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Abstract

We present a Bayesian model for
the representation, acquisition and use
of argument structure constructions,
which is founded on a novel view of
constructions as a mapping of a syntac-
tic form to a probability distribution
over semantic features. Our compu-
tational experiments demonstrate the
feasibility of learning general construc-
tions from individual examples of verb
usage, and show that the acquired
knowledge generalizes to novel or low-
frequency situations in language use.

1 Argument Structure Constructions

Construction grammars posit that, in addition
to the idiosyncratic meanings associated with
individual words or morphemes, meaning may
also be directly associated with syntactic forms
(e.g., Fillmore et al., 1988; Lakoff, 1987). In par-
ticular, an argument structure construction is
a mapping between fundamental verb-argument
relations and the syntax used to express them,
as in (1) and (2) from Goldberg (1995).!

(1) Subj V Obj Objs < X CAUSE Y RECEIVE Z
Ex: Pat fazed Bill the letter.

(2) Subj V Oblique < X MOVE Y
Ex: The fly buzzed into the room.

Associations between argument configurations
(such as the transitive) and semantic features
!Such constructions serve a similar purpose to linking

rules (e.g., Pinker, 1989) or the event structure templates
of Rappaport Hovav and Levin (1998).
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(such as causation) capture important linguis-
tic regularities, and appear to play a role
in both child language acquisition (Gleitman,
1990; Naigles, 1990; Fisher, 2002) and adult
sentence interpretation (Bencini and Goldberg,
2000). An established form-meaning mapping
may even impose an “unusual” meaning when a
verb is used in a manner that is not typical for it.
For example, in (2) above, using the verb buzzed
in a construction with a path argument induces
a semantics of movement as well as the stan-
dard sound emission sense for the verb (Gold-
berg, 1995).

A theory of grammar that includes argu-
ment structure constructions (henceforth, sim-
ply “constructions”) as an organizing compo-
nent of predicate knowledge must address a
number of questions concerning the nature, ac-
quisition and use of such constructions, namely:

e Precisely what constitutes the

meaning mapping of a construction?

form-

e How are general constructions learned from

specific usages of verbs?

e What role do constructions play in language

interpretation and production?

We have developed a Bayesian model of lan-
guage acquisition and processing that has been
shown to mimic children’s behaviour in form-
ing word order generalizations, and in recovering
from overgeneralizations without negative evi-
dence (Alishahi and Stevenson, 2005). In this
paper, we describe how the model enables a new
view on the nature of constructions, thus provid-
ing an answer to the first question above which
leads to interesting consequences for the others.
Specifically, each construction is not simply a
form-meaning pair (as in (1) and (2) above),
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but rather maps a form to a probability distri-
bution over the associated elements of meaning.
The probabilistic nature of constructions in the
model enables it to capture both statistical ef-
fects in language learning, and adaptability in
language use.

Statistical patterns are widely accepted to
play a role in language acquisition, and work
on construction learning has taken a usage-
based approach (e.g., Goldberg, 1995; Lan-
gacker, 1999; Tomasello, 2000). Our model elab-
orates on this view in the context of our as-
sumption of a probabilistic form-meaning map-
ping. Constructions arise through an unsu-
pervised Bayesian categorization process that
groups verb usages according to probabilities
over the properties of the verb and its argu-
ments. HKach group forms a construction in
which the semantic primitives occurring most
frequently across the group have the high-
est probabilistic association with the syntactic
form. We demonstrate in computational ex-
periments that such primitives are typically the
more general semantic properties, modeling the
ability of a child to capture argument struc-
ture regularities by inducing general construc-
tions from individual usages.

The probabilistic nature of our view of con-
structions also influences the properties of lan-
guage use, which we formulate as a Bayesian
prediction problem. For example, in produc-
tion, the model predicts the syntax to express an
intended semantics, while in comprehension, it
predicts (some of) the semantics of an observed
utterance. Constructions enable the model to
generalize observed patterns of association to
new or low-frequency situations. This property
underlies our further experimental results that
mimic children’s ability to infer the basic se-
mantics of a novel verb from its usage. This
property extends to the use of a known verb in
an unusual pattern (cf. (2) above): we addition-
ally show that the model can associate a novel
construction with a verb while avoiding inappro-
priate overgeneralizations.
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Scene-Utterance Input Pair
PUT[cquse, move] (MOM agenty» TOYS(themey > IN[(BOXES goa1y )
Mom put toys in bozes.

