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Abstract 

This paper describes a heuristic for 
morpheme- and morphology-learning 
based on string edit distance. 
Experiments with a 7,000 word corpus 
of Swahili, a language with a rich 
morphology, support the effectiveness 
of this approach. 

1 Introduction 

This paper describes work on a technique for the 
unsupervised learning of the morphology of 
natural languages which employs the familiar 
string edit distance (SED) algorithm (Wagner 
and Fischer 1974 and elsewhere) in its first 
stage;  we refer to it here as the SED heuristic. 
The heuristic finds 3- and 4-state finite state 
automata (FSAs) from untagged corpora. We 
focus on Swahili, a Bantu language of East 
Africa, because of the very high average number 
of morphemes per word, especially in the verbal 
system, a system that presents a real challenge to 
other systems discussed in the literature.1 

In Section 2, we present the SED heuristic, 
with precision and recall figures for its 
application to a corpus of Swahili. In Section 3, 
we propose three elaborations and extensions of 
                                                      
1 An earlier version of this paper, with a more detailed 
discussion of the material presented in Section 3, is 
available at Goldsmith et al (2005). 

this approach, and in Section 4, we describe and 
evaluate the results from applying these 
extensions to the corpus of Swahili.2  

2 SED-based heuristic 

Most systems designed to learn natural language 
morphology automatically can be viewed as 
being composed of an initial heuristic 
component and a subsequent explicit model. The 
initial or bootstrapping heuristic, as the name 
suggests, is designed to rapidly come up with a 
set of candidate strings of morphemes, while the 
model consists of an explicit formulation of 
either (1) what constitutes an adequate 
morphology for a set of data, or (2) an objective 
function that must be optimized, given a corpus 
of data, in order to find the correct 
morphological analysis.  

The best known and most widely used 
heuristic is due to Zellig Harris (1955) (see also 
Harris (1967) and Hafer and Weiss (1974) for an 
evaluation based on an English corpus), using a 
notion that Harris called successor frequency 
(henceforth, SF). Harris' notion can be 
succinctly described in contemporary terms: if 
we encode all of the data in the data structure 
known as a trie, with each node in the trie 
dominating all strings which share a common 

                                                      
2 SED has been used in unsupervised language learning in a 
number of studies; see, for example, van Zaanen (2000) 
and references there, where syntactic structure is studied in 
a similar context. To our knowledge, it has not been used in 
the context of morpheme detection. 

28



string prefix,3 then each branching node in the 
trie is associated with a morpheme break. For 
example, a typical corpus of English may 
contain the words governed, governing, 
government, governor, and governs. If this data 
is encoded in the usual way in a trie, then a 
single node will exist in the trie which represents 
the string prefix govern and which dominates 
five leaves corresponding to these five words. 
Harris's SF-based heuristic algorithm would 
propose a morpheme boundary after govern on 
this basis. In contemporary terms, we can 
interpret Harris’s heuristic as providing sets of 
simple finite state automata, as in (1), which 
generate a string prefix (PF1) followed by a set 
of string suffixes (SFi) based on the 
measurement of a successor frequency greater 
than 1 (or some threshold value) at the string 
position following PF1. 
(1)  

SF1

SF3

PF1 SF2

 
A variant on the SF-based heuristic, 

predecessor frequency (henceforth, PF), calls for 
encoding words in a trie from right to left. In 
such a PF-trie, each node dominates all strings 
that share a common string suffix. In general, we 
expect SF to work best in a suffixing language, 
and PF to work best in prefixing language; 
Swahili, like all the Bantu languages, is 
primarily a prefixing language, but it has a 
significant number of important suffixes in both 
the verbal and the nominal systems. 

