
Proceedings of the Second Workshop on Psychocomputational Models of Human Language Acquisition, pages 28–35,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

The SED heuristic for morpheme discovery:
a look at Swahili

Yu Hu and Irina Matveeva
Department of

Computer Science
The University of Chicago

Chicago IL 60637
yuhu@cs.uchicago.edu

matveeva
@uchicago.edu

John Goldsmith
Departments of Linguistics and

Computer Science
The University of Chicago

Chicago IL 60637
ja-goldsmith
@uchicago.edu

Colin Sprague
Department of Linguistics
The University of Chicago

Chicago IL 60637
sprague

@uchicago.edu

Abstract

This paper describes a heuristic for
morpheme- and morphology-learning
based on string edit distance.
Experiments with a 7,000 word corpus
of Swahili, a language with a rich
morphology, support the effectiveness
of this approach.

1 Introduction

This paper describes work on a technique for the
unsupervised learning of the morphology of
natural languages which employs the familiar
string edit distance (SED) algorithm (Wagner
and Fischer 1974 and elsewhere) in its first
stage; we refer to it here as the SED heuristic.
The heuristic finds 3- and 4-state finite state
automata (FSAs) from untagged corpora. We
focus on Swahili, a Bantu language of East
Africa, because of the very high average number
of morphemes per word, especially in the verbal
system, a system that presents a real challenge to
other systems discussed in the literature.1

In Section 2, we present the SED heuristic,
with precision and recall figures for its
application to a corpus of Swahili. In Section 3,
we propose three elaborations and extensions of

1 An earlier version of this paper, with a more detailed
discussion of the material presented in Section 3, is
available at Goldsmith et al (2005).

this approach, and in Section 4, we describe and
evaluate the results from applying these
extensions to the corpus of Swahili.2

2 SED-based heuristic

Most systems designed to learn natural language
morphology automatically can be viewed as
being composed of an initial heuristic
component and a subsequent explicit model. The
initial or bootstrapping heuristic, as the name
suggests, is designed to rapidly come up with a
set of candidate strings of morphemes, while the
model consists of an explicit formulation of
either (1) what constitutes an adequate
morphology for a set of data, or (2) an objective
function that must be optimized, given a corpus
of data, in order to find the correct
morphological analysis.

The best known and most widely used
heuristic is due to Zellig Harris (1955) (see also
Harris (1967) and Hafer and Weiss (1974) for an
evaluation based on an English corpus), using a
notion that Harris called successor frequency
(henceforth, SF). Harris' notion can be
succinctly described in contemporary terms: if
we encode all of the data in the data structure
known as a trie, with each node in the trie
dominating all strings which share a common

2 SED has been used in unsupervised language learning in a
number of studies; see, for example, van Zaanen (2000)
and references there, where syntactic structure is studied in
a similar context. To our knowledge, it has not been used in
the context of morpheme detection.

28

string prefix,3 then each branching node in the
trie is associated with a morpheme break. For
example, a typical corpus of English may
contain the words governed, governing,
government, governor, and governs. If this data
is encoded in the usual way in a trie, then a
single node will exist in the trie which represents
the string prefix govern and which dominates
five leaves corresponding to these five words.
Harris's SF-based heuristic algorithm would
propose a morpheme boundary after govern on
this basis. In contemporary terms, we can
interpret Harris’s heuristic as providing sets of
simple finite state automata, as in (1), which
generate a string prefix (PF1) followed by a set
of string suffixes (SFi) based on the
measurement of a successor frequency greater
than 1 (or some threshold value) at the string
position following PF1.
(1)

SF1

SF3

PF1 SF2

A variant on the SF-based heuristic,

predecessor frequency (henceforth, PF), calls for
encoding words in a trie from right to left. In
such a PF-trie, each node dominates all strings
that share a common string suffix. In general, we
expect SF to work best in a suffixing language,
and PF to work best in prefixing language;
Swahili, like all the Bantu languages, is
primarily a prefixing language, but it has a
significant number of important suffixes in both
the verbal and the nominal systems.

