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Introduction

This meeting of the Psychocomputational Models of Human Language Acquisition (PsychoCompLA
2005) workshop is a follow-up meeting of the first PsychoCompLA workshop help in 2004 in Geneva,
Switzerland where it was part of the 20th International Conference on Computational Linguistics
(COLING 2004). This year, the workshop was part of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL 2005) held in Ann Arbor, Michigan and shared a joint session
with the Ninth Conference on Computational Natural Language Learning (CoNLL-2005).

This workshop brings together scientists whose (at least one) line of investigation is to computationally
model the process by which humans acquire various aspects of natural language. Progress in this agenda
not only directly informs developmental psycholinguistic and linguistic research but will also have the
long term benefit of informing applied computational linguistics in areas that involve the automated
acquisition of knowledge from a human or human-computer linguistic environment.

The scientific program consisted of two invited talks, one by Brian MacWhinney and another by Mark
Steedman, and 10 paper presentations.

We were especially pleased with the high quality of the submissions and would like to thank the
authors for submitting their papers, as well as Mirella Lapata (ACL Workshop Committee Chair),
Jason Eisner, Philipp Koehn (Publications Chairs) and Dragomir Radev (Local Arrangements Chair)
who were extremely helpful (and patient) on more than one occasion.

Alexander Clark
James Cussens
William Gregory Sakas
Aris Xanthos

London, York, New York, and Lausanne, 2005
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Abstract 

 
Sparse data is a well-known problem for 
any probabilistic model.  However, recent 
language acquisition proposals suggest 
that the data children learn from is heavily 
restricted -  children learn only from 
unambiguous triggers (Fodor 1998, 
Dresher 1999, Lightfoot 1999) and 
degree-0 data (Lightfoot 1991).  
Surprisingly, we show that these 
conditions are a necessary feature of an 
accurate language acquisition model.  We 
test these predictions indirectly by 
developing a mathematical learning and 
language change model inspired by 
Yang’s (2003, 2000) insights.   Our logic 
is that, besides accounting for how 
children acquire the adult grammar so 
quickly, a viable acquisition proposal must 
also be able to account for how 
populations change their grammars over 
time.  The language change we examine is 
the shift in Old English from a strongly 
Object-Verb (OV) distribution to a 
strongly Verb-Object (VO) distribution 
between 1000 A.D. and 1200 A.D., based 
on data from the YCOE Corpus (Taylor et 
al. 2003) and the PPCME2 Corpus (Kroch 
& Taylor 2000).  Grounding our simulated 
population with these historical data, we 
demonstrate that these acquisition 
restrictions seem to be both sufficient and 
necessary for an Old English population to 
shift its distribution from strongly OV to 
strongly VO at the right time.  

 
1 Introduction 
 
Empirically investigating what data children attend 
to during syntactic acquisition is a difficult task.  

Traditional experimental methods are not feasible 
on logistical and ethical grounds – we can’t simply 
lock a group of children in a room for two years, 
restrict their input to whatever we want, and then 
see if their syntactic acquisition matches normal 
patterns.  However, when we have a simulated 
group of language learners who follow a quantified 
model of individual acquisition, this is exactly 
what we can do – restrict the input to syntactic 
acquisition in a very specific way and then observe 
the results. 

The individual acquisition model we use is 
inspired by Yang’s (2003, 2000) model of 
probabilistic learning for multiple grammars.  By 
using this model in a simulated population of 
individuals, we provide empirical support for two 
acquisition proposals that restrict children to only 
heed data that are unambiguous triggers (Dresher 
1999, Lightfoot 1999, Fodor 1998) and that appear 
in degree-0 clauses (Lightfoot 1991).  We use 
language change as a metric of “correct” 
acquisition, based on the following idea: if the 
simulated population that has these restrictions 
behaves just as the real population historically did, 
the simulated acquisition process is fairly similar 
to the real acquisition process.  Language change is 
an excellent yardstick for acquisition proposals for 
exactly this reason – any theory of acquisition must  
not only be able to account for how children 
converge to a close approximation of the adult 
grammar, but also how they can “misconverge” 
slightly and allow specific types of grammatical 
change over time.  The nature of this 
“misconvergence” is key.  Children must end up 
with an Internal Language (“grammar”) that is 
close enough - but not too close - to the Observable 
Language (O-Language) in the population so that 
change can happen at the right pace.   

The language change we use as our metric is 
the shift in Old English from a strongly Object-
Verb (OV) distribution to a strongly Verb-Object 
(VO) distribution between 1000 and 1200 A.D. 
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The sharpest part of this shift occurs between 1150 
and 1200 A.D., based on data from the YCOE 
Corpus (Taylor et al. 2003) and the PPCME2 
Corpus (Kroch & Taylor 2000).  We use this 
corpus data to estimate the initial OV/VO 
distribution in the modeled population at 1000 
A.D. and to calibrate the modeled population’s 
projected OV/VO distribution between 1000 and 
1150 A.D.  Then, we demonstrate that the 
restrictions on acquisition seem both sufficient and 
surprisingly necessary for the simulated Old 
English population to shift its distribution to be 
strongly VO by 1200 A.D – and thus match the 
historical facts of Old English.  In this way, we 
provide empirical support that we would be hard-
pressed to get  using traditional methods for these 
acquisition proposals. 

The rest of the paper is laid out as follows: 
section 2 elaborates on the two acquisition 
proposals of unambiguous triggers  and degree-0 
data; section 3 gives specific implementations of 
these proposals for Old English; section 4 
describes the model used to simulate the 
population of Old English speakers and how the 
historical corpus data was used; sections 5 and 6 
present the results and conclusion. 
  
2 The Acquisition Proposals 
 
The first proposal is set in a Principles and 
Parameters framework (Chomsky 1981) where the 
adult grammar consists of a specific set of 
parameter values and the process of acquisition is 
figuring out what those values are.  An 
unambiguous trigger (Fodor 1998, Dresher 1999, 
Lightfoot 1999) is a piece of data from the O-
language that unambiguously signals one 
parameter value over another for a given 
parameter.  Crucially, an unambiguous trigger  for 
value P1 of parameter P can be parsed only with 
value P1 (and not P2), no matter what other 
parameter values (A, B, C, …) might also be 
affecting the O-language form of the data.  
Because an unambiguous trigger corresponds to 
exactly one parameter P and thus can alter the 
value of P only, this proposal would allow children 
to bypass the Credit Problem noted by Dresher 
(1999), which is the problem of deciding which 
parameters to update given a particular piece of 
input.  In addition, unambiguous triggers allow the 
learner to bypass the combinatoric explosion 

problem that could occur when trying to set n 
parameters.  Instead of having to test out 2n 
different grammars on the input in the O-
languages, the child’s language acquisition 
mechanism simply tests out the n parameters 
separately by looking for unambiguous triggers for 
these n parameters in the input from the O-
language. Thus, this proposal aids the process of 
acquiring the adult grammar quickly and correctly. 
A potential pitfall of this proposal is data 
sparseness: the quantity of data that fits this very 
specific restriction might be very small for a 
parameter P and the child just might not see 
enough of it for it to have an effect1. 

The second proposal is that children only heed 
data in degree-0 clauses (Lightfoot 1991) when 
they first begin to set their syntactic parameter 
values.  “Degree” refers to the level of embedding, 
so a degree-0 clause corresponds to a main clause2.  
 
(1) Jack thought the giant was easy to fool. 
 [--Degree-0-] 
          [---------Degree-1---------] 
 
 The basis for this proposal is that while local 
grammatical relationships (such as those in degree-
0 clauses) provide a lot of information to the 
learner, degree-0 data tends to be “messier” 
grammatically – that is, more grammatical 
processes seem to apply to degree-0 clauses than to 
degree-1 clauses.  The messier status of this data 
allows the child to converge to a grammar that is 
not exactly the same as the adult grammar.  Thus, 
this proposal focuses on how to allow small 
grammatical changes to occur in individuals so that 
larger changes can happen to the population over 
time.  The cost of combining this proposal with the 
previous one is that the child is now restricted to 
learn only from degree-0 unambiguous triggers, 
thereby compounding the potential data sparseness 
problem that unambiguous triggers already have. 
 

                                                
1 In fact, it may well be necessary to restrict the set of parameters 
relevant for determining if a trigger is unambiguous to some initial 
pool in order to get any unambiguous triggers at all. A candidate set 
for the initial pool of parameters might be derived from a hierarchy of 
parameters along the lines of the one based on cross-linguistic 
comparison that is described in Baker (2001, 2005). 
2 The exact domain of a degree-0 clause is defined as the main clause 
and the front of the embedded clause for theory-internal reasons.  For 
a more detailed description and explanation, see Lightfoot (1991). 
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3 Old English Change 
 

Allowing language change to occur as it 
historically did is a mark of “correct” acquisition, 
especially for change involving syntactic 
parameters that can only be altered during 
acquisition - any change that builds up in the 
population must be due to changes that occur 
during acquisition.  The parameter we use in this 
work is OV/VO word order and the change is a 
shift in Old English from a strongly OV 
distribution between 1000 and 1150 A.D. to a 
strongly VO distribution at 1200 A.D. A strongly 
OV distribution has many utterances with OV 
order (2). A strongly VO distribution as many 
utterances with VO order (3). 
 
(2)  he  Gode  flancode   
 he   God   thanked 
 ‘He thanked God’ 
 (Beowulf, 625) 
 
(3) fla     ahof    Paulus  up  his   heafod 
 then   lifted  Paul      up  his   head 
 ‘Then Paul lifted his head up’ 
  (Blickling Homilies, 187.35) 
 
Because change can occur only during acquisition, 
the data children are heeding in their input during 
acquisition has a massive effect on the 
population’s linguistic composition over time.  In 
this work, we explore the possibility that the data 
children are heeding during acquisition are the 
degree-0 unambiguous triggers.  For Old English, 
the unambiguous triggers have the form of (4a) and 
(5a).  Examples of unambiguous triggers of each 
kind are in (4b-c) and (5b-c). 
 
(4a) Unambiguous OV Trigger 
 [Object Verb/Verb-Marker] VP 
 
(4b) heSubj  [hyneObj   gebiddeVerbFinite   
        Subj     Obj Verb   
       [mid ennum mode]PP ]VP 

 PP 
(Ælfric's Letter to Wulfsige, 87.107) 

 
 
 

 
(4c) weSubj sculenVerbFinite [[ure yfele +teawes]Obj 
        Subj    Verb          Obj 
        forl+atenVerb-Marker]VP 
        Verb-Marker 
(Alcuin's De Virtutibus et Vitiis, 70.52) 
 
 
(5a) Unambiguous VO Trigger 
 [Verb/Verb-Marker Object] VP 
 
(5b) & [mid his stefne]PP   heSubj  [awec+dVerbFinite  
  PP    Subj  Verb 
       deadeObj [to life]PP ]VP 
       Obj              PP 
(Saint James, 30.31) 
 
(5c) þaAdv  ahofVerbFinite  PaulusSubj [upVerb-Marker 
       Adv     Verb Subj     Verb-Marker 
      [his   heafod]Obj] VP 
 Obj 
(Blickling Homilies, 187.35) 
 
The Object is adjacent to either a Verb or a Verb-
Marker on the appropriate side – the correct O-
language order.  In addition to this correct “surface 
order” in the O-language, an unambiguous trigger 
must also have an unambiguous derivation to 
produce this surface order.  This means that no 
other combination of parameters with the alternate 
word order value could produce the observed 
surface order.  For example, a Subject Verb Object 
utterance could be produced more than one way 
because of the Verb-Second (V2) movement 
parameter which was also available in Old English 
(as in modern Dutch and German). With V2 
movement, the Verb moves from its “underlying” 
position to the second position in the sentence. 
 
(6a)   V2 Movement Ambiguity 
 Subject Verb Object tVerb.  (OV + V2) 
 Subject Verb tVerb Object.  (VO + V2) 
 
(6b) Subject Verb Object example 

heoSubj       cl+ansa+dVerbFinite  
   Subj  Verb 
[+ta sawle +t+as r+adendan]Object 

  Obj 
 (Alcuin De virtutibus et vitiis, 83.59) 
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(6c)  Subject Verb tSubj Object tVerb.   
       (parsed with OV + V2) 
 
       heoSubj   cl+ansa+dVerbFinite tSubj  
         Subj Verb  
[[+ta  sawle  +t+as  r+adendan]Obj  
 Obj 
tVerbFinite]VP 
  trace-Vb 
  
(6d) Subject Verb tSubj tVerb Object.   
      (parsed with VO + V2) 
 
       heoSubj cl+ansa+dVerbFinite tSubj  
       Subj Verb 
[ tVerbFinite [+ta sawle +t+as r+adendan]Object ]VP 
trace-Vb Obj 
 
 
Because of this, a Subject Verb Object utterance 
can be parsed with either word order (OV or VO) 
and so cannot unambiguously signal either order.  
Thus, correct surface order alone does not suffice – 
only an utterance with the  correct surface order 
and that cannot be generated with the competing 
word order value is an unambiguous trigger3. 

Because V2 movement (among other kinds of 
movement) can move the Verb away from the 
Object, Verb-Markers can be used to determine the 
original position of the Verb with respect to the 
Object.  Verb-Markers include particles (‘up’), 
non-finite complements to finite verbs 
(‘shall…perform’), some closed-class adverbials 
(‘never’), and negatives (‘not’) as described in 
Lightfoot (1991). 

The curious fact about Old English Verb-
Markers (unlike their modern Dutch and German 
counterparts) is that they were unreliable – often 
they moved away from the Object as well, leaving 
nothing Verb-like adjacent to the Object.  This 
turned utterances which potentially were 
unambiguous triggers for either OV or VO order 
into ambiguous utterances which could not help 
acquisition.  We term this “trigger destruction,” 
and it has the effect of making the distribution of 
OV and VO utterances that the child uses during 
                                                
3 We note that this could potentially be very resource-intensive to 
determine since all other interfering parameter values (such as V2) 
must be taken into account. Hence, there is need for some restriction 
of what parameters must be initially considered to determine if an 
utterance contains an unambiguous trigger for a given parameter. 

acquisition (the distribution in the degree-0 
unambiguous triggers) different from the 
distribution of the OV and VO utterances in the 
population.  It is this difference that “biases” 
children away from the distribution in the 
population and it is this difference that will cause 
small grammatical changes to accumulate in the 
population until the larger change emerges – the 
shift from being strongly OV to being strongly 
VO.  Thus, the question of what data children heed 
during acquisition  has found a very suitable 
testing ground in Old English. 
 
 4 The Model 
 
4.1 The Acquisition Model & Old English Data 
 
The acquisition model in this work is founded on 
several ideas previously explored in the acquisition 
modeling and language change literature.  First, 
grammars with opposing parameter values (such as 
OV and VO order) compete with each other both 
during acquisition (Clack & Robert 1993) and 
within a population over time (Pintzuk 2002, 
among others).  Second, population-level change is 
the result of a build-up of individual-level 
“misconvergences” (Niyogi & Berwick, 1997, 
1996, 1995).  Third, individual linguistic behavior 
can be represented as a probabilistic distribution of 
multiple grammars.  This is the result of multiple 
grammars competing during acquisition and still 
existing after acquisition. 

Multiple grammars in an individual are 
instantiated as that individual accessing g 
grammars with probability pg each (Yang 2003).  
In our simulation, there are two grammars (g = 2)  
– one with the OV/VO order set to OV and one 
with the OV/VO order set to VO.  In a stable 
system with g=1, g1 has probability pg1 = 1 of 
being accessed and all unambiguous triggers come 
from this grammar.  In the unstable system for our 
language change, g=2 and g1 is accessed with 
probability  pg1 while g2 is accessed with 
probability pg2 = 1 – pg1.  Both grammars leave 
unambiguous triggers in the input to the child. 

If the quantity of unambiguous triggers from 
each grammar is approximately equal, these 
quantities will effectively cancel each other out 
(whatever quantity pulls the child towards OV will 
be counterbalanced by the quantity of triggers 
pulling the child towards VO).  Therefore, the 
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crucial quantity is how many more unambiguous 
triggers one grammar has than the other, since this 
is the quantity that will not be cancelled out.  This 
is the advantage a grammar has over another in the 
input.  Table 1 shows the advantage in the degree-0 
(D0) clauses and degree-1 (D1) clauses that the 
OV grammar has over the VO grammar in Old 
English at various points in time, based on the data 
from the YCOE (Taylor et al. 2003) and PPCME2 
(Kroch & Taylor 2000) corpora. 
  
 D0 OV Adv D1 OV Adv 
1000 A.D. 1.6% 11.3% 
1000 – 1150 A.D 0.2% 7.7% 
1200 A.D. -0.4%4 -19.1% 
Table 1. OV grammar’s advantage in the input for 
degree-0 (D0) and degree-1 (D1) clauses at various 
points in time of Old English.  
 
The corpus data shows a 1.6% advantage for the 
OV grammar in the D0 clauses at 1000 A.D. – 
which means that only 16 out of every 1000 
sentences in the input are actually doing any work 
for acquisition (and more specifically, pulling the 
child towards the OV grammar).  The data also 
show that the D1 advantage is much stronger.  
However, this does not help our learners for two 
reasons:  
 
a) Based on samples of modern children’s input 
(4K from CHILDES (MacWhinney & Snow 1985) 
and 4K from young children’s stories (for details 
on this data, see Pearl (2005)), D1 clauses only 
make up ~16% of modern English children’s input.  
If we assume that the quantity of D1 input to 
children is approximately the same no matter what 
time period they live in5, then our Old English 
children also heard D1 data in their input  ~16% of  
the time.   
 
b) Our learners can only use D0 data, anyway. 
 

This leads to two questions for the restrictions 
imposed by the acquisition proposals -  a question 
of sufficiency and a question of necessity.  First, 

                                                
4 A negative advantage for OV advantage means the VO grammar 
has the advantage. 
5 At this point in time, we are unaware of any studies that suggest that 
the composition of motherese, for example, has altered significantly 
over time. 

we can simply ask if these restrictions on the data 
children heed are sufficient to allow the Old 
English population to shift from OV to VO at the 
appropriate time.  Then, supposing that they are, 
we can ask if these restrictions are necessary to get 
the job done – that is, will the population shift 
correctly even if these restrictions do not hold?  
We can relax both the restriction to learn only from 
unambiguous triggers and the restriction to learn 
only from degree-0 clause data – and then see if 
the population can still shift to a strongly VO 
distribution on time.  
 
4.2 The Acquisition Model: Implementation 
 
The acquisition model itself is based around the 
idea of probabilistic access function of binary 
parameter values (Bock & Kroch 1989) in an 
individual. For example, if an individual has a 
function that accesses the VO order value 30% of 
the time, the utterances generated by that 
individual would be VO order 30% of the time and 
OV order 70% of the time.  Note that this is the 
distribution before other parameters such as V2 
movement alter the order, so the O-language 
distribution produced by this speaker is not 30-70.  
However, the O-language distribution will still 
have some unambiguous OV triggers and some 
unambiguous VO triggers, so a child hearing data 
from this speaker will have to deal with the 
conflicting values.  Thus, a child will have a 
probabilistic access function to account for the 
OV/VO distribution– and acquisition is the process 
of setting what the VO access probability is, based 
on the data heard during the critical period. 

The VO access value ranges from 0.0 (all OV 
access) to 1.0 (all VO access).  A value of 0.3, for 
example, would correspond to accessing VO order 
30% of the time.  A child begins with this value at 
0.5, so there is a 50% chance of accessing either 
OV or VO order. 

Two mechanisms help summarize the data the 
child has seen so far without using up computing 
resources: the Noise Filter and a modified Batch 
Learner Method (Yang 2003).  The Noise Filter 
acts as a buffer that separates “signal” from 
“noise”.  An unambiguous trigger from the 
minority grammar is much more likely to be 
construed as “noise” than an unambiguous trigger 
from the majority grammar.  An example use is 
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below with the VO access value set to 0.3 (closer 
to pure OV than pure VO): 
  
6) Noise Filter Use 
probabilistic value of VO access = 0.3 
if next unambiguous trigger = VO 

= “noise” with 70% chance and ignored 
= “signal” with 30% chance and heeded 

if next unambiguous trigger = OV 
= “noise” with 30% chance and ignored 
= “signal” with 70% chance and heeded 

 
The initial value of VO access of 0.5, so there is no 
bias for either grammar when determining what is 
“noise” and what is “signal”.  The modified Batch 
Learner method deals with how many 
unambiguous triggers it takes to alter the child’s 
current VO access value.  The more a grammar is 
in the majority, the smaller the “batch” of its 
triggers has to be to alter the VO access value (see 
Table 2).  The current VO access value is used to 
decide whether a grammar is in the majority, and 
by how much. 
 

VO 
Value 

OV Triggers 
Required 

VO Triggers 
Required 

0.0-0.2 1 5 
0.2-0.4 2 4 
0.4-0.6 3 3 
0.6-0.8 4 2 
0.8-1.0 5 1 
Table 2. How many unambiguous triggers from 
each grammar are required, based on what the 
current VO access value is for the child. 
 
Below is an example of the modified Batch 
Learner method with the VO access value set to 
0.3: 
 
7) modified Batch Learner method use 
probabilistic value of VO access = 0.3 
if next unambiguous trigger = VO 

if 4th VO trigger seen,   
alter value of VO access towards VO 

else if next unambiguous trigger = OV 
if 2nd OV trigger seen,   

alter value of VO access towards OV 
 

The initial value of 0.5 means that neither grammar 
requires more triggers than the other at the 
beginning to alter the current value. 

Both mechanisms rely on the probabilistic 
value of VO access to reflect the distribution of 
triggers seen so far.  The logic is as follows:  in 
order to get to a value below 0.5 (more towards 
OV), significantly more unambiguous OV triggers 
must have been seen; in order to get to a value 
above 0.5 (more towards VO), significantly more 
unambiguous VO triggers must have been seen. 

The individual acquisition algorithm used in 
the model is below: 

 
Initial value of VO access = 0.5 
While in critical period 

Get a piece of input from the linguistic 
environment created by the rest of the 
population members. 
If input is an unambiguous trigger 
 If input passes through Noise Filter 

 Increase relevant batch counter 
 If counter is at threshold 
  Alter current VO access value  

 
Note that the final VO access value after the 
critical period is over does not have to be 0.0 or 1.0 
– it may be a value in between.  It is supposed to 
reflect the distribution the child has heard, not 
necessarily be one of the extreme values. 
 
4.3 Population Model: Implementation 
 
Since individual acquisition drives the linguistic 
composition of the population, the population 
algorithm centers around the individual acquisition 
algorithm: 
 
Population age range = 0 to 60  
Initial population size = 180006 
Initialize members to starting VO access value7 
At 1000 A.D. and every 2 years until 1200 A.D. 

Members age 59-60 die; the rest age 2 years  
New members age 0 to 1 created 

New members use individual acquisition 
algorithm to set their VO access value 
 

                                                
6 Based on estimates from Koenigsberger & Briggs (1987). 
7 Based on historical corpus data. 
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4.4 Population Values from Historical Data 
 
We use the historical corpus data to initialize the 
average VO access value in the population at 1000 
A.D., calibrate the model between 1000 and 1150 
A.D., and determine how strongly VO the 
distribution has to be by 1200 A.D.  However, note 
that while the VO access value reflects the OV/VO 
distribution before interference from other 
parameters causes utterances to become 
ambiguous, the historical data reflects the 
distribution after this interference has caused 
utterances to become ambiguous. Table 3 shows 
how much of the data from the historical corpus is 
comprised of ambiguous utterances. 
 

Time Period D0 % Ambig D1 % Ambig 
1000 A.D. 76% 28% 

1000-1150 A.D. 80% 25% 
1200 A.D. 71% 10% 

Table 3. How much of the historical corpus is 
comprised of ambiguous utterances at various 
points in time. 
 
We know that either OV or VO order was used to 
generate all these ambiguous utterances – so our 
job is to estimate how many of them were 
generated with the OV order and how many with 
the VO order.  This determines the “underlying” 
distribution.  Once we know this, we can determine 
what VO access value produced that underlying 
OV/VO distribution.  Following the process 
detailed in Pearl (2005), we rely on the fact that the 
D0 distribution is more distorted than the D1 
distribution (since the D0 distribution always has 
more ambiguous triggers).  The process itself 
involves using the difference in distortion between 
the D0 and D1 distribution to estimate the 
difference in distortion between the D1 and 
underlying distribution.  Once this is done, we 
have average VO access values for initialization, 
calibration, and the target. 
 
Time A.D. 1000 1000-1150 1200 
Avg VO .23 .31 .75 

Table 4. Average VO access value in the 
population at various points in time, based off 
historical corpus data. 
 

Thus, to satisfy the historical facts, a population 
must start with an average VO access value of 0.23 
at 1000 A.D., reach an average VO access value of 
0.31 between 1000 and 1150 A.D., and reach an 
average VO access value of 0.75 by 1200 A.D. 
 
5 Results 
 
5.1 Sufficient Restrictions 
 
Figure 1 shows the average VO access value over 
time of an Old English population restricted to 
learn only from degree-0 unambiguous triggers.  
These restrictions on acquisition seem sufficient to 
get the shift from a strongly OV distribution to a 
strongly VO distribution to occur at the right time.  
We also note that the sharper population-level 
change emerges after a build-up of individual-level 
changes in a growing population. 

 
Figure 1.  The trajectory of a population restricted 
to learn only from degree-0 unambiguous triggers. 
 
Thus, we have empirical support for the acquisition 
proposal since it can satisfy the language change 
constraints for Old English word order. 
  
5.2 Necessary Restrictions 
 
5.2.1 Unambiguous Triggers 
 
We have shown these restrictions – to learn only 
from degree-0 unambiguous triggers - are 
sufficient to get the job done.  But are they 
necessary?  We examine the “unambiguous” aspect 
first – can we still satisfy the language change 
constraints if we don’t restrict ourselves to 
unambiguous triggers?  This is especially attractive 
since it may be resource-intensive to determine if 
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an utterance is unambiguous.  Instead, we might 
try simply using surface word order as a trigger.  
This would create many more triggers in the input 
- for instance, a Subject Verb Object utterance 
would now be parsed as a VO trigger.  Using this 
definition of trigger, we get the following data 
from the historical corpus: 
 

 D0 VO Advantage 
1000 A.D. 4.8% 

1000 – 1150 A.D. 5.5% 
1200 A.D. 8.5% 

Table 5.  Advantage for the VO grammar in the 
degree-0 (D0) clauses at various times, based on 
data from the historical corpus. 
 
The most salient problem with this is that even at 
the earliest point in time when the population is 
supposed to have a strongly OV distribution, it is 
the VO grammar – and not the OV grammar – that 
has a significant advantage in the degree-0 data. A 
population learning from this data would be hard-
pressed to remain OV at 1000 A.D., let alone 
between 1000 and 1150 A.D.  Thus, this definition 
of trigger will not support the historical facts – we 
must keep the proposal which requires 
unambiguous triggers. 
 
5.2.2 Degree-0 Data 
 
We turn now to the degree-0 data restriction.  
Recall that the degree-1 data has a much higher 
OV advantage before 1150 A.D. (see Table 1).  It’s 
possible that if children heard enough degree-1 
data, the population as a whole would remain OV 
too long and be unable to shift to a VO “enough” 
distribution by 1200 A.D.  However, the average 
amount of degree-1 data available to children is 
about 16% of the input, based on estimates from 
modern English children’s input.  Is this small 
amount enough to keep the Old English population 
OV too long?  With our quantified model, we can 
determine if 16% degree-1 data causes our 
population to not be VO “enough” by 1200 A.D. 
Moreover, we can estimate what the threshold of 
permissible degree-1 data is so that the modeled 
Old English population can match the historical 
facts.  Figure 2 displays the average VO access 
value in 5 Old English populations exposed to 
different amounts of degree-1 data during 
acquisition.  As we can see, the population with 

16% of the input comprised of degree-1 data is not 
able to match the historical facts and be VO 
“enough” by 1200 A.D.  Only populations with 
11% or less degree-1 data in the input can.  
 

 
Figure 2: Average VO access values at 1200 A.D. 
for populations with differing amount of degree-1 
data available during acquisition. 
 
This data supports the necessity of the degree-0 
restriction since the amount of degree-1 data 
children hear on average during acquisition 
(~16%) is too much to allow the Old English 
population to shift at the right time. 
 
6 Conclusions 
 
Using a probabilistic model of individual 
acquisition to model a population’s language 
change, we demonstrate the sufficiency and 
necessity of certain restrictions on individual 
acquisition.    In this way, we provide empirical 
support for a proposal about what data children are 
learning from for syntactic acquisition – the 
degree-0 unambiguous triggers.   

Future work will refine the individual 
acquisition model to explore the connection 
between the length of the critical period and the 
parameter in question, including more 
sophisticated techniques of Bayesian modeling (to 
replace the current mechanisms of Noise Filter and 
Batch Learner), and investigate what parameters 
must be considered to determine if a trigger is 
“unambiguous”.  As well, we hope to test the 
degree-0 unambiguous trigger restriction for other 
parameters with documented language change, 
such as the loss of V2 movement in Middle 
English (Yang 2003, Lightfoot 1999, among 
others).  This type of language change modeling 
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may also be useful for testing proposals about what 
the crucial data is for phonological acquisition. 
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Abstract

Both Middle English and Old French had
a syntactic property called verb-second or
V2 that disappeared. In this paper de-
scribes a simulation being developed to
shed light on the question of why V2 is
stable in some languages, but not oth-
ers. The simulation, based on a Markov
chain, uses fuzzy grammars where speak-
ers can use an arbitrary mixture of ideal-
ized grammars. Thus, it can mimic the
variable syntax observed in Middle En-
glish manuscripts. The simulation sup-
ports the hypotheses that children use the
topic of a sentence for word order acqui-
sition, that acquisition takes into account
the ambiguity of grammatical information
available from sample sentences, and that
speakers prefer to speak with more regu-
larity than they observe in the primary lin-
guistic data.

1 Introduction

The paradox of language change is that on the one
hand, children seem to learn the language of their
parents very robustly, and yet for example, the En-
glish spoken in 800 AD is foreign to speakers of
Modern English, and Latin somehow diverged into
numerous mutually foreign languages. A number of
models and simulations have been studied using his-
torical linguistics and acquisition studies to build on
one another (Yang, 2002; Lightfoot, 1999; Niyogi

and Berwick, 1996). This paper describes the ini-
tial stages of a long term project undertaken in con-
sultation with Anthony Kroch, designed to integrate
knowledge from these and other areas of linguistics
into a mathematical model of the entire history of
English. As a first step, this paper examines the
verb-second phenomenon, which has caused some
difficulty in other simulations. The history of En-
glish and other languages requires simulated popu-
lations to have certain long-term behaviors. Assum-
ing that syntax can change without a non-syntactic
driving force, these requirements place informative
restrictions on the acquisition algorithm. Specifi-
cally, the behavior of this simulation suggests that
children are aware of the topic of a sentence and use
it during acquisition, that children take into account
whether or not a sentence can be parsed by multiple
hypothetical grammars, and that speakers are aware
of variety in their linguistic environment but do not
make as much use of it individually.

As discussed in (Yang, 2002) and (Kroch, 1989),
both Middle English and Old French had a syntac-
tic rule, typical of Germanic languages, known as
verb-second or V2, in which top-level sentences are
re-organized: The finite verb moves to the front, and
the topic moves in front of that. These two lan-
guages both lost V2 word order. Yang (2002) also
states that other Romance languages once had V2
and lost it. However, Middle English is the only Ger-
manic language to have lost V2.

A current hypothesis for how V2 is acquired sup-
poses that children listen for cue sentences that can-
not be parsed without V2 (Lightfoot, 1999). Specifi-
cally, sentences with an initial non-subject topic and
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finite verb are the cues for V2:

(1) [CP TopicXP CV [IP Subject . . . ]]

(2) [[On þis gær] wolde [þe king Stephne tæ-
cen. . . ]]
[[in this year] wanted [the king Stephen
seize. . . ]]
‘During this year king Stephen wanted to
seize. . . ’
(Fischer et al., 2000, p. 130)

This hypothesis suggests that the loss of V2 can be
attributed to a decline in cue sentences in speech.
Once the change is actuated, feedback from the
learning process propels it to completion.