Goldsmith (2001) argues for using the 
discovery of signatures as the bootstrapping 
heuristic, where a signature is a maximal set of 
stems and suffixes with the property that all 
combinations of stems and suffixes are found in 
the corpus in question. We interpret Goldsmith’s 
signatures as extensions of FSAs as in (1) to 

                                                      
3 We use the terms string prefix and string suffix in the 
computer science sense: a string S is a string prefix of a 
string X iff there exists a string T such that X = S.T, where 
“.” is the string concatenation operator; under such 
conditions, T is likewise a string suffix of X. Otherwise, we 
use the terms prefix and suffix in the linguistic sense, and a 
string prefix (e.g., jump) may be a linguistic stem, as in 
jump-ing. 

FSAs as in (2); (2) characterizes Goldsmith’s 
notion of signature in term of FSAs. In 
particular, a signature is a set of forms that can 
be characterized by an FSA of 3 states. 
(2)  

PF1 SF1

PF3 SF2

PF2

 
 

We propose a simple alternative heuristic 
which utilizes the familiar dynamic 
programming algorithm for calculating string-
edit distance, and finding the best alignment 
between two arbitrary strings (Wagner and 
Fischer 1974). The algorithm finds subsets of 
the data that can be exactly-generated by 
sequential finite state automata of 3 and 4 states, 
as in (3), where the labels mi should be 
understood as cover terms for morphemes in 
general. An automaton exactly-generates a set of 
strings S if it generates all strings in S and no 
other strings; a sequential FSA is one of the 
form sketched graphically in (1)-(3), where there 
is a unique successor to each state. 
(3)  

M1 M4

M3 M6

M2

M7

M9

M5 M8

 

2.1 First stage: alignments. 

If presented with the pair of strings anapenda 
and anamupenda from an unknown language, it 
is not difficult for a human being to come up 
with the hypothesis that mu is a morpheme 
inside a larger word that is composed of at least 
two morphemes, perhaps ana- and -penda. The 
SED heuristic makes this observation explicit by 
building small FSAs of the form in (4), where at 
most one of m1 or m4 may be null, and at most 
one of m2 and m3 may be null: we refer to these 
as elementary alignments. The strings m2 and m3 
are called counterparts; the pairs of strings m1 
and m4 are called the context (of the 
counterparts). (Indeed, we consider this kind of 
string comparison to be a plausible candidate for 
human language learning; see Dahan and Brent 
1999). 
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(4)  

1 432 4m1 m4

m3

m2

 
The first stage of the algorithm consists of 
looking at all pairs of words S, T in the corpus, 
and passing through the following steps:  

We apply several initial heuristics to 
eliminate a large proportion of the pairs of 
strings before applying the familiar SED 
algorithm to them, in view of the relative 
slowness of the SED algorithm; see Goldsmith 
et al (2005) for further details.  

We compute the optimal alignment of S and 
T using the SED algorithm, where alignment 
between two identical letters (which we call 
twins) is assigned a cost of 0, alignment between 
two different letters (which we call siblings) is 
assigned a cost of 1.5, and a letter in one string 
not aligned with a segment on the other string 
(which we call an orphan) is assigned a cost of 
1. An alignment as in (5) is thus assigned a cost 
of 5, based on a cost of 1.5 assigned to each 
broken line, and 1  to each dotted line that ends 
in a square box. 
(5)   

n i l i m u p e n d a

n i t a k a m u p e n d a  
There is a natural map from every alignment 

to a unique sequence of pairs, where every pair 
is either of the form (S[i], T[j]) (representing 
either a twin or sibling case) or of the form (S[i], 
0) or (0, T[j]) (representing the orphan case). We 
then divide the alignment up into perfect and 
imperfect spans: perfect spans are composed of 
maximal sequences of twin pairs, while 
imperfect spans are composed of maximal 
sequences of sibling or orphan pairs. This is 
illustrated in (6). 
(6)  

 
 
 
 
 
 

There is a natural equivalence between 
alignments and sequential FSAs as in (4), where 
perfect spans correspond to pairs of adjacent 
states with unique transitions and imperfect 
spans correspond to pairs of adjacent states with 
two transitions, and we will henceforth use the 
FSA notation to describe our algorithm. 