Goldsmith (2001) argues for using the
discovery of signatures as the bootstrapping
heuristic, where a signature is a maximal set of
stems and suffixes with the property that all
combinations of stems and suffixes are found in
the corpus in question. We interpret Goldsmith’s
signatures as extensions of FSAs as in (1) to

3 We use the terms string prefix and string suffix in the
computer science sense: a string S is a string prefix of a
string X iff there exists a string T such that X = S.T, where
“.” is the string concatenation operator; under such
conditions, T is likewise a string suffix of X. Otherwise, we
use the terms prefix and suffix in the linguistic sense, and a
string prefix (e.g., jump) may be a linguistic stem, as in
jump-ing.

FSAs as in (2); (2) characterizes Goldsmith’s
notion of signature in term of FSAs. In
particular, a signature is a set of forms that can
be characterized by an FSA of 3 states.
(2)

PF1 SF1

PF3 SF2

PF2

We propose a simple alternative heuristic
which utilizes the familiar dynamic
programming algorithm for calculating string-
edit distance, and finding the best alignment
between two arbitrary strings (Wagner and
Fischer 1974). The algorithm finds subsets of
the data that can be exactly-generated by
sequential finite state automata of 3 and 4 states,
as in (3), where the labels mi should be
understood as cover terms for morphemes in
general. An automaton exactly-generates a set of
strings S if it generates all strings in S and no
other strings; a sequential FSA is one of the
form sketched graphically in (1)-(3), where there
is a unique successor to each state.
(3)

M1 M4

M3 M6

M2

M7

M9

M5 M8

2.1 First stage: alignments.

If presented with the pair of strings anapenda
and anamupenda from an unknown language, it
is not difficult for a human being to come up
with the hypothesis that mu is a morpheme
inside a larger word that is composed of at least
two morphemes, perhaps ana- and -penda. The
SED heuristic makes this observation explicit by
building small FSAs of the form in (4), where at
most one of m1 or m4 may be null, and at most
one of m2 and m3 may be null: we refer to these
as elementary alignments. The strings m2 and m3
are called counterparts; the pairs of strings m1
and m4 are called the context (of the
counterparts). (Indeed, we consider this kind of
string comparison to be a plausible candidate for
human language learning; see Dahan and Brent
1999).

29

(4)

1 432 4m1 m4

m3

m2

The first stage of the algorithm consists of
looking at all pairs of words S, T in the corpus,
and passing through the following steps:

We apply several initial heuristics to
eliminate a large proportion of the pairs of
strings before applying the familiar SED
algorithm to them, in view of the relative
slowness of the SED algorithm; see Goldsmith
et al (2005) for further details.

We compute the optimal alignment of S and
T using the SED algorithm, where alignment
between two identical letters (which we call
twins) is assigned a cost of 0, alignment between
two different letters (which we call siblings) is
assigned a cost of 1.5, and a letter in one string
not aligned with a segment on the other string
(which we call an orphan) is assigned a cost of
1. An alignment as in (5) is thus assigned a cost
of 5, based on a cost of 1.5 assigned to each
broken line, and 1 to each dotted line that ends
in a square box.
(5)

n i l i m u p e n d a

n i t a k a m u p e n d a
There is a natural map from every alignment

to a unique sequence of pairs, where every pair
is either of the form (S[i], T[j]) (representing
either a twin or sibling case) or of the form (S[i],
0) or (0, T[j]) (representing the orphan case). We
then divide the alignment up into perfect and
imperfect spans: perfect spans are composed of
maximal sequences of twin pairs, while
imperfect spans are composed of maximal
sequences of sibling or orphan pairs. This is
illustrated in (6).
(6)

There is a natural equivalence between
alignments and sequential FSAs as in (4), where
perfect spans correspond to pairs of adjacent
states with unique transitions and imperfect
spans correspond to pairs of adjacent states with
two transitions, and we will henceforth use the
FSA notation to describe our algorithm.

2.2 Collapsing alignments

As we noted above (4), for any elementary
alignment, a context is defined: the pair of
strings (one of them possibly null) which
surround the pair of counterparts. Our first goal
is to collapse alignments that share their context.
We do this in the following way.

