test (bottom). Michael Collins. 2000. Discriminative reranking for natu-
ral language parsing. IRroc. 17th International Conf. on
Machine Learningpages 175-182. Morgan Kaufmann, San

_ . . Francisco, CA.
that maximizes the posterior probability( F'|x) =

th(F]t,x)p(ﬂx). That is, we should besum- Daniel GiIQeaand DanieIJgrafsky: 20Q2._Autom§ticlabeling of
mingover the parse trees instead of maximizing over semantic rolesComputational Linguistic28(3):245-288.
them. The practical advantage of this approach indrew Kachites McCallum. 2002. Mallet: A machine learn-
that even if one seemingly-good parse tree does noting for language toolkithttp://mallet.cs.umass.

have a constituent for a semantic argument, many -

other parse trees in the-best list might, and all Scott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.
are considered when computidg. Also, no sin- Weischedel. 2000. A novel use of statistical parsing to ex-
gle parse tree need have constituents for alF6f tract information from text. IANLP 2000 pages 226—233.
because it sums over all parse trees, it can mix amtlhai Surdeanu, Sanda Harabagiu, John Williams, and Paul
match constituents between different trees. The op- Aarset_h. 2003. L_Jsing predicate-argument structures for in-
timal frameF* can be computed by Eﬂi(NS) pars- formation extraction. IIRCL-2003

ing algorithm if appropriate independence assumpkristina Toutanova, Aria Haghighi, and Christopher D. Man-
tions are made Op(F|x). This requires designing ning. 2005. Joint learning improves semantic role labeling.
an SRL model that is independent of the bracketing '" ACL 2005

derived from any particular parse tree. Initial experiNianwen Xue and Martha Palmer. 2004. Calibrating features
ments performed poorly because the marginal model for semantic role labeling. IRroceedings of 2004 Confer-
p(F|x) was inadequate. Detailed exploration is left ence on Empirical Methods in Natural Language Process-
for future work. ng-

228



Applying spelling error correction techniques
for improving semantic role labelling

Erik Tjong Kim Sang Sander Canisius, Antal van den Bosch, Toine Bogers
Informatics Institute ILK / Computational Linguistics and Al
University of Amsterdam, Kruislaan 403 Tilburg University, P.O. Box 90153,
NL-1098 SJ Amsterdam, The Netherlands NL-5000 LE Tilburg, The Netherlands
eri kt @ci ence. uva. nl {S. V. M Cani si us, Ant al . vdnBosch,
A. M Bogers}@ivt . nl

1 Introduction the number of instances at a reasonable number, we

This paper describes our approach to the CoNLLhave only built instances for verb—phrase pairs when
2005 shared task: semantic role labelling. We die phrase parentis an ancestor of the verb (400,128
many of the obvious things that can be found in th&aining instances). A reasonable number of ar-
other submissions as well. We use syntactic treéiments are individual words; these do not match
for deriving instances, partly at the constituent leveVith phrase boundaries. In order to be able to label
and partly at the word level. On both levels we edithese, we have also generated instances for all pairs
the data down to only the predicted positive case®f verbs and individual words using the same con-
of verb-constituent or verb-word pairs exhibiting aStraint (another 542,217 instances). The parent node
verb-argument relation, and we train two next-levefonstraint makes certain that embedded arguments,
classifiers that assign the appropriate labels to tighich do not occur in these data sets, cannot be pre-
positively classified cases. Each classifier is trainedicted by our approach.
on data in which the features have been selected to/nstances which are associated with verb—
optimize generalization performance on the particlRfgument pairs receive the label of the argument as
lar task. We apply different machine learning a|goclass while others in principle receive a NULL class.
rithms and combine their predictions. In an estimated 10% of the cases, the phrase bound-
As a novel addition, we designed an automaticallffies assigned by the parser are different from those
trained post-processing module that attempts to cdf the argument annotation. In case of a mismatch,
rect some of the errors made by the base systeM{€ have always used the argument label of the first
To this purpose we borrowed Levenshtein-distancévord of a phrase as the class of the corresponding
based correction, a method from spelling error coihstance. By doing this we attempt to keep the posi-
rection to repair mistakes in sequences of labels. Wi@nal information of the lost argument in the train-
adapted the method to our needs and applied it f§#9 data. Both the parser phrase boundary errors as
improving semantic role labelling output. This pa_well as the parent node constraint restrict the num-

per presents the results of our approach_ ber of phrases we can |dent|fy The maximum recall
score attainable with our phrases is 84.64% for the
2 Dataand features development data set.

. We have experimentally evaluated 30 features
The CoNLL-2005 shared task data sets provide Sel5ced on the Brevious w)c/)rk in semantic role la-

tences in which predicate—argument relations ha\ﬁeelling (Gildea and Jurafsky, 2002: Pradhan et al.,
been annotated, as well as a number of extra anng-

tations like named entities and full syntactic parse§OO4’ Xue and Palmer, 2004):
(Carreras and Mrquez, 2005). We have used the e Lexical features (5): predicate (verb), first
parses for generating machine learning instances for phrase word, last phrase word and words im-
pairs of predicates and syntactic phrases. In princi- mediately before and after the phrase.