Several questions immediately arise: Can the ini-
tial decline happen spontaneously, as a consequence
of purely linguistic factors? Specifically, can a
purely syntactic force cause the decline of cue sen-
tences, or must it be driven by a phonological or
morphological change? Alternatively, given the ro-
bustness of child language acquisition, must the ini-
tial decline be due to an external event, such as con-
tact or social upheaval? Finally, why did Middle
English and Old French lose V2, but not German,
Yiddish, or Icelandic? And what can all of this say
about the acquisition process?

Yang and Kroch suggest the following hypothesis
concerning why some V2 languages, but not all, are
unstable. Middle English (specifically, the southern
dialects) and Old French had particular features that
obscured the evidence for V2 present in the primary
linguistic data available for children:

• Both had underlying subject-verb-object
(SVO) word order. For a declarative sentence
with topicalized subject, an SVO+V2 grammar
generates the same surface word order as
an SVO grammar without V2. Hence, such
sentences are uninformative as to whether
children should use V2 or not. According to
estimates quoted in (Yang, 2002) and (Light-
foot, 1999), about 70% of sentences in modern
V2 languages fall into this category.

• Both allowed sentence-initial adjuncts, which
came before the fronted topic and verb.

• Subject pronouns were different from full NP
subjects in both languages. In Middle English,
subject pronouns had clitic-like properties that
caused them to appear to the left of the finite
verb, thereby placing the verb in third position.
Old French was a pro-drop language, so subject
pronouns could be omitted, leaving the verb
first.

The Middle English was even more complex due to
its regional dialects. The northern dialect was heav-
ily influenced by Scandinavian invaders: Sentence-
initial adjuncts were not used, and subject pronouns
were treated the same as full NP subjects.

Other Germanic languages have some of these
factors, but not all. For example, Icelandic has un-
derlying SVO order but does not allow additional
adjuncts. It is therefore reasonable to suppose that
these confounds increase the probability that natural
variation or an external influence might disturb the
occurrence rate of cue sentences enough to actuate
the loss of V2.

An additional complication, exposed by
manuscript data, is that the population seems
to progress as a whole. There is no indication that
some speakers use a V2 grammar exclusively and
the rest never use V2, with the decline in V2 coming
from a reduction in the number of exclusively V2
speakers. Instead, manuscripts show highly variable
rates of use of unambiguously V2 sentences, sug-
gesting that all individuals used V2 at varying rates,
and that the overall rate decreased from generation
to generation. Furthermore, children seem to use
mixtures of adult grammars during acquisition
(Yang, 2002). These features suggest that modeling
only idealized adult speech may not be sufficient;
rather, the mixed speech of children and adults in
a transitional environment is crucial to formulating
a model that can be compared to acquisition and
manuscript data.

A number of models and simulations of language
learning and change have been formulated (Niyogi
and Berwick, 1996; Niyogi and Berwick, 1997;
Briscoe, 2000; Gibson and Wexler, 1994; Mitchener,
2003; Mitchener and Nowak, 2003; Mitchener and
Nowak, 2004; Komarova et al., 2001) based on the
simplifying assumption that speakers use one gram-
mar exclusively. Frequently, V2 can never be lost in

11



such simulations, perhaps because the learning al-
gorithm is highly sensitive to noise. For example,
a simple batch learner that accumulates sample sen-
tences and tries to pick a grammar consistent with
all of them might end up with a V2 grammar on the
basis of a single cue sentence.

The present work is concerned with developing
an improved simulation framework for investigating
syntactic change. The simulated population consists
of individual simulated people called agents that can
use arbitrary mixtures of idealized grammars called
fuzzy grammars. Fuzzy grammars enable the sim-
ulation to replicate smooth, population-wide transi-
tions from one dominant idealized grammar to an-
other. Fuzzy grammars require a more sophisticated
learning algorithm than would be required for an
agent to acquire a single idealized grammar: Agents
must acquire usage rates for the different idealized
grammars rather than a small set of discrete param-
eter values.

2 Linguistic specifics of the simulation

The change of interest is the loss of V2 in Middle
English and Old French, in particular why V2 was
unstable in these languages but not in others. There-
fore, the idealized grammars allowed in this simu-
lation will be limited to four: All have underlying
subject-verb-object word order, and allow sentence-
initial adjuncts. The options are V2 or not, and pro-
drop or not. Thus, a grammar is specified by a pair
of binary parameter values. For simplicity, the pro-
drop parameter as in Old French is used rather than
trying to model the clitic status of Middle English
subject pronouns.

Sentences are limited to a few basic types of
declarative statements, following the degree-0 learn-
ing hypothesis (Lightfoot, 1999): The sentence may
or may not begin with an adjunct, the subject may
be either a full noun phrase or a pronoun, and the
verb may optionally require an object or a subject.
A verb, such as rain, that does not require a subject
is given an expletive pronoun subject if the grammar
is not pro-drop. Additionally, either the adjunct, the
subject, or the object may be topicalized. For a V2
grammar, the topicalized constituent appears just be-
fore the verb; otherwise it is indicated only by spo-
ken emphasis.

A fuzzy grammar consists of a pair of beta distri-
butions with parameters α and β, following the con-
vention from (Gelman et al., 2004) that the density
for Beta(α, β) is

p(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1.

(3)
Each beta distribution controls one parameter in the
idealized grammar.1 The special case of Beta(1, 1)
is the uniform distribution, and two such distribu-
tions are used as the initial state for the agent’s fuzzy
grammar. The density for Beta(1 + m, 1 + n) is a
bump with peak at m/(m + n) that grows sharper
for larger values of m and n. Thus, it incorporates a
natural critical period, as each additional data point
changes the mean less and less, while allowing for
variation in adult grammars as seen in manuscripts.

To produce a sentence, an agent with fuzzy gram-
mar (Beta(α1, β1),Beta(α2, β2)) constructs an ide-
alized grammar from a pair of random parameter
settings, each 0 or 1, selected as follows. The agent
picks a random number Qj ∼ Beta(αj , βj), then
sets parameter j to 1 with probability Qj and 0 with
probability 1 −Qj . An equivalent and faster opera-
tion is to set parameter j to 1 with probability µj and
0 with probability 1−µj , where µj = αj/(αj +βj)
is the mean of Beta(αj , βj).

To learn from a sentence, an agent first con-
structs a random idealized grammar as before. If the
grammar can parse the sentence, then some of the
agent’s beta distributions are adjusted to increase the
probability that the successful grammar is selected
again. If the grammar cannot parse the sentence,
then no adjustment is made. To adjust Beta(α, β)
to favor 1, the agent increments the first parame-
ter, yielding Beta(α + 1, β). To adjust it to favor
0, the agent increments the second parameter, yield-
ing Beta(α, β + 1).

Within this general framework, many variations
are possible. For example, the initial state of an
agent, the choice of which beta distributions to up-
date for particular sentences, and the social structure
(who speaks to who) may all be varied.

1The beta distribution is the conjugate prior for using
Bayesian inference to estimate the probability a biased coin will
come up heads: If the prior distribution is Beta(α, β), the pos-
terior after m heads and n tails is Beta(α + m, β + n).

12



The simulation in (Briscoe, 2002) also makes use
of Bayesian learning, but within an algorithm for
which learners switch abruptly from one idealized
grammar to another as estimated probabilities cross
certain thresholds. The smoother algorithm used
here is preferable because children do not switch
abruptly between grammars (Yang, 2002). Further-
more, this algorithm allows simulations to include
children’s highly variable speech. Children learn-
ing from each other is thought be an important force
in certain language changes; for example, a recent
change in the Icelandic case system, known as da-
tive sickness, is thought to be spreading through this
mechanism.

3 Adaptation for Markov chain analysis

To the learning model outlined so far, we add the fol-
lowing restrictions. The social structure is fixed in a
loop: There are n agents, each of which converses
with its two neighbors. The parameters αj and βj

are restricted to be between 1 and N . Thus, the pop-
ulation can be in one of N 4n possible states, which
is large but finite.

Time is discrete with each time increment rep-
resenting a single sentence spoken by some agent
to a neighbor. The population is represented by a
sequence of states (Xt)t∈Z. The population is up-
dated as follows by a transition function Xt+1 =
φ(Xt, Ut) that is fed the current population state plus
a tuple of random numbers Ut. One agent is selected
uniformly at random to be the hearer. With probabil-
ity pr, that agent dies and is replaced by a baby in an
initial state (Beta(1, 1),Beta(1, 1)). With probabil-
ity 1 − pr, the agent survives and hears a sentence
spoken by a randomly selected neighbor.

Two variations of the learning process are ex-
plored here. The first, called LEARN-ALWAYS,
serves as a base line: The hearer picks an idealized
grammar according to its fuzzy grammar, and tries
to parse the sentence. If it succeeds, it updates any
one beta distribution selected at random in favor of
the parameter that led to a successful parse. If the
parse fails, no update is made. This algorithm is sim-
ilar to Naive Parameter Learning with Batch (Yang,
2002, p. 24), but adapted to learn a fuzzy grammar
rather than an idealized grammar, and to update the
agent’s knowledge of only one syntactic parameter

at a time.
The second, called PARAMETER-CRUCIAL, is the

same except that the parameter is only updated if
it is crucial to the parse: The agent tries to parse
the sentence with that parameter in the other set-
ting. If the second parse succeeds, then the param-
eter is not considered crucial and is left unchanged,
but if it fails, then the parameter is crucial and the
original setting is reinforced. This algorithm builds
on LEARN-ALWAYS by restricting learning to sen-
tences that are more or less unambiguous cues for
the speaker’s setting for one of the syntactic param-
eters. The theory of cue-based learning assumes that
children incorporate particular features into their
grammar upon hearing specific sentences that unam-
biguously require them. This process is thought to
be a significant factor in language change (Lightfoot,
1999) as it provides a feedback mechanism: Once a
parameter setting begins to decline, cues for it will
become less frequent in the population, resulting in
further decline in the next generation. A difficulty
with the theory of cue-based learning is that it is un-
clear what exactly “unambiguous” should mean, be-
cause realistic language models generally have cases
where no single sentence type is unique to a particu-
lar grammar or parameter setting (Yang, 2002, p. 34,
39). The definition of a crucial parameter preserves
the spirit of cue-based learning while avoiding po-
tential difficulties inherent in the concept of “unam-
biguous.”

These modifications result in a finite-state Markov
chain with several useful properties. It is irreducible,
which means that there is a strictly positive proba-
bility of eventually getting from any initial state to
any other target state. To see this, observe that there
is a tiny but strictly positive probability that in the
next several transitions, all the agents will die and
the following sentence exchanges will happen just
right to bring the population to the target state. This
Markov chain is also aperiodic, which means that
at any time t far enough into the future, there is a
strictly positive probability that the chain will have
returned to its original state. Aperiodicity is a con-
sequence of irreducibility and the fact that there is
a strictly positive probability that the chain does not
change states from one time step to the next. That
happens when a hearer fails to parse a sentence, for
example. An irreducible aperiodic Markov chain al-
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ways has a stationary distribution. This is a proba-
bility distribution on its states, normally denoted π,
such that the probability that Xt = x converges to
π(x) as t → ∞ no matter what the initial state X0

is. Furthermore, the transition function preserves π,
which means that if X is distributed according to π,
then so is φ(X,U). The stationary distribution rep-
resents the long term behavior of the Markov chain.

Agents have a natural partial ordering � defined
by

(Beta(α1, β1),Beta(α2, β2))

� (Beta(α′

1, β
′

1),Beta(α′

2, β
′

2))

if and only if

α1 ≥ α′

1, β1 ≤ β′1, α2 ≥ α′

2, and β2 ≤ β′2. (4)

This ordering means that the left-hand agent is
slanted more toward 1 in both parameters. Not all
pairs of agent states are comparable, but there are
unique maximum and minimum agent states under
this partial ordering,

Amax = (Beta(N, 1),Beta(N, 1)),

Amin = (Beta(1, N),Beta(1, N)),

such that all agent states A satisfy Amax � A �

Amin. Let us consider two population states X and
Y and denote the agents in X by Aj and the agents
in Y by Bj , where 1 ≤ j ≤ n. The population
states may also be partially ordered, as we can define
X � Y to mean all corresponding agents satisfy
Aj � Bj . There are also maximum and minimum
population states Xmax and Xmin defined by setting
all agent states to Amax and Amin, respectively.

A Markov chain is monotonic if the set of states
has a partial ordering with maximum and minimum
elements and a transition function that respects that
ordering. There is a perfect sampling algorithm
called monotonic coupling from the past (MCFTP)
that generates samples from the stationary distribu-
tion π of a monotonic Markov chain without requir-
ing certain properties of it that are difficult to com-
pute (Propp and Wilson, 1996). The partial ordering
� on population states was constructed so that this
algorithm could be used. The transition function φ
mostly respects this partial ordering, that is, if X �

Y , then with high probability φ(X,U) � φ(Y,U).
This monotonicity property is why φ was defined to

change only one agent per time step, and why the
learning algorithms change that agent’s knowledge
of at most one parameter per time step. However,
φ does not quite respect �, because one can con-
struct X , Y , and U such that X � Y but φ(X,U)
and φ(Y,U) are not comparable. So, MCFTP does
not necessarily produce correctly distributed sam-
ples. However, it turns out to be a reasonable heuris-
tic, and until further theory can be developed and ap-
plied to this problem, it is the best that can be done.

The MCFTP algorithm works as follows. We sup-
pose that (Ut)t∈Z is a sequence of tuples of random
numbers, and that (Xt)t∈Z is a sequence of random
states such that each Xt is distributed according to π
and Xt+1 = φ(Xt, Ut). We will determine X0 and
return it as the random sample from the distribution
π. To determine X0, we start at time T < 0 with a
list of all possible states, and compute their futures
using φ and the sequence of Ut. If φ has been cho-
sen properly, many of these paths will converge, and
with any luck, at time 0 they will all be in the same
state. If this happens, then we have found a time T
such that no matter what XT is, there is only one
possible value for X0, and that random state is dis-
tributed according to π as desired. Otherwise, we
continue, starting twice as far back at time 2T , and
so on. This procedure is generally impractical if the
number of possible states is large. However, if the
Markov chain is monotonic, we can take the short-
cut of only looking at the two paths starting at Xmax

and Xmin at time T . If these agree at time 0, then all
other paths are squeezed in between and must agree
as well.

4 Tweaking

Since this simulation is intended to be used to study
the loss of V2, certain long term behavior is desir-
able. Of the four idealized grammars available in
this simulation, three ought to be fairly stable, since
there are languages of these types that have retained
these properties for a long time: SVO (French,
English), SVO+V2 (Icelandic), and SVO+pro-drop
(Spanish). The fourth, SVO+V2+pro-drop, ought to
be unstable and give way to SVO+pro-drop, since
it approximates Old French before it changed. In
any case, the population ought to spend most of its
time in states where most of the agents use one of
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the four grammars predominantly, and neighboring
agents should have similar fuzzy grammars.

In preliminary experiments, the set of possible
sentences did not contain expletive subject pro-
nouns, sentence initial adverbs, or any indication of
spoken stress. Thus, the simulated SVO language
was a subset of all the others, and SVO+pro-drop
was a subset of SVO+V2+pro-drop. Consequently,
the PARAMETER-CRUCIAL learning algorithm was
unable to learn either of these languages because the
non-V2 setting was never crucial: Any sentence that
could be parsed without V2 could also be parsed
with it. In later experiments, the sentences and
grammars were modified to include expletive pro-
nouns, thereby ensuring that SVO is not a subset of
SVO+pro-drop or SVO+V2+pro-drop. In addition,
marks were added to sentences to indicate spoken
stress on the topic. In the simulated V2 languages,
topics are always fronted, so such stress can only
appear on the initial constituent, but in the simulated
non-V2 languages it can appear on any constituent.
This modification ensures that no language within
the simulation is a subset of any of the others.

The addition of spoken stress is theoretically plau-
sible for several reasons. First, the acquisition of
word order and case marking requires children to
infer the subject and object of sample sentences,
meaning that such thematic information is available
from context. It is therefore reasonable to assume
that the thematic context also allows for inference
of the topic. Second, Chinese allows topics to be
dropped where permitted by discourse, a feature also
observed in the speech of children learning English.
These considerations, along with the fact that the
simulation works much better with topic markings
than without, suggests that spoken emphasis on the
topic provides positive evidence that children use to
determine that a language is not V2.

It turns out that the maximum value N allowed
for αj and βj must be rather large. If it is too
small, the population tends to converge to a satu-
rated state where all the agents are approximately
Â = (Beta(N,N),Beta(N,N)). This state repre-
sents an even mixture of all four grammars and is
clearly unrealistic. To see why this happens, imag-
ine a fixed linguistic environment and an isolated
agent learning from this environment with no birth-
and-death process. This process is a Markov chain

with a single absorbing state Â, meaning that once
the learner reaches state Â it cannot change to any
other state: Every learning step requires increasing
one of the numerical parameters in the agent’s state,
and if they are all maximal, then no further change
can take place. Starting from any initial state, the
agent will eventually reach the absorbing state. The
number of states for an agent must be finite for prac-
tical and theoretical reasons, but by making N very
large, the time it takes for an agent to reach Â be-
comes far greater than its life span under the birth-
and-death process, thereby avoiding the saturation
problem. With pr = 0.001, it turns out that 5000 is
an appropriate value for N , and effectively no agents
come close to saturation.

After some preliminary runs, the LEARN-
ALWAYS algorithm seemed to produce extremely in-
coherent populations with no global or local con-
sensus on a dominant grammar. Furthermore,
MCFTP was taking an extremely long time un-
der the PARAMETER-CRUCIAL algorithm. An ad-
ditional modification was put in place to encour-
age agents toward using predominantly one gram-
mar. The best results were obtained by modify-
ing the speaking algorithm so that agents prefer to
speak more toward an extreme than the linguistic
data would indicate. For example, if the data sug-
gests that they should use V2 with a high probability
of 0.7, then they use V2 with some higher probabil-
ity, say, 0.8. If the data suggests a low value, say 0.3,
then they use an even lower value, say 0.2. The orig-
inal algorithm used the mean µj of beta distribution
Beta(αj , βj) as the probability of using 1 for pa-
rameter j. The biased speech algorithm uses f(µj)
instead, where f is a sigmoid function

f(µ) =
1

1 + exp(2k − 4kµ)
(5)

that satisfies f(1/2) = 1/2 and f ′(1/2) = k. The
numerical parameter k can be varied to exagger-
ate the effect. This modification leads to some in-
crease in coherence with the LEARN-ALWAYS al-
gorithm; it has minimal effect on the samples ob-
tained with the PARAMETER-CRUCIAL algorithm,
however MCFTP becomes significantly faster.

The biased speech algorithm can be viewed as a
smoother form of the thresholding operation used in
(Briscoe, 2002), discussed earlier. An alternative in-
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terpretation is that the acquisition process may in-
volve biased estimates of the usage frequencies of
syntactic constructions. Language acquisition re-
quires children to impose regularity on sample data,
leading to creoles and regularization of vocabulary,
for instance (Bickerton, 1981; Kirby, 2001). This
addition to the simulation is therefore psychologi-
cally plausible.

5 Results

In all of the following results, the bound on αj and
βj is N = 5000, the sigmoid slope is k = 2, the
probability that an agent is replaced when selected
is pr = 0.001, and there are 40 agents in the pop-
ulation configured in a loop where each agent talks
to its two neighbors. See Figure 1 for a key to the
notation used in the figures.

First, let us consider the base line LEARN-
ALWAYS algorithm. Typical sample populations,
such as the one shown in Figure 2, tend to be glob-
ally and locally incoherent, with neighboring agents
favoring completely different grammars. The results
are even worse without the biased speech algorithm.

A sample run using the PARAMETER-CRUCIAL

learning algorithm is shown in Figure 3. This pop-
ulation is quite coherent, with neighbors generally
favoring similar grammars, and most speakers us-
ing non-V2 languages. Remember that the picture
represents the internal data of each agent, and that
their speech is biased to be more regular than their
experience. There is a region of SVO+V2 spanning
the second row, and a region of SVO+pro-drop on
the fourth row with some SVO+V2+pro-drop speak-
ers. Another sample dominated by V2 with larger
regions of SVO+V2+pro-drop is shown in Figure 4.
A third sample dominated by non-pro-drop speakers
is shown in Figure 5. The MCFTP algorithm starts
with a population of all Amax and one of Amin and
returns a sample that is a possible future of both;
hence, both V2 and pro-drop may be lost and gained
under this simulation.

In addition to sampling from the stationary distri-
bution π of a Markov chain, MCFTP estimates the
chain’s mixing time, which is how large t must be
for the distribution of Xt to be ε-close to π (in total
variation distance). The mixing time is roughly how
long the chain must run before it “forgets” its initial

state. Since this Markov chain is not quite mono-
tonic, the following should be considered a heuristic
back-of-the-napkin calculation for the order of mag-
nitude of the time it takes for a linguistic environ-
ment to forget its initial state. Figures 3 and 4 require
29 and 30 doubling steps in MCFTP, which indicates
a mixing time of around 228 steps of the Markov
chain. Each agent has a probability pr of dying and
being replaced if it is selected. Therefore, the proba-
bility of an agent living to age m is (1−pr)

mpr, with
a mean of (1−pr)/pr . For pr = 0.001, this gives an
average life span of 999 listening interactions. Each
agent is selected to listen or be replaced with proba-
bility 1/40, so the average lifespan is approximately
40, 000 steps of the Markov chain, which is between
215 and 216. Hence, the mixing time is on the order
of 228−16 = 4096 times the lifespan of an individual
agent. In real life, taking a lifespan to be 40 years,
that corresponds to at least 160, 000 years. Further-
more, this is an underestimate, because true human
language is far more complex and should have an
even longer mixing time. Thus, this simulation sug-
gests that the linguistic transitions we observe in real
life taking place over a few decades are essentially
transient behavior.

6 Discussion and conclusion

With reasonable parameter settings, populations in
this simulation are able to both gain and lose V2, an
improvement over other simulations, including ear-
lier versions of this one, that tend to always converge
to SVO+V2+pro-drop. Furthermore, such changes
can happen spontaneously, without an externally im-
posed catastrophe. The simulation does not give rea-
sonable results unless learners can tell which com-
ponent of a sentence is the topic. Preliminary re-
sults suggest that the PARAMETER-CRUCIAL learn-
ing algorithm gives more realistic results than the
LEARN-ALWAYS algorithm, supporting the hypoth-
esis that much of language acquisition is based on
cue sentences that are in some sense unambiguous
indicators of the grammar that generates them. Tim-
ing properties of the simulation suggest that it takes
many generations for a population to effectively for-
get its original state, suggesting that further research
should focus on the simulation’s transient behavior
rather than on its stationary distribution.
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In future research, this simulation will be ex-
tended to include other possible grammars, partic-
ularly approximations of Middle English and Ice-
landic. That should be an appropriate level of detail
for studying the loss of V2. For studying the rise
of V2, the simulation should also include V1 gram-
mars as in Celtic languages, where the finite verb
raises but the topic remains in place. According to
Kroch (personal communication) V2 is thought to
arise from V1 languages rather than directly from
SOV or SVO languages, so the learning algorithm
should be tuned so that V1 languages are more likely
to become V2 than non-V1 languages.

The learning algorithms described here do not in-
clude any bias in favor of unmarked grammatical
features, a property that is thought to be necessary
for the acquisition of subset languages. One could
easily add such a bias by starting newborns with
non-uniform prior information, such as Beta(1, 20)
for example. It is generally accepted that V2 is
marked based on derivational economy.2 Pro-drop is
more complicated, as there is no consensus on which
setting is marked.3 The correct biases are not obvi-
ous, and determining them requires further research.

Further extensions will include more complex
population structure and literacy, with the goal of
eventually comparing the results of the simulation to
data from the Pennsylvania Parsed Corpus of Middle
English.
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Figure 1: Key to illustrations. Each agent is drawn as a box, with a dot indicating its fuzzy grammar. The
means of its beta distributions are used as the coordinates of the dot. The distribution for the V2 parameter
is used for the horizontal component, and the distribution for the pro-drop parameter is used for the vertical
component. Agents using predominantly one of the four possible idealized grammars have their dot in one
of the corners as shown.

Figure 2: A population of 40 under the LEARN-ALWAYS algorithm. Each agent speaks to its neighbors, and
the population should be read left to right and bottom to top. The rightmost agent in each row is neighbors
with the leftmost agent in the next row up. The bottom left agent is neighbors with the top right agent.
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Figure 3: A population of 40 under the PARAMETER-CRUCIAL algorithm. Each agent speaks to its neigh-
bors, and the population should be read left to right and bottom to top.

Figure 4: A population of 40 under the PARAMETER-CRUCIAL algorithm. Each agent speaks to its neigh-
bors, and the population should be read left to right and bottom to top.

Figure 5: A population of 40 under the PARAMETER-CRUCIAL algorithm. Each agent speaks to its neigh-
bors, and the population should be read left to right and bottom to top.
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Abstract 

Unsupervised learning of grammar is a 
problem that can be important in many 
areas ranging from text preprocessing 
for information retrieval and 
classification to machine translation. 
We describe an MDL based grammar 
of a language that contains morphology 
and lexical categories. We use an 
unsupervised learner of morphology to 
bootstrap the acquisition of lexical 
categories and use these two learning 
processes iteratively to help and 
constrain each other. To be able to do 
so, we need to make our existing 
morphological analysis less fine 
grained. We present an algorithm for 
collapsing morphological classes 
(signatures) by using syntactic context. 
Our experiments demonstrate that this 
collapse preserves the relation between 
morphology and lexical categories 
within new signatures, and thereby 
minimizes the description length of the 
model. 

1 Introduction 

Our long term goal is the development of 
methods which will allow one to produce 
optimal analyses from arbitrary natural language 
corpora, where by optimization we understand 
an MDL (minimum description length; 

Rissanen, 1989) interpretation of the term: an 
optimal analysis is one which finds a grammar 
which simultaneously minimizes grammar 
length and data compression length. Our specific 
and primary focus is on morphology, and on 
how knowledge of morphology can be a useful 
step towards a more complete knowledge of a 
language’s linguistic structure. 

Our strategy is based on the following 
observation: knowing the rightmost suffix of a 
word is very useful information in inferring (or 
guessing) a word’s part of speech (POS), but due 
to the ambiguity of many suffixes, it is even 
better to know both a word’s suffix and the 
range of other suffixes that the word’s stem 
appears with elsewhere, i.e., its signature. As we 
will see below, this conjunction of “better” 
information is what we call the signature 
transform, and in this paper, we explore how 
knowledge of signature transform can be merged 
with knowledge of the context vector to draw 
conclusions about morphology and syntax.  

In the distant future, we would like to be able 
to use the signature transform in a general 
process of grammar induction, but that day is 
not here; we therefore test our experiments by 
seeing how well we are able to predict POS as 
assigned by an available tagger (TreeTagger; 
Schmid 1994). In particular, we wish to decrease 
the uncertainty of a word’s POS through the 
morphological analysis described here. This 
decrease of uncertainty will enter into our 
calculation through an increase in the 
probability assigned to our test corpus once the 
corpus has been augmented with TreeTagger 
assigned POS tags. But to be clear on our 
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process: we analyze a completely raw text 
morphologically, and use the POS tags from 
TreeTagger only to evaluate the signature 
transforms that we generate. 

We assume without argument here that any 
adequate natural language grammar will contain 
a lexicon which includes both lexical stems 
which are specified for morphological 
properties, such as the specific affixes with 
which they may occur, and affixes associated 
with lexical categories. We also explicitly note 
that many affixes are homophonous: they are 
pronounced (or written) identically, but have 
different morphological or syntactic 
characteristics, such as the English plural –s and 
the verbal 3rd person singular present –s. 

We focus initially on unsupervised learning 
of morphology for three reasons: first, because 
we already have a quite successful unsupervised 
morphological learner; second, the final suffix of 
a word is typically the strongest single indicator 
of its syntactic category; and third, analysis of a 
word into a stem T plus suffix F allows us 
(given our knowledge that the suffix F is a 
stronger indicator of category than the stem T) 
to collapse many distinct stems into a single 
cover symbol for purposes of analysis, 
simplifying our task, as we shall see.1 We 
eschew the use of linguistic resources with hand-
(i.e., human-)assigned morphological infor-
mation in order for this work to contribute, 
eventually, to a better theoretical understanding 
of human language acquisition. 

We present in this paper an algorithm that 
modifies the output of the morphology analyzer 
by combining redundant signatures. Since we 
ultimately want to use signatures and signature 
transforms to learn syntactic categories, we 
developed an algorithm that uses the syntactic 
contextual information. We evaluate the changes 
to the morphological analysis from the 
standpoint of efficient and adequate 
representation of lexical categories. This paper 
presents a test conducted on English, and thus 
can only be considered a preliminary step in the 
                                                           
1 See Higgins 2002 for a study similar in some ways; 
Higgins uses morphology as a bootstrap heuristic in one 
experimental set-up. This paper is heavily indebted to prior 
work on unsupervised learning of position categories such 
as Brown et al 1992, Schütze 1997, Higgins 2002, and 
others cited there.  

eventually development of a language-
independent tool for grammar induction based 
on morphology. Nonetheless, the concepts that 
motivate the process are language-independent, 
and we are optimistic that similar results would 
be found in tests based on texts from other 
languages.  

In section 2 we discuss the notion of 
signature and signature transform, and section 3 
present a more explicit formulation of the 
general problem. In section 4 we present our 
algorithm for signature collapse. Section 5 
describes the experiments we ran to test the 
signature collapsing algorithm, and section 6 
presents and discusses our results. 

2 Signatures and signature transforms 

We employ the unsupervised learning of 
morphology developed by Goldsmith 
(Goldsmith, 2001). Regrettably, some of the 
discussion below depends rather heavily on 
material presented there, but we attempt to 
summarize the major points here. 

Two critical terms that we employ in this 
analysis are signature and signature transform. 
A signature found in a given corpus is a pair of 
lists: a stem-list and a suffix-list (or in the 
appropriate context, a prefix-list). By definition 
of signature σ, the concatenation of every stem 
in the stem-list of σ with every suffix in the 
suffix-list of σ is found in the corpus, and a 
morphological analysis of a corpus can be 
viewed as a set of signatures that uniquely 
analyze each word in the corpus. For example, a 
corpus of English that includes the words jump, 
jumps, jumped, jumping, walk, walks, walked, 
and walking might include the signature σ1 
whose stem list is { jump, walk } and whose 
suffix list is { Ø, ed, ing , s }. For convenience, 
we label a signature with the concatenation of its 
suffixes separated by period ‘.’. On such an 
analysis, the word jump is analyzed as belonging 
to the signature Ø.ed.ing.s, and it bears the 
suffix Ø. We say, then, that the signature 
transform of jump is Ø.ed.ing.s_ Ø, just as the 
signature transform of jumping is 
Ø.ed.ing.s_ing; in general, the signature 
transform of a word W, when W is morpho-
logically analyzed as stem T followed by suffix 
F, associated with signature σ, is defined as σ_F. 
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In many of the experiments described below, 
we use a corpus in which all words whose 
frequency rank is greater than 200 have been 
replaced by their signature transforms. This 
move is motivated by the observation that high 
frequency words in natural languages tend to 
have syntactic distributions poorly predictable 
by any feature other than their specific identity, 
whereas the distribution properties of lower 
frequency words (which we take to be words 
whose frequency rank is 200 or below) are better 
predicted by category membership.  