2.2 Collapsing alignments 

As we noted above (4), for any elementary 
alignment, a context is defined: the pair of 
strings (one of them possibly null) which 
surround the pair of counterparts. Our first goal 
is to collapse alignments that share their context. 
We do this in the following way. 

Let us define the set of strings associated 
with the paths leaving a state S as the production 
of state S. A four-state sequential FSA, as in (4), 
has three states with non-null productions; if this 
particular FSA corresponds to an elementary 
alignment, then two of the state-productions 
contain exactly one string—and these state-
productions define the context— and one of the 
state-productions contains exactly two strings 
(one possibly the null string)—this defines the 
counterparts. If we have two such four-state 
FSAs whose context are identical, then we 
collapse the two FSAs into a single conflated 
FSA in which the context states and their 
productions are identical, and the states that 
produced the counterparts are collapsed by 
creating a state that produces the union of the 
productions of the original states. This is 
illustrated in (7): the two FSAs in (7a) share a 
context, generated by their states 1 and 3, and 
they are collapsed to form the FSA in (7b), in 
which the context states remain unchanged, and 
the counterpart states, labeled ‘2’, are collapsed 
to form a new state ‘2’ whose production is the 
union of the productions of the original states. 
(7)  

a.  

1 432 4m1 m4

1 432 4m1 m4

m7

m8

m3

m2

 
 

n i   l i   m u p e n d a

n i   t a k a   m u p e n d a
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b. 

1 432 4m1 m4

m8

m7

m3

m2

 

2.3 Collapsing the resulting sequential 
FSAs 

We now generalize the procedure described in 
the preceding section to collapse any two 
sequential FSAs for which all but one of the 
corresponding states have exactly the same 
production. For example, the two sequential 
FSAs in (8a) are collapsed into (8b). 

Three and four-state sequential FSAs as in 
(8b), where at least two of the state-transitions 
generate more than one morpheme, form the set 
of templates derived from our bootstrapping 
heuristic. Each such template can be usefully 
assigned a quantitative score based on the 
number of letters “saved” by the use of the 
template to generate the words, in the following 
sense. The template in (8b) summarizes four 
words: aliyesema, alimfuata, anayesema, and 
anamfuata. The total string length of these 
words is 36, while the total number of letters in 
the strings associated with the transitions in the 
FSA is 1+4+12 = 17; we say that the FSA saves 
36-17 = 19 letters. In actual practice, the 
significant templates discovered save on the 
order of 200 to 5,000 letters, and ranking them 
by the number of letters saved is a good measure 
of how significant they are in the overall 
morphology of the language. We refer to this 
score as a template’s robustness; we employ this 
quantity again in section 3.1 below. 

By this ranking, the top template found in our 
Swahili corpus of 50,000 running words was one 
that generated a and wa (class 1 and 2 subject 
markers) and followed by 246 correct verb 
continuations (all of them polymorphemic); the 
first 6 templates are summarized informally in 
Table 1. We note that the third and fourth 
template can also be collapsed to form a 
template of the form in (3), a point we return to 
below. Precision, recall, and F-score for these 
experiments are given in Table 2.  

 

(8)   
a. 

1 432 4a yesema

na

li

1 432 4a mfuata

na

li

 
 
b.  