ple each phrase can have a relation with each verbe Syntactic features (14): part-of-speech tags

in the same sentence. However, in order to keep (POS) of: first phrase word, last phrase word,
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word immediately before phrase and word im-3.2 Feature selection

mediately after phrase; syntactic paths from :
In previous research, we have found that memory-
word to verb: all paths, only paths for words

based learning is rather sensitive to the chosen fea-
before verb and only paths for words after verb; . .
fures. In particular, irrelevant or redundant fea-

phrase label, label of phrase parent, SUIOCat‘tal]res may lead to reduced performance. In order

gorisation of \{erb parent, predl_c_ate frame fron}o minimise the effects of this sensitivity, we have
PropBank, voice, head preposition for preposi-

tional phrases and same parents flag. employed bi-directional hill-climbing (Caruana and

e Semantic features (2): named entity tag for Freitag, 1994) for finding the features that were most
first phrase word and .Iast phrase word. suited for this task. This process starts with an empty

e Positional features (3): position of the phrase feature set, examines the effect of adding or remov-
with respect to the verb: left/right, distance ining one feature and then starts a new iteration with
words and distance in parent nodes. the set associated with the best performance.

e Combination features (6): predicate + phrase
label, predicate + first phrase word, predicat@.3 Automatic post-processing

+ last phrgse word, predicate + first phr_as%ertain misclassifications by the semantic role-

POS_’ predicate + last phrase POS and voice Iﬁbelling system described so far lead to unlikely and

left/right. impossible relation assignments, such as assigning
The output of two parsers was available. We haviwo indirect objects to a verb where only one is pos-
briefly experimented with the Collins parses includsible. Our proposed classifier has no mechanism to
ing the available punctuation corrections but foundetect these errors. One solution is to devise a post-
that our approach reached a better performance wighocessing step that transforms the resulting role as-
the Charniak parses. We report only on the resul@gnments until they meet certain basic constraints,

obtained with the Charniak parses. such as the rule that each verb may have only sin-
gle instances of the different roles assigned in one
3 Approach sentence (Van den Bosch et al., 2004).

This section gives a brief overview of the three main We propose an alternative automatically-trained
components of our approach: machine learning, apost-processing method which corrects unlikely role
tomatic feature selection and post-processing by assignments either by deleting them or by replacing
novel procedure designed to clean up the classifigiem with a more likely one. We do not do this by

output by correcting obvious misclassifications. ~ knowledge-based constraint satisfaction, but rather
by adopting a method for error correction based on
Levenshtein distance (Levenshtein, 1965), or edit
The core machine learning technique employed, distance, as used commonly in spelling error correc-
memory-based learning, a supervised inductive afion. Levenshtein distance is a dynamically com-

gorithm for learning classification tasks based on thputed distance between two strings, accounting for
k-nn algorithm. We use the TiMBL system (Daele-the number of deletions, insertions, and substitu-
mans et al., 2003), version 5.0.0, patch-2 with uniions needed to transform the one string into the
form feature weighting and random tiebreaking (opether. Levenshtein-based error correction typically
tions: -w 0 -R 911). We have also evaluated two almatches a new, possibly incorrect, string to a trusted
ternative learning techniques. First, Maximum Enlexicon of assumedly correct strings, finds the lex-
tropy Models, for which we employed Zhang Le’sicon string with the smallest Levenshtein distance
Maximum Entropy Toolkit, version 20041229 withto the new string, and replaces the new string with
default parameters. Second, Support Vector Mahe lexicon string as its likely correction. We imple-

chines for which we used Taku Kudo's YamChamented a roughly similar procedure. First, we gener-
(Kudo and Matsumoto, 2003), with one-versus-alated a lexicon of semantic role labelling patterns of
voting and option -V which enabled us to ignore preA0-A5 arguments of verbs on the basis of the entire
dicted classes with negative distances. training corpus and the PropBank verb frames. This

3.1 Machinelearning

230



lexicon contains entries such asandon A0 V Al, Words Phrases

. . Features prune | Tabel | prune] Tabel

length role labelling patterns. first word +0.38 | +0.16 | -0.17 | +1.14
: ; Arfast word - - -0.01 | +1.12

Next, given a new test sent_ence, we consider d”previous word 006 | +002 | -005 | +0.74
of its verbs and their respective predicted role la- next word -0.04 | -0.08 | +0.44 | -0.16

bellings, and compare each with the lexicon, search+art-of-speech first word -0.01 | -0.02 | -0.07 | -0.11

: : - part-of-speech last word - - -0.14 | -0.45
ing the role labelling pattern with the same verb atme\/ious part-of-speech| -0.12 | -0.06 | +0.22 | -1.14

the smallest Levenshtein distance (in case of an unnext part-of-speech -0.08 | -0.12 | -0.01 | -0.21
known verb we search in the entire lexicon). Foy all paths +0.42 | +0.10 | +0.84 | +0.75
le. i test sentence the pat hasize AO path before verb +0.00 | -0.02 | +0.00 | +0.27
example, in a tes pat@Tpnasize AD | narh after verb 0.01 | -0.01 | -0.01 | -0.06
V Al A0 is predicted. One closest lexicon item is phrase label -0.01 | -0.02 | +0.13 | -0.02
found at Levenshtein distance 1, namefgphasize | parent label 003 | -0.02/1 -0.03 | +0.00
. . : voice +0.02 | -0.04 | -0.04 | +1.85
A0V Al, representing a deletion of the fim0. We | sypcategorisation -0.01 | +0.00| -0.02 | +0.03
then use the nearest-neighbour pattern in the lexicorropBank frame -0.12 | -0.03 | -0.16 | +1.04
; - PP head +0.00 | +0.00 | -0.06 | +0.08

q
to correct the likely error, and apply all deletions same parents 002 | 001 | +003 | -0.05

and substitutions needed to correct the current patnamed entity first word +0.00 | +0.00 | +0.05 | -011

tern according to the nearest-neighbour pattern frormgm?d entity lastword | — - -0.04 | -0.12

: ; : ; absolute position +0.00 | +0.00 | +0.00 | -0.02
the trusted lexicon. We do not apply insertions, SINGE jistance in words +034 | +004 | +016 | -0.96
the post-processor module does not have the infQryistance in parents -0.02 | -0.02 | +0.06 | -0.04
mation to decide which constituent or word would predicate + label -0.05 | -0.07 | -0.22 | -0.47

. . . . predicate + first word -0.05 | +0.00 | +0.13 | +0.97
receive the inserted label. In case of multiple POSSI-yredicate + last word a -0.03 | +0.08

ble deletions (e.g. in deleting one out of tWs in | predicate + first POS | -0.05 | -0.06 | -0.20 | -0.50
emphasize AO V Al Al), we always delete the argu-| Predicate + last POS - - | 013 -0.40

voice + position +0.02 | -0.04 | -0.05 | -0.04
ment furthest from the verb.