In many cases, there is a natural connection 
between a signature transform and a lexical 
category. Our ultimate goal is to exploit this in 
the larger context of grammar induction. For 
example, consider the signature Ø.er.ly, which 
occurs with stems such as strong and weak; in 
fact, words whose signature transform is 
Ø.er.ly_ Ø are adjectives, those whose signature 
transform is Ø.er.ly_er are comparative 
adjectives, and those whose signature transform 
is Ø.er.ly_ly are adverbs. 

The connection is not perfect, however. 
Consider the signature Ø.ed.ing.s and its four 
signature transforms. While most words whose 
σ -transform is Ø.ed.ing.s_s are verbs (indeed, 
3rd person singular present tense verbs, as in he 
walks funny), many are in fact plural nouns (e.g., 
walks in He permitted four walks in the eighth 
inning is a plural noun). We will refer to this 
problem as the signature purity problem–it is 
essentially the reflex of the ambiguity of 
suffixes. 

In addition, many 3rd person singular present 
tense verbs are associated with other signature 
transforms, such as Ø.ing.s_s, Ø.ed.s_s, and so 
forth; we will refer to this as the signature-
collapsing problem, because all other things 
being equal, we would like to collapse certain 
signatures, such as Ø.ed.ing.s and Ø.ed.ing, 
since a stem that is associated with the latter 
signature could have appeared in the corpus with 
an -s suffix; removing the Ø.ed.ing signature and 
reassigning its stems to the Ø.ed.ing.s signature 
will in general give us a better linguistic analysis 
of the corpus, one that can be better used in the 

problem of lexical category induction. This is 
the reflex of the familiar data sparsity concern.2   

Since we ultimately want to use signatures 
and signature transforms to learn syntactic 
categories, we base the similarity measure 
between the signatures on the context.   

3 A more abstract statement of the 
problem  

A minimum description length (MDL) analysis 
is especially appropriate for machine learning of 
linguistic analysis because simultaneously it 
puts a premium both on analytical simplicity and 
on goodness of fit between the model and the 
data (Rissanen 1989).  

We will present first the mathematical 
statement of the MDL model of the morphology, 
in (1), following the analysis in Goldsmith 
(2001), followed by a description of the meaning 
of the terms of the expressions, and then present 
the modified version which includes additional 
terms regarding part of speech (POS) 
information, in (2) and (3).  
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2 The signature-collapsing problem has another side to it as 
well. An initial morphological analysis of English will 
typically give rise to a morphological analysis of words 
such as move, moves, moved, moving with a signature 
whose stems include mov and whose affixes are e.ed.es.ing. 
A successful solution to the signature-collapsing problem 
will collapse Ø.ed.ing.s with e.ed.es.ing, noting that Ø ~ e, 
ed ~ed, es ~ s, and ing ~ ing in an obvious sense. 
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Equation (1a) states that our goal is to find 

the (morphological) grammar that 
simultaneously minimizes the sum of its own 
length and the compressed length of the data it 
analyzes, while (1b) specifies the grammar 
length (or model length) as the sum of the 
lengths of the links between the major 
components of the morphology: the list of letters 
(or phonemes) comprising the morphemes, the 
morphemes (stems and affixes), and the 
signatures. We use square brackets “[.]” to 
denote the token counts in a corpus containing a 
given morpheme or word. The first line of (1b) 
expresses the notion that each stem consists of a 
pointer to its signature and a list of pointers to 
the letters that comprise it; σ(t) is the signature 
associated with stem t, and we take its 
probability to be 

][
)]([

W
tσ , the empirical count of 

the words associated with σ(t) divided by the 
total count of words in the data. The second line 
expresses the idea that the morphology contains 
a list of affixes, each of which contains a list of 
pointers to the letters that comprise it. The third 
line of (1b) expresses the notion that a signature 
consists of a list of pointers to the component 
affixes. (1c) expresses the compressed length of 
each word in the data.3 

We now consider extending this model to 
include part of speech labeling, as sketched in 
(2). The principal innovation in (2) is the 
addition of part of speech tags; each affix is 
associated with one or more POS tags. As we 
                                                           
3 We do not sum over all occurrences of a word in the 
corpus; we count the compressed length of each word type 
found in the corpus. This decision was made based on the 
observation that the (compressed length of the) data term 
grows much faster than the length of the grammar as the 
corpus gets large, and the loss in ability of the model to 
predict word frequencies overwhelms any increase in 
model simplicity when we count word tokens in the data 
terms. We recognize the departure from the traditional 
understanding of MDL here, and assume the responsibility 
to explain this in a future publication. 

have seen, a path from a particular signature σ to 
a particular affix f constitutes what we have 
called a particular signature transform σ_f ; and 
we condition the probabilities of the POS tags in 
the data on the preceding signature 
transformation. As a result, our final model takes 
the form in (3). 

 
(2)  

t1

t2

t3

tn

...

Stems Signatures Affixes POSs

σ1

σ2

σm

...

f1

f2
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...
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π2

π3

πl

...
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The differences between the models are 

found in the added final term in (3b), which 
specifies the information required to predict, or 
specify, the part of speech given the signature 
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transform, and the corresponding term in the 
corpus compression expression (3c).  

The model in (3) implicitly assumes that the 
true POSs are known; in a more complete 
model, the POSs play a direct role in assigning a 
higher probability to the corpus (and hence a 
smaller compressed size to the data). In the 
context of such a model, an MDL-based learning 
device searches for the best assignment of POS 
tags over all possible assignments. Instead of 
doing that in this paper, we employ the 
TreeTagger (Schmid, 1994) based tags (see 
section 5 below), and make the working 
assumption that optimization of description 
length over all signature-analyses and POS tags 
can be approximated by optimization over all 
signature-analyses, given the POS tags provided 
by TreeTagger. 

4 The collapsing of signatures 

We describe in this section our proposed 
algorithm, using context vectors to collapse 
signatures together, composed of a sequence of 
operations, all but the first of which may be 
familiar to the reader:  

Replacement of words by signature-
transforms: The input to our algorithm for 
collapsing signatures is a modified version of 
the corpus which integrates the (unsupervised) 
morphological analyses in the following way. 
First of all, we leave unchanged the 200 most 
frequent words (word types). Next, we replace 
words belonging to the K most reliable 
signatures (where K=50 in these experiments) 
by their associated signature transforms, and we 
in effect ignore all other words, by replacing 
them by a distinguished “dummy” symbol. In 
the following, we refer to our high frequency 
words and signature transforms together as 
elements—so an element is any member of the 
transformed corpus other than the “dummy”.   

Context vectors based on mutual 
information: By reading through the corpus, we 
populate both left and right context vectors for 
each element (=signature-transform and high-
frequency word)  by observing the elements that 
occur adjacent to it. The feature indicating the 
appearance of a particular word on the left is 
always kept distinct from the feature indicating 
the appearance of the same word on the right. 

The features in a context vector are thus 
associated with the members of the element 
vocabulary (and indeed, each member of the 
element vocabulary occurs as two features: one 
on the left, one on the right). We assign the 
value of each feature y of x’s context vector as 
the pointwise mutual information of the 
corresponding element pair (x, y), defined as 

)()(
),(log
yprxpr

yxpr . 

Simplifying context vectors with “idf”: In 
addition, because of the high dimensionality of 
the context vector and the fact that some features 
are more representative than others, we trim the 
original context vector. For each context vector, 
we sort features by their values, and then keep 
the top N (in general, we set N to 10) by setting 
these values to 1, and all others to 0. However, 
in this resulting simplified context vector, not all 
features do equally good jobs of distinguishing 
syntactical categories. As Wicentowski (2002) 
does in a similar context, we assign a weight  

if
w  to each feature fi in a fashion parallel to 
inverse document frequency (idf; see Sparck 
Jones 1973), or 

inappearsfeaturethiselements
elementsdistincttotal

#
#log . 

We view these as the diagonal elements of a 
matrix M (that is, mi,i = 

if
w ). We then check the 

similarity between two simplified context 
vectors by computing the weighted sum of the 
dot product of them. That is, given two 
simplified context vectors c and d, their 
similarity is defined as cTMd. If this value is 
larger than a threshold θ that is set as one 
parameter, we deem these two context vectors to 
be similar. Then we determine the similarity 
between elements by checking whether both left 
and right simplified context vectors of them are 
similar (i.e., their weighted dot products exceed 
a threshold θ). In the experiments we describe 
below, we explore four settings θ for this 
threshold: 0.8 (the most “liberal” in allowing 
greater signature transform collapse, and hence 
greater signature collapse), 1.0, 1.2, and 1.5. 

Calculate signature similarity: To avoid 
considering many unnecessary pairs of 
signatures, we narrow the candidates into 
signature pairs in which the suffixes of one 
constitute a subset of suffixes of the other, and 
we set a limit to the permissible difference in the 
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lengths of the signatures in the collapsed pairs, 
so that the difference in number of affixes 
cannot exceed 2. For each such pair, if all 
corresponding signature transforms are similar 
in the sense defined in the preceding paragraph, 
we deem the two signatures to be similar. 

Signature graph: Finally, we construct a 
signature graph, in which each signature is 
represented as a vertex, and an edge is drawn 
between two signatures iff they are similar, as 
just defined. In this graph, we find a number of 
cliques, each of which, we believe, indicates a 
cluster of signatures which should be collapsed. 
If a signature is a member of two or more 
cliques, then it is assigned to the largest clique 
(i.e., the one containing the largest number of 
signatures).4  

5 Experiments 

We obtain the morphological analysis of the 
Brown corpus (Kučera and Francis, 1967) using 
the Linguistica software (http://linguistica. 
uchicago.edu), and we use the TreeTagger to 
assign a Penn TreeBank-style part-of-speech tag 
to each token in the corpus. We then carry out 
our experiment using the Brown corpus 
modified in the way we described above. Thus, 
for each token of the Brown corpus that our 
morphology analyzer analyzed, we have the 
following information: its stem, its signature 

                                                           
4 Our parameters are by design restrictive, so 

that we declare only few signatures to be similar, 
and therefore the cliques that we find in the 
graph are relatively small. One way to enlarge 
the size of collapsed signatures would be to 
loosen the similarity criterion. This, however, 
introduces too many new edges in the signatures 
graph, leading in turn to spurious collapses of 
signatures. We take a different approach, and 
apply our algorithms iteratively. The idea is that 
if in the first iteration, two cliques did not have 
enough edges between their elements to become 
a single new signature, they may be more 
strongly connected in the second iteration if 
many of their elements are sufficiently similar. 
On the other hand, cliques that were dissimilar 
in the first iteration remain weakly connected in 
the second.  
 

(i.e., the signature to which the stem is 
assigned), the suffix which the stem attains in 
this occurrence of the word (hence, the 
signature-transform), and the POS tag. For 
example, the token polymeric is analyzed into 
the stem polymer and the suffix ic, the stem is 
assigned to the signature Ø.ic.s, and thus this 
particular token has the signature transform 
Ø.ic.s_ic. Furthermore, it was assigned POS-tag 
JJ, so that we have the following entry: 
“polymeric JJ Ø.ic.s_ic”. 

Before performing signature collapsing, we 
calculate the description length of the 
morphology and the compressed length of the 
words that our algorithm analyzes and call it 
baseline description length (DL0). 

Now we apply our signature collapsing 
algorithm under several different parameter 
settings for the similarity threshold θ, and 
calculate the description length DLθ of the 
resulting morphological and lexical analysis 
using  (3).  We know that the smaller the set of 
signatures, the smaller is the cost of the model. 
However, a signature collapse that combines 
signatures with different distributions over the 
lexical categories will result in a high cost of the 
data term (3c). The goal was therefore to find a 
method of collapsing signatures such that the 
reduction in the model cost will be higher than 
the increase in the compressed length of the data 
so that the total cost will decrease.  

As noted above, we perform this operation 
iteratively, and refer to the description length of 
the ith iteration, using a threshold θ, as

θ

iiterDL = . 
We used random collapsing in our 

experiments to ensure the expected relationship 
between appropriate collapses and description 
length. For each signature collapsing, we created 
a parallel situation in which the number of 
signatures collapsed is the same, but their choice 
is random.  We calculate the description length 
using this “random” analysis as 

θ

randomDL . We 
predict that this random collapsing will not 
produce an improvement in the total description 
length. 
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6 Results and discussion 

Table 1 presents the description length, broken 
into its component terms (see (3)), for the 
baseline case and the alternative analyses 
resulting from our algorithm. The table shows 
the total description length of the model, as well 
as the individual terms: the signature term 
DL(σ), the suffix term DL(F), the lexical 
categories term, DL(P), total morphology, 
DL(M), and the compressed length of the data, 
DL(D). We present results for two iterations for 
four threshold values (θ=0.8,1.0,1.2,1.5) using 
our collapsing algorithm.  

Table 2 presents 
θ

randomDL  derived from the 
random collapsing, in a fashion parallel to Table                
1. We show the results for only one iteration of 
random collapsing, since the first iteration 
already shows a substantial increase in 
description length. 

Figure 1 and Figure 2 present graphically the 
total description length from Tables 1 and 2 
respectively. The reader will see that all 

collapsing of signatures leads to a shortening of 
the description length of the morphology per se, 
and an increase in the compressed length of the 
data. This is an inevitable formal consequence of 
the MDL-style model used here. The empirical 
question that we care about is whether the 
combined description length increases or 
decreases, and what we find is that when 
collapsing the signatures in the way that we 
propose to do, the combined description length 
decreases, leading us to conclude that this is, 
overall, a superior linguistic description of the 
data. On the other hand, when signatures are 
collapsed randomly, the combined description 
length increases. This makes sense; randomly 
decreasing the formal simplicity of the 
grammatical description should not improve the 
overall analysis. Only an increase in the formal 
simplicity of a grammar that is grammatically 
sensible should have this property. Since our 
goal is to develop an algorithm that is 
completely data-driven and can operate in an  
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Figure 2 Comparison of DLs with random 

collapse of signatures (see text)
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iterDL 2.1
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=
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θ
iterDL  5.1

1
=
=

θ
iterDL  5.1

2
=
=

θ
iterDL

#σ 50 41 35 41 34 44 42 46 45 
DL(σ) 47,630 45,343 42,939 45,242 43,046 44,897 44,355 46,172 45,780 
DL(F) 160 156 156 153 143 158 147 163 164 
DL(P) 2,246 2,087 1,968 2,084 1,934 2,158 2,094 2,209 2,182 
DL(M) 50,218 47,768 45,244 47,659 45,304 47,395 46,777 48,724 48,306 
DL(D) 315,165 316,562 318,687 316,615 318,172 316,971 317,323 315,910 316,251 
Total 
DL 

365,383 364,330 363,931 364,275 363,476 364,367 364,101 364,635 364,558 

Table 1.   DL and its individual components for baseline and the resulting cases when collapsing 
signatures using our algorithm. 
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 DL0 8.0=θ

randomDL  
0.1=θ

randomDL  
2.1=θ

randomDL  
5.1=θ

randomDL  

#σ 50 41 41 44 46 
DL(σ) 47,630 44,892 45,126 45,788 46,780 
DL(F) 160 201 198 187 177 
DL(P) 2,246 2,193 2,195 2,212 2,223 
DL(M) 50,218 47,468 47,700 48,369 49,362 
DL(D) 315,165 320,200 319,551 318,537 316,874 
Total DL 365,383 367,669 367,252 366,907 366,237 

Table 2. DL and its individual components for baseline and the 
resulting cases when collapsing signatures randomly.

 
 
 

unsupervised fashion, we take this evidence as 
supporting the appropriateness of our algorithm as 
a means of collapsing signatures in a 
grammatically and empirically reasonable way. 

We conclude that the collapsing of signatures 
on the basis of similarity of context vectors of 
signature transforms (in a space consisting of high 
frequency words and signature transforms) 
provides us with a useful and significant step 
towards solving the signature collapsing problem. 
In the context of the broader project, we will be 
able to use signature transforms as a more effective 
means for projecting lexical categories in an 
unsupervised way. 

As Table 1 shows, we achieve up to 30% 
decrease in the number of signatures through our 
proposed collapse. We are currently exploring 
ways to increase this value through powers of the 
adjacency matrix of the signature graph. 

In other work in progress, we explore the 
equally important signature purity problem in 
graph theoretic terms: we split ambiguous 
signature transforms into separate categories when 
we can determine that the edges connecting left-
context features and right-context features can be 
resolved into two sets (corresponding to the 
distinct categories of the transform) whose left-
features have no (or little) overlap and whose right 
features have no (or little) overlap. We employ the 
notion of minimum cut of a weighted graph to 
detect this situation.
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Abstract 

This paper describes a heuristic for 
morpheme- and morphology-learning 
based on string edit distance. 
Experiments with a 7,000 word corpus 
of Swahili, a language with a rich 
morphology, support the effectiveness 
of this approach. 

1 Introduction 

This paper describes work on a technique for the 
unsupervised learning of the morphology of 
natural languages which employs the familiar 
string edit distance (SED) algorithm (Wagner 
and Fischer 1974 and elsewhere) in its first 
stage;  we refer to it here as the SED heuristic. 
The heuristic finds 3- and 4-state finite state 
automata (FSAs) from untagged corpora. We 
focus on Swahili, a Bantu language of East 
Africa, because of the very high average number 
of morphemes per word, especially in the verbal 
system, a system that presents a real challenge to 
other systems discussed in the literature.1 

In Section 2, we present the SED heuristic, 
with precision and recall figures for its 
application to a corpus of Swahili. In Section 3, 
we propose three elaborations and extensions of 
                                                      
1 An earlier version of this paper, with a more detailed 
discussion of the material presented in Section 3, is 
available at Goldsmith et al (2005). 

this approach, and in Section 4, we describe and 
evaluate the results from applying these 
extensions to the corpus of Swahili.2  

2 SED-based heuristic 

Most systems designed to learn natural language 
morphology automatically can be viewed as 
being composed of an initial heuristic 
component and a subsequent explicit model. The 
initial or bootstrapping heuristic, as the name 
suggests, is designed to rapidly come up with a 
set of candidate strings of morphemes, while the 
model consists of an explicit formulation of 
either (1) what constitutes an adequate 
morphology for a set of data, or (2) an objective 
function that must be optimized, given a corpus 
of data, in order to find the correct 
morphological analysis.  

The best known and most widely used 
heuristic is due to Zellig Harris (1955) (see also 
Harris (1967) and Hafer and Weiss (1974) for an 
evaluation based on an English corpus), using a 
notion that Harris called successor frequency 
(henceforth, SF). Harris' notion can be 
succinctly described in contemporary terms: if 
we encode all of the data in the data structure 
known as a trie, with each node in the trie 
dominating all strings which share a common 

                                                      
2 SED has been used in unsupervised language learning in a 
number of studies; see, for example, van Zaanen (2000) 
and references there, where syntactic structure is studied in 
a similar context. To our knowledge, it has not been used in 
the context of morpheme detection. 
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string prefix,3 then each branching node in the 
trie is associated with a morpheme break. For 
example, a typical corpus of English may 
contain the words governed, governing, 
government, governor, and governs. If this data 
is encoded in the usual way in a trie, then a 
single node will exist in the trie which represents 
the string prefix govern and which dominates 
five leaves corresponding to these five words. 
Harris's SF-based heuristic algorithm would 
propose a morpheme boundary after govern on 
this basis. In contemporary terms, we can 
interpret Harris’s heuristic as providing sets of 
simple finite state automata, as in (1), which 
generate a string prefix (PF1) followed by a set 
of string suffixes (SFi) based on the 
measurement of a successor frequency greater 
than 1 (or some threshold value) at the string 
position following PF1. 
(1)  

SF1

SF3

PF1 SF2

 
A variant on the SF-based heuristic, 

predecessor frequency (henceforth, PF), calls for 
encoding words in a trie from right to left. In 
such a PF-trie, each node dominates all strings 
that share a common string suffix. In general, we 
expect SF to work best in a suffixing language, 
and PF to work best in prefixing language; 
Swahili, like all the Bantu languages, is 
primarily a prefixing language, but it has a 
significant number of important suffixes in both 
the verbal and the nominal systems. 

Goldsmith (2001) argues for using the 
discovery of signatures as the bootstrapping 
heuristic, where a signature is a maximal set of 
stems and suffixes with the property that all 
combinations of stems and suffixes are found in 
the corpus in question. We interpret Goldsmith’s 
signatures as extensions of FSAs as in (1) to 

                                                      
3 We use the terms string prefix and string suffix in the 
computer science sense: a string S is a string prefix of a 
string X iff there exists a string T such that X = S.T, where 
“.” is the string concatenation operator; under such 
conditions, T is likewise a string suffix of X. Otherwise, we 
use the terms prefix and suffix in the linguistic sense, and a 
string prefix (e.g., jump) may be a linguistic stem, as in 
jump-ing. 

FSAs as in (2); (2) characterizes Goldsmith’s 
notion of signature in term of FSAs. In 
particular, a signature is a set of forms that can 
be characterized by an FSA of 3 states. 
(2)  

PF1 SF1

PF3 SF2

PF2

 
 

We propose a simple alternative heuristic 
which utilizes the familiar dynamic 
programming algorithm for calculating string-
edit distance, and finding the best alignment 
between two arbitrary strings (Wagner and 
Fischer 1974). The algorithm finds subsets of 
the data that can be exactly-generated by 
sequential finite state automata of 3 and 4 states, 
as in (3), where the labels mi should be 
understood as cover terms for morphemes in 
general. An automaton exactly-generates a set of 
strings S if it generates all strings in S and no 
other strings; a sequential FSA is one of the 
form sketched graphically in (1)-(3), where there 
is a unique successor to each state. 
(3)  

M1 M4

M3 M6

M2

M7

M9

M5 M8

 

2.1 First stage: alignments. 

If presented with the pair of strings anapenda 
and anamupenda from an unknown language, it 
is not difficult for a human being to come up 
with the hypothesis that mu is a morpheme 
inside a larger word that is composed of at least 
two morphemes, perhaps ana- and -penda. The 
SED heuristic makes this observation explicit by 
building small FSAs of the form in (4), where at 
most one of m1 or m4 may be null, and at most 
one of m2 and m3 may be null: we refer to these 
as elementary alignments. The strings m2 and m3 
are called counterparts; the pairs of strings m1 
and m4 are called the context (of the 
counterparts). (Indeed, we consider this kind of 
string comparison to be a plausible candidate for 
human language learning; see Dahan and Brent 
1999). 
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(4)  

1 432 4m1 m4

m3

m2

 
The first stage of the algorithm consists of 
looking at all pairs of words S, T in the corpus, 
and passing through the following steps:  

We apply several initial heuristics to 
eliminate a large proportion of the pairs of 
strings before applying the familiar SED 
algorithm to them, in view of the relative 
slowness of the SED algorithm; see Goldsmith 
et al (2005) for further details.  

We compute the optimal alignment of S and 
T using the SED algorithm, where alignment 
between two identical letters (which we call 
twins) is assigned a cost of 0, alignment between 
two different letters (which we call siblings) is 
assigned a cost of 1.5, and a letter in one string 
not aligned with a segment on the other string 
(which we call an orphan) is assigned a cost of 
1. An alignment as in (5) is thus assigned a cost 
of 5, based on a cost of 1.5 assigned to each 
broken line, and 1  to each dotted line that ends 
in a square box. 
(5)   

n i l i m u p e n d a

n i t a k a m u p e n d a  
There is a natural map from every alignment 

to a unique sequence of pairs, where every pair 
is either of the form (S[i], T[j]) (representing 
either a twin or sibling case) or of the form (S[i], 
0) or (0, T[j]) (representing the orphan case). We 
then divide the alignment up into perfect and 
imperfect spans: perfect spans are composed of 
maximal sequences of twin pairs, while 
imperfect spans are composed of maximal 
sequences of sibling or orphan pairs. This is 
illustrated in (6). 
(6)  

 
 
 
 
 
 

There is a natural equivalence between 
alignments and sequential FSAs as in (4), where 
perfect spans correspond to pairs of adjacent 
states with unique transitions and imperfect 
spans correspond to pairs of adjacent states with 
two transitions, and we will henceforth use the 
FSA notation to describe our algorithm. 

2.2 Collapsing alignments 

As we noted above (4), for any elementary 
alignment, a context is defined: the pair of 
strings (one of them possibly null) which 
surround the pair of counterparts. Our first goal 
is to collapse alignments that share their context. 
We do this in the following way. 

Let us define the set of strings associated 
with the paths leaving a state S as the production 
of state S. A four-state sequential FSA, as in (4), 
has three states with non-null productions; if this 
particular FSA corresponds to an elementary 
alignment, then two of the state-productions 
contain exactly one string—and these state-
productions define the context— and one of the 
state-productions contains exactly two strings 
(one possibly the null string)—this defines the 
counterparts. If we have two such four-state 
FSAs whose context are identical, then we 
collapse the two FSAs into a single conflated 
FSA in which the context states and their 
productions are identical, and the states that 
produced the counterparts are collapsed by 
creating a state that produces the union of the 
productions of the original states. This is 
illustrated in (7): the two FSAs in (7a) share a 
context, generated by their states 1 and 3, and 
they are collapsed to form the FSA in (7b), in 
which the context states remain unchanged, and 
the counterpart states, labeled ‘2’, are collapsed 
to form a new state ‘2’ whose production is the 
union of the productions of the original states. 
(7)  

a.  

1 432 4m1 m4

1 432 4m1 m4

m7

m8

m3

m2

 
 

n i   l i   m u p e n d a

n i   t a k a   m u p e n d a
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b. 

1 432 4m1 m4

m8

m7

m3
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2.3 Collapsing the resulting sequential 
FSAs 

We now generalize the procedure described in 
the preceding section to collapse any two 
sequential FSAs for which all but one of the 
corresponding states have exactly the same 
production. For example, the two sequential 
FSAs in (8a) are collapsed into (8b). 

Three and four-state sequential FSAs as in 
(8b), where at least two of the state-transitions 
generate more than one morpheme, form the set 
of templates derived from our bootstrapping 
heuristic. Each such template can be usefully 
assigned a quantitative score based on the 
number of letters “saved” by the use of the 
template to generate the words, in the following 
sense. The template in (8b) summarizes four 
words: aliyesema, alimfuata, anayesema, and 
anamfuata. The total string length of these 
words is 36, while the total number of letters in 
the strings associated with the transitions in the 
FSA is 1+4+12 = 17; we say that the FSA saves 
36-17 = 19 letters. In actual practice, the 
significant templates discovered save on the 
order of 200 to 5,000 letters, and ranking them 
by the number of letters saved is a good measure 
of how significant they are in the overall 
morphology of the language. We refer to this 
score as a template’s robustness; we employ this 
quantity again in section 3.1 below. 

By this ranking, the top template found in our 
Swahili corpus of 50,000 running words was one 
that generated a and wa (class 1 and 2 subject 
markers) and followed by 246 correct verb 
continuations (all of them polymorphemic); the 
first 6 templates are summarized informally in 
Table 1. We note that the third and fourth 
template can also be collapsed to form a 
template of the form in (3), a point we return to 
below. Precision, recall, and F-score for these 
experiments are given in Table 2.  

 

(8)   
a. 

1 432 4a yesema

na

li

1 432 4a mfuata

na

li

 
 
b.  

1 432 4a

na

li yesema

mfuata  
 

State 1 State 2 State 3 

a, wa (sg., pl. 
human subject 

markers) 

246 stems  

ku, hu 
(infinitive, 

habitual 
markers) 

51 stems  

wa (pl. subject 
marker) 

ka, li (tense 
markers) 

25 stems 

a (sg. subject 
marker) 

ka, li (tense 
markers) 

29 stems 

a (sg. subject 
marker) 

ka, na (tense 
markers 

28 stems 

37 strings w (passive 
marker) 

a 

Table 1 Top templates in Swahili 
 

 Precision Recall  F-score 

SED 0.77 0.57 0.65 

SF 0.54 0.14 0.22 

PF 0.68 0.20 0.31 
Table 2 Results 
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3 Further developments 

In this section, we describe three developments 
of the SED-based heuristic sketched in section 2. 
The first disambiguates which state it is that 
string material should be associated with in 
cases of ambiguity; the second collapses 
templates associated with similar morphological 
structure; the third uses the FSAs to predict 
words that do not actually occur in the corpus by 
hypothesizing stems on the basis of the 
established FSAs and as yet unanalyzed words 
in the corpus. 

3.1 Disambiguating FSAs 

In the case of a sequential FSA, when the final 
letter of the production of a (non-final) state S 
are identical, then that letter can be moved from 
being the string-suffix of all of the productions 
of state S to being the string-prefixes of all of 
the productions of the following state. More 
generally, when the n final letters of the 
productions of a state are identical, there is an n-
way ambiguity in the analysis, and the same 
holds symmetrically for the ambiguity that arises 
when the n initial letters of the production of a 
(non-initial) state.  

Thus two successive states, S and T, must (so 
to speak) fight over which will be responsible 
for generating the ambiguous string. We employ 
two steps to disambiguate these cases.  

Step 1: The first step is applicable when the 
number of distinct strings associated with states 
S and T are quite different in size (typically 
corresponding to the case where one generates 
grammatical morphemes and the other generates 
stems); in this case, we assign the ambiguous 
material to the state that generates the smaller 
number of strings. There is a natural motivation 
for this choice from the perspective of our desire 
to minimize the size of the grammar, if we 
consider the size of the grammar to be based, in 
part, on the sum of the lengths of the morphemes 
produced by each state. 

Step 2: It often happens that an ambiguity 
arises with regard to a string of one or more 
letters that could potentially be produced by 
either of a pair of successive states involving 
grammatical morphemes. To deal with this case, 
we make a decision that is also (like the 

preceding step) motivated by a desire to 
minimize the description length of the grammar. 
In this case, however, we think of the FSA as 
containing explicit strings (as we have assumed 
so far), but rather pointers to strings, and the 
“length” of a pointer to a string is inversely 
proportional to the logarithm of its frequency. 
Thus the overall use of a string in the grammar 
plays a crucial role in determining the length of 
a grammar, and we wish to maximize the 
appearance in our grammar of morphemes that 
are used frequently, and minimize the use of 
morphemes that are used rarely. 

We implement this idea by collecting a table 
of all of the morphemes produced by our FSA, 
and assigning each a score which consists of the 
sum of the robustness scores of each template 
they occur in (see discussion just above (8)). 
Thus morphemes occurring in several high 
robustness templates will have high scores; 
morphemes appearing in a small number of 
lowly ranked templates will have low scores. 

To disambiguate strings which could be 
produced by either of two successive states, we 
consider all possible parsings of the string 
between the states, and score each parsing as the 
sum of the scores of the component morphemes; 
we chose the parsing for which the total score is 
a maximum. 

 For example, Swahili has two common tense 
markers, ka and ki, and this step corrected a 
template from {ak}+{a,i}+{stems} to 
{a}+{ka,ki}+{stems}, and others of similar 
form. It also did some useful splitting of joined 
morphemes, as when it modified a template 
{wali} + {NULL, po} + {stems} to {wa} + {li, 
lipo} + {stems}. In this case, wali should indeed 
be split into wa + li (subject and tense markers, 
resp.), and while the change creates an error (in 
the sense that lipo is, in fact, two morphemes; po 
is a subordinate clause marker), the resulting 
error occurs considerably less often in the data, 
and the correct template will better be able to be 
integrated with out templates. 

3.2 Template collapsing 

From a linguistic point of view, the SED-based 
heuristic creates too many FSAs because it stays 
too close to the data provided by the corpus. The 
only way to get a more correct grammar is by 
collapsing the FSAs, which will have as a 
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consequence the generation of new words not 
found in the corpus. We apply the following 
relatively conservative strategy for collapsing 
two templates. 

We compare templates of the same number 
of states, and distinguish between states that 
produce grammatical morphemes (five or fewer 
in number) and those that produce stems (that is, 
lexical morphemes, identified as being six or 
more in number). We collapse two templates if 
the productions of the corresponding states 
satisfy the following conditions: if the states 
generate stems, then the intersection of the 
productions must be at least two stems, while if 
the states are grammatical morphemes, then the 
productions of one pair of corresponding states 
must be identical, while for the other pair, the 
symmetric difference of the productions must be 
no greater than two in number (that is, the 
number of morphemes produced by the state of 
one template but not the other must not exceed 
2).  