Extracted Argument Structure Frame

head verb put

verb sem. primitives | (cause, move)

args | roles (agent, theme, goal)
categories® {(human, concrete, dest-pred)
syntactic pattern argl verb arg2 arg3

%Extracted from a representation of the child’s ontology.

Figure 1: An input pair and extracted frame.

2 Probabilistic Constructions

2.1 Argument Structure Frames

In our view, a construction is a group of indi-
vidual verb usages, the latter of which we repre-
sent as argument structure frames. Each frame
records the syntactic pattern of a verb usage,
along with the semantic properties of the verb
and its arguments in that pattern. Our model
extracts the features of a frame from an in-
put observation in the form of a scene-utterance
pair: the perceived utterance (what the child
hears), and a logical form representation of the
relevant aspect of the observed scene (the se-
mantics described by the utterance).? Figure 1
shows a sample input pair and the extracted
frame.

2.2 Constructions as Groups of Frames

Each construction is a group of extracted frames
which share a common syntax—i.e., a particu-
lar syntactic configuration of arguments.> Be-
cause the semantic properties of such usages
may vary in their particulars, elements of mean-
ing in a construction are probabilistically asso-
ciated with the syntactic form. For example,
usages such as Jay got a tower and Kay made
a tower may yield frames that form a (transi-
tive) construction. While the frames share the
verb semantic primitive act, they differ in others
(possess for the former, and become for the lat-
ter). If this observation holds across a number

*We assume that the (non-trivial) task of picking out
the utterance semantics from the full scene representation
has been performed (as in Siskind, 1996, for example).

3Though note that not all frames with the same syn-
tax necessarily form a single construction.



Sbj V Sbj V Obj
1 19 11 30

Sol |o]—lobo

eat come take

Figure 2: A portion of the lexicon showing 2
constructions. Circles represent frames.

of usages that exhibit this form, then we would
find a higher probability for the primitive act
given this construction than for the others. In
this way, constructions probabilistically general-
ize the semantics of a set of frames.

Each verb with an observed usage that partic-
ipates in a construction has a link to that con-
struction in the lexicon. The links are weighted
by the frequency with which the verb has been
seen in a compatible frame, capturing the sta-
tistical usage pattern of the verb. These fre-
quencies are also used in the calculation of the
probabilities of association between a construc-
tion and the features occurring in its observed
frames. Moreover, the sum of its incoming link
frequencies contributes to the overall probability
of a construction. Figure 2 illustrates a portion
of the acquired lexicon; in the next section, we
describe how the link between a frame and a
construction is established.

3 Acquisition of Constructions

3.1 Overview

Every new frame is input to an incremen-
tal Bayesian clustering process that groups the
new frame together with an existing group of
frames—a construction—that probabilistically
has the most similar properties to it. If none of
the existing constructions has sufficiently high
probability, then an entry for a new construc-
tion is created, containing only the new frame.
The probability of each construction for the
frame is determined by both syntactic and se-
mantic features. Currently, a construction with
a different syntactic pattern from that of the
frame, or a different set of argument roles, would
have a very low probability. The probability of
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the semantic primitives of the verb, as well as
the semantic categories of its arguments, is de-
termined by how frequently those of the frame
occur across the frames of the candidate con-
struction. Because these probabilities may be
calculated over partial information, we can sim-
ulate learning in the face of an incomplete frame.

3.2 Details of the Learner

The Bayesian approach we use is an adaptation
of a model of human categorization proposed
by Anderson (1991), which incrementally groups
perceived items (in our case, frames) into cate-
gories of items with similar features (in our case,
constructions).* It is important to note that
the categories (i.e., constructions) are not pre-
defined, but rather are determined by the simi-
larity patterns over observed frames.

Grouping a frame F' with other frames partic-
ipating in construction k is formalized as finding
the k with the maximum probability given F":

BestConstruction(F') = argmax P(k|F) (1)
k

where k ranges over the indices of all construc-
tions, including an index of 0 to represent recog-
nition of a new construction. Using Bayes rule,
and dropping P(F') which is constant for all k:

P(k)P(F|k)

P(HF) = = s ~ PBP(FR)  (2)

The prior probability of k is given by:®

Nk
P(k) =
() n+1

(3)

where n is the total number of observed frames;
ny, is the number of frames participating in con-
struction k, for £ > 0; and ng = 1. Thus, the
prior for an existing construction is proportional
to the frequency of its frames, and that of a
new construction is inversely proportional to the
number of observed frames overall. The prior
probability estimation for each construction fol-
lows the intuition that it is more probable for

“In Alishahi and Stevenson (2005), we referred to
these categories as ‘classes’; we use the terms ‘construc-
tions’ and ‘classes’ interchangeably to refer to a group of
similar frames.