Table 1: Effect of adding a feature to the best feature
4 Results sets when memory-based learning is applied to the
o development set (overallgg;). The process con-
In order to perform the optimisation of the semang;sted of four tasks: pruning data sets for individual
tic role labelling process in a reasonable amount forgs and phrases, and labelling these two data sets.
time, we have divided it in four separate tasks: Prunselected features are shownbiold. Unfortunately,

ing the data for individual words and the data fofye have not been able to use all promising features.
phrases, and labelling of these two data sets. Prun-

ing amounts to deciding which instances corresponglance can be found in Table 1. One feature (syntac-
with verb-argument pairs and which do not. Thisic path) was selected in all four tasks but in general
resulted in a considerable reduction of the two datdifferent features were required for optimal perfor-
sets: 47% for the phrase data and 80% for the wolilance in the four tasks. Changing the feature set
data. The remaining instances are assumed to dead the largest effect when labelling the phrase data.
fine verb-argument pairs and the labelling tasks agve have applied the two other learners, Maximum
sign labels to them. We have performed a sep&ntropy Models and Support Vector Machines to the
rate feature selection process in combination wittwo labelling tasks, while using the same features as
the memory-based learner for each of the four taskthe memory-based learner. The performance of the
First we selected the best feature set based on tagkee systems on the development data can be found
accuracy. As soon as a working module for each dh Table 3. Since the systems performed differently
the tasks was available, we performed an extra feare have also evaluated the performance of a com-
ture selection process for each of the modules, opthined system which always chose the majority class
mising overall system f=; while keeping the other assigned to an instance and the class of the strongest
three modules fixed. system (SVM) in case of a three-way tie. The com-
The effect of the features on the overall perforbined system performed slightly better than the best
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Precision| Recall | Fg=1
Development 76.79% | 70.01% | 73.24
Test WSJ 79.03% | 72.03% | 75.37
Test Brown 70.45% | 60.13% | 64.88
Test WSJ+Brown| 77.94% | 70.44% | 74.00
Test WSJ | Precision Recall | Fg=1
Overall 79.03% | 72.03%| 75.37
A0 85.65% | 81.73% | 83.64
Al 76.97% | 71.89% | 74.34
A2 71.07%| 58.20% | 63.99
A3 69.29% | 50.87% | 58.67
Ad 75.56% | 66.67% | 70.83
A5 100.00%| 40.00% | 57.14
AM- ADV 64.36% | 51.38% | 57.14
AM CAU 75.56% | 46.58% | 57.63
AM DI R 48.98% | 28.24% | 35.82
AM DI S 81.88% | 79.06% | 80.45
AM EXT 87.50% | 43.75% | 58.33
AM LOC 62.50% | 50.96% | 56.15
AM MNR 64.52% | 52.33%| 57.78
AM MOD 96.76% | 97.64% | 97.20
AM NEG 97.38% | 96.96% | 97.17
AM PNC 45.98% | 34.78% | 39.60
AM PRD 50.00% | 20.00% | 28.57
AM REC 0.00% 0.00% 0.00
AM TMP 80.52% | 70.75% | 75.32
R- A0 81.47%| 84.38% | 82.89
R- Al 74.00%| 71.15% | 72.55
R- A2 60.00% | 37.50% | 46.15
R- A3 0.00% 0.00% 0.00
R- A4 0.00% 0.00% 0.00
R- AM ADV 0.00% 0.00% 0.00
R- AM CAU | 100.00%| 25.00% | 40.00
R- AM EXT | 100.00% | 100.00% | 100.00
R- AM LCC 86.67% | 61.90% | 72.22
R- AM M\NR 33.33%| 33.33%| 33.33
R- AM TMP 64.41% | 73.08% | 68.47
[V | 97.36%] 97.36%] 97.36]

Table 2: Overall results (top) and detailed results on

the WSJ test (bottom).

individual system.

5 Conclusion

We have presented a machine learning approach to

Learning algorithm | Precision] Recall | Fs—1 |
without post-processing:

Maximum Entropy Models| 70.78% | 70.03% | 70.40
Memory-Based Learning | 70.70% | 69.85% | 70.27
Support Vector Machines | 75.07% | 69.15% | 71.98
including post-processing:
Maximum Entropy Models| 74.06% | 69.84% | 71.89
Memory-Based Learning | 73.84% | 69.88% | 71.80
Support Vector Machines | 77.75% | 69.11% | 73.17
Combination 76.79% | 70.01% | 73.24

Table 3: Effect of the choice of machine learning
algorithm, the application of Levenshtein-distance-
based post-processing and the use of system combi-
nation on the performance obtained for the develop-
ment data set.

Acknowledgements

This research was funded by NWO, the Netherlands
Organisation for Scientific Research, and by Senter-
Novem IOP-MMI.

References

X. Carreras and L. Mrquez. 2005. Introduction to the CoNLL-
2005 Shared Task: Semantic Role LabelingPtoceedings
of CoNLL-2005. Ann Arbor, MI, USA.