3.3 Reparsing words in the corpus and 
predicting new words 

When we create robust FSAs—that is, FSAs that 
generate a large number of words—we are in a 
position to go back to the corpus and reanalyze a 
large number of words that could not be 
previously analyzed. That is, a 4-state FSA in 
which each state produced two strings generates 
8 words, and all 8 words must appear in the 
corpus for the method described so far in order 
for this particular FSA to generate any of them. 
But that condition is unlikely to be satisfied for 
any but the most common of morphemes, so we 
need to go back to the corpus and infer the 
existence of new stems (as defined operationally 
in the preceding paragraph) based on their 
occurrence in several, but not all possible, 
words.  If there exist 3 distinct words in the 
corpus which would all be generated by a 
template if a given stem were added to the 
template, we add that stem to the template. 

4 Experiments and Results 

In this section, we present three sets of 
evaluations of the refinements of the SED 
heuristics described in the preceding section. We 
used a corpus of 7,180 distinct words occurring 

in 50,000 running words from a Swahili 
translation of the Bible obtained on the internet. 

4.1 Disambiguating FSAs 

In order to evaluate the effects of the 
disambiguating of FSAs described in section 
3.1, we compare precision and recall of the 
identification of morpheme boundaries using the 
SED method with and without the 
disambiguation procedure described above. In 
Figures 1 and 2, we graph precision and recall 
for the top 10% of the templates, displayed as 
the leftmost point, for the top 20% of the 
templates, displayed as the second point from 
the left; and so on, because the higher ranked 
FSAs are more intrinsically more reliable than 
the lower ranked ones. We see that 
disambiguation repairs almost 50% of the 
previous errors, and increases recalls by about 
10%. With these increases in precision and 
recall, it is clear that the disambiguating step 
provides a considerably more accurate 
morpheme boundary discovery procedure. 
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4.2 Template collapsing 

The second refinement discussed above 
consists of finding pairs of similar templates, 
collapsing them as appropriate, and thus creating 
patterns that generate new words that did not 
participate in the formation of the original 
templates. These new words may or may not 
themselves appear in the corpus. We are, 
however, able to judge their morphological well-
formedness by inspection. We list in Table 3 the 
entire list of eight templates that are collapsed in 
this step. 

All of the templates which are collapsed in 
this step are in fact of the same morphological 
structure (with one very minor exception4): they 
are of the form subject marker + tense marker + 
stem, and the collapsing induced in this 
procedure correctly creates larger templates of 
precisely the same structure, generating new 
words not seen in the corpus that are in fact 
correct from our (non-native speaker) 
inspection. We submitted the new words to 
Yahoo to test the words “existence” by their 
existence on the internet, and actually found an 
average of 87% of the predicted words in a 
template; see the last column in Table 3 for 
details. 

4.3 Reparsing 

After previous refinements, we obtain a 
number of robust FSAs, for example, those 
collapsed templates in Table 3. With them, we 
then search the corpus for those words that can 
only be partly fitted into these FSAs and 
generate associated stems. Table 4 shows the 
reparsed words that had not been parsed by 
earlier templates and also newly added stems for 
some robust FSAs (the four collapsed templates 
in Table 3).  Stems such as anza ‘begin’ and 
fanya ‘do’ are thus added to the first template, 
and all words derived by prepending a tense 
marker and a subject marker are indeed accurate 
words. As the words in Table 4 suggest, the 
reparsing process adds new, common stems to 
the stem-column of the templates, thus making it 

                                                      
4 The exception involves the distinct morpheme po, a 
subordinate clause marker which must ultimately be 
analyzed as appearing in a distinct template column to the 
right of the tense markers. 

easier for the collapsing function to find 
similarities across related templates. 

In future work, we will take use the larger 
templates, populated with more stems, and input 
them to the collapsing function described in 3.2.  

5 Conclusions 

On the basis of the experiments with Swahili 
described in this paper, the SED heuristic 
appears to be a useful tool for the discovery of 
morphemes in languages with rich 
morphologies, and for the discovery of the FSAs 
that constitute the morphologies of those 
languages. 

Ultimately, the value of the heuristic is best 
tested against a range of languages with complex 
concatenative morphologies. While a thorough 
discussion would take us well beyond the limits 
of this paper, we have applied the SED heuristic 
to English, Hungarian, and Finnish as well as 
Swahili. For English, unsurprisingly, the method 
works as well as the SF and PF methods, though 
a bit more slowly, while for Hungarian and 
Finnish, the results appear promising, and a 
comparison with Creutz and Lagus (2004) for 
Finnish, for example, would be appealing. 
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One Template 
 

The other template Collapsed Template 
% found on 

Yahoo search 
1 {a}-{ka,na}-{stems} {a}-{ka,ki}-{stems} {a}-{ka,ki,na}-{stems} 86 (37/43) 
2 {wa}-{ka,na}-{stems} {wa}-{ka,ki}-{stems} {wa}-{ka,ki,na}-{stems} 95 (21/22) 
3 {a}-{ka,ki,na}-{stems} {wa}-{ka,ki,na}-{stems} {a,wa}-{ka,ki,na}-{stems} 84 (154/183) 
4 {a}-{liye,me}-{stems} {a}-{liye,li}-{stems} {a}-{liye,li,me}-{stems} 100 (21/21) 
5 {a}-{ki,li}-{stems} {wa}-{ki,li}-{stems} {a,wa}-{ki,li}-{stems} 90 (36/40) 
6 {a}-{lipo,li}-{stems} {wa}-{lipo,li}-{stems} {a,wa}-{lipo,li}-{stems} 90 (27/30) 
7 {a,wa}-{ki,li}-{stems} {a,wa}-{lipo,li}-{stems} {a,wa}-{ki,lipo,li}-{stems} 74 (52/70) 
8 {a}-{na,naye}-{stems} {a}-{na,ta}-{stems} {a}-{na,ta,naye}-{stems} 80 (12/15) 

Table 3  Collapsed Templates and Created Words Sample. 
 
 

 
 

 Template Reparsed Words Not Parsed 
Before 

Added Stems  

1 {a, wa}-{ka,ki,na}-{stems} akawakweza, akiwa, anacho, 
akibatiza,  … 

toka, anza, waita, fanya, enda, … 

2 {a}-{li,liye,me }-{stems} ameinuka, ameugua, alivyo,  
aliyoniagiza,  … 

zaliwa, kuwa, fanya, sema 

3 {a, wa}-{ki,li,lipo}-{stems} alimtoboa,  alimtaka,  
waliamini,  … 

pata, kuwa, kaa, fanya, chukua, 
fika, … 

4 {a} – {na,naye,ta}-{stems} analazwa,  atanitukuza,  anaye,  
anakuita,   … 

ingia, sema 

Table 4 Reparsed words and "discovered" stems 
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Abstract

Recent “visual worlds” studies, wherein
researchers study language in context by
monitoring eye-movements in a visual
scene during sentence processing, have re-
vealed much about the interaction of di-
verse information sources and the time
course of their influence on comprehen-
sion. In this study, five experiments that
trade off scene context with a variety of
linguistic factors are modelled with a Sim-
ple Recurrent Network modified to inte-
grate a scene representation with the stan-
dard incremental input of a sentence. The
results show that the model captures the
qualitative behavior observed during the
experiments, while retaining the ability to
develop the correct interpretation in the
absence of visual input.

1 Introduction

People learn language within the context of the sur-
rounding world, and use it to refer to objects in that
world, as well as relationships among those objects
(e.g., Gleitman, 1990). Recent research in thevi-
sual worldsparadigm, wherein participants’ gazes
in a scene while listening to an utterance are moni-
tored, has yielded a number of insights into the time
course of sentence comprehension. The careful ma-
nipulation of information sources in this experimen-
tal setting has begun to reveal important character-
istics of comprehension such as incrementality and
anticipation. For example, people’s attention to ob-

jects in a scene closely tracks their mention in a spo-
ken sentence (Tanenhaus et al., 1995), and world
and linguistic knowledge seem to be factors that fa-
cilitate object identification (Altmann and Kamide,
1999; Kamide et al., 2003). More recently, Knoe-
ferle et al. (2005) have shown that when scenes in-
clude depicted events, such visual information helps
to establish important relations between the entities,
such as role relations.

Models of sentence comprehension to date, how-
ever, continue to focus on modelling reading behav-
ior. No model, to our knowledge, attempts to ac-
count for the use of immediate (non-linguistic) con-
text. In this paper we present results from two simu-
lations using a Simple Recurrent Network (SRN; El-
man, 1990) modified to integrate input from a scene
with the characteristic incremental processing of
such networks in order to model people’s ability to
adaptively use the contextual information in visual
scenes to more rapidly interpret and disambiguate a
sentence. In the modelling of five visual worlds ex-
periments reported here, accurate sentence interpre-
tation hinges on proper case-role assignment to sen-
tence referents. In particular, modelling is focussed
on the following aspects of sentence processing:

• anticipation of upcoming arguments and their
roles in a sentence

• adaptive use of the visual scene as context for a
spoken utterance

• influence of depicted events on developing in-
terpretation

• multiple/conflicting information sources and
their relative importance
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Figure 1: Selectional Restrictions. Gaze fixations depend
on whether the hare is the subject or object of the sentence,
as well as the thematic role structure of the verb. These gaze
fixations reveal that people use linguistic and world knowledge
to anticipate upcoming arguments.

2 Simulation 1

In the first simulation, we simultaneously model
four experiments that featured revealing contrasts
between world knowledge and context. These four
experiments show that the human sentence proces-
sor is very adept at utilizing all available sources of
information to rapidly interpret language. In partic-
ular, information from visual context can readily be
integrated with linguistic and world knowledge to
disambiguate argument roles where the information
from the auditory stream is insufficient in itself.

All experiments were conducted in German, a
language that allows both subject-verb-object (SVO)
and object-verb-subject (OVS) sentence types, so
that word order alone cannot be relied upon to deter-
mine role assignments. Rather, case marking in Ger-
man is used to indicate grammatical function such
as subject or object, except in the case of feminine
and neuter nouns where the article does not carry
any distinguishing marking for the nominative and
accusative cases.

2.1 Anticipation depending on stereotypicality

The first two experiments modelled involved unam-
biguous sentences in which case-marking and verb
selectional restrictions in the linguistic input (i.e.,
linguistic and world knowledge or stereotypicality),
together with characters depicted in a visual scene,
allowed rapid assignment of the roles played by
those characters in the sentence.

Experiment 1: Morphosyntactic and lexical
verb information. In order to examine the influence
of linguistic knowledge of case-marking, Kamide
et al. (2003) presented experiment participants with
a scene showing, for example, a hare, a cabbage, a
fox, and a distractor (see Figure 1), together with ei-
ther a spoken German SVO sentence (1) or with an
OVS sentence (2):

(1) Der Hase frisst gleich den Kohl.
The harenom eats shortly the cabbageacc.

(2) Den Hasen frisst gleich der Fuchs.
The hareacc eats shortly the foxnom.

The subject and object case-marking on the article of
the first noun phrase (NP) together with verb mean-
ing and world knowledge allowed anticipation of the
correct post-verbal referent. Participants made an-
ticipatory eye-movements to the cabbage after hear-
ing “The harenom eats ...” and to the fox upon en-
countering “The hareacc eats ...”. Thus, people are
able to predict upcoming referents when the utter-
ance is unambiguous and linguistic/world knowl-
edge restricts the domain of potential referents in a
scene.

Experiment 2: Verb type information. To fur-
ther investigate the role of verb information, the
authors used the same visual scenes in a follow-
up study, but replaced the agent/patient verbs like
frisst (“eats”) with experiencer/theme verbs likein-
teressiert(“interests”). The agent (experiencer) and
patient (theme) roles from Experiment 1 were inter-
changed. Given the same scene in Figure 1 but the
subject-first sentence (3) or object-first sentence (4),
participants showed gaze fixations complementary
to those in the first experiment, confirming that both
syntactic case information and semantic verb infor-
mation are used to predict subsequent referents.

(3) Der Hase interessiert ganz besonders den Fuchs.
The harenom interests especially the foxacc.

(4) Den Hasen interessiert ganz besonders der Kohl.
The hareacc interests especially the cabbagenom.

2.2 Anticipation depending on depicted events

The second set of experiments investigated tem-
porarily ambiguous German sentences. Findings
showed that depicted events–just like world and lin-
guistic knowledge in unambiguous sentences–can
establish a scene character’s role as agent or patient
in the face of linguistic structural ambiguity.

37



Figure 2:Depicted Events.The depiction of actions allows
role information to be extracted from the scene. People can use
this information to anticipate upcoming arguments even in the
face of ambiguous linguistic input.

Experiment 3: Verb-mediated depicted role re-
lations. Knoeferle et al. (2005) investigated com-
prehension of spoken sentences with local structural
and thematic role ambiguity. An example of the Ger-
man SVO/OVS ambiguity is the SVO sentence (5)
versus the OVS sentence (6):

(5) Die Princessin malt offensichtlich den Fechter.
The princessnom paints obviously the fenceracc.

(6) Die Princessin ẅascht offensichtlich der Pirat.
The princessacc washes obviously the piratenom.

Together with the auditorily presented sentence a
scene was shown in which a princess both paints
a fencer and is washed by a pirate (see Figure 2).
Linguistic disambiguation occurred on the second
NP; in the absence of stereotypical verb-argument
relationships, disambiguation prior to the second NP
was only possible through use of the depicted events
and their associated depicted role relations. When
the verb identified an action, the depicted role rela-
tions disambiguated towards either an SVO agent-
patient (5) or OVS patient-agent role (6) relation, as
indicated by anticipatory eye-movements to the pa-
tient (pirate) or agent (fencer), respectively, for (5)
and (6). This gaze-pattern showed the rapid influ-
ence of verb-mediated depicted events on the assign-
ment of a thematic role to a temporarily ambiguous
sentence-initial noun phrase.

Experiment 4: Weak temporal adverb con-
straint. Knoeferle et al. also investigated German
verb-final active/passive constructions. In both the
active future-tense (7) and the passive sentence (8),
the initial subject noun phrase is role-ambiguous,

and the auxiliarywird can have a passive or future
interpretation.

(7) Die Princessin wird sogleich den Pirat washen.
The princessnom will right away wash the pirateacc.

(8) Die Princessin wird soeben von dem Fechter gemalt.
The princessacc is just now painted by the fencernom.

To evoke early linguistic disambiguation, temporal
adverbs biased the auxiliarywird toward either the
future (“will”) or passive (“is -ed”) reading. Since
the verb was sentence-final, the interplay of scene
and linguistic cues (e.g., temporal adverbs) were
rather more subtle. When the listener heard a future-
biased adverb such assogleich, after the auxiliary
wird, he interpreted the initial NP as an agent of a fu-
ture construction, as evidenced by anticipatory eye-
movements to the patient in the scene. Conversely,
listeners interpreted the passive-biased construction
with these roles exchanged.

2.3 Architecture

The Simple Recurrent Network is a type of neu-
ral network typically used to process temporal se-
quences of patterns such as words in a sentence.
A common approach is for the modeller to train
the network on prespecified targets, such as verbs
and their arguments, that represent what the net-
work is expected to produce upon completing a sen-
tence. Processing is incremental, with each new in-
put word interpreted in the context of the sentence
processed so far, represented by a copy of the pre-
vious hidden layer serving as additional input to the
current hidden layer. Because these types of asso-
ciationist models automatically develop correlations
among the sentence constituents they are trained
on, they will generally develop expectations about
the output even before processing is completed be-
cause sufficient information occurs early in the sen-
tence to warrant such predictions. Moreover, during
the course of processing a sentence these expecta-
tions can be overridden with subsequent input, often
abruptly revising an interpretation in a manner rem-
iniscent of how humans seem to process language.
Indeed, it is these characteristics of incremental pro-
cessing, the automatic development of expectations,
seamless integration of multiple sources of informa-
tion, and nonmonotonic revision that have endeared
neural network models to cognitive researchers.

In this study, the four experiments described
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Figure 3: Scene Integration. A simple conceptual rep-
resentation of the information in a scene, along with com-
pressed event information from depicted actions when present,
is fed into a standard SRN to model adaptive processing. The
links connecting the depicted characters to the hidden layer are
shared, as are the links connecting the event layers to the hidden
layer.

above have been modelled simultaneously using a
single network. The goal of modelling all experi-
mental results by a single architecture required en-
hancements to the SRN, the development and pre-
sentation of the training data, as well as the training
regime itself. These will be described in turn below.

In two of the experiments, only three characters
are depicted, representation of which can be propa-
gated directly to the network’s hidden layer. In the
other two experiments, the scene featured three char-
acters involved in two events (e.g.,pirate-washes-
princess and princess-paints-fencer, as shown in
Figure 3). The middle character was involved in
both events, either as an agent or a patient (e.g.,
princess). Only one of the events, however, corre-
sponded to the spoken linguistic input.

The representation of this scene information and
its integration into the model’s processing was the
main modification to the SRN. Connections between
representations for the depicted characters and the
hidden layer were provided. Encoding of the de-
picted events, when present, required additional
links from the characters and depicted actions to

eventlayers, and links from these event layers to the
SRN’s hidden layer. The network developed repre-
sentations for the events in the event layers by com-
pressing the scene representations of the involved
characters and depicted actions through weights cor-
responding to the action, its agent and its patient for
each event. This event representation was kept sim-
ple and only provided conceptual input to the hidden
layer: who did what to whom was encoded for both
events, when depicted, but grammatical information
only came from the linguistic input. As the focus of
this study was on whether sentence processing could
adapt to information from the scene when present or
from stored knowledge, lower-level perceptual pro-
cesses such as attention were not modelled.

Neural networks will usually encode any correla-
tions in the data that help to minimize error. In order
to prevent the network from encoding regularities in
its weights regarding the position of the characters
and events given in the scene (such as, for example,
that the central character in the scene corresponds
to the first NP in the presented sentence) which are
not relevant to the role-assignment task, one set of
weights was used for all characters, and another set
of weights used for both events. This weight-sharing
ensured that the network had to access the informa-
tion encoded in the event layers, or determine the
relevant characters itself, thus improving generaliza-
tion. The representations for the characters and ac-
tions were the same for both input (scene and sen-
tence) and output.

The input assemblies were the scene represen-
tations and the current word from the input sen-
tence. The output assemblies were the verb, the
first and second nouns, and an assembly that indi-
cated whether the first noun was the agent or pa-
tient of the sentence (tokenPAT in Figure 3). Typ-
ically, agent and patient assemblies would be fixed
in a case-role representation without such a discrim-
inator, and the model required to learn to instantiate
them correctly (Miikkulainen, 1997). However, we
found that the model performed much better when
the task was recast as having to learn to isolate the
nouns in the order in which they are introduced, and
separately mark how those nouns relate to the verb.
The input and output assemblies had 100 units each,
the event layers contained 200 units each, and the
hidden and context layers consisted of 400 units.
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2.4 Input Data, Training, and Experiments

We trained the network to correctly handle sentences
involving non-stereotypical events as well as stereo-
typical ones, both when visual context was present
and when it was absent. As over half a billion sen-
tence/scene combinations were possible for all of the
experiments, we adopted a grammar-based approach
to exhaustively generate sentences and scenes based
on the experimental materials while holding out the
actual materials to be used for testing. In order to
accurately model the first two experiments involv-
ing selectional restrictions on verbs, two additional
words were added to the lexicon for each charac-
ter selected by a verb. For example, in the sentence
Der Hase frisst gleich den Kohl, the nounsHase1,
Hase2, Kohl1, andKohl2were used to develop train-
ing sentences. These were meant to represent, for
example, words such as “rabbit” and “jackrabbit” or
“carrot” and “lettuce” in the lexicon that have the
same distributional properties as the original words
“hare” and “cabbage”. With these extra tokens the
network could learn thatHase, frisst, andKohl were
correlated without ever encountering all three words
in the same training sentence. The experiments in-
volving non-stereotypicality did not pose this con-
straint, so training sentences were simply generated
to avoid presenting experimental items.

Some standard simplifications to the words have
been made to facilitate modelling. For example,
multi-word adverbs such asfast immerwere treated
as one word through hyphenation so that sentence
length within a given experimental set up is main-
tained. Nominal case markings such as-n in Hasen
were removed to avoid sparse data as these markings
are idiosyncratic, while the case markings on the de-
terminers are more informative overall. More impor-
tantly, morphemes such as the infinitive marker-en
and past participlege- were removed, because, for
example, the verb formsmalt, malen, andgemalt,
would all be treated as unrelated tokens, again con-
tributing unnecessarily to the problem with sparse
data. The result is that one verb form is used, and
to perform accurately, the network must rely on its
position in the sentence (either second or sentence-
final), as well as whether the wordvon occurs to
indicate a participial reading rather than infinitival.
All 326 words in the lexicon for the first four exper-
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Figure 4:Results.In each of the four experiments modelled,
anticipation of the upcoming argument at the adverb is nearly
as accurate as at sentence end. However, the network has some
difficulty with distinguishing stereotypical arguments.

iments were given random representations over the
vertices of a 100-dimensional hypercube, which re-
sulted in marked improvement over sampling from
within the hypercube (Noelle et al., 1997).

We trained the network by repeatedly presenting
the model with 1000 randomly generated sentences
from each experiment (constituting one epoch) and
testing every 100 epochs against the held-out test
materials for each of the four experiments. Scenes
were provided half of the time to provide an un-
biased approximation to linguistic experience. The
network was initialized with weights between -0.01
and 0.01. The learning rate was initially set to 0.05
and gradually reduced to 0.002 over the course of
15000 epochs. Ten splits were run on 1.6Ghz PCs
and took a little over two weeks to complete.

2.5 Results

Figure 4 reports the percentage of targets at the
network’s output layer that the model correctly
matches, both as measured at the adverb and at the
end of the sentence. The model clearly demonstrates
the qualitative behavior observed in all four experi-
ments in that it is able to access the information from
the encoded scene or stereotypicality and combine it
with the incrementally presented sentence to antici-
pate forthcoming arguments.

For the two experiments (1 and 2) using stereotyp-
ical information, the network achieved just over 96%
at sentence end, and anticipation accuracy was just
over 95% at the adverb. Analysis shows that the net-
work makes errors in token identification, confus-
ing words that are within the selectionally restricted
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set, such as, for example,Kohl and Kohl2. Thus,
the model has not quite mastered the stereotypical
knowledge, particularly as it relates to the presence
of the scene.

For the other two experiments using non-
stereotypical characters and depicted events (exper-
iments 3 and 4), accuracy was 100% at the end of
the sentence. More importantly, the model achieved
over 98% early disambiguation on experiment 3,
where the sentences were simple, active SVO and
OVS. Early disambiguation on experiment 4 was
somewhat harder because the adverb is the disam-
biguating point in the sentence as opposed to the
verb in the other three experiments. As nonlinear
dynamical systems, neural networks sometimes re-
quire an extra step to settle after a decision point is
reached due to the attractor dynamics of the weights.

On closer inspection of the model’s behavior dur-
ing processing, it is apparent that the event layers
provide enough additional information beyond that
encoded in the weights between the characters and
the hidden layer that the model is able to make finer
discriminations in experiments 3 and 4, enhancing
its performance.

3 Simulation 2

The previous set of experiments examined how peo-
ple are able to use either stereotypical knowledge or
depicted information to anticipate forthcoming ar-
guments in a sentence. But how does the human
sentence processor handle these information sources
when both are present? Which takes precedence
when they conflict? The experiment modelled in this
section was designed to provide some insight into
these questions.

Scene vs Stored Knowledge.Based on the find-
ings from the four experiments in Simulation 1,
Knoeferle and Crocker (2004b) examined two is-
sues. First, it verified that stored knowledge about
non-depicted events and information from depicted,
but non-stereotypical, events each enable rapid the-
matic interpretation. An example scene showed a
wizard, a pilot, and a detective serving food (Fig-
ure 5). When people heard condition 1 (example
sentence 9), the case-marking on the first NP identi-
fied the pilot as a patient. Stereotypical knowledge
identified the wizard as the only relevant agent, as

Figure 5:Scene vs Stored Knowledge.Experimental results
show that people rely on depicted information over stereotypical
knowledge when both are present during sentence processing.

indicated by a higher proportion of anticipatory eye-
movements to the stereotypical agent (wizard) than
to the detective. In contrast, when people heard the
verb in condition 2 (sentence 10), it uniquely iden-
tified the detective as the only food-serving agent,
revealed by more inspections to the agent of the de-
picted event (detective) than to the wizard.

(9) Den Piloten verzaubert gleich der Zauberer.
The pilotacc jinxes shortly the wizardnom.

(10) Den Piloten verk̈ostigt gleich der Detektiv.
The pilotacc serves-food-to shortly the detectivenom.

Second, the study determined therelative impor-
tance of depicted events and verb-based thematic
role knowledge when the information sources were
in competition. In both conditions 3 & 4 (sentences
11 & 12), participants heard an utterance in which
the verb identified both a stereotypical (detective)
and a depicted agent (wizard). When faced with this
conflict, people preferred to rely on the immediate
event depictions over stereotypical knowledge, and
looked more often at the wizard, the agent in the de-
picted event, than at the other, stereotypical agent of
the spying-action (the detective).

(11) Den Piloten bespitzelt gleich der Detektiv.
The pilotacc spies-on shortly the detectivenom.

(12) Den Piloten bespitzelt gleich der Zauberer.
The pilotacc spies-on shortly the wizardnom.

3.1 Architecture, Data, Training, and Results

In simulation 1, we modelled experiments that de-
pended on stereotypicality or depicted events, but
not both. The experiment modelled in simulation
2, however, was specifically designed to investigate
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how these two information sources interacted. Ac-
cordingly, the network needed to learn to use either
information from the scene or stereotypicality when
available, and, moreover, favor the scene when the
two sources conflicted, as observed in the empirical
results. Recall that the network is trained only on the
final interpretation of a sentence. Thus, capturing
the observed behavior required manipulation of the
frequencies of the four conditions described above
during training. In order to train the network to de-
velop stereotypical agents for verbs, the frequency
that a verb occurs with its stereotypical agent, such
asDetektivandbespitzeltfrom example (11) above,
had to be greater than for a non-stereotypical agent.
However, the frequency should not be so great that
it overrode the influence from the scene.

The solution we adopted is motivated by a the-
ory of language acquisition that takes into account
the importance of early linguistic experience in a vi-
sual environment (see the General Discussion). We
found a small range of ratios of stereotypicality to
non-stereotypicality that permitted the network to
develop an early reliance on information from the
scene while it gradually learned the stereotypical as-
sociations. When the ratio was lower than 6:1, the
network developed too strong a reliance on stereo-
typicality, overriding information from the scene.
When the ratio was greater than 15:1, the scene
always took precedence when it was present, but
stereotypical knowledge was used when the scene
was not present. Within this range, however, the
network quickly learns to extract information from
the scene because the scene representation remains
static while a sentence is processed incrementally.
It is the stereotypical associations, predictably, that
take longer for the network to learn in rough propor-
tion to their ratio over non-stereotypical agents.

Figure 6 shows the effect this training regime had
over 6000 epochs on the ability of the network to ac-
curately anticipate the missing argument in each of
the four conditions described above when the ratio
of non-stereotypical to stereotypical sentences was
8:1. The network quickly learns to use the scene for
conditions 2-4 (examples 10-12), where the action in
the linguistic input stream is also depicted, allowing
the network to determine the relevant event and de-
duce the missing argument. (Because conditions 3
and 4 are the same up to the second NP, their curves

.
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Figure 6: Acquisition of Stereotypicality. Stereotypical
knowledge (condition 1) is acquired much more gradually than
information from the scene (conditions 2-4).

are, in fact, identical.) But condition 1 (sentence 9)
requires only stereotypical knowledge. The accu-
racy of condition 1 remains close to 75% (correctly
producing the verb, first NP, and role discriminator,
but not the second NP) until around epoch 1200 or
so and then gradually improves as the network learns
the appropriate stereotypical associations. The con-
dition 1 curve asymptotically approaches 100% over
the course of 10,000 epochs.

Results from several runs with different training
parameters (such as learning rate and stereotypical-
ity ratio) show that the network does indeed model
the observed experimental behavior. The best results
so far exceed 99% accuracy in correctly anticipating
the proper roles and 100% accuracy at sentence end.

As in simulation 1, the training corpus was gen-
erated by exhaustively combining participants and
actions for all experimental conditions while hold-
ing out all test sentences. However, we found that
we were able to use a larger learning rate, 0.1, than
the 0.05 used in the first simulation. The 130 words
in the lexicon were given random binary representa-
tions from the vertices of a 100-dimensional hyper-
cube as described before.

Analysis of the network after successful training
suggests why the training regime of holding the ratio
of stereotypical to non-stereotypical sentences con-
stant works. Early in training, before stereotypical-
ity has been encoded in the network’s weights, pat-
terns are developed in the hidden layer as each word
is processed that enable the network to accurately
decode the words in the output layer. Once the verb
is read in, its hidden layer pattern is available to pro-
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duce the correct output representations for both the
verb itself and its stereotypical agent. Not surpris-
ingly, the network thus learns to associate the hidden
layer pattern for the verb with its stereotypical agent
pattern in the second NP output slot. The only con-
straint for the network is to ensure that the scene can
still override this stereotypicality when the depicted
event so dictates.

4 General Discussion and Future Work

Experiments in the visual worlds paradigm have
clearly reinforced the view of language comprehen-
sion as an active, incremental, highly integrative
process in which anticipation of upcoming argu-
ments plays a crucial role. Visual context not only
facilitates identification of likely referents in a sen-
tence, but helps establish relationships between ref-
erents and the roles they may fill. Research thus far
has shown that the human sentence processor seems
to have easy access to whatever information is avail-
able, whether it be syntactic, lexical, semantic, or vi-
sual, and that it can combine these sources to achieve
as complete an interpretation as is possible at any
given point in comprehending a sentence.

The modelling results reported in this paper are an
important step toward the goal of understanding how
the human sentence processor is able to accomplish
these feats. The SRN provides a natural framework
for this research because its operation is premised
on incremental and integrative processing. Trained
simply to produce a representation of the complete
interpretation of a sentence as each new word is pro-
cessed (on the view that people learn to process lan-
guage by reviewing what they hear), the model au-
tomatically develops anticipations for upcoming ar-
guments that allow it to demonstrate the early dis-
ambiguation behavior observed in the visual worlds
experiments modelled here.

The simple accuracy results belie the complex-
ity of the task in both simulations. In Simulation
1, the network has to demonstrate early disambigua-
tion when the scene is present, showing that it can
indeed access the proper role and filler from the
compressed representation of the event associated
with the first NP and verb processed in the linguistic
stream. This task is rendered more difficult because
the proper event must be extracted from the super-

imposition of the two events in the scene, which is
what is propagated into the model’s hidden layer. In
addition, it must also still be able to process all sen-
tences correctly when the scene is not present.

Simulation 2 is more difficult still. The experi-
ment shows that information from the scene takes
precedence when there is a conflict with stereotypi-
cal knowledge; otherwise, each source of knowledge
is used when it is available. In the training regime
used in this simulation, the dominance of the scene
is established early because it is much more fre-
quent than the more particular stereotypical knowl-
edge. As training progresses, stereotypical knowl-
edge is gradually learned because it is sufficiently
frequent for the network to capture the relevant as-
sociations. As the network weights gradually satu-
rate, it becomes more difficult to retune them. But
encoding stereotypical knowledge requires far fewer
weight adjustments, so the network is able to learn
that task later during training.