Let us define the set of strings associated
with the paths leaving a state S as the production
of state S. A four-state sequential FSA, as in (4),
has three states with non-null productions; if this
particular FSA corresponds to an elementary
alignment, then two of the state-productions
contain exactly one string—and these state-
productions define the context— and one of the
state-productions contains exactly two strings
(one possibly the null string)—this defines the
counterparts. If we have two such four-state
FSAs whose context are identical, then we
collapse the two FSAs into a single conflated
FSA in which the context states and their
productions are identical, and the states that
produced the counterparts are collapsed by
creating a state that produces the union of the
productions of the original states. This is
illustrated in (7): the two FSAs in (7a) share a
context, generated by their states 1 and 3, and
they are collapsed to form the FSA in (7b), in
which the context states remain unchanged, and
the counterpart states, labeled ‘2’, are collapsed
to form a new state ‘2’ whose production is the
union of the productions of the original states.
(7)

a.

1 432 4m1 m4

1 432 4m1 m4

m7

m8

m3

m2

n i l i m u p e n d a

n i t a k a m u p e n d a

30

b.

1 432 4m1 m4

m8

m7

m3

m2

2.3 Collapsing the resulting sequential
FSAs

We now generalize the procedure described in
the preceding section to collapse any two
sequential FSAs for which all but one of the
corresponding states have exactly the same
production. For example, the two sequential
FSAs in (8a) are collapsed into (8b).

Three and four-state sequential FSAs as in
(8b), where at least two of the state-transitions
generate more than one morpheme, form the set
of templates derived from our bootstrapping
heuristic. Each such template can be usefully
assigned a quantitative score based on the
number of letters “saved” by the use of the
template to generate the words, in the following
sense. The template in (8b) summarizes four
words: aliyesema, alimfuata, anayesema, and
anamfuata. The total string length of these
words is 36, while the total number of letters in
the strings associated with the transitions in the
FSA is 1+4+12 = 17; we say that the FSA saves
36-17 = 19 letters. In actual practice, the
significant templates discovered save on the
order of 200 to 5,000 letters, and ranking them
by the number of letters saved is a good measure
of how significant they are in the overall
morphology of the language. We refer to this
score as a template’s robustness; we employ this
quantity again in section 3.1 below.

By this ranking, the top template found in our
Swahili corpus of 50,000 running words was one
that generated a and wa (class 1 and 2 subject
markers) and followed by 246 correct verb
continuations (all of them polymorphemic); the
first 6 templates are summarized informally in
Table 1. We note that the third and fourth
template can also be collapsed to form a
template of the form in (3), a point we return to
below. Precision, recall, and F-score for these
experiments are given in Table 2.

(8)
a.

1 432 4a yesema

na

li

1 432 4a mfuata

na

li

b.

1 432 4a

na

li yesema

mfuata

State 1 State 2 State 3

a, wa (sg., pl.
human subject

markers)

246 stems

ku, hu
(infinitive,

habitual
markers)

51 stems

wa (pl. subject
marker)

ka, li (tense
markers)

25 stems

a (sg. subject
marker)

ka, li (tense
markers)

29 stems

a (sg. subject
marker)

ka, na (tense
markers

28 stems

37 strings w (passive
marker)

a

Table 1 Top templates in Swahili

 Precision Recall F-score

SED 0.77 0.57 0.65

SF 0.54 0.14 0.22

PF 0.68 0.20 0.31
Table 2 Results

31

3 Further developments

In this section, we describe three developments
of the SED-based heuristic sketched in section 2.
The first disambiguates which state it is that
string material should be associated with in
cases of ambiguity; the second collapses
templates associated with similar morphological
structure; the third uses the FSAs to predict
words that do not actually occur in the corpus by
hypothesizing stems on the basis of the
established FSAs and as yet unanalyzed words
in the corpus.