1 432 4a

na

li yesema

mfuata  
 

State 1 State 2 State 3 

a, wa (sg., pl. 
human subject 

markers) 

246 stems  

ku, hu 
(infinitive, 

habitual 
markers) 

51 stems  

wa (pl. subject 
marker) 

ka, li (tense 
markers) 

25 stems 

a (sg. subject 
marker) 

ka, li (tense 
markers) 

29 stems 

a (sg. subject 
marker) 

ka, na (tense 
markers 

28 stems 

37 strings w (passive 
marker) 

a 

Table 1 Top templates in Swahili 
 

 Precision Recall  F-score 

SED 0.77 0.57 0.65 

SF 0.54 0.14 0.22 

PF 0.68 0.20 0.31 
Table 2 Results 
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3 Further developments 

In this section, we describe three developments 
of the SED-based heuristic sketched in section 2. 
The first disambiguates which state it is that 
string material should be associated with in 
cases of ambiguity; the second collapses 
templates associated with similar morphological 
structure; the third uses the FSAs to predict 
words that do not actually occur in the corpus by 
hypothesizing stems on the basis of the 
established FSAs and as yet unanalyzed words 
in the corpus. 

3.1 Disambiguating FSAs 

In the case of a sequential FSA, when the final 
letter of the production of a (non-final) state S 
are identical, then that letter can be moved from 
being the string-suffix of all of the productions 
of state S to being the string-prefixes of all of 
the productions of the following state. More 
generally, when the n final letters of the 
productions of a state are identical, there is an n-
way ambiguity in the analysis, and the same 
holds symmetrically for the ambiguity that arises 
when the n initial letters of the production of a 
(non-initial) state.  

Thus two successive states, S and T, must (so 
to speak) fight over which will be responsible 
for generating the ambiguous string. We employ 
two steps to disambiguate these cases.  

Step 1: The first step is applicable when the 
number of distinct strings associated with states 
S and T are quite different in size (typically 
corresponding to the case where one generates 
grammatical morphemes and the other generates 
stems); in this case, we assign the ambiguous 
material to the state that generates the smaller 
number of strings. There is a natural motivation 
for this choice from the perspective of our desire 
to minimize the size of the grammar, if we 
consider the size of the grammar to be based, in 
part, on the sum of the lengths of the morphemes 
produced by each state. 

Step 2: It often happens that an ambiguity 
arises with regard to a string of one or more 
letters that could potentially be produced by 
either of a pair of successive states involving 
grammatical morphemes. To deal with this case, 
we make a decision that is also (like the 

preceding step) motivated by a desire to 
minimize the description length of the grammar. 
In this case, however, we think of the FSA as 
containing explicit strings (as we have assumed 
so far), but rather pointers to strings, and the 
“length” of a pointer to a string is inversely 
proportional to the logarithm of its frequency. 
Thus the overall use of a string in the grammar 
plays a crucial role in determining the length of 
a grammar, and we wish to maximize the 
appearance in our grammar of morphemes that 
are used frequently, and minimize the use of 
morphemes that are used rarely. 

We implement this idea by collecting a table 
of all of the morphemes produced by our FSA, 
and assigning each a score which consists of the 
sum of the robustness scores of each template 
they occur in (see discussion just above (8)). 
Thus morphemes occurring in several high 
robustness templates will have high scores; 
morphemes appearing in a small number of 
lowly ranked templates will have low scores. 

To disambiguate strings which could be 
produced by either of two successive states, we 
consider all possible parsings of the string 
between the states, and score each parsing as the 
sum of the scores of the component morphemes; 
we chose the parsing for which the total score is 
a maximum. 

 For example, Swahili has two common tense 
markers, ka and ki, and this step corrected a 
template from {ak}+{a,i}+{stems} to 
{a}+{ka,ki}+{stems}, and others of similar 
form. It also did some useful splitting of joined 
morphemes, as when it modified a template 
{wali} + {NULL, po} + {stems} to {wa} + {li, 
lipo} + {stems}. In this case, wali should indeed 
be split into wa + li (subject and tense markers, 
resp.), and while the change creates an error (in 
the sense that lipo is, in fact, two morphemes; po 
is a subordinate clause marker), the resulting 
error occurs considerably less often in the data, 
and the correct template will better be able to be 
integrated with out templates. 