Knoeferle and Crocker (2004a,b) suggest that the
preferred reliance of the comprehension system on
the visual context over stored knowledge might best
be explained by appealing to a boot-strapping ac-
count of language acquisition such as that of Gleit-
man (1990). The development of a child’s world
knowledge occurs in a visual environment, which
accordingly plays a prominent role during language
acquisition. The fact that the child can draw on two
informational sources (utterance and scene) enables
it to infer information that it has not yet acquired
from what it already knows. This contextual devel-
opment may have shaped both our cognitive archi-
tecture (i.e., providing for rapid, seamless integra-
tion of scene and linguistic information), and com-
prehension mechanisms (e.g., people rapidly avail
themselves of information from the immediate scene
when the utterance identifies it).

Connectionist models such as the SRN have been
used to model aspects of cognitive development, in-
cluding the timing of emergent behaviors (Elman
et al., 1996), making them highly suitable for sim-
ulating developmental stages in child language ac-
quisition (e.g., first learning names of objects in the
immediate scene, and later proceeding to the acqui-
sition of stereotypical knowledge). If there are de-
velopmental reasons for the preferred reliance of lis-
teners on the immediate scene during language com-
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prehension, then the finding that modelling that de-
velopment provides the most efficient (if not only)
way to naturally reproduce the observed experimen-
tal behavior promises to offer deeper insight into
how such knowledge is instilled in the brain.

Future research will focus on combining all of the
experiments in one model, and expand the range of
sentence types and fillers to which the network is
exposed. The architecture itself is being redesigned
to scale up to much more complex linguistic con-
structions and have greater coverage while retaining
the cognitively plausible behavior described in this
study (Mayberry and Crocker, 2004).

5 Conclusion

We have presented a neural network architecture that
successfully models the results of five recent exper-
iments designed to study the interaction of visual
context with sentence processing. The model shows
that it can adaptively use information from the vi-
sual scene such as depicted events, when present,
to anticipate roles and fillers as observed in each of
the experiments, as well as demonstrate traditional
incremental processing when context is absent. Fur-
thermore, more recent results show that training the
network in a visual environment, with stereotypical
knowledge gradually learned and reinforced, allows
the model to negotiate even conflicting information
sources.
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Abstract 

We present a computational model of ac-
quiring a second language from example 
sentences. Our learning algorithms build a 
construction grammar language model, 
and generalize using form-based patterns 
and the learner’s conceptual system. We 
use a unique professional language learn-
ing corpus, and show that substantial reli-
able learning can be achieved even though 
the corpus is very small. The model is ap-
plied to assisting the authoring of Japa-
nese language learning corpora. 

1 Introduction 

Second Language Acquisition (SLA) is a central 
topic in many of the fields of activity related to 
human languages. SLA is studied in cognitive sci-
ence and theoretical linguistics in order to gain a 
better understanding of our general cognitive abili-
ties and of first language acquisition (FLA)1. Gov-
ernments, enterprises and individuals invest 
heavily in foreign language learning due to busi-
ness, cultural, and leisure time considerations. SLA 
is thus vital for both theory and practice and should 
be seriously examined in computational linguistics 
(CL), especially when considering the close rela-
tionship to FLA and the growing attention devoted 
to the latter by the CL community. 

In this paper we present a computational model 
of SLA. As far as we could determine, this is the 
first model that simulates the learning process 

 
1 Note that the F stands here for ‘First’, not ‘Foreign’.  

computationally. Learning is done from examples, 
with no reliance on explicit rules. The model is 
unique in the usage of a conceptual system by the 
learning algorithms. We use a unique professional 
language learning corpus, showing effective learn-
ing from a very small number of examples. We 
evaluate the model by applying it to assisting the 
authoring of Japanese language learning corpora.   

We focus here on basic linguistic aspects of 
SLA, leaving other aspects to future papers. In par-
ticular, we assume that the learner possesses per-
fect memory and is capable of invoking the 
provided learning algorithms without errors.  

In sections 2 and 3 we provide relevant back-
ground and discuss previous work. Our input, 
learner and language models are presented in sec-
tion 4, and the learning algorithms in section 5. 
Section 6 discusses the authoring application. 

2 Background 

We use the term ‘second language acquisition’ to 
refer to any situation in which adults learn a new 
language2. A major concept in SLA theory 
[Gass01, Mitchell03] is that of interlanguage:
when learning a new language (L2), at any given 
point in time the learner has a valid partial L2 lan-
guage system that differs from his/her native lan-
guage(s) (L1) and from the L2. The SLA process is 
that of progressive enhancement and refinement of 
interlanguage. The main trigger for interlanguage 
modification is when the learner notices a gap be-
tween interlanguage and L2 forms. In order for this 
to happen, the learner must be provided with com-

 
2 Some SLA texts distinguish between ‘second’ and ‘foreign’ 
and between ‘acquisition’ and ‘learning’. We will not make 
those distinctions here.   

45



prehensible input. Our model directly supports all 
of these notions.  

A central, debated issue in language acquisition 
is whether FLA mechanisms [Clark03] are avail-
able in SLA. What is clear is that SL learners al-
ready possess a mature conceptual system and are 
capable of explicit symbolic reasoning and abstrac-
tion. In addition, the amount of input and time 
available for FLA are usually orders of magnitude 
larger than those for SLA. 

The general linguistic framework that we utilize 
in this paper is that of Construction Grammar 
(CG) [Goldberg95, Croft01], in which the building 
blocks of language are words, phrases and phrase 
templates that carry meanings. [Tomasello03] pre-
sents a CG theory of FLA in which children learn 
whole constructions as ‘islands’ that are gradually 
generalized and merged. Our SLA model is quite 
similar to this process. 

In language education, current classroom meth-
ods use a combination of formal rules and commu-
nicative situations. Radically different is the 
Pimsleur method [Pimsleur05], an audio-based 
self-study method in which rules and explanations 
are kept to a minimum and most learning occurs by 
letting the learner infer L2 constructs from transla-
tions of contextual L1 sentences. Substantial anec-
dotal evidence (as manifested by learner comments 
and our own experience) suggests that the method 
is highly effective. We have used a Pimsleur cor-
pus in our experiments. One of the goals of our 
model is to assist the authoring of such corpora. 

3 Previous Work 

There is almost no previous CL work explicitly 
addressing SLA. The only one of which we are 
aware is [Maritxalar97], which represents interlan-
guage levels using manually defined symbolic 
rules. No language model (in the CL sense) or 
automatic learning are provided.   

Many aspects of SLA are similar to first lan-
guage acquisition. Unsupervised grammar induc-
tion from corpora is a growing CL research area 
([Clark01, Klein05] and references there), mostly 
using statistical learning of model parameters or 
pattern identification by distributional criteria. The 
resulting models are not easily presentable to hu-
mans, and do not utilize semantics.  

[Edelman04] presents an elegant FLA system in 
which constructions and word categories are iden-

tified iteratively using a graph. [Chang04] presents 
an FLA system that truly supports construction 
grammar and is unique in its incorporation of gen-
eral cognitive concepts and embodied semantics.  

SLA is related to machine translation (MT), 
since learning how to translate is a kind of acquisi-
tion of the L2. Most relevant to us here is modern 
example-based machine translation (EBMT) [So-
mers01, Carl03], due to its explicit computation of 
translation templates and to the naturalness of 
learning from a small number of examples 
[Brown00, Cicekli01]. 

The Computer Assisted Language Learning 
(CALL) literature [Levy97, Chapelle01] is rich in 
project descriptions, and there are several commer-
cial CALL software applications. In general, 
CALL applications focus on teacher, environment, 
memory and automatization aspects, and are thus 
complementary to the goals that we address here. 

4 Input, Learner and Language Knowl-
edge Models  

Our ultimate goal is a comprehensive computa-
tional model of SLA that covers all aspects of the 
phenomenon. The present paper is a first step in 
that direction. Our goals here are to:  
 

• Explore what can be learned from exam-
ple-based, small, beginner-level input 
corpora tailored for SLA; 

• Model a learner having a mature concep-
tual system;

• Use an L2 language knowledge model 
that supports sentence enumeration; 

• Identify cognitively plausible and effective 
SL learning algorithms;

• Apply the model in assisting the author-
ing of corpora tailored for SLA.  

In this section we present the first three compo-
nents; the learning algorithms and the application 
are presented in the next two sections. 

4.1 Input Model 

The input potentially available for SL learners is of 
high variability, consisting of meta-linguistic rules, 
usage examples isolated for learning purposes, us-
age examples partially or fully understood in con-
text, dictionary-like word definitions, free-form 
explanations, and more.  
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One of our major goals is to explore the rela-
tionship between first and second language acqui-
sition. Methodologically, it therefore makes sense 
to first study input that is the most similar linguis-
tically to that available during FLA, usage exam-
ples. As noted in section 2, a fundamental property 
of SLA is that learners are capable of mature un-
derstanding. Input in our model will thus consist of 
an ordered set of comprehensible usage exam-
ples, where an example is a pair of L1, L2 sen-
tences such that the former is a translation of the 
latter in a certain understood context.  

We focus here on modeling beginner-level pro-
ficiency, which is qualitatively different from na-
tive-like fluency [Gass01] and should be studied 
before the latter. 

We are interested in relatively small input cor-
pora (thousands of examples at most), because this 
is an essential part of SLA modeling. In addition, it 
is of great importance, in both theoretical and 
computational linguistics, to explore the limits of 
what can be learned from meager input.  

One of the main goals of SLA modeling is to 
discover which input is most effective for SLA, 
because a substantial part of learners’ input can be 
controlled, while their time capacity is small. We 
thus allow our input to be optimized for SLA, by 
containing examples that are sub-parts of other 
examples and whose sole purpose is to facilitate 
learning those (our corpus is also optimized in the 
sense of covering simpler constructs and words 
first, but this issue is orthogonal to our model). We 
utilize two types of such sub-examples. First, we 
require that new words are always presented first 
on their own. This is easy to achieve in controlled 
teaching, and is actually very frequent in FLA as 
well [Clark03]. In the present paper we will as-
sume that this completely solves the task of seg-
menting a sentence into words, which is reasonable 
for a beginner level corpus where the total number 
of words is relatively small. Word boundaries are 
thus explicitly and consistently marked.  

Second, the sub-example mechanism is also use-
ful when learning a construction. For example, if 
the L2 sentence is ‘the boy went to school’ (where 
the L2 here is English), it could help learning algo-
rithms if it were preceded by ‘to school’ or ‘the 
boy’. Hence we do not require examples to be 
complete sentences.  

In this paper we do not deal with phonetics or 
writing systems, assuming L2 speech has been 

consistently transcribed using a quasi-phonetic 
writing system. Learning L2 phonemes is certainly 
an important task in SLA, but most linguistic and 
cognitive theories view it as separable from the rest 
of language acquisition [Fromkin02, Medin05].  

The input corpus we have used is a transcribed 
Pimsleur Japanese course, which fits the input 
specification above. 

4.2 Learner Model 

A major aspect of SLA is that learners already pos-
sess a mature conceptual system (CS), influenced 
by their life experience (including languages they 
know). Our learning algorithms utilize a CS model. 
We opted for being conservative: the model is only 
allowed to contain concepts that are clearly pos-
sessed by the learner before learning starts. Con-
cepts that are particular to the L2 (e.g., ‘noun 
gender’ for English speakers learning Spanish) are 
not allowed. Examples for concept classes include 
fruits, colors, human-made objects, physical activi-
ties and emotions, as well as meta-linguistic con-
cepts such as pronouns and prepositions. A single 
concept is simply represented by a prototypical 
English word denoting it (e.g., ‘child’, ‘school’). A 
concept class is represented by the concepts it con-
tains and is conveniently named using an English 
word or phrase (e.g., ‘types of people’, ‘buildings’, 
‘language names’).  

Our learners can explicitly reason about concept 
inter-relationships. Is-a relationships between 
classes are represented when they are beyond any 
doubt (e.g., ‘buildings’ and ‘people’ are both 
‘physical things’).  

A basic conceptual system is assumed to exist 
before the SLA process starts. When the input is 
controlled and small, as in our case, it is both 
methodologically valid and practical to prepare the 
CS manually. CS design is discussed in detail in 
section 6.  

In the model described in the present  paper we 
do not automatically modify the CS during the 
learning process; CS evolution will be addressed in 
future models.  

As stated in section 1, in this paper we focus on 
linguistic SLA aspects and do not address issues 
such as human errors, motivation and attention. 
We thus assume that our learner possesses perfect 
memory and can invoke our learning algorithms 
without any mistakes.   
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4.3 Language Knowledge Model 

We require our model to support a basic capability 
of a grammar: enumeration of language sentences 
(parsing will be reported in other papers). In addi-
tion, we provide a degree of certainty for each. The 
model’s quality is evaluated by its applicability for 
learning corpora authoring assistance (section 6).   

The representation is based on construction 
grammar (CG), explicitly storing a set of construc-
tions and their inter-relationships. CG is ideally 
suited for SLA interlanguage because it enables the 
representation of partial knowledge: every lan-
guage form, from concrete words and sentences to 
the most abstract constructs, counts as a construc-
tion. The generative capacity of language is ob-
tained by allowing constructions to replace 
arguments. For example, (child), (the child goes to 
school), (<x> goes to school), (<x> <v> to school) 
and (X goes Z) are all constructions, where <x>, 
<v> denote word classes and X, Z denote other 
constructions.  

SL learners can make explicit judgments as to 
their level of confidence in the grammaticality of 
utterances. To model this, our learning algorithms 
assign a degree of certainty (DOC) to each con-
struction and to the possibility of it being an argu-
ment of another construction. The certainty of a 
sentence is a function (e.g., sum or maximum) of 
the DOCs present in its derivation path. 

Our representation is equivalent to a graph 
whose nodes are constructions and whose directed, 
labeled arcs denote the possibility of a node filling 
a particular argument of another node. When the 
graph is a-cyclic the resulting language contains a 
finite number of concrete sentences, easily com-
puted by graph traversal. This is similar to [Edel-
man04]; we differ in our partial support for 
semantics through a conceptual system (section 5) 
and in the notion of a degree of certainty.   

5 Learning Algorithms 

Our general SLA scheme is that of incremental 
learning – examples are given one by one, each 
causing an update to the model. A major goal of 
our model is to identify effective, cognitively plau-
sible learning algorithms. In this section we present 
a concrete set of such algorithms. 

Structured categorization is a major driving 
force in perception and other cognitive processes 

[Medin05]. Our learners are thus driven by the de-
sire to form useful generalizations over the input. 
A generalization of two or more examples is possi-
ble when there is sufficient similarity of form and 
meaning between them. Hence, the basic ingredi-
ent of our learning algorithms is identifying such 
similarities. 

To identify concrete effective learning algo-
rithms, we have followed our own inference proc-
esses when learning a foreign language from an 
example-based corpus (section 6). The set of algo-
rithms described below are the result of this study.  

The basic form similarity algorithm is Single 
Word Difference (SWD). When two examples 
share all but a single word, a construction is 
formed in which that word is replaced by an argu-
ment class containing those words. For example, 
given ‘eigo ga wakari mas’ and ‘nihongo ga wakari 
mas’, the construction (<eigo, nihongo> ga wakari 
mas) (‘I understand English/Japanese’), containing 
one argument class, is created. In itself, SWD only 
compresses the input, so its degree of certainty is 
maximal. It does not create new sentences, but it 
organizes knowledge in a form suitable for gener-
alization.  

The basic meaning-based similarity algorithm is 
Extension by Conceptual Categories (ECC). For 
an argument class W in a construction C, ECC at-
tempts to find the smallest concept category U’ 
that contains W’, the set of concepts corresponding 
to the words in W. If no such U’ exists, C is re-
moved from the model. If U’ was found, W is re-
placed by U, which contains the L2 words 
corresponding to the concepts in U’. When the re-
placement occurs, it is possible that not all such 
words have already been taught; when a new word 
is taught, we add it to all such classes U (easily 
implemented using the new word’s translation, 
which is given when it is introduced.) 

In the above example, the words in W are ‘eigo‘ 
and ‘nihongo’, with corresponding concepts ‘Eng-
lish’ and ‘Japanese’. Both are contained in W’, the 
‘language names’ category, so in this case U’ 
equals W’. The language names category contains 
concepts for many other language names, includ-
ing Korean, so it suffices to teach our learner the 
Japanese word for Korean (‘kankokugo’) at some 
point in the future in order to update the construc-
tion to be (<eigo, nihongo, kankokugo> ga wakari 
mas). This creates a new sentence ‘kankokugo ga 
wakari mas’ meaning ‘I understand Korean’. An 
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example in which U’ does not equal W’ is given in 
Table 1 by ‘child’ and ‘car’.  

L2 words might be ambiguous – several con-
cepts might correspond to a single word. Because 
example semantics are not explicitly represented, 
our system has no way of knowing which concept 
is the correct one for a given construction, so it 
considers all possibilities. For example, the Japa-
nese ‘ni’ means both ‘two’ and ‘at/in’, so when 
attempting to generalize a construction in which 
‘ni’ appears in an argument class, ECC would con-
sider both the ‘numbers’ and ‘prepositions’ con-
cepts.  

The degree of certainty assigned to the new con-
struction by ECC is a function of the quality of the 
match between W and U’. The more abstract is U, 
the lower the certainty. 

The main form-based induction algorithm is 
Shared Prefix, Generated Suffix (SPGS). Given 
an example ‘x y’ (x, y are word sequences), if there 
exist (1) an example of the form ‘x z’, (2) an ex-
ample ‘x’, and (3) a construction K that derives ‘z’ 
or ‘y’, we create the construction (x K) having a 
degree of certainty lower than that of K. A Shared 
Suffix version can be defined similarly. Require-
ment (2) ensures that the cut after the prefix will 
not be arbitrary, and assumes that the lesson author 
presents constituents as partial examples before-
hand (as indeed is the case in our corpus).  

SPGS utilizes the learner’s current generative 
capacity. Assume input ‘watashi wa biru o nomi 
mas’ (‘I drink beer’), previous inputs ‘watashi wa 
america jin des’ (‘I am American’), ‘watashi wa’ 
(‘as to me...’) and an existing construction K = 
(<biru, wain> o nomi mas). SPGS would create the 
construction (watashi wa K), yielding the new sen-
tence ‘watashi wa wain o nomi mas’ (‘I drink 
wine’). 

To enable faster learning of more abstract con-
structions, we use generalized versions of SWD 
and SPGS, which allow the differing or shared 
elements to be a construction rather than a word or 
a word sequence.  

The combined learning algorithm is: given a 
new example, iteratively invoke each of the above 
algorithms at the given order until nothing new can 
be learned. Our system is thus a kind of inductive 
programming system (see [Thompson99] for a sys-
tem using inductive logic programming for seman-
tic parsing).  

Note that the above algorithms treat words as 
atomic units, so they can only learn morphological 
rules if boundaries between morphemes are 
marked in the corpus. They are thus more useful 
for languages such as Japanese than, say, for Ro-
mance or Semitic languages. 

Our algorithms have been motivated by general 
cognitive considerations. It is possible to refine 
them even further, e.g. by assigning a higher cer-
tainty when the focus element is a prefix or a suf-
fix, which are more conspicuous cognitively. 

6 Results and Application to Authoring of 
Learning Corpora 

We have experimented with our model using the 
Pimsleur Japanese I (for English speakers) course, 
which comprises 30 half-hour lessons, 1823 differ-
ent examples, and about 350 words. We developed 
a simple set of tools to assist transcription, using an 
arbitrary, consistent Latin script transliteration 
based on how the Japanese phonemes are pre-
sented in the course, which differs at places from 
common transliterations (e.g., we use ‘mas’, not 
‘masu’). Word boundaries were marked during 
transliteration, as justified in section 4.  

Example sentences from the corpus are ‘nani o 
shi mas kaa ? / what are you going to do?’, ‘wa-
tashi ta chi wa koko ni i mas / we are here’, ‘kyo 
wa kaeri masen / today I am not going back’, 
‘demo hitori de kaeri mas / but I am going to return 
alone’, etc. Sentences are relatively short and ap-
propriate for a beginner level learner.  

Evaluating the quality of induced language 
models is notoriously difficult. Current FLA prac-
tice favors comparison of predicted parses with 
ones in human annotated corpora. We have fo-
cused on another basic task of a grammar, sentence 
enumeration, with the goal of showing that our 
model is useful for a real application, assistance for 
authoring of learning corpora. 

The algorithm has learned 113 constructions 
from the 1823 examples, generating 525 new sen-
tences. These numbers do not include construc-
tions that are subsumed by more abstract ones 
(generating a superset of their sentences) or those 
involving number words, which would distort the 
count upwards. The number of potential new sen-
tences is much higher: these numbers are based 
only on the 350 words present, organized in a 
rather flat CS. The constructions contain many 
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placeholders for concepts whose words would be 
taught in the future, which could increase the num-
ber exponentially.  

In terms of precision, 514 of the 525 sentences 
were judged (by humans) to be syntactically cor-
rect (53 of those were problematic semantically). 
Regarding recall, it is very difficult to assess for-
mally. Our subjective impression is that the learned 
constructions do cover most of what a reasonable 
person would learn from the examples, but this is 
not highly informative – as indicated, the algo-
rithms were discovered by following our own in-
herence processes. In any case, our algorithms 
have been deliberately designed to be conservative 
to ensure precision, which we consider more im-
portant than recall for our model and application. 

There is no available standard benchmark to 
serve as a baseline, so we used a simpler version of 
our own system as a baseline. We modified ECC to 
not remove C in case of failure of concept match 
(see ECC’s definition in section 5). The number of 
constructions generated after seeing 1300 exam-
ples is 3,954 (yielding 35,429 sentences), almost 
all of which are incorrect.  

The applicative scenario we have in mind is the 
following. The corpus author initially specifies the 
desired target vocabulary and the desired syntacti-
cal constructs, by writing examples (the easiest 
interface for humans). Vocabulary is selected ac-
cording to linguistic or subject  (e.g., tourism, 
sports) considerations. The examples are fed one 
by one into the model (see Table 1). For a single 
word example, its corresponding concepts are first 
manually added to the CS. 

The system now lists the constructions learned. 
For a beginner level and the highest degree of cer-
tainty, the sentences licensed by the model can be 
easily grasped just by looking at the constructions. 
The fact that our model’s representations can be 
easily communicated to people is also an advan-
tage from an SLA theory point of view, where ‘fo-
cus on form’ is a major topic [Gass01]. For 
advanced levels or lower certainties, viewing the 
sentences themselves (or a sample, when their 
number gets too large) might be necessary.  

The author can now check the learned items for 
errors. There are two basic error types, errors 
stemming from model deficiencies and errors that 
human learners would make too. As an example of 
the former, wrong generalizations may result from 
discrepancies between the modeled conceptual sys-

tem and that of a real person. In this case the au-
thor fixes the modeled CS. Discovering errors of 
the second kind is exactly the point where the 
model is useful. To address those, the author usu-
ally introduces new full or partial examples that 
would enable the learner to induce correct syntax. 
In extreme cases there is no other practical choice 
but to provide explicit linguistic explanations in 
order to clarify examples that are very far from the 
learner’s current knowledge. For example, English 
speakers might be confused by the variability of 
the Japanese counting system, so it might be useful 
to insert an explanation of the sort ‘X is usually 
used when counting long and thin objects, but be 
aware that there are exceptions’. In the scenario of 
Table 1, the author might eventually notice that the 
learner is not aware that when speaking of some-
body else’s child a more polite reference is in or-
der, which can be fixed by giving examples 
followed by an explanation. The DOC can be used 
to draw the author’s attention to potential prob-
lems.  

Preparation of the CS is a sensitive issue in our 
model, because it is done manually while it is not 
clear at all what kind of CS people have (WordNet 
is sometimes criticized for being arbitrary, too fine, 
and omitting concepts). We were highly conserva-
tive in that only concepts that are clearly part of the 
conceptual system of English speakers before any 
exposure to Japanese were included. Our task is 
made easier by the fact that it is guided by words 
actually appearing in the corpus, whose number is 
not large, so that it took only about one hour to 
produce a reasonable CS. Example categories are 
names (for languages, places and people), places 
(park, station, toilet, hotel, restaurant, shop, etc), 
people (person, friend, wife, husband, girl, boy), 
food, drink, feelings towards something (like, 
need, want), self motion activities (arrive, come, 
return), judgments of size, numbers, etc. We also 
included language-related categories such as pro-
nouns and prepositions. 

7 Discussion 

We have presented a computational model of sec-
ond language acquisition. SLA is a central subject 
in linguistics theory and practice, and our main 
contribution is in addressing it in computational 
linguistics. The model’s learning algorithms are 
unique in their usage of a conceptual system, and 
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its generative capacity is unique in its support for 
degrees of certainty. The model was tested on a 
unique corpus. 

The dominant trend in CL in the last years has 
been the usage of ever growing corpora. We have 
shown that meaningful learning can be achieved 
from a small corpus when the corpus has been pre-
pared by a ‘good teacher’. Automatic identification 
(and ordering) of corpora subsets from which 
learning is effective should be a fruitful research 
direction for CL. 

We have shown that using a simple conceptual 
system can greatly assist language learning algo-
rithms. Previous FLA algorithms have in effect 
computed a CS simultaneously with the syntax; 
decoupling the two stages could be a promising 
direction for FLA.  

The model presented here is the first computa-
tional SLA model and obviously needs to be ex-
tended to address more SLA phenomena. It is clear 
that the powerful notion of certainty is only used in 
a rudimentary manner. Future research should also 
address constraints (e.g. for morphology and agree-
ment), recursion, explicit semantics (e.g. parsing 
into a semantic representation), word segmenta-
tion, statistics (e.g. collocations), and induction of 
new concept categories that result from the learned 
language itself (e.g. the Japanese counting system). 

An especially important SLA issue is L1 trans-
fer, which refers to the effect that the L1 has on the 
learning process. In this paper the only usage of the 
L1 part of the examples was for accessing a con-
ceptual system. Using the L1 sentences (and the 
existing conceptual system) to address transfer is 
an interesting direction for research, in addition to 
using the L1 sentences for modeling sentence se-
mantics.  

Many additional important SLA issues will be 
addressed in future research, including memory, 
errors, attention, noticing, explicit learning, and 
motivation. We also plan additional applications, 
such as automatic lesson generation. 
 
Acknowledgement. We would like to thank Dan 
Melamed for his comments on a related document.  

References  
Brown Ralf, 2000, Automated Generalization of Trans-

lation Examples, COLING ’00. 
Carl Michael, Way Andy, (eds), 2003, Recent Advances 

in Example Based Machine Translation, Kluwer. 

Chang Nancy, Gurevich Olya, 2004. Context-Driven 
Construction Learning. Proceedings, Cognitive Sci-
ence ‘04.  

Chapelle Carol, 2001. Computer Applications in SLA. 
Cambridge University Press. .  

Cicekli Ilyas, Gu”venir Altay, 2001, Learning Transla-
tion Templates from Bilingual Translational Exam-
ples. Applied Intelligence 15:57-76, 2001.  

Clark Alexander, 2001. Unsupervised Language Acqui-
sition: Theory and Practice. PhD thesis, University of 
Sussex. 

Clark Eve Vivienne, 2003. First Language Acquisition. 
Cambridge University Press.   

Croft, William, 2001. Radical Construction Grammar. 
Oxford University Press.   

Edelman Shimon, Solan Zach, Horn David, Ruppin 
Eytan, 2004. Bridging Computational, Formal and 
Psycholinguistic Approaches to Language. Proceed-
ings, Cognitive Science ‘04.  

Fromkin Victoria, Rodman Robert, Hyams Nina, 2002. 
An Introduction to Language, 7th ed. Harcourt. 

Gass Susan M, Selinker Larry, 2001. Second Language 
Acquisition: an Introductory Course. 2nd ed. LEA 
Publishing.  

Goldberg Adele, 1995. Constructions: a Construction 
Grammar Approach to Argument Structure. Chicago 
University Press. 

Klein Dan, 2005. The Unsupervised Learning of Natural 
Language Structure. PhD Thesis, Stanford.  

Levy Michael, 1997. Computer-Assisted Language 
Learning. Cambridge University Press.  

Maritxalar Montse, Diaz de Ilarraza Arantza, Oronoz 
Maite, 1997. From Psycholinguistic Modelling of In-
terlanguage in SLA to a Computational Model. 
CoNLL ’97.  

Medin Douglas, Ross Brian, Markman Arthur, 2005. 
Cognitive Psychology, 4th ed. John Wiley & Sons.   

Mitchell Rosamond, Myles Florence, 2003. Second 
Language Learning Theories. 2nd ed. Arnold Publica-
tion. 

Pimsleur 2005. www.simonsays.com, under ‘foreign 
language instruction’.  

Somers Harold, 2001. Example-based Machine Transla-
tion. Machine Translation 14:113-158. 

Thompson Cynthia, Califf Mary Elaine, Mooney Ray-
mond, 1999. Active Learning for Natural Language 
Parsing and Information Extraction. ICML ’99.  

Tomasello Michael, 2003. Constructing a Language: a 
Usage Based Theory of Language Acquisition. Har-
vard University Press. 

51



Construction  DOC Source  Comment 
1 anata / you 0 example  
2 watashi / I  0 example  
3 anata no / your 0 example  
4 watashi no / my 0 example  
5 (<anata,watashi> no ) 0 SWD(3,4) The first words of 3 and 4 are different, the 

rest is identical. 
6 (W no), where W is <anata, 

watashi, Japanese word for 
‘we’> 

-1 ECC(5)  The concept category W’={I, you, we} was 
found in the CS. We know how to say ‘I’ and 
‘you’, but not ‘we’.   

7 watashi ta chi / we  0 example  
8 (W no), where W is  

<anata, watashi, watashi ta 
chi> 

-2 ECC(6,7) We were taught how to say ‘we’, and an 
empty slot for it was found in 6.  

Now we can generate a new sentence: ‘wa-
tashi ta chi no’, whose meaning (‘our’) is 
inferred from the meaning of construction 6. 

9 chiisai / small  0 example  
10 kuruma / car 0 example  
11 chiisai kuruma / a small car 0 example  
12 watashi ta chi no kuruma / our 

car 
0 example  

13 ((W no) kuruma) -3 SSGP (12, 
11, 10, 8) 

Shared Suffix Generated Prefix: 
(0) new example 12 = ‘y x’ (x: kuruma)  
(1) existing example 11 = ‘z x’  
(2) existing example 10 = ‘x’  
(3) construction K (#8) deriving ‘y’  
learns the new construction (K x) 

Now we can generate a new sentence: ‘wa-
tashi no kuruma’, meaning ‘my car’.  

14 kodomo / child 0 example  
... ... 0 examples Skipping a few examples... 
20 ((W no) kodomo) -3 ... This construction was learned using the 

skipped examples.  
21 ((W no) <kuruma, kodomo>) -3 SWD (13, 

20) 
Note that the shared element is a construction 
this time, not a sub-sentence.  

22 ((W no) P), where P is the set 
of Japanese words for physi-
cal things (animate or inani-
mate)  

-4 ECC (21) The smallest category that contains the con-
cepts ‘car’ and ‘child’ is P’=PhysicalThings.  

Now we can generate many new sen-
tences, meaning ‘my X’ where X is any 
Japanese word we will learn in the future 
denoting a physical thing.  

Table 1: A learning scenario. For simplicity, the degree of certainty here is computed by adding that of the algorithm 
type to that of the most uncertain construction used. Note that the notation used was designed for succinct presen-
tation and is not the optimal one for authors of learning corpora (for example, it is probably easier to visualize the 
sentences generated by construction #22 if it were shown as ((<watashi, anata, watashi ta chi> no) <kuruma, 
kodomo>).) 
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Abstract 

The logical problem of language is 
grounded on arguments from poverty 
of positive evidence and arguments 
from poverty of negative evidence. 
Careful analysis of child language cor-
pora shows that, if one assumes that 
children learn through item-based con-
structions, there is an abundance of 
positive evidence. Arguments regarding 
the poverty of negative evidence can 
also be addressed by the mechanism of 
conservative item-based learning. When 
conservativism is abandoned, children 
can rely on competition, cue construc-
tion, monitoring and probabilistic iden-
tification to derive information from 
positive data to recover from overgener-
alization. 