SThis is the formula used by Anderson (1991) with his
“coupling probability” set to the mid value of 0.5.



a frame to come from a more entrenched con-
struction (i.e., one with more frames), and that
as the number of the observed frames increases,
the probability that a frame comes from a new
construction decreases.

The probability of a frame F is expressed
in terms of the individual probabilities of its
features (shown above in Figure 1). To make
the calculation feasible, we assume that these
features are independent; thus, the conditional
probability of a frame F' is the product of the
conditional probabilities of its features:

I

1€ FrameFeatures

P(F|k) = P;(jlk) (4)

where j is the value of the i*" feature of F, and
P;(j|k) is the probability of displaying value j
on feature 4 within construction k. This proba-
bility is estimated using a smoothed maximum
likelihood formulation, reflecting the emphasis
on usage statistics in child language acquisition.

4 Language Use as Prediction

4.1 Overview

We formulate language use (production and
comprehension) as a prediction process, in which
missing features in a frame are set to the most
probable values given the available features. If
a usage of a verb is sufficiently complete and
frequent, then it will have a strong influence on
the determination of unknown features. On the
other hand, constructions play an important role
in the face of missing or low-confidence verb-
based information, because a prediction based
on a construction generalizes over all its frames.
This enables the model to produce or under-
stand a verb in a novel (for that verb) syntactic
pattern, as long as semantically similar verb us-
ages have been observed.

4.2 Details of the Prediction Process

To integrate verb-based and construction-based
knowledge, we must extend the prediction as-
pect of the model of Anderson (1991). We begin
with his prediction formula:
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(5)

= argmax 3 PG P(HIE)
k

BestValue;(F') = argmax P;(j|F)
J

where F' is a partial frame, ¢ is a missing fea-
ture, j ranges over possible values of ¢, and k
ranges over all categories. Intuitively, the model
generalizes over the items within a category to
predict the most probable value for the miss-
ing feature across those items (P;(j|k)); this is
then weighted by the probability of the category
given the partial frame (P(k|F)).

However, the structure of our acquired knowl-
edge is more complex than that of Anderson’s
model. Specifically, we have two groups of
items over which we might generalize: in ad-
dition to the groupings of frames into construc-
tions (which would be indicated by the formula
above), we also have the groups of frames asso-
ciated with each verb.

Given the importance of verb-based knowl-
edge in language acquisition (Tomasello, 2000),
we begin by focusing only on the frames associ-
ated with the verb v in frame F"

P(j|IF) = Y Pi(jlky)P(ky|F)
ky€C(v)

(6)

where C(v) is the set of constructions linked to
by the frames of verb v. This formulation gen-
eralizes over the constructions associated with a
verb, but ignores all other constructions. This
unnecessarily restricts the model when a partial
frame for a verb does not match well with any
frame previously seen for that verb, but may be
compatible with another learned construction.
To allow more general knowledge of construc-
tions to influence the prediction process, we
find the best construction for a partial frame
F during prediction as if it were a newly ob-
served frame to be learned. We apply our
Bayesian learner to determine the most compat-
ible construction kg for the partial frame F' us-
ing eqn. (1), and temporarily insert the frame
into the lexical entry for v with a frequency of 1



on the link to k.5 This ensures that the over-
all best construction is taken into consideration,
along with the constructions associated with the
verb, in predicting values for a partial frame.
P(ky|F) in eqn. (6) is rewritten using Bayes
rule and dropping the P(F) term (cf. eqn. (2)):

P(ky|F) = P(ky) P(F|ky) (7)

P(F|ky) is determined as in eqn. (4), using a
uniform probability distribution over the possi-
ble values of the missing feature. In calculating
P(ky), the frequency of each construction (its
number of frames) is weighted by the frequency
of v’s frame which links to it, balancing the over-
all likelihood of the construction with the likeli-
hood that it is a construction for v:

Nk

v

Zkv/EC(v) Mk

wy x freq(v, kv)  (8)

v

where ny, is the frequency of the construction
k,, C(v) is the set of constructions linked to by
the frames of verb v, freq(v, ky) is the frequency
of v’s frame which links to construction k,, and
freq(v,kr) = 1. The prior probability P(k,) is
then calculated by normalizing the weight wy,
from eqn. (8):