3.2 Template collapsing 

From a linguistic point of view, the SED-based 
heuristic creates too many FSAs because it stays 
too close to the data provided by the corpus. The 
only way to get a more correct grammar is by 
collapsing the FSAs, which will have as a 
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consequence the generation of new words not 
found in the corpus. We apply the following 
relatively conservative strategy for collapsing 
two templates. 

We compare templates of the same number 
of states, and distinguish between states that 
produce grammatical morphemes (five or fewer 
in number) and those that produce stems (that is, 
lexical morphemes, identified as being six or 
more in number). We collapse two templates if 
the productions of the corresponding states 
satisfy the following conditions: if the states 
generate stems, then the intersection of the 
productions must be at least two stems, while if 
the states are grammatical morphemes, then the 
productions of one pair of corresponding states 
must be identical, while for the other pair, the 
symmetric difference of the productions must be 
no greater than two in number (that is, the 
number of morphemes produced by the state of 
one template but not the other must not exceed 
2).  

3.3 Reparsing words in the corpus and 
predicting new words 

When we create robust FSAs—that is, FSAs that 
generate a large number of words—we are in a 
position to go back to the corpus and reanalyze a 
large number of words that could not be 
previously analyzed. That is, a 4-state FSA in 
which each state produced two strings generates 
8 words, and all 8 words must appear in the 
corpus for the method described so far in order 
for this particular FSA to generate any of them. 
But that condition is unlikely to be satisfied for 
any but the most common of morphemes, so we 
need to go back to the corpus and infer the 
existence of new stems (as defined operationally 
in the preceding paragraph) based on their 
occurrence in several, but not all possible, 
words.  If there exist 3 distinct words in the 
corpus which would all be generated by a 
template if a given stem were added to the 
template, we add that stem to the template. 

4 Experiments and Results 

In this section, we present three sets of 
evaluations of the refinements of the SED 
heuristics described in the preceding section. We 
used a corpus of 7,180 distinct words occurring 

in 50,000 running words from a Swahili 
translation of the Bible obtained on the internet. 

4.1 Disambiguating FSAs 

In order to evaluate the effects of the 
disambiguating of FSAs described in section 
3.1, we compare precision and recall of the 
identification of morpheme boundaries using the 
SED method with and without the 
disambiguation procedure described above. In 
Figures 1 and 2, we graph precision and recall 
for the top 10% of the templates, displayed as 
the leftmost point, for the top 20% of the 
templates, displayed as the second point from 
the left; and so on, because the higher ranked 
FSAs are more intrinsically more reliable than 
the lower ranked ones. We see that 
disambiguation repairs almost 50% of the 
previous errors, and increases recalls by about 
10%. With these increases in precision and 
recall, it is clear that the disambiguating step 
provides a considerably more accurate 
morpheme boundary discovery procedure. 
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4.2 Template collapsing 

The second refinement discussed above 
consists of finding pairs of similar templates, 
collapsing them as appropriate, and thus creating 
patterns that generate new words that did not 
participate in the formation of the original 
templates. These new words may or may not 
themselves appear in the corpus. We are, 
however, able to judge their morphological well-
formedness by inspection. We list in Table 3 the 
entire list of eight templates that are collapsed in 
this step. 

All of the templates which are collapsed in 
this step are in fact of the same morphological 
structure (with one very minor exception4): they 
are of the form subject marker + tense marker + 
stem, and the collapsing induced in this 
procedure correctly creates larger templates of 
precisely the same structure, generating new 
words not seen in the corpus that are in fact 
correct from our (non-native speaker) 
inspection. We submitted the new words to 
Yahoo to test the words “existence” by their 
existence on the internet, and actually found an 
average of 87% of the predicted words in a 
template; see the last column in Table 3 for 
details. 