1. The Logical Problem 

Chomsky (1957, 1980) has argued that the child’s 
acquisition of grammar is ‘hopelessly underdeter-
mined by the fragmentary evidence available.’ He 
attributed this indeterminacy to two major sources. 
The first is the degenerate nature of the input. Ac-
cording to Chomsky, the sentences heard by the 
child are so full of retracing, error, and incomple-
tion that they provide no clear indication of the 
possible sentences of the language. Coupled with 
this problem of input degeneracy is the problem of 
unavailability of negative evidence. According to 
this view, children have a hard time knowing 
which forms of their language are acceptable and 
which are unacceptable, because parents fail to 
provide consistent evidence regarding the un-
grammaticality of unacceptable sentences. Worse 

still, when such evidence is provided, children ap-
pear to ignore it. 

Chomsky’s (1957) views about the degeneracy 
of the input did not stand up well to the test of 
time. As Newport, Gleitman & Gleitman (1977) 
reported, ‘the speech of mothers to children is 
unswervingly well-formed.’ More recently, Sagae, 
Lavie & MacWhinney (2004) examined several of 
the corpora in the CHILDES database and found 
that adult input to children can be parsed with an 
accuracy level parallel to that for corpora such as 
the Wall Street Journal database.  

This evidence for well formedness of the input 
did not lead to the collapse of the ‘argument from 
poverty of stimulus’ (APS).  However, it did place 
increased weight on the remaining claims regard-
ing the absence of relevant evidence. The overall 
claim is that, given the absence of appropriate 
positive and negative evidence, no child can ac-
quire language without guidance from a rich set of 
species-specific innate hypotheses. Some refer to 
the argument from poverty of stimulus as the ‘logi-
cal problem of language acquisition (Baker, 1979), 
while others have called it ‘Plato’s Problem,’ 
‘Chomsky’s Problem,’ ‘Gold’s Problem,’ or 
‘Baker’s Paradox.’  

2. Absence of Negative Evidence 

In the 1970s, generativist analyses of learnability 
(Wexler & Hamburger, 1973) relied primarily on 
an analysis presented by Gold (1967). Gold’s 
analysis contrasted two different language-learning 
situations: text presentation and informant presen-
tation. With informant presentation, the language 
learner can receive feedback from an infallible in-
formant regarding the grammaticality of every 
candidate sentence. This corrective feedback is 
called ‘negative evidence’ and it only requires that 
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ungrammatical strings be clearly identified as un-
acceptable. Whenever the learner formulates an 
overly general guess about some particular linguis-
tic structure, the informant will label the resulting 
structure as ungrammatical and the learner will use 
this information to restrict the developing gram-
mar. Based on initial empirical results reported by 
Brown & Hanlon (1970), Gold argued that nega-
tive evidence is not available to the child and that 
language learning cannot be based on informant 
presentation. 

Marcus (1993) has argued that the feedback that 
parents provide does not discriminate consistently 
between grammatical and ungrammatical construc-
tions.  As a result, children cannot rely on simple, 
overt negative evidence for recovery from over-
generalization. Although I will argue that parents 
provide positive evidence in a form that solves the 
logical problem (Bohannon et al., 1990), I agree 
with the observation that this evidence does not 
constitute overt grammatical correction of the type 
envisioned by Gold.  

3. Absence of Positive Evidence 

Beginning about 1980, generative analyses of 
learnability began to shift away from an emphasis 
on the unavailability of negative evidence to argu-
ments based on the unavailability of positive evi-
dence.  This conceptual shift led to a relative 
decline in attention to recovery from overgenerali-
zation and an increase in attention to reported cases 
of error-free learning. For example, Chomsky’s 
(1980) statement of the logical problem relies on 
the notion of error-free learning without positive 
evidence.  The argumentation here is that, if a 
structure is never encountered in the input, correct 
use of this structure would have to indicate innate 
knowledge. 

Researchers have claimed that the child pro-
duces error-free learning without receiving positive 
evidence for structures such as: structural depend-
ency, c-command, the binding conditions, subja-
cency, negative polarity items, that-trace deletion, 
nominal compound formation, control, auxiliary 
phrase ordering, and the empty category principle. 
In each of these cases, it is necessary to assume 
that the underlying universal is a part of the non-
parameterized core of universal grammar.  If the 
dimension involved were parameterized, there 
would be a need for some form of very early pa-

rameter setting (Wexler, 1998), which could itself 
introduce some error. Thus, we would expect er-
ror-free learning to occur primarily for those as-
pects of the grammar that are completely universal 
and not parameterized. Parameterized features, 
such as subject pro-drop, could still be guided by 
universal grammar. However, their learning would 
not necessarily be error-free. 

3.1.  Structural dependency 

The paradigm case of error-free learning is the 
child’s obedience to the Structural Dependency 
condition, as outlined by Chomsky in his formal 
discussion with Jean Piaget (Piattelli-Palmarini, 
1980). Chomsky notes that children learn early on 
to move the auxiliary to initial position in ques-
tions, such as ‘Is the man coming?’ One formula-
tion of this rule is that it stipulates the movement 
of the first auxiliary to initial position. This formu-
lation would be based on surface order, rather than 
structural relations. However, if children want to 
question the proposition given in (1), they will 
never produce a movement such as (2). Instead, 
they will always produce (3). 

1. The man who is running is coming. 
2. Is the man who __ running is coming? 
3. Is the man who is running __ coming?’ 

In order to produce (3), children must be basing the 
movement on structure, rather than surface order.  
Thus, according to Chomsky, they must be in-
nately guided to formulate rules in terms of struc-
ture. 

In the theory of barriers (Chomsky, 1986),  the 
repositioning of the auxiliary in the tree and then in 
surface structure involves a movement of INFL to 
COMP that is subject to the head movement con-
straint. In (2) the auxiliary would need to move 
around the N’ of ‘man’ and the CP and COMP of 
the relative clause, but this movement would be 
blocked by the head movement constraint (HMC). 
No such barriers exist in the main clause. In addi-
tion, if the auxiliary moves as in (2), it leaves a gap 
that will violate the empty category principle 
(ECP). Chomsky’s discussion with Piaget does not 
rely on these details. Chomsky simply argues that 
the child has to realize that phrasal structure is 
somehow involved in this process and that one 
cannot formulate the rule of auxiliary movement as 
‘move the first auxiliary to the front.’  
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Chomsky claims that, ‘A person might go 
through much or all of his life without ever having 
been exposed to relevant evidence, but he will 
nevertheless unerringly employ the structure-
dependent generalization, on the first relevant oc-
casion.’ A more general statement of this type pro-
vided by Hornstein & Lightfoot (1981) who claim 
that, ‘People attain knowledge of the structure of 
their language for which no evidence is available 
in the data to which they are exposed as children.’  

In order to evaluate these claims empirically, we 
need to know when children first produce such 
sentences and whether they have been exposed to 
relevant examples in the input prior to this time.  In 
searching for instances of relevant input as well as 
first uses, we should include two types of sen-
tences. First, we want to include sentences such as 
(3) in which the moved verb was a copula in the 
relative clause, as well as sentences with auxilia-
ries in both positions, such as ‘Will the boy who is 
wearing a Yankee’s cap step forward?’  The auxil-
iaries do not have to be lexically identical, since 
Chomsky’s argument from poverty of stimulus 
would also apply to a child who was learning the 
movement rule on the basis of lexical class, as op-
posed to surface lexical form.  

Examining the TreeBank structures for the Wall 
Street Journal in the Penn TreeBank, Pullum & 
Scholz (Pullum & Scholz, 2002) estimate that adult 
corpora contain up to 1% of such sentences. How-
ever, the presence of such structures in formal 
written English says little about their presence in 
the input to the language-learning child.  A search 
by Lewis & Elman (2001) of the input to English-
speaking children in the CHILDES database 
(MacWhinney, 2000) turned up only one case of 
this structure out of approximately 3 million utter-
ances. Since CHILDES includes good sampling of 
target children up to age 5;0, we can safely say that 
positive evidence for this particular structure is 
seldom encountered in the language addressed to 
children younger than 5;0. 

Because children do not produce sentences of 
this type themselves, it is difficult to use produc-
tion data to demonstrate the presence of the con-
straint. Crain & Nakayama (1987) attempted to get 
around this problem by eliciting these forms from 
children directly.  They asked children (3;2 to 
5;11) to, ‘Ask Jabba if the boy who is watching 
Mickey is happy.’ Children responded with a vari-
ety of structures, none of which involved the 

movement of the auxiliary from the relative clause. 
Unfortunately, this elicitation procedure encour-
ages children to treat the relative clause (‘the boy 
who is watching Mickey’) as an imitated chunk. 
Despite the serious methodological limitation in 
this particular study, it seems reasonable to believe 
that four-year-old children are beginning to behave 
in accordance with the Structural Dependency 
condition for sentences like (2) and (3).  But does 
this mean that they reach this point without learn-
ing? 

There is another type of sentence that provides 
equally useful positive evidence regarding auxil-
iary movement.  These are wh-questions with em-
bedded relative clauses. It turns out that there are 
hundreds of input sentences of this type in the 
CHILDES corpus.  Most of these have the form of 
(4), but some take the form of (5). 

4. Where is the dog that you like? 
5. Which is the dog that is clawing at the 

door? 
In (5) the child receives clear information demon-
strating that moved auxiliaries derive from the 
main clause and not the relative clause.  Using evi-
dence of the type provided in (4), the child simply 
learns that moved auxiliaries and the wh-words 
that accompany them are arguments of the verb of 
the main clause.  Sentences like (4) and (5) are 
highly frequent in the input to children and both 
types instruct the child in the same correct gener-
alization.  

Based on evidence from the main clause, the 
child could formulate the rule as a placement after 
the wh-word of the auxiliary that is conceptually 
related to the verb being questioned. In other 
words, it is an attachment to the wh-word of an 
argument of the main verb. This is a complex ap-
plication of the process of item-based construction 
generation proposed in MacWhinney (1975, 1982). 
This formulation does not rely on barriers, ECP, 
HCP, INFL, COMP, or movement. It does rely on 
the notion of argument structure, but only as it 
emerges from the application of item-based con-
structions. Given this formulation, a few simple 
yes–no questions would be enough to demonstrate 
the pattern.  When children hear ‘is the baby 
happy’ they can learn that the initial copula auxil-
iary ‘is’ takes a subject argument in the next slot 
and a predicate argument in the following slot.  
They will learn similar frames for each of the other 
fronted auxiliaries.  When they then encounter sen-
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tences such as (11) and (12), they will further 
elaborate the item-based auxiliary frames to allow 
for positioning of the initial wh-words and for at-
tachment of the auxiliaries to these wh-words. 

One might argue that this learning scenario 
amounts to a restatement of Chomsky’s claim, 
since it requires the child to pay attention to rela-
tional patterns, rather than serial order as calcu-
lated from the beginning of the sentence. However, 
if the substance of Chomsky’s claim is that chil-
dren learn to fill argument slots with compound 
constituents, then his analysis seems indistinguish-
able from that of MacWhinney (1975; 1987a). 

3.2  Auxiliary phrases 

Kimball (1973) presented perhaps the first example 
of a learnability problem based on poverty of posi-
tive evidence. He noted that children are exposed 
to scores of sentences with zero, one, or two auxil-
iaries as in (6)–(13). However, his searches of a 
million sentences in early machine-readable cor-
pora located not a single instance of a structure 
such as (13). 

6. It rains. 
7. It may rain. 
8. It may have rained. 
9. It may be raining. 
10. It has rained. 
11. It has been raining. 
12. It is raining. 
13. It may have been raining. 

Kimball argued that, despite the absence of posi-
tive data for (13), children are still able to infer its 
grammaticality from the data in (6) to (12). He 
took this as evidence that children have innate 
knowledge of structural compositionality. The em-
pirical problem with Kimball’s analysis is that sen-
tences like (13) are not nearly as rare as his corpus 
analysis suggests.  My search of the CHILDES 
database for the string ‘might have been’ located 
27 instances in roughly 3 million sentences. In ad-
dition there were 24 cases of ‘could have been’, 15 
cases of ‘should have been’, and 70 cases of 
‘would have been.’ Thus, there seems to be little 
shortage of positive evidence for the direct learn-
ing of this pattern. Perhaps Kimball’s findings to 
the contrary arose from focusing exclusively on 
‘may’, since a search for ‘may have been’ turned 
up only 5 cases. 

3.3 The complex-NP constraint 

The complex-NP constraint blocks movement of a 
noun from a relative clause, as in (14) and (15). 

14. *Who did John believe the man that kissed 
__ arrived  

15. Who did John believe __ kissed his buddy? 
This same constraint also blocks movement 

from prepositional phrases and other complex NPs, 
as in (16) – (18): 

16. *Who did pictures of ___ surprise you?  
17. *What did you see a happy ___ ? 
18. *What did you stand between the wall and 

___ ? 
The constraint in (18) has also been treated as 

the coordinated-NP constraint in some accounts. 
Although it appears that most children obey these 
constraints, there are some exceptions. Wilson & 
Peters (1988) list these violations of the complex 
NP constraint from Wilson’s son Seth between the 
ages of 3;0 and 5;0. 

19. What am I cooking on a hot __ ? (stove) 
20. What are we gonna look for some __ ? 

(houses) 
21. What is this a funny __ , Dad? 
22. What are we gonna push number __ ? (9) 
23. Where did you pin this on my __ ? (robe) 
24. What are you shaking all the __ ? (batter 

and milk) 
25. What is this medicine for my __ ? (cold) 

These seven violations all involve separation of a 
noun from its modifiers. Two other examples, il-
lustrate violation of the complex-NP constraint in 
other environments: 

26. What did I get lost at the __ , Dad? 
27. What are we gonna go at Auntie and __ ?  

Here, the prohibited raising involves prepositional 
phrases and a conjoined noun phrase. Violations of 
the latter type are particularly rare, but still do oc-
cur occasionally. 

One might object that a theory of universal 
grammar should not be rejected on the basis of a 
few violations from a single child. However, other 
observers have reported similar errors. In the 
recordings from my sons Ross and Mark, I 
observed a few such violations. One occurred 
when my son Mark (at 5;4.4) said, ‘Dad, next time 
when it's Indian Guides and my birthday, what do 
you think a picture of ___ should be on my cake?’ 
Catherine Snow reports that at age 10;10, her son 
Nathaniel said, ‘I have a fever, but I don't want to 
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said, ‘I have a fever, but I don't want to be taken a 
temperature of.’  

Most researchers would agree that violations of 
the complex-NP constraint are rare, but certainly 
not nonexistent. At the same time, the structures or 
meanings that might trigger these violations are 
also very rare, as is the input that would tell the 
child how to handle these structures. Given this, it 
seems to me that these patterns cannot reasonably 
be described as cases of error-free learning.  In-
stead, we should treat them as instances of ‘low-
error constructions.’ In this regard, they resemble 
errors such as stative progressives (‘I am know-
ing’) and double-object violations (‘He recom-
mended the library the book’). As soon as we shift 
from error-free learning to low-error learning, we 
need to apply a very different form of analysis, 
since we now have to explain how children recover 
from making these overgeneralization errors, once 
they have produced them. This then induces us to 
again focus on the availability of negative evi-
dence.  

Of course, we could assume that the violation of 
the complex-NP constraint was a transient per-
formance error and that, once the relevant per-
formance factors are eliminated, the constraints of 
UG operate to block further wh-raising from com-
plex noun phrases. But the important point here is 
that we now need to consider specific mechanisms 
for allowing for recovery from overgeneralization, 
even for what have been offered as the clearest 
cases of the application of universal constraints. 

3.4  Binding conditions 

Binding theory (Chomsky, 1981) offers three pro-
posed universal conditions on the binding of pro-
nouns and reflexives to referents. Sentence (28) 
illustrates two of the constraints. In (28), ‘he’ can-
not be coreferential with ‘Bill’ because ‘Bill’ does 
not c-command the pronoun. At the same time, 
‘himself’ must be coreferential with ‘Bill’ because 
it is a clausemate and does c-command ‘Bill.’  

28. He said that Bill hurt himself. 
When attempting to relate the logical problem to 
the study of the binding constraints, it is important 
to remember that the sentences produced or inter-
preted are fully grammatical. However, the inter-
pretation in which the pronoun is coreferential with 
the full NP is disallowed by the binding principles. 
This means that, to study the imposition of the 

constraints, researchers must rely on comprehen-
sion studies, often with very young children. 

It is well known that children often fail to apply 
these principles, even in carefully controlled ex-
periments (O'Grady, 1997). Various accounts have 
been offered to reconcile these facts with the sup-
posed universality of the constraint. However, one 
possibility that has seldom been explored is the 
idea that the binding conditions are learned on the 
basis of positive data. To illustrate the role that 
learning can play in this area, consider a study of 
long-distance movement of adjuncts by De 
Villiers, Roeper & Vainikka (De Villiers et al., 
1990). Children were divided into two age groups: 
3;7 to 5;0 and 5;1 to 6;11. They were given sen-
tences such as: 

29. When did the boy say he hurt himself? 
30. When did the boy say how he hurt him-

self? 
31. Who did the boy ask what to throw? 

For (29), 44% of the children gave long distance 
interpretations, associating ‘when’ with ‘hurt him-
self’, rather than ‘say.’ For (30), with a medial wh-
phrase blocking a long-distance interpretation, only 
6% gave long-distance responses. This shows that 
children were sensitive to the conditions on traces, 
in accord with P&P (Chomsky & Lasnik, 1993) 
theory. However, the fact that sensitivity to this 
contrast increases markedly across the two age 
groups indicates that children are learning this pat-
tern. In the youngest group, children had trouble 
even understanding sentences with medial argu-
ments like (31). The fact that this ability improves 
over time again points to learning of the possible 
interpretations of these structures. 

Children can learn to interpret these sentences 
correctly by applying conservative learning princi-
ples that rely on positive data.  First, they learn 
short-distance interpretations that attach the wh-
word to the main clause.  Then, when they hear 
sentences with medial “how” they add the addi-
tional possibility of the long-distance interpreta-
tion.  However, they do this in a conservative item-
based manner, limiting the new interpretation to 
sentences like (30) with medial “how.” 

P&P theory can also provide an account of this 
development in terms of the setting of parameters. 
First, children must realize that their language al-
lows movement, unlike Chinese. Next they must 
decide whether the movement can be local, as in 
German, or both local and distant as in English. 
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Finally, they must decide whether the movement is 
indexed by pronouns, traces, or both. However, 
once a parameter-setting account is detailed in a 
way that requires careful attention to complex cue 
patterns over time (Buttery, 2004; Sakas & Fodor, 
2001), it can be difficult to distinguish it from a 
learning account. Using positive evidence, children 
can first learn that some movement can occur. 
Next, they can learn to move locally and finally 
they can acquire the cues to linking the moved ar-
gument to its original argument position, one by 
one. 

3.5  Learnability or learning? 

What have we learned from our examination of 
these four examples? First, we have seen that the 
application of universal constraints is not error-
free. This is particularly true in the case of the 
binding conditions. Because the binding conditions 
involve parameter setting, it is perhaps not surpris-
ing that we see errors in this domain. However, we 
also find errors in the application of the non-
parameterized constraint against raising from com-
plex noun phrases. Only in the case of the struc-
tural dependency condition do we find no errors. 
However, for that structure there is also no usage at 
all by either parents or children, unless we consider 
attachment of auxiliaries to wh-words, which is 
quite frequent. It is possible that error-free learning 
exists in various other corners of syntactic, seman-
tic, or lexical learning. But there is no evidence 
that error-free learning occurs in association with 
an absence of positive evidence.  This is the crucial 
association that has been claimed in the literature 
and it is the one that we have shown to be false. 

Second, for each of the four learnability prob-
lems we examined, we have seen that there are 
effective learning methods based on available posi-
tive evidence. This learning involves mechanisms 
of conservative, item-based learning followed by 
later generalization.   

4. Multiple Solutions 

Having now briefly surveyed the role of the logical 
problem in generative theory, we turn next to a 
consideration of seven factors that, operating to-
gether, allow the child to solve the logical problem. 
Of these seven factors, the first two are simply 
formal considerations that help us understand the 

scope of the problem.  The last five are processes 
that can actually guide the child during acquisition. 

4.1  Limiting the class of grammars 

The first solution to the logical problem addresses 
the Gold analysis directly by showing how lan-
guage can be generated from finite-state grammars 
(Reich, 1969). For example, Hausser (1999) has 
developed an efficient parser for left-associative 
grammars. He has shown that left-associative 
grammar can be expressed as a finite automaton 
that orders words in terms of part-of-speech cate-
gories. Because we know that finite automata can 
be identified from positive evidence (Hopcroft & 
Ullman, 1979), this means that children should be 
able to learn left-associative grammars directly 
without triggering a logical problem. Given the 
fact that these grammars can parse sentences in a 
time-linear and psycholinguistically plausible fash-
ion, they would seem to be excellent candidates for 
further exploration by child language researchers.  

A formal solution to the logical problem also 
arises in the context of the theory of categorical 
grammar. Kanazawa (1998) shows that a particular 
class of categorial grammars known as the k-
valued grammars can be learned on positive data. 
Moreover, he shows that most of the customary 
versions of categorial grammar discussed in the 
linguistic literature can be included in this k-valued 
class. Shinohara (1994) and Jain, Osherson, Royer 
& Sharma (1999) examine still further classes of 
complex non-finite languages that can be learned 
on the basis of positive data alone. These attempts 
to recharacterize the nature of human language by 
revised formal analysis all stand as useful ap-
proaches to the logical problem. By characterizing 
the target language in a way that makes it learnable 
by children, linguists help bridge the gap between 
linguistic theory and child language studies. 

4.2  Revised end-state criterion 

The second solution to the logical problem in-
volves resetting our notion of what it means to ac-
quire an end-state grammar. Horning (1969) 
showed that, if the language identification is al-
lowed to involve a stochastic probability of identi-
fication, rather than an absolute guarantee of no 
further error ever, then language can be identified 
on positive evidence alone. It is surprising that this 
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solution has not received more attention, since this 
analysis undercuts the core logic of the logical 
problem, as it applies to the learning of all rule sys-
tems up to the level of context-sensitive grammars. 
If learning were deterministic, children would go 
through a series of attempts to hypothesize the 
‘correct’ grammar for the language. Once they hit 
on the correct identification, they would then never 
abandon this end-state grammar. The fact that 
adults make speech errors and differ in their judg-
ments regarding at least some syntactic structures 
suggests that this criterion is too strong and that the 
view of grammar as stochastic is more realistic. 

4.3  Conservative Item-based Learning 

The third solution to the logical problem empha-
sizes the conservative nature of children’s lan-
guage learning.  The most direct way for a 
language learner to solve Gold’s problem is to 
avoid formulating overly general grammars in the 
first place. If the child never overgeneralizes, there 
is no problem of recovery from overgeneralization 
and no need for negative evidence or corrective 
feedback. Taking this basic idea one step further, 
let us imagine that grammars are ordered strictly in 
terms of their relative generative power. If this is 
true, then the forms generated by a grammar are a 
subset of the next slightly larger grammar.  This is 
known as the Subset Principle. If the child always 
chooses the least powerful grammar that is consis-
tent with the input data, then the problem of the 
unavailability of negative evidence disappears and 
learning can be based simply on positive evidence.  

The Subset Principle has often been used to ar-
gue for abstract relations between grammars. For 
example, Fodor & Crain (1987) argue that the 
child learns the periphrastic dative (‘give the book 
to John’) for each new verb and only assumes that 
the double object construction (‘give John the 
book’) can be applied if it is attested in the input. 
In this particular case, the grammar with only the 
periphrastic is ordered as a subset of the grammar 
with both constructions. This follows from the 
principles for expansion of curly braces in GPSG.   

Conservatism can control acquisition of these 
structures without invoking the Subset Principle. 
The theory of item-based acquisition 
(MacWhinney, 1975, 1982, 1987a; Tomasello, 
2000) holds that syntactic learning is driven by the 
induction and combination of item-based construc-

tions. Each item-based construction specifies a set 
of slots for arguments.  Initially, these slots encode 
features that are specific to the first words encoun-
tered in this slot during comprehension.  For ex-
ample, the item ‘more’ has a slot for a following 
argument.  If the first combinations the child picks 
up from comprehension are ‘more cookies’ and 
‘more milk’, then this slot will initially be limited 
to foods.  However, as the child hears ‘more’ used 
in additional combinations, the semantics of the 
slot filler will extend to any mass noun or plural.  
This learning is based entirely on generalization 
from positive evidence. 

When learning the item-based construction for 
‘give’, children encounter sentences such as ‘Bill 
gives John the book.’ From this, they learn the 
double-object construction: giver + ‘give’ + recipi-
ent + gift.  They also learn the competing item-
based construction of giver + ‘give’ + gift + ‘to’ 
recipient.  There is no need to invoke the Subset 
Principle to explain this learning, since item-based 
constructions are inherently conservative and pro-
vide their own constraints on the form of gram-
mars. Having acquired these two basic 
constructions, children can them join them into a 
single item-based finite automaton that operates on 
narrowly defined lexical categories. 

 
 

 
  
 
 

 
Children can learn this item-based grammar frag-
ment on the basis of simple positive data.  This 
example uses the formalism of a finite-state 
automaton to annotate the use of positive data.  
However, in the Competition Model and other 
connectionist accounts, the two verb frames com-
pete probabilistically with the outcome of the 
competition being determined by further cues such 
as focusing or topicalization. 

Item-based learning involves an ongoing proc-
ess of generalization for the semantic features of 
the arguments. During these processes of generali-
zation, to minimize the possibility of error, the 
child has to be conservative in three ways: 
• The child needs to formulate each syntactic 

combination as an item-based construction. 

giver gives 

gift 

recip 

to recip 

gift 
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• Each item-based construction needs to record 
the exact semantic status of each positive in-
stance of an argument in a particular gram-
matical configuration (MacWhinney, 1987a). 

• Attempts to use the item-based construction 
with new arguments must be closely guided by 
the semantics of previously encountered posi-
tive instances. 

If the child has a good memory and applies this 
method cautiously, overgeneralization will be 
minimized and there will be no need to recover 
from overgeneralization. 

Each item-based construction is linked to a spe-
cific lexical item.  This item must be a predicate. 
There are no item-based constructions for nouns.  
Predicates can have up to three arguments. Item-
based constructions for verbs can also include the 
verbs of embedded clauses as possible arguments.  
Item-based constructions for prepositions and aux-
iliaries include both a phrase internal head (endo-
head) and a head for the phrase attachment 
(exohead). For details on the implementation of 
this grammatical relations model through a parser 
see Sagae, MacWhinney, and Lavie (2004).  In 
section 4.6, we will see how item-based construc-
tions are generalized to feature-based constructions 
in accord with the account of MacWhinney 
(1987a) 

Conservatism also applies to non-local move-
ment patterns.  For example, Wolfe Quintero 
(1992) has shown that conservatism can be used to 
account for L2 acquisition of the wh-movement 
patterns. She notes that L2 learners acquire these 
positive contexts for wh-movement in this order: 

32. What did the little girl hit __ with the block 
today? 

33. What did the boy play with __ behind his 
mother? 

34. What did the boy read a story about __ this 
morning? 

Because they are proceeding conservatively, learn-
ers never produce forms such as (35): 

35. *What did the boy with ___ read a story 
this morning? 

They never hear this structure in the input and 
never hypothesize a grammar that includes it. As a 
result, they never make overgeneralizations and 
never attempt wh-movement in this particular con-
text. Data from Maratsos, Kuczaj, Fox & Chalkley 
(1979) show that this same analysis applies to first 
language learners. 

4.4  Competition 

Conservatism is a powerful mechanism for ad-
dressing the logical problem. However, children 
will eventually go ‘beyond the information given’ 
and produce errors (Jespersen, 1922). When the 
child produces errors, some mechanism must force 
recovery. The four processes that have been pro-
posed by emergentist theory are: competition, cue 
construction, monitoring, and indirect negative 
evidence.  Each of these processes can work to 
correct overgeneralization.  These processes are 
important for addressing the version of the logical 
problem that emphasizes the poverty of negative 
evidence. 

The fourth solution to the problem of poverty of 
negative evidence relies on the mechanism of 
competition. Of the four mechanisms for promot-
ing recovery from overgeneralization, competition 
is the most basic, general, and powerful. Psycho-
logical theories have often made reference to the 
notion of competition. In the area of language ac-
quisition, MacWhinney (1978) used competition to 
account for the interplay between ‘rote’ and ‘anal-
ogy’ in learning morphophonology. Competition 
was later generalized to all levels of linguistic 
processing in the Competition Model. In the 1990s, 
specific aspects of learning in the Competition 
Model were formulated through both neural net-
work theory and the ACT-R production system. 

The Competition Model views overgeneraliza-
tions as arising from two types of pressures. The 
first pressure is the underlying analogic force that 
produces the overgeneralization. The second pres-
sure is the growth in the rote episodic auditory 
representation of a correct form. This 
representation slowly grows in strength over time, 
as it is repeatedly strengthened through encounters 
with the input data. These two forces compete for 
the control of production. Consider the case of 
‘*goed’ and ‘went’. The overgeneralization ‘goed’ 
is supported by analogy. It competes against the 
weak rote form ‘went,’ which is supported by 
auditory memory. As the strength of the rote 
auditory form for ‘went’ grows, it begins to win 
out in the competition against the analogic form 
‘*goed’. Finally, the error is eliminated. This is the 
Competition Model account for recovery from 
overgeneralization. The competition between two candidate forms is 
governed by the strength of their episodic auditory 
representations. In the case of the competition be-
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tween ‘*goed’ and ‘went’, the overgeneralized 
form has little episodic auditory strength, since it is 
heard seldom if at all in the input. Although 
‘*goed’ lacks auditory support, it has strong 
analogic support from the general pattern for past 
tense formation. In the Competition Model, 
analogic pressure stimulates overgeneralization 
and episodic auditory encoding reins it in. The 
analogic pressure hypothesized in this account has 
been described in detail in several connectionist 
models of morphophonological learning. The mod-
els that most closely implement the type of compe-
tition being described here are the models of 
MacWhinney and Leinbach (1991) for English and 
MacWhinney, Leinbach, Taraban & McDonald 
(1989) for German. In these models, there is a 
pressure for regularization according to the general 
pattern that produces forms such as ‘*goed’ and 
‘*ranned’. In addition, there are weaker gang ef-
fects that lead to overgeneralizations such as 
‘*stang’ for the past tense of ‘sting’. 

Competition implements the notion of blocking 
developed first by Baker (1979) and later by Pinker 
(1994). Blocking is more limited than competition 
because it requires either strict rule-ordering or all-
or-none competition. The assumption that forms 
are competing for the same meaning is identical to 
the Principle of Uniqueness postulated by Pinker 
(1994).  Competition is also the general case of the 
Direct Contrast noted by Saxton (1997). 

Competition goes beyond the analyses offered 
by Baker, Pinker, and Saxton by emphasizing the 
fact that the child is continually internalizing adult 
forms in episodic memory.  Recent evidence for 
the power of episodic memory in infant audition 
(Aslin et al., 1999) has underscored the power of 
neural mechanisms for storing linguistic input and 
extracting patterns from this input without con-
scious processing. The Competition Model as-
sumes that children are continually storing traces 
of the words and phrases they hear along with tags 
that indicate that these phrases derive directly from 
adult input. When the child then comes to produce 
a spontaneous form, these stored forms function as 
an ‘oracle’ or ‘informant’, providing delayed nega-
tive evidence that corresponds (because of compe-
tition or Uniqueness) to the currently generated 
productive form. The ultimate source of this nega-
tive evidence is the input. Children do not use this 
evidence when it is initially presented. It is only 
later when the information is retrieved in the con-

text of productive combinations that it provides 
negative evidence. This can only happen if it is 
clear that stored adult forms compete directly 
(Saxton, 1997) with productive child forms. The 
crucial claim of the Competition Model is that the 
same retrieval cues that trigger the formation of the 
overgeneralized productive form also trigger the 
retrieval of the internalized negative evidence. 
When these assumptions hold, there is a direct so-
lution to the logical problem through the availabil-
ity of internalized negative evidence. 