P(k,) Ok

=—="°* 9
Zkv/ec(v) Wk, ©)
A vparticularly interesting situation arises

when the best overall construction, kp, is pre-

viously unseen for v. The calculation for P(k,)

entails that kr generally has less influence the

more often the verb has been seen overall; that
is, greater weight from v’s observed frames to
their constructions will outweigh the influence
of the single partial frame to its “new” construc-
tion. This factor is responsible for recovery from
overgeneralization errors (Alishahi and Steven-
son, 2005). However, this effect is modulated by
the other factor, P(F|k,). If the partial frame

F' is more compatible with the “new” construc-

tion than with an existing construction for v,

the use of kr may increase in probability even

for a frequent verb. This can be the situation in
productive generalizations (the use of “unusual”

5Note that kr may or may not be a construction al-
ready linked to by a frame of v.
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constructions), as we demonstrate in our exper-
imental results below.

5 Experimental Materials

For our computational experiments, we au-
tomatically create input corpora—sequences
of scene-utterance pairs—using early-acquired
verbs in distributional patterns of child-directed
speech. The input-generation lexicon includes
the 13 most frequent verbs in mother’s speech
across three children in CHILDES (age 1;6 to
5;1), along with their argument structure frames
and associated frequencies, determined through
manual analysis of the children’s conversations.
Additional words in the lexicon include preposi-
tions used in the same conversations, as well as
a small number of nouns.

We enumerated a set of 9 primitives for de-
scribing the coarse-level semantics of a verb (act,
cause, move, become, etc.), along with features
as needed to capture finer-grained meaning dis-
tinctions (such as consume and rest). The se-
mantic categories of the nouns were selected to
reflect a simplified early ontology of a child. We
assume that at the stage of acquisition being
modeled, these features, along with the seman-
tic roles of the arguments, can be largely deter-
mined by the child from the observed scene. The
corresponding syntactic forms are simplified to
indicate the order of arguments, with words used
only in their root form.

For each simulation, a random sequence of in-
put pairs is produced from the input-generation
lexicon, using the frequencies to determine the
probabilities of selecting a particular verb and
argument structure for each input. Argu-
ments which are predicates (such as preposi-
tional phrases) are constructed recursively. To
simulate noise, every third input pair in every
generated corpus has one of its features ran-
domly removed. During a simulation, each miss-
ing feature is replaced with the most probable
value predicted at that point in learning, corre-
sponding to a child learning from her own in-
ferred knowledge. The resulting input data is
noisy, especially in the initial stages of learning.



6 Experimental Results

We report computational experiments that
demonstrate the ability of our model to learn
constructions representing the knowledge of ar-
gument structure regularities, and to generalize
this knowledge to novel situations in language
use. All reported results are averaged over 10
simulations using different randomly generated
input corpora; all simulations use the same sys-
tem parameter settings.

We first show how general constructions
emerge as the model is exposed to verb usages
over time. We then turn to use of the construc-
tions in novel situations. We demonstrate that
the model induces the coarse meaning of an un-
known verb based on its syntactic usage, and
deals appropriately with cases where a verb ap-
pears in a usage that is unusual for it.

6.1 The Emergence of Constructions

Goldberg (1995) suggests that an argument
structure construction is a grouping of similar
verbs around a light verb, a semantically simple
and highly frequent verb such as go, make, or
giwe. The syntactic form and semantic proper-
ties of the core light verb determine the form-
meaning mapping of the construction.

We propose an alternative view, in which
constructions arise regardless of the general-
ity of any particular verb’s semantic properties.
(Though constructions may be more likely to
form around light verbs due to their frequency.)
Even if none of its individual verb usages is se-
mantically simple, the more-basic verb semantic
primitives associated with a construction will,
over time, increase in probability. While an in-
creasing number of semantic primitives may be
associated with a construction given exposure to
a greater variety of verbs, the more-basic seman-
tic primitives will become entrenched because
they will be observed across many more frames.