R. Caruana and D. Freitag. 1994. Greedy attribute selection.
In Proceedings of the Eleventh International Conference on
Machine Learning, pages 28—36, New Brunswick, NJ, USA.
Morgan Kaufman.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. 2003. TiMBL: Tilburg memory based learner, ver-
sion 5.0, reference guide. ILK Technical Report 03-10,
Tilburg University.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics, 28(3):245—-288.

T. Kudo and Y. Matsumoto. 2003. Fast methods for kernel-
based text analysis. IRroceedings of ACL-2003. Sapporo,
Japan.

V. Levenshtein. 1965. Binary codes capable of correcting
deletions, insertions and reversal3oklady Akademii Nauk
SSSR, 163(4):845—-848.

S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky.

semantlg role Iabe”mg_ based on full parses. We’ 2004. Shallow semantic parsing using support vector ma-
have split the process in four separate tasks: prun-chines. InProceedings of the HLT/NAACL 2004. Boston,

ing the data bases of word-based and phrase-based”-
examp|es down to 0n|y the positive Verb_argumen‘b. van den Bosch, S. Canisius, W. Daelemans, | Hendrickx,

and E. Tjong Kim Sang. 2004. Memory-based semantic

cases, and labelling the_ two positively (?IaSSIfled data role labeling: Optimizing features, algorithm, and output. In
sets. A novel automatic post-processing procedure Proceedings of the CONLL-2004, Boston, MA, USA.

based on spelling correction, comparing to a trusted. Xue and M. Palmer. 2004. Calibrating features for semantic
lexicon of verb-argument patterns from the training role labeling. InProceedings of EMNLP-2004. Barcelona,

material, was able to achieve a performance increase

by correcting unlikely role assignments.

Spain.



Exploiting Full Parsing Information to Label Semantic Roles Using an
Ensemble of ME and SVM via Integer Linear Programming

Tzong-Han Tsai, Chia-Wei Wu, Yu-Chun Lin, Wen-Lian Hsu
Institute of Information Science
Academia Sinica
Taipei 115, Taiwan
{thtsai, cwwu, sbb, hsu}@iis.sinica.edu.tw

Abstract

In this paper, we propose a method that
exploits full parsing information by repre-
senting it as features of argument classifi-
cation models and as constraints in integer
linear learning programs. In addition, to
take advantage of SVM-based and Maxi-
mum Entropy-based argument classifica-
tion models, we incorporate their scoring
matrices, and use the combined matrix in
the above-mentioned integer linear pro-
grams. The experimental results show that
full parsing information not only in-
creases the F-score of argument classifi-
cation models by 0.7%, but also
effectively removes all labeling inconsis-
tencies, which increases the F-score by
0.64%. The ensemble of SVM and ME
also boosts the F-score by 0.77%. Our
system achieves an F-score of 76.53% in
the development set and 76.38% in Test
WSI.

1 Introduction

The Semantic Role Labeling problem can be for-
mulated as a sentence tagging problem. A sentence
can be represented as a sequence of words, as
phrases (chunks), or as a parsing tree. The basic
units of a sentence are words, phrases, and con-
stituents in these representations, respectively..
Pradhan et al. (2004) established that Constituent-
by-Constituent (C-by-C) is better than Phrase-by-
Phrase (P-by-P), which is better than Word-by-
Word (W-by-W). This is probably because the
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boundaries of the constituents coincide with the
arguments; therefore, C-by-C has the highest ar-
gument identification F-score among the three ap-
proaches.

In addition, a full parsing tree also provides
richer syntactic information than a sequence of
chunks or words. Pradhan et al. (2004) compared
the seven most common features as well as several
features related to the target constituent’s parent
and sibling constituents. Their experimental results
show that using other constituents’ information
increases the F-score by 6%. Punyakanok et al.
(2004) represent full parsing information as con-
straints in integer linear programs. Their experi-
mental results show that using such information
increases the argument classification accuracy by
1%.

In this paper, we not only add more full parsing
features to argument classification models, but also
represent full parsing information as constraints in
integer linear programs (ILP) to resolve label in-
consistencies. We also build an ensemble of two
argument classification models: Maximum Entropy
and SVM by combining their argument classifica-
tion results and applying them to the above-
mentioned ILPs.

2 System Architecture

Our SRL system is comprised of four stages: prun-
ing, argument classification, classification model
incorporation, and integer linear programming.
This section describes how we build these stages,
including the features used in training the argu-
ment classification models.

2.1 Pruning
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When the full parsing tree of a sentence is avail-
able, only the constituents in the tree are consid-
ered as argument candidates. In CoNLL-2005, full
parsing trees are provided by two full parsers: the
Collins parser (Collins, 1999) and the Charniak
parser (Charniak, 2000). According to Punyakanok
et al. (2005), the boundary agreement of Charniak
is higher than that of Collins; therefore, we choose
the Charniak parser’s results. However, there are
two million nodes on the full parsing trees in the
training corpus, which makes the training time of
machine learning algorithms extremely long. Be-
sides, noisy information from unrelated parts of a
sentence could also affect the training of machine
learning models. Therefore, our system exploits the
heuristic rules introduced by Xue and Palmer
(2004) to filter out simple constituents that are
unlikely to be arguments. Applying pruning heuris-
tics to the output of Charniak’s parser effectively
eliminates 61% of the training data and 61.3% of
the development data, while still achieves 93% and
85.5% coverage of the correct arguments in the
training and development sets, respectively.

2.2 Argument Classification

This stage assigns the final labels to the candidates
derived in Section 2.1. A multi-class classifier is
trained to classify the types of the arguments sup-
plied by the pruning stage. In addition, to reduce
the number of excess candidates mistakenly output
by the previous stage, these candidates can be la-
beled as null (meaning “not an argument”). The
features used in this stage are as follows.