To gain a better understanding of the range of 
phenomena that can be understood in terms of 
competition, let us look at examples from mor-
phology. lexical semantics, and syntactic construc-
tions. 

4.4.1  Morphological competition 

Bowerman (1987) argued that recovery from 
overgeneralizations such as ‘*unsqueeze’ is par-
ticularly problematic for a Competition Model ac-
count. She holds that recovery depends on 
processes of semantic reorganization that lie out-
side the scope of competition. To make her exam-
ple fully concrete, let us imagine that ‘*unsqueeze’ 
is being used to refer to the voluntary opening of a 
clenched fist. Bowerman holds that there is no ob-
vious competitor to ‘*unsqueeze.’ However, when 
presented with this concrete example, most native 
speakers will say that both ‘release’ and ‘let go’ 
are reasonable alternatives. The Competition 
Model claim is that, because there is no rote audi-
tory support for ‘*unsqueeze,’ forms like ‘release’ 
or ‘let go’ will eventually compete against and 
eliminate this particular error. 

Several semantic cues support this process of 
recovery. In particular, inanimate objects such as 
rubber balls and sponges cannot be ‘*unsqueezed’ 
in the same way that they can be ‘squeezed.’ 
Squeezing is only reversible if we focus on the ac-
tion of the body part doing the squeezing, not the 
object being squeezed. It is possible that, at first, 
children do not fully appreciate these constraints 
on the reversibility of this particular action. How-
ever, it is equally likely that they resort to using 
‘*unsqueeze’ largely because of the unavailability 
of more suitable competitors such as ‘release.’ An 
error of this type is equivalent to production of 
‘falled’ when the child is having trouble remem-
bering the correct form ‘fell.’ Or consider the 
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competition between ‘*unapproved’ and its ac-
ceptable competitor  ‘disapproved’. We might 
imagine that a mortgage loan application that was 
initially approved could then be subsequently 
‘*unapproved.’ We might have some uncertainty 
about the reversibility of the approval process, but 
the real problem is that we have not sufficiently 
solidified our notion of ‘disapproved’ in order to 
have it apply in this case. The flip side of this coin 
is that many of the child’s extensional productions 
of reversives will end up being acceptable. For ex-
ample, the child may produce ‘unstick’ without 
ever having encountered the form in the input.  In 
this case, the form will survive.  Although it will 
compete with ‘remove’, it will also receive occa-
sional support from the input and will survive long 
enough for it to begin to carve out further details in 
the semantic scope of verbs that can be reversed 
with the prefix ‘un-’ (Li & MacWhinney, 1996). 

4.4.2 Lexical competition 

The same logic that can be used to account for re-
covery from morphological overgeneralizations 
can be used to account for recovery from lexical 
overgeneralizations. For example, a child may 
overgeneralize the word ‘kitty’ to refer to tigers 
and lions. The child will eventually learn the cor-
rect names for these animals and restrict the over-
generalized form. The same three forces are at 
work here: analogic pressure, competition, and 
episodic encoding. Although the child has never 
actually seen a ‘kitty’ that looks like a tiger, there 
are enough shared features to license the generali-
zation. If the parent supplies the name ‘tiger.’ there 
is a new episodic encoding that then begins to 
compete with the analogic pressure. If no new 
name is supplied, the child may still begin to ac-
cumulate some negative evidence, noting that this 
particular use of ‘kitty’ is not yet confirmed in the 
input. 

Merriman (1999) has shown how the linking of 
competition to a theory of attentional focusing can 
account for the major empirical findings in the lit-
erature on Mutual Exclusivity (the tendency to 
treat each object as having only one name). By 
treating this constraint as an emergent bias, we 
avoid a variety of empirical problems. Since com-
petition is probabilistic, it only imposes a bias on 
learning, rather than a fixed innate constraint. The 
probabilistic basis for competition allows the child 

to deal with hierarchical category structure without 
having to enforce major conceptual reorganization. 
Competition may initially lead a child to avoid re-
ferring to a ‘robin’ as a ‘bird,’ since the form 
‘robin’ would be a better direct match. However, 
sometimes ‘bird’ does not compete directly with 
‘robin.’ This occurs when referring to a collection 
of different types of birds that may include robins, 
when referring to an object that cannot be clearly 
identified as a robin, or when making anaphoric 
reference to an item that was earlier mentioned as a 
‘robin.’ 

4.4.3  Syntactic frame competition  

Overgeneralizations in syntax arise when a feature-
based construction common to a group or ‘gang’ of 
verbs is incorrectly overextended to a new verb. 
This type of overextension has been analyzed in 
both distributed networks (Miikkulainen & May-
berry, 1999) and interactive activation networks 
(Elman et al., 2005; MacDonald et al., 1994; 
MacWhinney, 1987b). These networks demon-
strate the same gang effects and generalizations 
found in networks for morphological forms 
(Plunkett & Marchman, 1993) and spelling 
correspondences (Taraban & McClelland, 1987). If 
a word shares a variety of semantic features with a 
group of other words, it will be treated syntacti-
cally as a member of the group. 

Consider the example of overgeneralizations of 
dative movement. Verbs like ‘give’, ‘send’, and 
‘ship’ all share a set of semantic features involving 
the transfer of an object through some physical 
medium. In this regard, they are quite close to a 
verb like ‘deliver’ and the three-argument verb 
group exerts strong analogic pressure on the verb 
‘deliver’. However, dative movement only applies 
to certain frequent, monosyllabic transfer verbs 
and not to multisyllabic, Latinate forms with a less 
transitive semantics such as ‘deliver’ or ‘recom-
mend.’ When children overgeneralize and say, 
‘Tom delivered the library the book,’ they are 
obeying analogic pressure from the group of trans-
fer verbs that permit dative movement. In effect, 
the child has created a new argument frame for the 
verb ‘deliver.’ The first argument frame only 
specifies two arguments – a subject or ‘giver’ and 
an object or ‘thing transferred.’ The new lexical 
entry specifies three arguments. These two homo-
phonous entries for ‘deliver’ are now in competi-

62



tion, just as ‘*goed’ and ‘went’ were in competi-
tion. Like the entry for ‘*goed’, the three-place 
entry for ‘deliver’ has good analogic support, but 
no support from episodic encoding derived from 
the input. Over time, it loses in its competition 
with the two-argument form of ‘deliver’ and its 
progressive weakening along with strengthening of 
the competing form leads to recovery from over-
generalization. Thus, the analysis of recovery from 
‘Tom delivered the library the book’ is identical to 
the analysis of recovery from ‘*goed’. 

4.4.4  Modeling construction strength 

It may be useful to characterize the temporal 
course of competitive item-based learning in 
slightly more formal terms.  To do this, we can say 
that a human language is generated by the applica-
tion of a set of constructions that map arguments to 
predicates. For each item-based construction (IC), 
there is a correct mapping (CM) from argument to 
its predicates and any number of incorrect map-
pings (IM).  The IMs receive support from 
analogical relations to groups of CM with similar 
structure. From these emerge feature-based con-
structions (FC). The CMs receive support from 
positive input, as well as analogical relations to 
other CMs and FCs. Each positive input increases 
the strength S of a matching CM by amount A. 
Learning of an IC occurs when the S of CM ex-
ceeds the S of each of the strongest competing IM 
by some additional amount. This is the dominance 
strength or DS.  

To model language learning within this frame-
work, we need to understand the distribution of the 
positive data and the sources of analogical support. 
From database searches and calculation of ages of 
learning of CM, we can estimate the number of 
positive input examples (P) needed to bring a CM 
to strength DS. For each C, if the input has in-
cluded P cases by time T, we can say that a par-
ticular CM reaches DS monotonically in time T.  
At this point, IC is learned. Languages are learn-
able if their component ICs can be learned in time 
T. To measure learning to various levels, we can 
specify learning states in which there remain cer-
tain specified slow constructions (SC) that have 
not yet reached DS. Constructions learned by this 
time can be called NC or normal constructions. 
Thus, at time T, the degree of completion of the 
learning of L can be expressed as NC/NC + SC.  

This is a number that approaches 1.0 as T in-
creases.  The residual presence of a few SC, as 
well as occasional spontaneous declines in DS of 
CM will lead to deviations from 1.0. The study of 
the SCs requires a model of analogic support from 
FCs. In essence, the logical problem of language 
acquisition is then restated as the process of under-
standing how analogical pressures lead to learning 
courses that deviate from what is predicted by sim-
ple learning on positive exemplars for individual 
item-based constructions. 

4.5  Cue construction 

The fifth solution to the logical problem and the 
second of the solutions that promotes recovery 
from overgeneralization is cue construction. Most 
recovery from overgeneralization relies on compe-
tition. However, competition will eventually en-
counter limits in its ability to deal with the fine 
details of grammatical patterns. To illustrate these 
limits, consider the case of recovery from resulta-
tive overgeneralizations such as ‘*I untied my 
shoes loose’. This particular extension receives 
analogic support from verbs like ‘shake’ or ‘kick’ 
which permit ‘I shook my shoes loose’ or ‘I kicked 
my shoes loose.’ It appears that the child is not 
initially tuned in to the fine details of these seman-
tic classifications. Bowerman (1988) has suggested 
that the process of recovery from overgeneraliza-
tion may lead the child to construct new features to 
block overgeneralization.  We can refer to this 
process as ‘cue construction.’ 

Recovering from other resultative overgenerali-
zations may also require cue construction. For ex-
ample, an error such as ‘*The gardener watered the 
tulips flat’ can be attributed to the operation of a 
feature-based construction which yields three-
argument verbs from ‘hammer’ or ‘rake’, as in 
‘The gardener raked the grass flat.’ Source-goal 
overgeneralization can also fit into this framework. 
Consider, ‘*The maid poured the tub with water’ 
instead of ‘The maid poured water into the tub’ 
and ‘*The maid filled water into the tub’ instead of 
‘The maid filled the tub with water.’ In each case, 
the analogic pressure from one group of words 
leads to the establishment of a case frame that is 
incorrect for a particular verb. Although this com-
petition could be handled just by the strengthening 
of the correct patterns, it seems likely that the child 
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also needs to clarify the shape of the semantic fea-
tures that unify the ‘pour’ verbs and the ‘fill’ verbs. 

Bowerman (personal communication) provides 
an even more challenging example. One can say 
‘The customers drove the taxi driver crazy,’ but 
not ‘*The customers drove the taxi driver sad.’ The 
error involves an overgeneralization of the exact 
shape of the resultative adjective. A connectionist 
model of the three-argument case frame for ‘drive’ 
would determine not only that certain verbs license 
a third possible argument, but also what the exact 
semantic shape of that argument can be. In the case 
of the standard pattern for verbs like ‘drive,’ the 
resultant state must be terminative, rather than 
transient. To express this within the Competition 
Model context, we would need to have a competi-
tion between a confirmed three-argument form for 
‘drive’ and a looser overgeneral form based only 
on analogic pressure. A similar competition ac-
count can be used to account for recovery from an 
error such as, ‘*The workers unloaded the truck 
empty’ which contrasts with ‘The workers loaded 
the truck full’. In both of these cases, analogic 
pressure seems weak, since examples of such er-
rors are extremely rare in the language learning 
literature. 

The actual modelling of these competitions in a 
neural network will require detailed lexical work 
and extensive corpus analysis. A sketch of the 
types of models that will be required is given in 
MacWhinney (1999). 

4.6  Monitoring 

The sixth solution to the logical problem involves 
children’s abilities to monitor and detect their own 
errors. The Competition Model holds that, over 
time, correct forms gain strength from encounters 
with positive exemplars and that this increasing 
strength leads them to drive out incorrect forms. If 
we make further assumptions about uniqueness, 
this strengthening of correct forms can guarantee 
the learnability of language. However, by itself, 
competition does not fully account for the dynam-
ics of language processing in real social interac-
tions. Consider a standard self-correction such as ‘I 
gived, uh, gave my friend a peach.’ Here the cor-
rect form ‘gave’ is activated in real time just after 
the production of the overgeneralization. 
MacWhinney (1978) and Elbers & Wijnen (1993) 
have treated this type of self-correction as involv-

ing ‘expressive monitoring’ in which the child lis-
tens to her own output, compares the correct weak 
rote form with the incorrect overgeneralization, 
and attempts to block the output of the incorrect 
form. One possible outcome of expressive moni-
toring is the strengthening of the weak rote form 
and weakening of the analogic forms. Exactly how 
this is implemented will vary from model to model 

In general, retraced false starts move from incor-
rect forms to correct forms, indicating that the in-
correct forms are produced quickly, whereas the 
correct rote forms take time to activate. Kawamoto 
(1994) has shown how a recurrent connectionist 
network can simulate exactly these timing asym-
metries between analogic and rote retrieval. For 
example, Kawamoto’s model captures the experi-
mental finding that incorrect regularized pronun-
ciations of ‘pint’ to rhyme with ‘hint’ are produced 
faster than correct irregular pronunciations.  

An even more powerful learning mechanism is 
what MacWhinney (1978) called ‘receptive moni-
toring.’ If the child shadows input structures 
closely, he will be able to pick up many discrepan-
cies between his own productive system and the 
forms he hears. Berwick (1987) found that syntac-
tic learning could arise from the attempt to extract 
meaning during comprehension. Whenever the 
child cannot parse an input sentence, the failure to 
parse can be used as a means of expanding the 
grammar. The kind of analysis through synthesis 
that occurs in some parsing systems can make 
powerful use of positive instances to establish new 
syntactic frames. Receptive monitoring can also be 
used to recover from overgeneralization. The child 
may monitor the form ‘went’ in the input and at-
tempt to use his own grammar to match that input. 
If the result of the receptive monitoring is ‘*goed’, 
the child can use the mismatch to reset the weights 
in the analogic system to avoid future overgener-
alizations. 

Neural network models that rely on back-
propagation assume that negative evidence is con-
tinually available for every learning trial. For this 
type of model to make sense, the child would have 
to depend heavily on both expressive and receptive 
monitoring. It is unlikely that these two mecha-
nisms operate as continuously as would be re-
quired for a mechanism such as back-propagation.  
However, not all connectionist models rely on the 
availability of negative evidence. For example, 
Kohonen’s self-organizing feature map model 
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(Miikkulainen, 1993) learns linguistic patterns 
simply using cooccurences in the data with no reli-
ance on negative evidence.  

4.7  Indirect negative evidence 

The seventh solution to the logical problem of 
language acquisition relies on the computation of 
indirect negative evidence. This computation can 
be illustrated with the error ‘*goed.’ To construct 
indirect negative evidence in this case, children 
need to track the frequency of all verbs and the 
frequency of the past tense as marked by the regu-
lar ‘-ed.’ Then they need to compute regular ‘-ed’ 
as a percentage of all verbs.   Next they need to 
track the frequency of the verb ‘go’ in all of its 
uses and the frequency of ‘*goed”. To gain a bit 
more certainty, they should also calculate the fre-
quency of a verb like ‘jump’ and the frequency of 
‘jumped.’  With these ratios in hand, the child can 
then compare the ratio for ‘go’ with those for 
‘jump’ or verbs in general and conclude that the 
attested cases of ‘*goed’ are fewer than would be 
expected on the basis of evidence from verbs like 
‘jump.’  They can then conclude that ‘*goed’ is 
ungrammatical. Interestingly, they can do this 
without receiving overt correction. 

The structures for which indirect negative evi-
dence could provide the most useful accounts are 
ones that are learned rather late. These typically 
involve low-error constructions of the type that 
motivate the strong form of the logical problem. 
For example, children could compute indirect 
negative evidence that would block wh-raising 
from object-modifying relatives in sentences such 
as (37). 

36. The police arrested the thieves who were 
carrying the loot. 

37. *What did the police arrest the thieves who 
were carrying? 

38. To do this, they would need to track the 
frequency of sentences such as: 

39. Bill thought the thieves were carrying the 
loot. 

40. What did Bill think the thieves were carry-
ing? 

Noting that raising from predicate complements 
occurs fairly frequently, children could reasonably 
conclude that the absence of raising from object 
modification position means that it is ungrammati-
cal. Coupled with conservatism, indirect negative 

evidence can be a useful mechanism for avoiding 
overgeneralization of complex syntactic structures.  

The item-based acquisition component of the 
Competition Model provides a framework for 
computing indirect negative evidence. The indirect 
negative evidence tracker could note that, although 
‘squeeze’ occurs frequently in the input, 
‘*unsqueeze’ does not. This mechanism works 
through the juxtaposition of a form receiving epi-
sodic support (‘squeeze’) with a predicted inflected 
form (‘unsqueeze’). 

This mechanism uses analogic pressure to pre-
dict the form ‘*unsqueeze.’ This is the same 
mechanism as used in the generation of ‘*goed.’ 
However, the child does not need to actually pro-
duce ‘*unsqueeze,’ only to hypothesize its exis-
tence. This form is then tracked in the input. If it is 
not found, the comparison of the near-zero strength 
of the unconfirmed form ‘unsqueeze’ with the con-
firmed form ‘squeeze’ leads to the strengthening of 
competitors such as ‘release’ and blocking of any 
attempts to use ‘unsqueeze.’ Although this mecha-
nism is plausible, it is more complicated than the 
basic competition mechanism and places a greater 
requirement on memory for tracking of non-
occurrences. Since the end result of this tracking of 
indirect negative evidence is the same as that of the 
basic competition mechanism, it is reasonable to 
imagine that learners use this mechanism only as a 
fall back strategy, relying on simple competition to 
solve most problems requiring recovery from 
overgeneralization. 

 
 
 

5.  Consequences and Conclusions 

This analysis suggests that we should not longer 
speak of language learning as being confined by 
the poverty of positive evidence or negative evi-
dence. Both types of evidence are far more abun-
dant than has been imagined. Nor should we 
assume that recovery from overgeneralization in-
volves a fundamental logical problem. Recovery is 
supported by a set of four powerful processes 
(competition, cue construction, monitoring, and 
indirect negative evidence) that provide redundant 
and complementary solutions to the logical prob-
lem. In addition, we know that alternative charac-
terizations of the nature of the target grammar can 
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take much of the logical bit out of the logical prob-
lem.  Finally, we have seen that the language ad-
dressed to children is not at all unparsable or 
degenerate, once a few superficial retracing struc-
tures are repaired.  

We have reviewed seven solutions to the logical 
problem that work together to buffer the process of 
language acquisition. When we consider the inter-
action of the seven solutions in this way, we soon 
come to realize the pivotal role played by the item-
based construction. First, the item-based construc-
tion directly enforces conservatism by requiring 
that each generalization of each argument frame be 
based on directly observable positive evidence. 
Second, the probabilistic competition between 
item-based constructions provides a meaningful 
way of understanding the probabilistic nature of 
grammar. Third, the competition between item-
based constructions directly promotes recovery 
from overgeneralization.  Fourth, the additional 
mechanisms of cue construction, indirect negative 
evidence, and monitoring serve to fine-tune the 
operations of competition. These processes operate 
particularly in those cases where uniqueness is not 
fully transparent or where the restriction of a gen-
eral process requires additional fine-tuning of cues.  

The current analysis assigns great importance to 
good positive data. Marcus (1993) has suggested 
that parents are inconsistent in their provision of 
negative evidence to the child. But the Competition 
Model assumes that it is positive data that is cru-
cial for learning. One way in which a parent can 
provide crucial positive evidence is through recast-
ing, but other methods are possible too.  In various 
cultures and subgroups, positive evidence can be 
presented and focused through elicited repetition, 
choral recitation of stories, interaction with sib-
lings, or games. Methods that emphasize shared 
attention and shared understanding can guide chil-
dren toward the control of literate expression. This 
shared attention can arise in groups of co-wives in 
Central Africa just as easily as it can from isolated 
mother–child dyads in New England. 

Recently, Hauser, Chomsky, & Fitch (2002) 
have argued that the core evolutionary adaptation 
that was required to support human language in-
volved the introduction of a facility for recursion. 
The analysis in the current paper modifies and ex-
tends this claim by emphasizing the evolutionary 
(MacWhinney, 2005) and developmental 
(Tomasello, 2000) centrality of the item-based 

construction as the controller of recursive composi-
tion of phrases and sentences. However MacWhin-
ney  (2005) views linguistic recursion as emerging 
gradually from preexisting structures in spatial 
cognition, rather than as appearing suddenly during 
the Late Pleistocene. Studies of the functional neu-
ral underpinnings of recursion can go a long ways 
toward clarifying the details of these issues. 
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Extended Abstract 

Reali & Christiansen (2003, 2004) have challenged 
Chomsky’s most famous "poverty of stimulus" 
claim (Chomsky, 1980) by showing that a 
statistical learner which tracks transitional 
probabilities between adjacent words (bigrams) 
can correctly differentiate grammatical and 
ungrammatical auxiliary inversion in questions like 
(1) and (2): 
 
(1) Is the little boy who is crying hurt? 
(2) *Is the little boy who crying is hurt? 
 
No examples like (1) occurred in the corpus that 
R&C employed, yet the grammatical form was 
chosen by the bigram model in 92% of the test 
sentence pairs. R&C conclude that no innate 
knowledge is necessary to guide child learners in 
making this discrimination, because the input 
evidently contains enough indirect statistical 
information (from other sentence types) to lead 
learners to the correct generalization.  
 
R&C's data are impressive, but there is reason to 
doubt that they extend to other natural languages or 

even to other constructions in English. While 
replicating R&C's Experiment 1 (see Data [A]), we 
discovered that its success rests on 'accidental' 
English facts. 
 
Six bigrams differ between the grammatical and 
ungrammatical versions of a sentence. (The 6 
relevant bigrams for the test sentence pair (1)/(2) 
are shown in Table 1.) However, 86% of the 
correctly predicted test sentences were definitively 
selected by the single bigram "who is" (or "that 
is"), because it occurred in the corpus and none of 
the remaining 5 bigrams did. 

 
Distinctive 
bigrams in (1) who is is crying crying hurt 

Distinctive 
bigrams in (2) who crying crying is is hurt 

 
Table 1. Six bigrams that differentiate Is the little 
boy who is crying hurt? from Is the little boy who 
crying is hurt? The first sentence is selected (as 
grammatical) solely due to the high probability of 
who is. 
 

It can be anticipated that when there is no 
bigram “who/that is” in the grammatical test 
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sentence (e.g., in relative clauses with object-gaps, 
auxiliaries such as was, can, or do-support), the 
learning will be less successful. Our results 
confirm this prediction: object relatives like (4) 
and (5), where "who/that is” is not present, were 
poorly discriminated (see Data [B]). 

 
(4) Is the wagon your sister is pushing red? 
(5) *Is the wagon your sister pushing is red? 

  
Results for sentences with only main verbs, 

requiring do-support in question-formation, like (6) 
and (7), were also very weak (see Data [C]). 

 
(6) Does the boy who plays the drum want a 

cookie? 
(7) *Does the boy who play the drum wants a 

cookie? 
  
Furthermore, the powerful effect of "who/that 

is" in R&C’s experiment reflects no knowledge of 
relative clauses. It rests on the homophony of 
English relative pronouns with interrogative "who" 
and deictic "that". In R&C's training-set, the 
phonological/orthographic form "who" occurred as 
relative pronoun only 3 times, but as interrogative 
pronoun 44 times. R&C's analysis didn't 
differentiate these. (Similarly for "that": 14 relative 
versus 778 deictic or complementizer.) 

 
In some languages relative pronouns are 

homophonous with other parts of speech (e.g., with 
determiners in German). We explored the possible 
effects of this by replacing the relative pronouns in 
the English corpus with “the”. Discrimination 
between grammatical and ungrammatical aux-
inversion was poor (see Data [D]). 

 
Many human languages lack any such 

superficial overlaps with relative pronouns. So 
unless there are other cues instead, learning can be 
expected to be unsuccessful in those languages too. 
We tested this hypothesis in two ways:  

 
(i) We distinguished relative pronouns from their 

non-relative homophones in English by coding 
the former as “who-rel” and “that-rel” in both 
the corpus and the test sentences. We found a 
greatly reduced ability to select the grammatical 
aux-inversion construction (see Data [E]).  

 

(ii) We tested verb fronting in Dutch questions, 
using a Dutch corpus comparable to the English 
corpus used by R&C (the Groningen Dutch 
corpus from CHILDES; approximately 21,000 
utterances of child-directed speech, age 1;8 to 
1;11). Due largely to verb-final word order in 
relative clauses, there was no one distinctive 
bigram that could be relied on to predict the 
correct choice. Performance on a set of 20 items 
tested so far was no better than chance (see 
Data [F]). Clearly, the Dutch examples 
provided no alternative cues for selecting the 
grammatical version.   

 
Thus, the success rate in R&C’s experiment has 

very limited applicability. In general, bigram 
probability (or sentence cross-entropy, as 
computed in these experiments) is a poor predictor 
of grammaticality; e.g., the measure that prefers (1) 
over (2) mis-prefers (8) over (9):  

 
(8) *Scared you want to the doggie. 
(9) She can hear what we’re saying. 
 
We conclude that the bigram evidence against 

the poverty of the stimulus for language 
acquisition has not been substantiated to date. It 
remains to be seen whether richer statistics-based 
inductive models will offer more robust cross-
language learnability. 
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Data 

 
  

% correct 
 

% incorrect 
 

% can’t 
choose 

# of sentence 
pairs tested 

to date 

 
Experiment 

A 87 13 0 100 Replication of R&C 
B 33 15 52 100 Object-gap 
C 50 50 0 50 Do-support 
D 17 41 42 100 “The” replacement 
E 17 39 44 100 Who-rel/That-rel 
F 45 50 5 20 Dutch 
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Abstract 

In this paper, we discuss an applic ation of 
Maximum Entropy to modeling the acqui-
sition of subject and object processing in 
Italian. The model is able to learn from 
corpus data a set of experimentally and 
theoretically well-motivated linguistic 
constraints, as well as their relative sali-
ence in Italian grammar development and 
processing. The model is also shown to 
acquire robust syntactic generalizations 
by relying on the evidence provided by a 
small number of high token frequency 
verbs only. These results are consistent 
with current research focusing on the role 
of high frequency verbs in allowing chil-
dren to converge on the most salient con-
straints in the grammar. 

1 Introduction 

Current research in language learning supports the 
view that developing grammatical competence in-
volve mastering and integrating multiple, parallel, 
probabilistic constraints defined over different 
types of linguistic (and non linguistic) information 
(Seidenberg and MacDonald 1999, MacWhinney 
2004). This is particularly clear when we focus on 
the core of grammatical deve lopment, namely the 
ability to properly identify syntactic relations. Psy-
cholinguistic evidence shows that children learn to 

identify sentence subjects and direct objects by 
combining various types of probabilistic cues, such 
as word order, noun animacy, definiteness, agree-
ment, etc. The relative prominence of each of these 
cues during the development of a child’s syntactic 
competence can considerably vary cross-
linguistically, mirroring their relative salience in 
the adult grammar system (cf. Bates et al. 1984). 

If grammatical constraints are inherently prob-
abilistic (Manning 2003), the path through which 
the child acquires adult grammar competence can 
be viewed as the process of building a stochastic 
model out of the linguistic input. Consistently with 
“usage-based” approaches to language acquisition 
(cf. Tomasello, 2000) grammatical constraints 
would thus emerge from language use thanks to the 
child’s ability to keep track of statistical regulari-
ties in linguistic cues. In turn, this raises the issue 
of how children are able to exploit the statistical 
distribution of cues in the linguistic input. Various 
types of cross-linguistic evidence converge on the 
hypothesis that children are actually able to take 
great advantage of the highly skewed distribution 
of naturalistic language data. Goldberg et al. 
(2004), Matthews et al. (2003), Ninio (1999) 
among the others argue that verbs with high token 
frequency in the input have a facilitatory effect in 
allowing children to derive robust syntactic gener-
alizations even from surprisingly minimal input. 
According to this model, syntactic learning is 
driven by a small pool of verbs occurring with the 
highest token frequency: they approximately corre-
spond to so-called “light verbs” such as English 
go, give , want etc. These verbs would act as “cata-
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lysts” in allowing children to converge on the most 
salient grammar constraints of the language they 
are acquiring. 

In computational linguistics, Maximum Entropy 
models have proven to be robust statistical learning 
algorithms that perform well in a number of proc-
essing tasks (cf. Ratnaparkhi 1998). In this paper, 
we discuss successful application of a Maximum 
Entropy (ME) model to the processing of Italian 
syntactic relations. We believe that this discussion 
is of general interest for two basic reasons. First, 
the model is able to learn, from corpus data, a set 
of experimentally and theoretically well-motivated 
linguistic constraints, as well as their relative sali-
ence in the processing of Italian. This suggests that 
it is possible for a child to bootstrap and use this 
type of knowledge on the basis of a specific distri-
bution of real language data, a conclusion that 
bears on the question of the role and type of innate 
inductive biases. Secondly, the model is also 
shown to acquire robust syntactic generalizations 
by relying on the evidence provided by a small 
number of high token frequency verbs only. With 
some qualifications, this evidence sheds light on 
the interaction between highly skewed language 
data distributions and language maturation. Robust 
grammar generalizations emerge on the basis of 
exposure to early, statist ically stable and lexically 
underspecified evidence, thus providing a reliable 
backbone to children’s syntactic development and 
later lexical organization.  

In the following section we first broach the 
general problem of parsing subjects and objects in 
Italian. Section 3 describes an ME model of the 
problem. Section 4 and 5 are devoted to a detailed 
empirical analysis of the interaction of different 
feature configurations and of the interplay between 
verb token frequency and relevant generalizations. 
Conclusions are drawn in the final discussion. 

2 Subjects and Objects in Italian 

Children that learn how to process subjects and 
objects in Italian are confronted with a twofold 
challenge: i) the relatively free order of Italian sen-
tence constituents and ii) the possible absence of 
an overt subject. The existence of a preferred Sub-
ject Verb Object (SVO) order in Italian main 
clauses does not rule out all other possible permu-
tations of these units: in fact, they are all attested, 
albeit with considerable differences in distribution 

and degree of markedness (Bartolini et al. 2004).1 
Moreover, because of pro-drop, an Italian Verb 
Noun (VN) sequence can either be interpreted as a 
VO construction with subject omission (e.g. ha 
dichiarato guerra ‘(he) declared war’) or as an 
instance of postverbal subject (VS, e.g. ha di-
chiarato Giovanni ‘John declared’). Symmetri-
cally, an NV sequence is potentially ambiguous 
between SV and OV: compare il bambino ha man-
giato  ‘the child ate’ with il gelato ha mangiato ‘the 
ice-cream, (he) ate’. 

These grammatical facts are in keeping with 
what we know about Italian children’s parsing 
strategies. Bates et al. (1984) show that while, in 
English, word order is by and large the most effec-
tive cue for subject-object identification (hence-
forth SOI) both in syntactic processing and during 
the child’s syntactic development, the same cue 
plays second fiddle in Italian. Bates and colleagues 
bring empirical evidence supporting the hypothesis 
that Italian children show extreme reliance on NV 
agreement and, secondly, on noun animacy, rather 
than word order. They conclude that the following 
syntactic constraints dominance hierarchy is opera-
tive in Italian: agreement > animacy > word order. 