3.1 Disambiguating FSAs

In the case of a sequential FSA, when the final
letter of the production of a (non-final) state S
are identical, then that letter can be moved from
being the string-suffix of all of the productions
of state S to being the string-prefixes of all of
the productions of the following state. More
generally, when the n final letters of the
productions of a state are identical, there is an n-
way ambiguity in the analysis, and the same
holds symmetrically for the ambiguity that arises
when the n initial letters of the production of a
(non-initial) state.

Thus two successive states, S and T, must (so
to speak) fight over which will be responsible
for generating the ambiguous string. We employ
two steps to disambiguate these cases.

Step 1: The first step is applicable when the
number of distinct strings associated with states
S and T are quite different in size (typically
corresponding to the case where one generates
grammatical morphemes and the other generates
stems); in this case, we assign the ambiguous
material to the state that generates the smaller
number of strings. There is a natural motivation
for this choice from the perspective of our desire
to minimize the size of the grammar, if we
consider the size of the grammar to be based, in
part, on the sum of the lengths of the morphemes
produced by each state.

Step 2: It often happens that an ambiguity
arises with regard to a string of one or more
letters that could potentially be produced by
either of a pair of successive states involving
grammatical morphemes. To deal with this case,
we make a decision that is also (like the

preceding step) motivated by a desire to
minimize the description length of the grammar.
In this case, however, we think of the FSA as
containing explicit strings (as we have assumed
so far), but rather pointers to strings, and the
“length” of a pointer to a string is inversely
proportional to the logarithm of its frequency.
Thus the overall use of a string in the grammar
plays a crucial role in determining the length of
a grammar, and we wish to maximize the
appearance in our grammar of morphemes that
are used frequently, and minimize the use of
morphemes that are used rarely.

We implement this idea by collecting a table
of all of the morphemes produced by our FSA,
and assigning each a score which consists of the
sum of the robustness scores of each template
they occur in (see discussion just above (8)).
Thus morphemes occurring in several high
robustness templates will have high scores;
morphemes appearing in a small number of
lowly ranked templates will have low scores.

To disambiguate strings which could be
produced by either of two successive states, we
consider all possible parsings of the string
between the states, and score each parsing as the
sum of the scores of the component morphemes;
we chose the parsing for which the total score is
a maximum.

 For example, Swahili has two common tense
markers, ka and ki, and this step corrected a
template from {ak}+{a,i}+{stems} to
{a}+{ka,ki}+{stems}, and others of similar
form. It also did some useful splitting of joined
morphemes, as when it modified a template
{wali} + {NULL, po} + {stems} to {wa} + {li,
lipo} + {stems}. In this case, wali should indeed
be split into wa + li (subject and tense markers,
resp.), and while the change creates an error (in
the sense that lipo is, in fact, two morphemes; po
is a subordinate clause marker), the resulting
error occurs considerably less often in the data,
and the correct template will better be able to be
integrated with out templates.

3.2 Template collapsing

From a linguistic point of view, the SED-based
heuristic creates too many FSAs because it stays
too close to the data provided by the corpus. The
only way to get a more correct grammar is by
collapsing the FSAs, which will have as a

32

consequence the generation of new words not
found in the corpus. We apply the following
relatively conservative strategy for collapsing
two templates.

We compare templates of the same number
of states, and distinguish between states that
produce grammatical morphemes (five or fewer
in number) and those that produce stems (that is,
lexical morphemes, identified as being six or
more in number). We collapse two templates if
the productions of the corresponding states
satisfy the following conditions: if the states
generate stems, then the intersection of the
productions must be at least two stems, while if
the states are grammatical morphemes, then the
productions of one pair of corresponding states
must be identical, while for the other pair, the
symmetric difference of the productions must be
no greater than two in number (that is, the
number of morphemes produced by the state of
one template but not the other must not exceed
2).