Simple intransitive and transitive construc-
tions emerge consistently in all our simulations.
Table 1 shows the probabilistic association of
verb semantic primitives with the intransitive
usage (“Subj V”), after 100 and after 1000 in-
put pairs (averaged over 10 simulations). The
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Verb Sem. # Input Pairs
Primitives 100 1000
act .47 .50
move .37 .34
manner .09 11
consume .01 .03
rest .01 .01
possess .01 1074
cause .01 10~%
become .01 10—4
change-state .01 10—4
perceive .01 10~%
contact .01 10—4

Table 1: Probabilities of semantic primitives as-
sociated with an intransitive construction.

probabilities indicate that the construction has
a very strong bias toward the general primi-
tives act and move. Although a few primitives
that are variously associated with some intran-
sitive verb usages increase slightly in probabil-
ity (manner, consume, and rest), the remaining
primitives drop off to negligible values. An ex-
amination of the transitive construction shows
a similar pattern, with primitives act, possess,
and cause strongly entrenched after 1000 inputs.

6.2 Inferring Verb Meaning

A number of experiments have indicated that
children use the evidence of syntactic form to
infer general semantic properties of a novel
verb (e.g., Naigles, 1990; Fisher, 2002), a phe-
nomenon known as syntactic bootstrapping
(Gleitman, 1990). For example, Naigles (1990)
showed that children who heard an intransitive
utterance with a novel verb (Ur:The bunny and
duck are blicking) were more likely to look at
a picture of two characters independently per-
forming an action, while those who heard a sim-
ilar transitive form (Ur: The bunny is blicking
the duck) were more likely to look at a picture
of one character (the bunny) performing an ac-
tion on the other, when told to “find” the novel
action in the pair of scenes. The children have
learned a reliable association between a syntac-
tic form (such as the transitive) and a coarse
semantics for the expressed event (i.e., one par-
ticipant causally affecting another), and are able
to determine the scene that is more compati-
ble with an utterance according to this acquired
knowledge.

We demonstrate this ability in our model as



follows. We create scene representations corre-
sponding to the pictures shown to the children:
Sca @ BLICK[cause,act] (DUCK (4genty; BUNNY (1emey )

Sa: BLICK[,(AND(DUCK, BUNNY) (4genty)

In one condition, analogous to the child hearing
the transitive form, each of the above scenes is
combined with the transitive utterance, U, to
form two input pairs, Sga-Ur and S4-Ur. The
former input pair corresponds to the appropriate
selection of the scene to go along with the per-
ceived utterance, and the latter to the inappro-
priate selection. (We form analogous pairings
with the intransitive form, U;.) We then (sep-
arately) input each pair to our model to have
it extract a corresponding frame F' and deter-
mine the best construction k for it. The model
records the value from eqn. (1), P(k|F), as its
response to each input.

If the input pair yields a frame that matches
an existing construction—that is, if the scene-
utterance combination corresponds to a reli-
able association in the model—then the value of
P(k|F) will be higher than if no such construc-
tion exists. (In the latter case, the best con-
struction is a new one, with low prior probabil-
ity.) Thus, when comparing the values recorded
in response to the appropriate and inappropri-
ate pairing for each utterance, a higher value of
P(Ek|F) corresponds to the child “recognizing”
the appropriate scene for the utterance.

Table 2 shows the value of log P(k|F') across
the conditions, after varying amounts of learning
(10, 100, and 1000 input pairs; averaged over
10 simulations). The sizable difference between
the two (matched and unmatched) pairs for each
utterance type mimics the child’s ability to pick
out the appropriate scene for an utterance based
on learned argument structure regularities.

6.3 The Use of Unusual Constructions

Like children, the model mistakenly overgener-
alizes, but recovers from these errors only by
receiving additional positive evidence (Alishahi
and Stevenson, 2005). However, this ability
to converge on appropriate argument structures
for each verb should not prevent the language
learner from making productive generalizations
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Utter- # Input Pairs
ance Scene 10 | 100 | 1000
Ur Sca (matched) -5 -5 -5
Sa (unmatched) | -9 | -10 -11
Ur Sca (unmatched) | -12 | -13 -14
Sa  (matched) -4 -3 -3

Table 2: log P(k|F) for matched and unmatched
scene-utterance pairs.

such as The fly buzzed into the room (cf. exam-
ple (2) in Section 1).

We test our model with a verb appearing in
an unusual (for that verb) construction, to see
whether the model can determine appropriate
semantic properties. We add a new verb dance
to the input generation lexicon, with one frame:

head verb dance

verb sem. primitives | {act, manner)

args | roles {agent)
categories {animate)

syntactic pattern argl verb

After training on 1000 input pairs, in which
dance appears only intransitively, we present the
model with the following scene-utterance pair:
DANCE([777 (KITTY (), DOGGY (7y, UNDER;(TABLE) 7))
kitty dance doggy under table
The scene representation has been modified to
remove the semantic primitives of the verb and
the roles of the arguments. Given this partial
input, the model must predict multiple missing
semantic features, based on the utterance.