Basic Features

e Predicate — The predicate lemma.

e Path — The syntactic path through the
parsing tree from the parse constituent be-
ing classified to the predicate.

o Constituent Type

o Position — Whether the phrase is located
before or after the predicate.

e \oice — passive: if the predicate has a POS
tag VBN, and its chunk is not a VP, or it is
preceded by a form of “to be” or “to get”
within its chunk; otherwise, it is active.

e Head Word — calculated using the head
word table described by Collins (1999).

e Head POS — The POS of the Head Word.
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e Sub-categorization — The phrase structure
rule that expands the predicate’s parent
node in the parsing tree.

e Firstand Last Word/POS

e Named Entities — LOC, ORG, PER, and
MISC.

o Level — The level in the parsing tree.

Combination Features

Predicate Distance Combination
Predicate Phrase Type Combination
Head Word and Predicate Combination
Voice Position Combination

Context Features

e Context Word/POS — The two words pre-
ceding and the two words following the
target phrase, as well as their correspond-
ing POSs.

e Context Chunk Type — The two chunks
preceding and the two chunks following
the target phrase.

Full Parsing Features

We believe that information from related constitu-
ents in the full parsing tree helps in labeling the
target constituent. Denote the target constituent by
t. The following features are the most common
baseline features of t’s parent and sibling constitu-
ents. For example, Parent/ Left Sibling/ Right Sib-
ling Path denotes t’s parents’, left sibling’s, and
right sibling’s Path features.
e Parent / Left Sibling / Right Sibling
Path
e Parent / Left Sibling / Right Sibling
Constituent Type
e Parent / Left Sibling / Right Sibling Po-
sition
e Parent / Left Sibling / Right Sibling
Head Word
e Parent / Left Sibling / Right Sibling
Head POS
e Head of PP parent — If the parent is a PP,
then the head of this PP is also used as a
feature.

Argument Classification Models



We use all the features of the SVM-based and ME-
based argument classification models. All SVM
classifiers are realized using SVM-Light with a
polynomial kernel of degree 2. The ME-based
model is implemented based on Zhang’s MaxEnt
toolkit' and L-BFGS (Nocedal and Wright, 1999)
method to perform parameter estimation.

2.3 Classification Model Incorporation

We now explain how we incorporate the SVM-
based and ME-based argument classification mod-
els. After argument classification, we acquire two
scoring matrices, Pye and Pgyy, respectively. In-
corporation of these two models is realized by
weighted summation of Py and Psyy as follows:
P’ = WnePme + WsymPsvm

We use P’ for the objective coefficients of the

ILP described in Section 2.4.

2.4  Integer Linear Programming (ILP)

To represent full parsing information as features,
there are still several syntactic constraints on a
parsing tree in the SRL problem. For example, on a
path of the parsing tree, there can be only one con-
stituent annotated as a non-null argument. How-
ever, it is difficult to encode this constraint in the
argument classification models. Therefore, we ap-
ply integer linear programming to resolve inconsis-
tencies produced in the argument classification
stage.

According to Punyakanok et al. (2004), given a
set of constituents, S, and a set of semantic role
labels, A, the SRL problem can be formulated as
an ILP as follows:

Let zj, be the indicator variable that represents
whether or not an argument, a, is assigned to any
Si € S; and let pj, = score(S; = a). The scoring ma-
trix P composed of all pj, is calculated by the ar-
gument classification models. The goal of this ILP
is to find a set of assignments for all z;, that maxi-
mizes the following function:

Z Z PiaZia -

S;eSacA

Each Sje S should have one of these argument
types, or no type (null). Therefore, we have

Z z,=1.

acA
Next, we show how to transform the constraints in

! http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html
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the filter function into linear equalities or inequali-
ties, and use them in this ILP.

Constraint I: No overlapping or embedding

For arguments Sj,, . . ., Sj, on the same path in a
full parsing tree, only one argument can be as-
signed to an argument type. Thus, at least kK — 1
arguments will be null, which is represented by ¢

in the following linear equality:

Zk:ZMZk—l.
il

Constraint I1: No duplicate argument classes
Within the same sentence, A0-A5 cannot appear
more than once. The inequality for A0 is therefore:

Kk
>z, <1
i=1

Constraint 111: R-XXX arguments
The linear inequalities that represent A0 and its
reference type R-A0 are:

k
vme{l,...,M}: Z Zino Z Zypr-ao -
i1

Constraint 1V: C-XXX arguments
The continued argument XXX has to occur before
C-XXX. The linear inequalities for A0 are:

m-1
Vme (2, M} 7,022,005
i=1

Constraint V: Illegal arguments
For each verb, we look up its allowed roles. This
constraint is represented by summing all the corre-
sponding indicator variables to 0.

3 Experiment Results

3.1 Data and Evaluation Metrics

The data, which is part of the PropBank corpus,
consists of sections from the Wall Street Journal
part of the Penn Treebank. All experiments were
carried out using Section 2 to Section 21 for train-
ing, Section 24 for development, and Section 23
for testing. Unlike CoNLL-2004, part of the Brown
corpus is also included in the test set.

3.2 Results

Table 1 shows that our system makes little differ-
ence to the development set and Test WSJ. How-
ever, due to the intrinsic difference between the
WSJ and Brown corpora, our system performs bet-
ter on Test WSJ than on Test Brown.