3.3 Reparsing words in the corpus and
predicting new words

When we create robust FSAs—that is, FSAs that
generate a large number of words—we are in a
position to go back to the corpus and reanalyze a
large number of words that could not be
previously analyzed. That is, a 4-state FSA in
which each state produced two strings generates
8 words, and all 8 words must appear in the
corpus for the method described so far in order
for this particular FSA to generate any of them.
But that condition is unlikely to be satisfied for
any but the most common of morphemes, so we
need to go back to the corpus and infer the
existence of new stems (as defined operationally
in the preceding paragraph) based on their
occurrence in several, but not all possible,
words. If there exist 3 distinct words in the
corpus which would all be generated by a
template if a given stem were added to the
template, we add that stem to the template.

4 Experiments and Results

In this section, we present three sets of
evaluations of the refinements of the SED
heuristics described in the preceding section. We
used a corpus of 7,180 distinct words occurring

in 50,000 running words from a Swahili
translation of the Bible obtained on the internet.

4.1 Disambiguating FSAs

In order to evaluate the effects of the
disambiguating of FSAs described in section
3.1, we compare precision and recall of the
identification of morpheme boundaries using the
SED method with and without the
disambiguation procedure described above. In
Figures 1 and 2, we graph precision and recall
for the top 10% of the templates, displayed as
the leftmost point, for the top 20% of the
templates, displayed as the second point from
the left; and so on, because the higher ranked
FSAs are more intrinsically more reliable than
the lower ranked ones. We see that
disambiguation repairs almost 50% of the
previous errors, and increases recalls by about
10%. With these increases in precision and
recall, it is clear that the disambiguating step
provides a considerably more accurate
morpheme boundary discovery procedure.

Precision

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 10
0

Deciles(%)

Pr
ec

is
io

n

Without
With

Figure 1 Comparison of precision

Compare Recalls

0.3

0.34

0.38

0.42

0.46

0.5

10 20 30 40 50 60 70 80 90 100
Deciles(%)

R
ec

al
ls

Without
With

Figure 2 Comparison of recall

33

4.2 Template collapsing

The second refinement discussed above
consists of finding pairs of similar templates,
collapsing them as appropriate, and thus creating
patterns that generate new words that did not
participate in the formation of the original
templates. These new words may or may not
themselves appear in the corpus. We are,
however, able to judge their morphological well-
formedness by inspection. We list in Table 3 the
entire list of eight templates that are collapsed in
this step.

All of the templates which are collapsed in
this step are in fact of the same morphological
structure (with one very minor exception4): they
are of the form subject marker + tense marker +
stem, and the collapsing induced in this
procedure correctly creates larger templates of
precisely the same structure, generating new
words not seen in the corpus that are in fact
correct from our (non-native speaker)
inspection. We submitted the new words to
Yahoo to test the words “existence” by their
existence on the internet, and actually found an
average of 87% of the predicted words in a
template; see the last column in Table 3 for
details.

4.3 Reparsing

After previous refinements, we obtain a
number of robust FSAs, for example, those
collapsed templates in Table 3. With them, we
then search the corpus for those words that can
only be partly fitted into these FSAs and
generate associated stems. Table 4 shows the
reparsed words that had not been parsed by
earlier templates and also newly added stems for
some robust FSAs (the four collapsed templates
in Table 3). Stems such as anza ‘begin’ and
fanya ‘do’ are thus added to the first template,
and all words derived by prepending a tense
marker and a subject marker are indeed accurate
words. As the words in Table 4 suggest, the
reparsing process adds new, common stems to
the stem-column of the templates, thus making it

4 The exception involves the distinct morpheme po, a
subordinate clause marker which must ultimately be
analyzed as appearing in a distinct template column to the
right of the tense markers.

easier for the collapsing function to find
similarities across related templates.

In future work, we will take use the larger
templates, populated with more stems, and input
them to the collapsing function described in 3.2.

5 Conclusions

On the basis of the experiments with Swahili
described in this paper, the SED heuristic
appears to be a useful tool for the discovery of
morphemes in languages with rich
morphologies, and for the discovery of the FSAs
that constitute the morphologies of those
languages.

Ultimately, the value of the heuristic is best
tested against a range of languages with complex
concatenative morphologies. While a thorough
discussion would take us well beyond the limits
of this paper, we have applied the SED heuristic
to English, Hungarian, and Finnish as well as
Swahili. For English, unsurprisingly, the method
works as well as the SF and PF methods, though
a bit more slowly, while for Hungarian and
Finnish, the results appear promising, and a
comparison with Creutz and Lagus (2004) for
Finnish, for example, would be appealing.