Averaged across 10 simulations, the model
predicts novel semantic primitives for the verb
dance in this usage with a probability of .49 for
cause, 43 for move, and negligible probabili-
ties for other primitives. The roles predicted
for the arguments, with associated probabili-
ties, are agent (.90), theme (.94), and goal (.99).
The model has generalized the feature values of
a construction corresponding to the usage of a
verb such as put, shown above in Figure 1.

We test this ability in sentence production as
well, presenting the model with the full scene
representation and predicting the most proba-
ble syntactic pattern. The sentence kitty dance
doggy under table is produced as expected.

Unlike overgeneralization errors, the ability of



the model to generate novel utterances for un-
usual situations (or comprehend the meaning of
the unusual utterances) does not fade over time
by processing more input. Crucially, in these
“unusual” cases, the model has not learned a
verb-specific frame that sufficiently matches the
partial frame to be processed. Therefore, the
only reliable knowledge source is a matching
construction (if such a construction exists). This
property of the model embodies the interaction
of entrenchment and statistical preemption in
construction use suggested by Goldberg (2005).

7 Related Computational Models

Some recent usage-based models of language ac-
quisition handle syntax/semantics interaction,
and generalization to novel situations (Allen,
1997; Niyogi, 2002). For example, Niyogi (2002)
proposes a Bayesian model that shows how syn-
tactic and semantic features of verbs interact to
support learning. In contrast to our model, the
structure of the verb classes and their probabili-
ties, as well as the probabilities of verbs showing
particular features, are all fixed. The connec-
tionist model of Allen (1997) is able to make
interesting generalizations over argument struc-
ture syntax and semantics. However, learning
of general constructions is implicit, and the ac-
quired knowledge cannot be used in any lan-
guage task other than limited comprehension.
Only a few computational models directly ad-
dress learning of argument structure construc-
tions. Chang (2004) presents a computational
model which learns lexical constructions as a
mapping between graphical representations of
form (typically word order) and meaning (typ-
ically role-filler bindings) from annotated child
data. Unlike our model, this approach relies on
noise-free input and extensive prior knowledge,
and constructions are not generalized across
verbs. The model of Dominey (2003) learns
constructions from narrated video images. The
model successfully assigns semantic roles in fa-
miliar data, and allows limited generalization of
this ability over new verbs. However, in contrast
to our approach, learning is highly dependent on
the unrealistic assumption of having each form
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uniquely identify the associated meaning (i.e.,
forms and meanings are in a one-to-one map-

ping).
8 Discussion

We have described a Bayesian model for the
representation, acquisition and use of argument
structure constructions in a usage-based frame-
work. The results of computational experi-
ments with the model demonstrate the feasibil-
ity of learning general constructions from indi-
vidual examples of verb usage, even in the pres-
ence of noisy or incomplete input data. We
also show that the model can use its acquired
construction-based knowledge to generalize to
new or low-frequency verbs, or verbs appear-
ing in unusual constructions. These results stem
from our novel view of constructions as a map-
ping of a form to a probability distribution over
semantic features, and the corresponding formu-
lation of language learning and use as a Bayesian
categorization and prediction process.

Psycholinguistic evidence suggests that chil-
dren are aware of verb-independent regularities
in comprehension much earlier than they can
use them in production. Children may begin by
learning weak constructions which enable only
certain kinds of linguistic operations, but be-
come more robust over time (Tomasello and
Abbot-Smith, 2002). Our model follows this
trend: Constructions emerge early, and can be
used in recognizing appropriate scene-utterance
inputs as demonstrated here; however, in pro-
duction, the model generally exhibits an initial
strict imitative phase, before a construction is
entrenched enough to generalize (Alishahi and
Stevenson, 2005).

An important result of our model is that it
can account for recovery from overgeneraliza-
tion, while at the same time allowing for produc-
tive generalization of “unusual” constructions.
A question that arises is, what are the limita-
tions of using a verb in a novel construction?
Although many innovative uses of verbs are ac-
ceptable, many others are not. The distinction
seems to come from the fundamental semantic
properties of the verb; for example, one can say



I hammered the metal flat but not I played the
game finished. We are currently considering a
more sophisticated, fine-grained semantic rep-
resentation for verbs and scenes, to enable the
model to capture these effects.
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