Precision | Recall | Fg—;
Development 81.13% | 72.42% | 76.53
Test WSJ 82.77% | 70.90% | 76.38
Test Brown 73.21% | 59.49% | 65.64
Test WSJ+Brown 81.55% | 69.37% | 74.97
Test WSJ | Precision | Recall | Fg_;
Overall 82.77% | 70.90% | 76.38
AO 88.25% | 84.93% | 86.56
Al 82.21% | 72.21% | 76.89
A2 74.68% | 52.34% | 61.55
A3 78.30% | 47.98% | 59.50
Al 84.29% | 57.84% | 68.60
A5 100.00% | 60.00% | 75.00
AM-ADV 64.19% | 47.83% | 54.81
AM-CAU 70.00% | 38.36% | 49.56
AM-DIR 38.20% | 40.00% | 39.08
AM-DIS 83.33% | 71.88% | 77.18
AM-EXT 86.67% | 40.62% | 55.32
AM-LOC 63.71% | 41.60% | 50.33
AM-MNR 63.36% | 48.26% | 54.79
AM-MOD 98.00% | 97.64% | 97.82
AM-NEG 99.53% | 92.61% | 95.95
AM-PNC 44.44% | 17.39% | 25.00
AM-PRD 50.00% | 20.00% | 28.57
AM-REC 0.00% | 0.00% | 0.00
AM-TMP 83.21% | 61.09% | 70.45
R-AO 91.08% | 86.61% | 88.79
R-A1 79.49% | 79.49% | 79.49
R-A2 87.50% | 43.75% | 58.33
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% | 0.00% | 0.00
R-AM-CAU | 100.00% | 25.00% | 40.00
R-AM-EXT 0.00% | 0.00% | 0.00
R-AM-LOC 92.31% | 57.14% | 70.59
R-AM-MNR 25.00% | 16.67% | 20.00
R-AM-TMP 72.73% | 61.54% | 66.67

[V | 97.32% [ 97.32% [ 97.32 ]

Table 1. Overall results (top) and detailed results
on the WSJ test (bottom).

Precision | Recall Fg=1
ME w/o parsing | 77.28% | 70.55% | 73.76%
ME 78.19% | 71.08% | 74.46%
ME with ILP 79.57% | 71.11% | 75.10%
SVM 79.88% | 72.03% | 75.76%
Hybrid 81.13% | 72.42% | 76.53%

Table 2. Results of all configurations on the devel-
opment set.

From Table 2, we can see that the model with
full parsing features outperforms the model with-
out the features in all three performance matrices.
After applying ILP, the performance is improved
further. We also observe that SVM slightly outper-
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forms ME. However, the hybrid argument classifi-
cation model achieves the best results in all three
metrics.

4 Conclusion

In this paper, we add more full parsing features to
argument classification models, and represent full
parsing information as constraints in ILPs to re-
solve labeling inconsistencies. We also integrate
two argument classification models, ME and SVM,
by combining their argument classification results
and applying them to the above-mentioned ILPs.
The results show full parsing information increases
the total F-score by 1.34%. The ensemble of SVM
and ME also boosts the F-score by 0.77%. Finally,
our system achieves an F-score of 76.53% in the
development set and 76.38% in Test WSJ.
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Abstract

This paper describesa systemfor the

CoNLL-2005 SharedTask on Semantic
Role Labeling. We trained two parsers
with the training corpusin which the se-
mantic argumentinformation is attached
to the constituentabels,we thenusedthe

resulting parsetreesas the input of the

pipelinedSRL system.We presenburre-

sults of combiningthe output of various
SRL systemausingdifferentparsers.

1 Intr oduction

Semantigarsingjdentifying andclassifyingthese-
manticentitiesin context andthe relationsbetween
them,potentiallyhasgreatimpactonits dowvnstream
applications,suchastext summarizationguestion
answeringandmachinetranslation.As aresult,se-
mantic parsingcould be an importantintermediate
stepfor naturallanguagecomprehensionn this pa-

per, we investigatethe taskof SemantidRole Label-

ing (SRL): Givenaverbin asentencethegoalis to

locate the constituentsvhich are argumentsof the

verb, and assignthem appropriatesemanticroles,

suchas,Agent,Patient,andTheme.

Previous SRL systemshave exploredthe effects
of usingdifferentlexical featuresandexperimented
on different machinelearning algorithms. (Gildea
andPalmer, 2002;Pradharetal., 2005;Puryakanok
etal., 2004)However, theseSRL systemsyenerally
extract featuresrom sentenceprocessedy a syn-
tactic parseror other shallav parsingcomponents,
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suchasachunlerandaclausddentifier As aresult,
the performanceof the SRL systemgelies heavily
onthosesyntax-analysisools.

In orderto improve thefundamentaperformance
of an SRL system we trainedparserswith training
datacontainingnot only syntacticconstitueninfor-
mationbut alsosemantiargumentinformation.The
new parserggeneratenorecorrectconstituentshan
thattrainedon puresyntacticinformation. Because
thenew parsergeneratalifferentconstituentshana
puresyntacticparserwe alsoexplorethe possibility
of combiningthe outputof several parserswith the
help of avoting post-processingomponent.

This paperis organized as follows: Section?2
demonstrateshe componentf our SRL system.
We elaborateheimportanceof traininganew parser
andoutlineourapproachn Section3 andSectiord.
Finally, Section5 reportsanddiscussesheresults.

2 SemanticRole Labeling: the
Ar chitecture

Our SRL systemhas5 phasesParsing,Pruning,Ar-
gumentldentification, ArgumentClassificationand
PostProcessing. The Argumentldentificationand
Classificationcomponentsaretrainedwith Sec02-
21 of thePennTreebankcorpus.