34

One Template

The other template Collapsed Template
% found on

Yahoo search
1 {a}-{ka,na}-{stems} {a}-{ka,ki}-{stems} {a}-{ka,ki,na}-{stems} 86 (37/43)
2 {wa}-{ka,na}-{stems} {wa}-{ka,ki}-{stems} {wa}-{ka,ki,na}-{stems} 95 (21/22)
3 {a}-{ka,ki,na}-{stems} {wa}-{ka,ki,na}-{stems} {a,wa}-{ka,ki,na}-{stems} 84 (154/183)
4 {a}-{liye,me}-{stems} {a}-{liye,li}-{stems} {a}-{liye,li,me}-{stems} 100 (21/21)
5 {a}-{ki,li}-{stems} {wa}-{ki,li}-{stems} {a,wa}-{ki,li}-{stems} 90 (36/40)
6 {a}-{lipo,li}-{stems} {wa}-{lipo,li}-{stems} {a,wa}-{lipo,li}-{stems} 90 (27/30)
7 {a,wa}-{ki,li}-{stems} {a,wa}-{lipo,li}-{stems} {a,wa}-{ki,lipo,li}-{stems} 74 (52/70)
8 {a}-{na,naye}-{stems} {a}-{na,ta}-{stems} {a}-{na,ta,naye}-{stems} 80 (12/15)

Table 3 Collapsed Templates and Created Words Sample.

 Template Reparsed Words Not Parsed
Before

Added Stems

1 {a, wa}-{ka,ki,na}-{stems} akawakweza, akiwa, anacho,
akibatiza, …

toka, anza, waita, fanya, enda, …

2 {a}-{li,liye,me }-{stems} ameinuka, ameugua, alivyo,
aliyoniagiza, …

zaliwa, kuwa, fanya, sema

3 {a, wa}-{ki,li,lipo}-{stems} alimtoboa, alimtaka,
waliamini, …

pata, kuwa, kaa, fanya, chukua,
fika, …

4 {a} – {na,naye,ta}-{stems} analazwa, atanitukuza, anaye,
anakuita, …

ingia, sema

Table 4 Reparsed words and "discovered" stems

References

Creutz, Mathias, and Krista Lagus. (2004). Induction
of a simple morphology for highly inflecting
languages. Proceedings of the Workshop of
SIGPHON (Barcelona).

Dahan, Delphine, and Michael Brent. (1999). On the
discovery of novel world-like units from
utterances. Journal of Experimental Psychology:
General 128: 165-185.

Goldsmith, John. (2001). Unsupervised Learning of
the Morphology of a Natural Language.
Computational Linguistics 27(2): 153-198.

Goldsmith, John, Yu Hu, Irina Matveeva, and Colin
Sprague. 2005. A heuristic for morpheme
discovery based on string edit distance. Technical
Report TR-2005-4. Department of Computer
Science. University of Chicago.

Hafer, M. A., Weiss, S. F. (1974). Word
segmentation by letter successor varieties.
Information Storage and Retrieval 10: 371-385.

Harris, Zellig. (1955). From Phoneme to Morpheme.
Language 31: 190-222.

Harris, Zellig. (1967). Morpheme Boundaries within
Words: Report on a Computer Test.
Transformations and Discourse Analysis Papers
73.

Oliver, Antoni, Irene Bastellón, and Lluís Màrquez.
(2003). Uso de Internet para aumentar la cobertura
de un sistema de adquisición léxica del ruso.
SEPLN 2003.

Wagner, R. A., Fischer, M. J. (1974). The string-to-
string correction problem. Journal of the
Association for Computing Machinery 21(1): 168-
73.

van Zaanen, Menno. 2000. ABL: Alignment-Based
Learning. Proceedings of the 17th Conference on
Computational Linguistics, vol. 2. p. 961-67.

35