4.3 Reparsing 

After previous refinements, we obtain a 
number of robust FSAs, for example, those 
collapsed templates in Table 3. With them, we 
then search the corpus for those words that can 
only be partly fitted into these FSAs and 
generate associated stems. Table 4 shows the 
reparsed words that had not been parsed by 
earlier templates and also newly added stems for 
some robust FSAs (the four collapsed templates 
in Table 3).  Stems such as anza ‘begin’ and 
fanya ‘do’ are thus added to the first template, 
and all words derived by prepending a tense 
marker and a subject marker are indeed accurate 
words. As the words in Table 4 suggest, the 
reparsing process adds new, common stems to 
the stem-column of the templates, thus making it 

                                                      
4 The exception involves the distinct morpheme po, a 
subordinate clause marker which must ultimately be 
analyzed as appearing in a distinct template column to the 
right of the tense markers. 

easier for the collapsing function to find 
similarities across related templates. 

In future work, we will take use the larger 
templates, populated with more stems, and input 
them to the collapsing function described in 3.2.  

5 Conclusions 

On the basis of the experiments with Swahili 
described in this paper, the SED heuristic 
appears to be a useful tool for the discovery of 
morphemes in languages with rich 
morphologies, and for the discovery of the FSAs 
that constitute the morphologies of those 
languages. 

Ultimately, the value of the heuristic is best 
tested against a range of languages with complex 
concatenative morphologies. While a thorough 
discussion would take us well beyond the limits 
of this paper, we have applied the SED heuristic 
to English, Hungarian, and Finnish as well as 
Swahili. For English, unsurprisingly, the method 
works as well as the SF and PF methods, though 
a bit more slowly, while for Hungarian and 
Finnish, the results appear promising, and a 
comparison with Creutz and Lagus (2004) for 
Finnish, for example, would be appealing. 
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One Template 
 

The other template Collapsed Template 
% found on 

Yahoo search 
1 {a}-{ka,na}-{stems} {a}-{ka,ki}-{stems} {a}-{ka,ki,na}-{stems} 86 (37/43) 
2 {wa}-{ka,na}-{stems} {wa}-{ka,ki}-{stems} {wa}-{ka,ki,na}-{stems} 95 (21/22) 
3 {a}-{ka,ki,na}-{stems} {wa}-{ka,ki,na}-{stems} {a,wa}-{ka,ki,na}-{stems} 84 (154/183) 
4 {a}-{liye,me}-{stems} {a}-{liye,li}-{stems} {a}-{liye,li,me}-{stems} 100 (21/21) 
5 {a}-{ki,li}-{stems} {wa}-{ki,li}-{stems} {a,wa}-{ki,li}-{stems} 90 (36/40) 
6 {a}-{lipo,li}-{stems} {wa}-{lipo,li}-{stems} {a,wa}-{lipo,li}-{stems} 90 (27/30) 
7 {a,wa}-{ki,li}-{stems} {a,wa}-{lipo,li}-{stems} {a,wa}-{ki,lipo,li}-{stems} 74 (52/70) 
8 {a}-{na,naye}-{stems} {a}-{na,ta}-{stems} {a}-{na,ta,naye}-{stems} 80 (12/15) 

Table 3  Collapsed Templates and Created Words Sample. 
 
 

 
 

 Template Reparsed Words Not Parsed 
Before 

Added Stems  

1 {a, wa}-{ka,ki,na}-{stems} akawakweza, akiwa, anacho, 
akibatiza,  … 

toka, anza, waita, fanya, enda, … 

2 {a}-{li,liye,me }-{stems} ameinuka, ameugua, alivyo,  
aliyoniagiza,  … 

zaliwa, kuwa, fanya, sema 

3 {a, wa}-{ki,li,lipo}-{stems} alimtoboa,  alimtaka,  
waliamini,  … 

pata, kuwa, kaa, fanya, chukua, 
fika, … 

4 {a} – {na,naye,ta}-{stems} analazwa,  atanitukuza,  anaye,  
anakuita,   … 

ingia, sema 

Table 4 Reparsed words and "discovered" stems 
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