2.1 Parsing

Previous SRL systemsusuallyusea pure syntactic
parsey suchas (Charniak,2000; Collins, 1999),to
retrieve possibleconstituentsOncethe boundaryof
a constituentis defined,thereis no way to change
it in later phases.Thereforethe quality of the syn-
tactic parserhasa major impact on the final per
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formanceof an SRL system,andthe percentagef
correctconstituentghatis generatedy the syntac-
tic parseralsodefinesthe recall upperboundof an
SRLsystem.In orderto attackthis problem,in addi-
tion to Charniaks parser(Charniak,2000),our sys-
tem combinetwo parserwhich aretrainedon both
syntacticconstituentnformationandsemantiargu-
mentinformation. (SeeSection3)

2.2 Pruning

Given a parsetree,a pruningcomponenfilters out
the constituentswvhich are unlikely to be semantic
argumentsn orderto facilitatethetrainingof the Ar-
gumentldentificationcomponent.Our systemuses
the heuristicrulesintroducedby (Xue and Palmet
2004).Theheuristicdirst spottheverbandthenex-
tractall the sisternodesalongthe verb spineof the
parsetree. We expandthe coverageby alsoextract-
ing all the immediatechildrenof an S, ADVP, PP
andNP node. This stagegenerallyprunesoff about
80% of the constituentgyiven by a parser For our
newly trainedparserswe also extract constituents
which have a secondarconstituentabelindicating
the constituenin questionis anargument.

2.3 Argumentldentification and Classification

We have asour Argumentldentificationcomponent
a binary maximum-entrop classifierto determine
whethera constituentis an argumentor not. |If
a constituentis taggedas an argument, the Argu-
ment Classificationcomponent,which is a multi-
classmaximum-entrop classifier would assignit
a semanticrole. The implementationof both the
Argumentldentificationand Classificationcompo-
nentsmakesuseof the Mallet packagé.

The lexical featureswe useto train thesetwo
componentaretakenfrom (XueandPalmer 2004).

We trained the Argumentldentification compo-
nentwith the following single features: the path
from the constituento the verb, the head word of
the constituentand its POS tag, andthe distance
betweenthe verb and the constituent,and feature
combinations the verbandthe phrasaltype of the
constituentthe verb andthe headword of the con-
stituent.If the parentnodeof the constituenis a PP
node,thenwe alsoincludethe headword of the PP

http://mallet.cs.umass.edu
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nodeandthefeaturecombinatiorof theverbandthe
headword of the PPnode.

In additionto the featureslisted above, the Ar-
gumentClassificationcomponentalso containsthe
following features: the verb, the first and the last
content word of the constituentthe phrasal type
of the left sibling andthe parentnode, voice (pas-
sive or active), position of the constituentelative to
theverb,thesubcategorizationframe, andthesyn-
tactic frame which describeghe sequentiapattern
of thenounphrasesndtheverbin thesentence.

2.4 PostProcessing

Thepostprocessingomponentneigesadjacentlis-
continuousargumentsand marks the R-aiguments
basednthe contentword andphrasetype of thear
gument. Also it filters out agumentsaccordingto
thefollowing constraints:

1. Thereareno overlappingarguments.
2. Thereareno repeatingcorearguments.

In orderto combinethedifferentsystemswe also
includea voting scheme.The algorithmis straight-
forward: SupposehereareN participatingsystems,
we pick argumentswith N votes,N-1 votes..., and
finally 1 vote. The way to breaka tie is basedon
the confidencelevel of the agumentgiven by the
system. Whenerer we pick an agument,we need
to checkwhetherthis agumentconflicts with pre-
viously selectecargumentshasedon the constraints
describedabore.

3 Training a Parser with Semantic
ArgumentInformation

A good startis always important, especiallyfor a
successfuBRL system.Insteadof passvely accept-
ing candidateconstituentsrom the upstreamsyn-
tactic parsey an SRL systemneedsto interactwith
the parserin orderto obtainimproved performance.
This motivatedour first attemptwhichis to integrate
syntacticparsingand semanticparsingas a single
step,andhopefully asa resultwe would be ableto
discardthe SRL pipeline. The ideais to augment
the PennTreebankMarcusetal., 1994)constituent
labelswith the semanticrole labelsfrom the Prop-
Bank(Palmeretal., 2005),andgeneratarich train-
ing corpus. For example,if an NP is alsoan ar-



gumentARGO of a verb in the given sentencewe

changethe constituentabel NP into NP-ARGO. A

parserthereforeis trainedon this new corpusand
shouldbeableto seneasanSRL systematthesame
time aspredictinga parse.

However, this ideal approachis not feasible.
Giventhefactthattherearemary differentsemantic
role labelsandthe sameconstituentanbe different
argumentsof differentverbsin the samesentence,
the numberof constituentabelswill soongrow out
of controlandmalke theparsetrainingcomputation-
ally infeasible.Not to mentionthatanchorverbin-
formationhasnot yet beenaddedto the constituent
label, and generaldatasparsenessAs a compro-
mise,we decidedto integrateonly Argumentiden-
tification with syntacticparsing. We generatedhe
training corpusby simply markingthe constituents
which arealsosemanti@rguments.

4 Parsing Experiments

We trained a maximum-entrop parser based
on (Ratnaparkhi, 1999) usingthe OpenNLPpack-
age?. We startedour experimentswith this specific
parsingmplementatiorbecausef its excellentflex-

ibility thatallows us to testdifferentfeatures. Be-

sidesthis parsercontaingour clearparsereebuild-

ing stages:TAG, CHUNK, BUILD, and CHECK.

This parsingstructureoffers usanisolatedworking

environmentfor eachstagehathelpsusconfinenec-
essarymplementatiormodificationsandtracedown

implementatiorerrors.

4.1 Data Preparation

Following standardpractice,we use Sec 02-21 of
the PennTreebankandthe PropBankasourtraining
corpus. The constituentabelsdefinedin the Penn
Treebankconsistof a primarylabelandseveral sec-
ondarylabels. A primarylabelrepresentshe major
syntacticfunction carriedby the constituentfor in-
stanceNP indicatesa nounphraseandPPindicates
a prepositionalphrase. A secondaryabel, starting
with ”-”, representgitheragrammaticafunctionof
a constituentor a semanticfunction of an adjunct.
For example, NP-SBJmeansthe noun phraseis a
surfacesubjectof the sentencePP-LOCmeanshe
prepositionaphrases alocation. Althoughthe sec-

2http://sourcefage.net/projects/opennlp/
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ondarylabelsgive us muchto encouragenforma-
tion, becausef datasparsenesgroblemandtrain-
ing efficiency, we strippedoff all the secondarya-
belsfrom the PennTreebank.

After strippingoff the secondanjabelsfrom the
PennTreebank,we augmentthe constituentiabels
with the semanticargumentinformation from the
PropBank. We adoptedfour differentlabels,-AN,
-ANC, -AM, and-AMC. If the constituentin the
Penn Treebankis a core argument, which means
the constituenhasoneof thelabelsof ARG0O-5and
ARGA in the PropBankwe attach-AN to the con-
stituentlabel. Thelabel-ANC meangheconstituent
is a discontinuouscore agument. Similarly, -AM
indicatesan adjunct-like agument, ARGM, and -
AMC indicatesa discontinuousARM.

For example, the sentencdrom Sec02, [ARGO
The luxury auto maker] [ARGM-TMP last year]
sold [ARG1 1,214 cars] [ARGM-LOC in the U.S],
would appearin the following formatin our train-
ing corpus: (S (NP-AN (DT The) (NN luxury) (NN
auto) (NN maker) ) (NP-AM (JJ last) (NN year) )
(VP (VBD sold) (NP-AN (CD 1,214) (NNS cars) )
(PP -AM (INin) (NP (DT the) (NNP U.S)))))

4.2 The 2 Differ ent Parsers

Since the core agumentsand the ARGMs in the
PropBankloosely correspondo the complements
andadjunctsin the linguisticsliterature,we arein-
terestedin investigating their individual effect on
parsingperformance.We trainedtwo parsers.An
AN-parserwas trained on the PennTreebankcor-
pusaugmentedvith two semanticargumentlabels:
-AN, and-ANC. AnotherAM -parsemvastrainedon
labels-AM, and-AMC.

5 Resultsand Discussion

Table 1 shows the resultsafter combining various
SRL systemausingdifferentparsersin orderto ex-
plorethe effectsof combining,we includethe over-
all performanceon the developmentdatasetf indi-
vidual SRL systemsn Table2.

The performanceof Semantic Role Labeling
(SRL) is determinedby the quality of the syntactic
information provided to the system. In this paper
we investicate that for the SRL task whetherit is
moresuitableto usea parsentrainedwith datacon-



Precision] Recall | Fg—;
Development 75.70% | 69.99% | 72.73
TestWSJ 77.51% | 72.97% | 75.17
TestBrown 67.88% | 59.03% | 63.14
TestWSJ+Bravn 76.31% | 71.10% | 73.61
TestWSJ | Precision| Recall | Fg—;
Overall 77.51% | 72.97% | 75.17
A0 85.14% | 77.32% | 81.04
Al 77.61% | 75.16% | 76.37
A2 68.18% | 62.16% | 65.03
A3 66.91% | 52.60% | 58.90
A 77.08% | 72.55% | 74.75
A5 100.00% | 40.00% | 57.14
AM- ADV 59.73% | 51.58% | 55.36
AM CAU 67.86% | 52.05% | 58.91
AM DI R 65.67% | 51.76% | 57.89
AM DI S 80.39% | 76.88% | 78.59
AM EXT 78.95% | 46.88% | 58.82
AM LOC 57.43% | 55.37% | 56.38
AM MN\R 54.37% | 56.10% | 55.22
AM MOD 96.64% | 94.01% | 95.31
AM NEG 96.88% | 94.35% | 95.59
AM PNC 41.38% | 41.74% | 41.56
AM PRD 50.00% | 20.00% | 28.57
AM REC 0.00% | 0.00% | 0.00
AM TMP 77.13% | 74.15% | 75.61
R- A0 86.82% | 85.27% | 86.04
R- Al 67.72% | 82.05% | 74.20
R- A2 46.15% | 37.50% | 41.38
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R- AM LOC | 100.00% | 42.86% | 60.00
R-AM MNR | 33.33% | 33.33% | 33.33
R- AM TMP 78.57% | 63.46% | 70.21
R-C- Al 0.00% | 0.00% | 0.00
[V | 97.35%] 95.54%] 96.44 |

Tablel: Overall results(top) anddetailedresultson
the WSJtest(bottom).

taining both syntacticbracleting and semanticar
gumentboundaryinformationthana puresyntactic
one.

The resultsof the SRL systemsusing the AM-
or AN- parsersarenot significantly betterthanthat
usingthe Charniaks parser This might dueto the
simple training mechanisnof the baseparsingal-
gorithmwhichthe AM- andAN- parsersxploit. It
alsosuggestsur futurework to applythe approach
to moresophisticategharsingframavorks. By then,
We shawv that we can boostthe final performance
by combiningdifferentSRL systemsusingdifferent
parsersgiventhatthe combinationalgorithmis ca-
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Precision| Recall | Fg—:
AN-parser 71.31% | 63.68% | 67.28
AM-parser 74.09% | 65.11% | 69.31
Charniak 76.31% | 64.62% | 69.98
All 3combined| 75.70% | 69.99% | 72.73

Table 2: Overall resultson the developmentset of
individual SRL systems.

pable of maintainingthe quality of the final argu-
ments.
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