The fact that animacy can reliably be resorted 
to in Italian SOI receives indirect confirmation 
from corpus data. We looked at the distribution of 
animate subjects and objects in the Italian Syntac-
tic Semantic Treebank (ISST, Montemagni et al., 
2003), a 300,000 tokens syntactically annotated 
corpus, including articles from contemporary Ita l-
ian newspapers and periodicals covering a broad 
variety of topics. Subjects and objects in ISST 
were automatically annotated for animacy using 
the SIMPLE Italian computational lexicon (Lenci 
et al. 2000) as a background semantic resource. 
The annotation was then checked manually. Cor-
pus analysis highlights a strong asymmetry in the 
distribution of animate nouns in subject and object 
roles: over 56.6% of ISST subjects are animate 
(out of a total number of 12,646), while only the 
11.1% of objects are animate (out of a total number 
of 5,559). Such an overwhelming preference for 
inanimate ob jects in adult language data makes 
animacy play a very important role in SOI, both as 
a key developmental factor in the bootstrapping of 
the syntax-semantics mapping and as a reliable 

                                                                 
1 In the present paper we restrict ourselves to the case of de-
clarative main clauses. 
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processing cue, consistently with psycholinguistic 
data. 

On the other hand, the distribution of word or-
der configurations in the same corpus shows an-
other interesting asymmetry. NV sequences receive 
an SV interpretation in 95.6% of the cases, and an 
object interpretation in the remaining 4.4% (most 
of which are clitic and relative pronouns, whose 
preverbal pos ition is grammatically constrained). 
The situation is quite different when we turn to VN 
sequences, where verb-object pairs represent 
73.4% of the cases, with verb-subject pairs repre-
senting the remaining 26.6%. We infer that – at 
least in standard written Italian – VS is a much 
more consistently used construction than OV, and 
that the role of word order in Italian parsing is not 
a marginal one across the board, but rather relative 
to VN contexts only. In NV constructions there is a 
strong preference for a subject interpretation, and 
this suggests a more dynamic dominance hierarchy 
of Italian syntactic constraints than the one pro-
vided above. 

As for agreement, it represents conclusive evi-
dence for SOI only when a nominal constituent and 
a verb do not agree in number and/or person (as in 
leggono il libro ‘(they) read the book’). On the 
contrary, when noun and verb share the same per-
son and number the impact of agreement on SOI is 
neutralised, as in il bambino legge il libro ‘the 
child reads the book’ or in ha dichiarato il presi-
dente ‘the president declared’. Although this ambi-
guity arises in specific contexts (i.e. when the verb 
is used in the third person singular or plural and the 
subject/object candidate agrees with it), it is inter-
esting to note that in ISST: third person verb forms 
cover 95.6% of all finite verb forms; and, more 
interestingly for our present concerns, 87.9% of all 
VN and NV pairs involving a third person verb 
form contains an agreeing noun. From this we con-
clude that the contribution of agreement to our 
problem is fairly limited, as lack  of agreement 
shows up only in a limited number of contexts. 

All in all, corpus data lend support to the idea 
that in Italian SOI is governed by a complex inter-
play of probabilistic constraints of a different na-
ture (morpho-syntactic, semantic, word order etc.). 
Moreover, distributional asymmetries in language 
data seem to provide a fairly reliable statistical ba-
sis upon which relevant probabilistic constraints 
can be bootstrapped and combined consistently. In 
the following section we shall present a ME model 

of how constraints and their interaction can be 
bootstrapped from language data. 

3 A Maximum Entropy model of SOI 

The Maximum Entropy (ME) framework offers a 
mathematically  sound way to build a probabilistic 
model for SOI, which combines different linguistic 
cues. Given a linguistic context c and an outcome 
a∈A that depends on c, in the ME framework the 
conditional probability distribution p(a|c) is esti-
mated on the basis of the assumption that no a pri-
ori constraints must be met other than those related 
to a set of features f j(a,c) of c, whose distribution is 
derived from the training data. It can be proven 
that the probability distribution p satisfying the 
above assumption is the one with the highest en-
tropy, is unique and has the following exponential 
form (Berger et al. 1996): 
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where Z(c) is a normalization factor, f j(a,c) are the 
values of k features of the pair (a,c) and correspond 
to the linguistic cues of c that are relevant to pre-
dict the outcome a. Features are extracted from the 
training data and define the constraints that the 
probabilistic model p must satisfy. The parameters 
of the distribution a1, …, ak correspond to weights 
associated with the features, and determine the 
relevance of each feature in the overall model. In 
the experiments reported below feature weights 
have been estimated with the Generative Iterative 
Scaling (GIS) algorithm implemented in the AMIS 
software (Miyao and Tsujii 2002). 

We model SOI as the task of predicting the cor-
rect syntactic function f  ∈ {subject, object} of a 
noun occurring in a given syntactic context s. This 
is equivalent to build the conditional probability 
distribution p(f |s) of having a syntactic function f  
in a syntactic context s . Adopting the ME ap-
proach, the distribution p can be rewritten in the 
parametric form of (1), with features correspond-
ing to the linguistic contextual cues relevant to 
SOI. The context s  is a pair <vs , ns>, where vs is 
the verbal head and ns its nominal dependent in s. 
This notion of s departs from more traditional 
ways of describing an SOI context as a triple of 
one verb and two nouns in a certain syntactic con-
figuration (e.g, SOV or VOS, etc.). In fact, we as-
sume that SOI can be stated in terms of the more 
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local task of establishing the grammatical function 
of a noun n observed in a verb-noun pair. This 
simplifying assumption is consistent with the claim 
in MacWhinney et al. (1984) that SVO word order 
is actually derivative from SV and VO local pat-
terns and downplays the role of the transitive com-
plex construction in sentence processing. Evidence 
in favour of this hypothesis also comes from cor-
pus data: in ISST, there are 4,072 complete sub-
ject-verb-object-configurations, a small number if 
compared to the 11,584 verb tokens appearing with 
either a subject or an object only. Due to the com-
parative sparseness of canonical SVO constructions 
in Italian, it seems more reasonable to assume that 
children should pay a great deal of attention to 
both SV and VO units as cues in sentence percep-
tion (Matthews et al. 2004). Reconstruction of the 
whole lexical SVO pattern can accordingly be seen 
as the end point of an acquisition process whereby 
smaller units are re-analyzed as being part of more 
comprehensive constructions. This hypothesis is 
more in line with a distributed view of canonical 
constructions as derivative of more basic local po-
sitional patterns, working together to yield more 
complex and abstract constructions. Last but not 
least, assuming verb-noun pairs as the relevant 
context for SOI allows us to simultaneously model 
the interaction of word order variation with pro-
drop in Italian. 

4 Feature selection 

The most important part of any ME model is the 
selection of the context features whose weights are 
to be estimated from data distributions. Our feature 
selection strategy is grounded on the main assump-
tion that features should correspond to linguisti-
cally and psycholinguistically well-motivated 
contextual cues. This allows us to evaluate the 
probabilistic model also with respect to its ability 
to replicate psycholinguistic experimental results 
and to be consistent with linguistic generalizations. 

Features are binary functions fki,f  (f ,s), which 
test whether a certain cue ki for the function f  oc-
curs in the context s . For our ME model of SOI, 
we have selected the following types of features: 

Word order tests the position of the noun wrt the 
verb, for instance: 
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Animacy  tests whether the noun in s  is animate or 
inanimate (cf. §.2). The centrality of this cue in 
Italian is widely supported by psycholinguistic 
evidence. Another source of converging evidence 
comes from functional and typological linguistic 
research. For instance, Aissen (2003) argues for 
the universal value of the following hierarchy rep-
resenting the relative markedness of the associa-
tions between grammatical functions and animacy 
degrees (with each item in these scale been less 
marked than the elements to its right): 

Animacy Markedness Hierarchy 
Subj/Human > Subj/Animate > Subj/Inanimate 
Obj/Inanimate > Obj/Animate > Obj/Human 

Markedness hierarchies have also been interpreted 
as probabilistic constraints estimated form corpus 
data (Bresnan et al. 2001, Øvrelid 2004). In our 
ME model we have used a reduced version of the 
animacy markedness hierarchy in which human 
and animate nouns have been both subsumed under 
the general class animate. 

Definiteness tests the degree of “referentiality” of 
the noun in a context pair s . Like for animacy, 
definiteness has been claimed to be associated with 
grammatical functions, giving rise to the following 
universal markedness hierarchy Aissen (2003): 

Definiteness Markedness Hierarchy 
Subj/Pro > Subj/Name > Subj/Def > Subj/Indef 
Obj/Indef > Obj/Def > Obj/Name > Obj/Pro 

According to this hierarchy, subjects with a low 
degree of definiteness are more marked than sub-
jects with a high degree of definiteness (for objects 
the reverse pattern holds). Given the importance 
assigned to the definiteness markedness hierarchy 
in current linguistic research, we have included the 
definiteness cue in the ME model. It is worth re-
marking that, unlike animacy, in psycholinguistic 
experiments definiteness has not been assigned any 
effective role in SOI. This makes testing this cue in 
a computational model even more interesting, as a 
way to evaluate its effective contribution to Italian 
SOI. In our experiments, we have used a “com-
pact” version of the definiteness scale: the defi-
niteness cue tests whether the noun in the context 
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pair i) is a name or a pronoun ii) has a definite arti-
cle iii), has an indefinite article or iv) is a “bare” 
noun (i.e. with no article). It is worth saying that 
“bare” nouns are usually placed at the bottom end 
of the definiteness scale. 

The three types of features above only refer to 
nominal cues in the context pairs. Nevertheless, 
specific lexical properties of the verb can also be 
resorted to in SOI. The probability for ns to be sub-
ject or object may also depend on the specific lexi-
cal preferences of vs. To take this lexical factor 
into account, we add a set of lexical cues to the 
three general feature types above. Lexical cues test 
animacy with respect to a specific verb vk: 
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Lexical features provide evidence of the propensity 
of a given verb to have an animate (inanimate) 
subject or object. In fact, the verb argument struc-
ture and thematic properties may well influence the 
possible distribution of animate (inanimate) sub-
jects and objects, thus overriding more general 
tendencies. By including lexical cues, we are thus 
able to test the interplay of lexical constraints with 
general grammatical ones. 

Note that in our ME model we have not in-
cluded agreement as a feature, in spite of its 
prominent role in Italian. The fact that agreement 
is often inconclusive for SOI (§.2) suggests that 
children must also acquire the ability to deal with 
the interplay of various concurrent constraints, 
none of which is singularly sufficient for the task 
completion this type of competence. It is exactly 
this area of syntactic competence that we wanted to 
explore with the experiments reported below (cf. 
MacWhinney et al. 1984, who similarly abstract 
from the dominant role of case in German SOI). 

5 Testing feature configurations for SOI 

The ME model for Italian SOI has been trained on 
18,205 verb-subject/object pairs extracted from 
ISST. The training set was obtained by extracting 
all verb-subject and verb-object dependencies 
headed by an active verb occurring in a finite ver-
bal construction and by excluding all cases where 
the position of the nominal constituent was gram-

matically constrained (e.g. clitic objects, relative 
clauses). Two different feature configurations have 
been used for training: 
−  non-lexical feature configuration (NLC), in-

cluding only general features acting as global 
constraints: namely word order, noun animacy 
and noun definiteness; 

− lexical feature configuration (LC), including 
word order, noun animacy and definiteness, 
and information about the verb head.  
The test corpus consists of 645 verb-noun pairs 

extracted from contexts where agreement happens 
to be neutralized. Of them, 446 contained a subject 
(either pre- or post-verbal) and 199 contained an 
object (either pre- or post-verbal). The two feature 
configurations were evaluated by calculating the 
percentage of correctly assigned relations over the 
total number of test pairs (accuracy). As our model 
always assigns one syntactic relation to each test 
pair, accuracy equals both standard precision and 
recall. Finally, we have assumed a baseline score 
of 69%, corresponding to the result yielded by a 
dumb model assigning to each test pair the most 
frequent relation in the training corpus, i.e. subject. 

5.1 Non-lexical feature configuration 
Our first experiment was carried out with NLC. 
The accuracy on the test corpus is 91.5%; most 
errors (i.e. 96.4%) relate to the postverbal position, 
with 44 mistaken subjects (42 inanimate) and 9 
mistaken objects (all animate). The score was con-
firmed by a 10-fold cross-validation on the whole 
training set (89.3% accuracy). 

A further way to evaluate the goodness of the 
model is by inspecting the weights associated with 
feature values (Table 1). 

 Subj Obj 
Preverbal 1,34E+00 2,10E-02 
Postverbal 5,21E-01 1,47E+00 
Anim 1,28E+00 3,34E-01 
Inanim 8,60E-01 1,21E+00 
PronName  1,22E+00 5,75E-01 
DefArt 1,05E+00 1,00E+00 
IndefArt 8,33E-01 1,16E+00 
NoArticle 9,46E-01 1,07E+00 

Table 1 – Feature value weights in NLC  

The grey cells in Table 1 highlight the preference 
of each feature value for either subject or object 
identif ication: e.g. preverbal subjects are strongly 
preferred over preverbal objects; animate subjects 
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are preferred over animate objects, etc. Interest-
ingly, if we rank the Anim and Inanim values for 
subjects and objects, we can observe tha t they dis-
tribute consistently with the Animacy Markedness 
Hierarchy reported in §.4: Subj /Anim > 
Subj/Inanim and Obj/Inanim > Obj/Anim. Simi-
larly, by ranking the values of the definiteness fea-
tures in the Subj column by decreasing weight 
values we obtain the following ordering: Pron-
Name > DefArt > IndefArt > NoArt, which nicely 
fits in with the Definiteness Markedness Hierarchy 
in §.4. The so-called “markedness reversal” is ob-
served if we focus on the values for the same fea-
tures in the Obj column: the PronName feature 
represents the most marked option, followed by 
DefArt. The only exception is represented by the 
relative ordering of IndefArt and NoArt which 
however show very close values. 

Evaluating feature salience 

In order to evaluate the most reliable cues in Italian 
SOI, we have analysed the model predictions for 
different bundles of feature values. For each of the 
16 different bundles (b) attested in the data, we 
have estimated p(subj|b) and p(obj|b): 

b p(subj|b) p(obj|b) 

Pre Anim IndefArt 0,994 0,006
Pre Anim DefArt 0,996 0,004
Pre Anim NoArt 0,995 0,005
Pre Anim PronName 0,998 0,002
Pre Inanim IndefArt 0,970 0,030
Pre Inanim DefArt 0,979 0,021
Pre Inanim NoArt 0,976 0,024
Pre Inanim PronName 0,990 0,010
Post Anim IndefArt 0,495 0,505
Post Anim DefArt 0,589 0,411
Post Anim NoArt 0,546 0,454
Post Anim PronName  0,743 0,257
Post Inanim IndefArt 0,153 0,847
Post Inanim DefArt 0,209 0,791
Post Inanim NoArt 0,182 0,818
Post Inanim PronName 0,348 0,652

Table 2 – Subj/obj probabilities by different bundles 

The model shows a neat preference for subject 
when the noun is preverbal. Instead, when the noun 
is postverbal, function assignment is de facto de-
cided by the noun animacy. Conversely, definite-
ness features have a much more secondary role: 

they can re-enforce (or weaken) the preference ex-
pressed by animacy, but they do not have the 
strength to determine SOI. 

The relative salience of the different constraints 
acting on SOI can also be inferred by comparing 
the weights associated with individual feature val-
ues. For instance, Goldwater and Johnson (2003) 
show that ME can be successfully applied to learn 
constraint rankings in Optimality Theory, by as-
suming the parameter weights a1, …, ak as the 
ranking values of the constraints. The following 
table lists the 16 general constraints of the model 
by increasing weight values: 
 

Feature Weight 
Preverbal_Obj 2,10E-02
Anim_Obj 3,34E-01
Postverbal_Subj 5,21E-01
ProName_Obj 5,75E-01
IndefArt_Subj 8,33E-01
Inanim_Subj 8,60E-01
NoArticle_Subj 9,46E-01
ArtDef_Obj 1,00E+00
DefArt_Subj 1,05E+00
NoArticle_Obj 1,07E+00
IndefArt_Obj 1,16E+00
Inanim_Obj 1,21E+00
PronName_Subj 1,22E+00
Anim_Subj 1,28E+00
Preverbal_Subj 1,34E+00
Postverbal_Obj 1,47E+00

Table 3 – Constraint weights ranking 
The rankings in Table 3 can be used to derive the 
relative salience of each constraint. Lower ranked 
constraints correspond to more marked syntactic 
configurations that are then disfavoured in SOI. 
Notice that the two animacy constraints Anim_Obj 
and Anim_Subj are respectively placed near the 
bottom and the top end of the scale. Notwithstand-
ing the low position of Postverbal_Subj, animacy 
is thus able to override the word order constraint 
and to produce a strong tendency to identify ani-
mate nouns as subjects, even when they appear in 
postverbal position (cf. Table 2 above). The con-
straint ranking thus confirms the interplay between 
animacy and word order in Italian, with the former 
playing a decisive role in assigning the syntactic 
function of postverbal nouns. On the other hand, 
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the constraints involving noun definiteness occupy 
a more intermediate position in the general rank-
ing, with very close values. This is again consistent 
with the less decisive role of this feature type in 
SOI, as shown above. 

5.2 Lexical feature configuration 
In this experiment the general features reported in 
Table 1 have been integrated with 4,316 verb-
specific features as the ones exemplified below for 
the verb dire ‘say’: 

dire_animSog 1.228213e+00 
dire_noanimSog 7.028484e-01 
dire_animOgg 3.645964e-01 
dire_noanimOgg 1.321887e+00 

whose associated weights show the strong prefer-
ence of this verb to take animate subjects as op-
posed to inanimate ones as well as a preference for 
inanimate objects with respect to animate ones. 
The results achieved with LC on the test corpus 
show a significant improvement with respect to 
those obtained with NLC: the accuracy is now 
95.5%, with a  4% improvement, confirmed by a 
10-fold cross-validation (94.9%). Also in this case, 
most of the errors relate to the pos tverbal position 
(i.e. 27 out of 29), partitioned into 26 mistaken 
subjects and 1 mistaken object. Lexical features 
have been resorted to to solve most of the NLC 
errors (i.e. 34 out of 55). It is interesting to note 
however that lexical features can also be mislead-
ing. The LC results include 8 new errors, suggest-
ing that lexical features do not always provide 
conclusive evidence: in fact, in 185 cases out of 
645 test VN pairs (i.e. 28.7% of the cases) general 
features are preferred over lexical ones. It is also 
worth mentioning that the ranking of general ani-
macy and definiteness features in LC actually fits 
in with the respective markedness hierarchies even 
with a better approximation than the one produced 
by NLC.  Finally, the relative prominence of the 
different global features confirms the trend in Ta-
ble 2, with word order being predominant in pre-
verbal pos ition and animacy playing a major role 
with postverbal nouns. 

Both feature configurations of the ME model 
thus appear to comply with linguistic and psycho-
linguistic generalizations on SOI. On the linguistic 
side, the constraints learnt by the model are consis-
tent with universal markedness hierarchies for 

grammatical relations. Secondly, the prominence 
of the various constraints in the model fits in well 
with psycholinguistic data. Consistently with the 
results in Bates et al. (1984), the model confirms 
the great impact of noun animacy in Italian, al-
though in this case its key role seems to be more 
directly limited to the postverbal position. Con-
versely, the preverbal position is by itself a very 
strong cue for subject interpretation. 

6 High frequency verbs and SOI  

Frequency is known to play a major influence in 
language learning. In morphology, for example, 
highly frequent lexical items tend to be shorter 
forms, more readily accessible in the mental lexi-
con, independently stored as whole items (Stem-
berger and MacWhinney 1986) and fairly resistant 
to morphological overgeneralization through time, 
thus establishing a correlation between irregular 
inflected forms and frequency. Frequency has also 
been assigned a key role in the acquisition of syn-
tactic constructions. In fact, Goldberg (1998) and 
Ninio (1999) have independently argued for the 
existence of a causal relation between early expo-
sure to highly frequent light verbs and acquisition 
of abstract syntax-semantics mappings (construc-
tions). Light verbs such as want, put and go tend to 
be very frequent, because they are applicable in a 
wider range of contexts and are learned and used at 
an early language maturation stage The main idea 
is that children’s early use of these high frequency 
verbs is conducive to the acquisition of abstract 
constructional properties generalizing over particu-
lar instances. 

Goldberg et al. (2004) motivate this hypothesis 
by observing that light verbs have high input fre-
quency in the child’s developmental environment 
and, at the same time, exhibit a low degree of se-
mantic specialization. Hence, she argues, it takes a 
little abstraction step for a child to jump from ac-
tual instances of use of light verbs to the syntax-
semantics association of their underlying construc-
tion. On the other hand, Ninio (1999) grounds the 
facilitatory role of highly frequent verbs on their 
being “pathbreaking” prototypes of the construc-
tion they instantiate, since they are the best models 
of the relevant combinatorial and semantic proper-
ties of their construction in a relatively undiluted 
fashion. However, in the case of light verb con-
structions, the correlation between high frequency 

78



and construction prototypicality and extension is 
tenuous. In fact, it is difficult to argue that frequent 
light verbs such as see, want or do exhibit a high 
degree of both semantic and constructional trans i-
tivity (Goldberg et al. 2004). This is reminiscent of 
the morphological behaviour of very frequent word 
forms in inflectional languages, as most of these 
forms are highly fused and show a general ten-
dency towards irregular inflection and low mor-
phological prototypicality. Furthermore, it is 
difficult to reconcile the “pathbreaking” view with 
the observation that frequently observed linguistic 
units are memorized in full, as unanalyzed wholes. 

6.1 Testing the role of frequency 
To address these open issues and put the alleged 
“pathbreaking” role of light verbs to the challeng-
ing test of a probabilistic model, we carried out a 
second battery of experiments to learn the general, 
non-lexical constraints from two training corpora 
of roughly equivalent size where overall type and 
token verb frequencies were controlled for. Both 
corpora are a subset of the original training set: 
1. skewed frequency corpus (SF) – it includes 
5,261 context pairs, obtained by selecting 15 verbs 
occurring more than 100 times in ISST (figures in 
parentheses give their token frequency): essere 
‘be’ (2406), avere ‘have’ (708), fare  ‘do, make’ 
(527), dire ‘say, tell’ (275), dare ‘give’ (173), ve-
dere ‘see’ (134), andare ‘go’ (126), sembrare 
‘seem’ (124), cercare ‘try’ (122), mettere ‘put’ 
(122), portare ‘take’ (121), trovare ‘find’ (112), 
volere ‘want’ (105), lasciare ‘leave’ (105), riuscire 
‘manage’ (101). It is worth noticing that this set 
includes typical “pathbreaking” verbs; 
2. balanced frequency corpus (BF) – this corpus 
includes 5,373 context pairs selected in such a way 
to ensure that every verb type in the original train-
ing set is attested in BF and occurs at most 6 times. 
For verbs occurring with a higher frequency, the 
pairs to be included in BF have been randomly se-
lected. 

Thus SF and BF represent two opposite training 
situations: SF contains few types with very high 
token frequencies, while BF contains a high num-
ber of verb types (i.e. 1457), with very low and 
uniform token frequency. These training sets re-
semble the structure of linguistic input used by 
Goldberg et al. (2004) for their experiments. In 
that case, one group of subjects was exposed to 
linguistic inputs in which some verbs occurred 

with a much higher frequency than the others; a 
second group of subjects was instead exposed to 
linguistic stimuli in which every verb occurred 
with roughly equal frequency. Therefore, by train-
ing our ME model on SF and BF we are able  to 
evaluate the effective role of high token frequency 
verbs in driving syntactic learning.  

The ME model with the general features only 
(i.e. NLC) was first trained on SF, and then tested 
on the 645-pair corpus in §.5, showing a 90% ac-
curacy. The same ME model was then trained on 
BF, and then tested on the 645-pair corpus, scoring 
a 87% accuracy. The ME model trained on the 
skewed frequency data thus outperforms the model 
trained on BF in a statistically significant way (?2 = 
4.97; a=0.05; p-value = 0.025). 

By using a training set formed only by the verbs 
with the highest token frequency, the model has 
thus been able to acquire robust syntactic con-
straints for SOI. Once these constraints have been 
applied to unseen events, the model has achieved a 
performance comparable to the one of the general 
models in §.5. This is somehow even more signif i-
cant if we consider that the training set was now 
formed by less than one-third of the pairs on which 
the models in §.5 were trained. Data quantity aside, 
the most relevant fact is that it is the way verb fre-
quencies are distributed to determine the learning 
path, with a significant positive effect produced by 
high token frequency verbs. In the model trained 
on SF, feature ranking is also governed by mark-
edness relations, and the relative prominence of the 
various constraints is utterly similar to the one dis-
cussed in §.5. In other terms, the results of this ex-
periment prove that frequent verbs are actually 
able to act as “catalysts” of the syntactic acquis i-
tion process. It is possible for children to converge 
on the correct generalizations governing SOI in 
Italian, just by relying on the linguistic evidence 
provided by the most frequent verbs. 

This view suggests a way out of the apparent 
paradox of the “pathbreaking” hypothesis: highly 
frequent verbs can be assumed to provide stable 
and consistent multiple probabilistic cues for the 
assignment of subject/object relations. The exis-
tence of pos itional patterns that occur with high 
token frequency may well provide a deeply en-
trenched and highly salient set of distributional 
cues that act as probabilistic constraints on con-
structional generalizations. We hypothesize that 
similar constructions of other less frequent verbs 
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are processed, for lack of more specific overriding 
information, in the light of these constraints. Since 
processing is the result of a “conspiracy” of dis-
tributed constraints, “pathbreaking” prototypes 
need not be real construction exemplars but highly 
schematic patterns. We proved that highly frequent 
local positional patterns offer the right sort of con-
straint conspiracy. 

7 General discussion 

It appears that the distributional evidence of high 
frequency light verbs may well provide a solid 
cognitive anchor for sweeping perceptual generali-
zations on the syntax-semantics mapping. These 
generalizations are local, in that they involve pos i-
tional NV and VN pairs only, and are perceptual as 
they address the issue of identifying appropriate 
syntactic relations by relying on perceptual fea-
tures of linguistic contexts, such as position, ani-
macy, etc. On the basis of these findings, one can 
reasonably argue that complex lexical construc-
tions (in the sense of Goldberg 1998) are built 
upon these local patterns, by combining them in 
those contexts where the presence of a particular 
verb licenses such a combination.  

The two feature configurations discussed in §.5 
(i.e. NLC and LC) can thus be viewed as two suc-
cessive steps along the path that leads towards the 
emergence of complex, lexically-driven construc-
tions. This can actually be modeled as the incre-
mental process of adding more and more lexical 
constraints to early lexicon-free generalizations 
(based on word order, animacy, definiteness etc.). 
As a result of such additional constraints, the pres-
ence of an intransitive verb may completely rule 
out the object interpretation of a VN pattern, flying 
in the face of a general bias towards viewing VN as 
a transitive pattern. This picture is compatible with 
the well-known observation that constructions are 
used rather conservatively by children at early 
stages of language maturation (Tomasello 2000). 
In fact, if early generalizations are mainly percep-
tual and local, we do not expect them to be used in 
production, at least until the child reaches a stage 
where they are combined into bigger lexically-
driven constructions. 

ME has proven to be a sound computational 
learning framework to simulate the interplay of 
complex probabilistic constraints in language. Our 
experiments confirm linguistic generalizations and 

psycholinguistic data for subjects and objects in 
Italian, while raising new interesting issues at the 
same time. This is the case of the role of definite-
ness in SOI. In fact, the model features neatly re-
produce the definiteness markedness hierarchy, but 
definiteness does not appear to be really influential 
for subject and object processing. Various hy-
potheses are compatible with such results, inclu d-
ing that definiteness is not a cue on which speakers 
rely for SOI in Italian. Another more interesting 
possibility is that definiteness constraints may in-
deed play a decisive role when the learner is asked 
to assign subject and object relations in the context 
of a more complex construction than a simple NV 
pair. Suppose that both nouns of a noun-noun-verb 
triple are amenable to a subject interpretation, but 
that one of them is a more likely subject than the 
other due to its being part of a definite noun 
phrase. Then, it is reasonable to expect that the 
model would select the definite noun phrase as the 
subject in the triple and opt for an object interpre-
tation of the other candidate noun phrase.  

As part of our future work, we plan to train the 
ME model on a more realistic corpus of parental 
input to Italian children, available in the CHILDES 
database (MacWhinney, 2000: http://childes.psy. 
cmu.edu/data/Romance/Italian). In fact, there is 
converging evidence that the use of particular con-
structions in parental speech is largely dominated 
by the use of each construction with one specific, 
highly frequent verb (e.g. go for the intransitive 
construction). The same trends noted in mother’s 
speech to children are mirrored in children’s early 
speech (Goldberg et al., 2004). Quochi (in prepara-
tion) reports a similar distributional pattern for the 
caused motion and intransitive motion verbs in two 
Italian CHILDES corpora (named “Italian-
Antelmi” and “Italian-Calambrone”). If these find-
ings are confirmed, the high accuracy of our ME 
model trained on the skewed frequency corpus 
(SF) allows us to expect an equally high accuracy 
when training the model on evidence from Italian 
parental speech.  

This brings us to another related point: lack of 
correction/supervision in parental input. Since our 
ME model heavily relies on previously classified 
noun-verb pairs, we can legitimately wonder how 
easily it can be extended to simulate child language 
learning in an unsupervised mode. In fact, it should 
be appreciated that, in our experiments, compar-
tively little rests on supervised classification. Iden-
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tification of the contextually-relevant subject is, for 
lack of explicit morphosyntactic clues such as 
agreement and diathesis, simply a matter of guess-
ing the more likely agent of the action expressed 
by the verb on the basis of semantic and pragmatic 
features such as animacy, definiteness and noun 
position to the verb. Mutatis mutandis, the same 
holds for object identification. It is then highly 
likely that salient evidence for the correct sub-
ject/object classific ation comes to the child from 
direct observation of the situation described by a 
sentence. It is such systematic coupling of linguis-
tic evidence from the sentence with perceptual evi-
dence of the situation described by the sentence 
that can assist the child in developing interface 
notions such as subject, object and the like.  
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£��M�����J�Ó�f�M�����©���3�~¡Q¹��©��¡�¾����©�:¹���¢·¤h���� ����©Â
ã&��¡F®[�f���[²-�*¤h���� ��0/ ¶ �¯�:§�¡��:§[�©�9¤h���� ����
���M�:�:��¬oº
�¯�f�M�:�l�[²&�l�d¬W¡F�f������®3¬W�:�¯¡F�21����/¤h¡��� ³��£���É©��¢d���VF��3¢3���[²
�:§[�31 ¶ �¯�:§Ê�:§[�� ³�ZÅ[�� d®3  �3�:¡�¾��M¾f��£��¯�¿�³²F�¯¹����4/ôz

5 â3í�å�ï�ð�äUí�åZÝ�à�è�å(ñ»ð�ä Ô /jß76��M�:²F ±�ZÅ8 9 Ô 1;: /jß Ô Ø�ß
¶ §[�©���<1X�����[²����&¡�¹��©�-�:§[�����3¢f��¬W����¡�¤)��£l£Î¬W¡F�3�:����®3¬oº
�:�¯¡F�3��«ª���3¬©£�®f¢3���[²¨���±���3¢[�WÅ�¡�¤dn*��¡=�:�©�f�:���������/����¬W¡�²Mº
�3�¯�:��¡F�·¡�¤9�±�[� ¶ ¬W¡F�3�����n®3¬W�:�¯¡F�%Â>=&�:���[²±�_�������*��®3£¯��«
���3¢Ò¢3�:¡��3�f���3²<9 Ô /dß ¶ §3��¬n§·���~¬W¡F�3���:�����¨¤h¡��¨��£�£?16z

9 Ô 1;: /jß76 9 Ô 13ß@9 Ô /A: 13ß9 Ô /jß B 9 Ô 13ß@9 Ô /A: 13ß Ô×â ß

� §3�-�3���¯¡��~�3��¡�¾f�M¾f��£����J��¡�¤71Ê���~²F�¯¹����Ò¾��6zDC
9 Ô 13ß76 E 8EAF Ø ÔHG ß

¶ §[�©��� E ���)�:§3�&��¡��:��£%�T®3 j¾��©�)¡�¤�¡�¾����©�:¹���¢Ó¤¦�n�� ����©ÛE 8 ���?�:§[���T®3 j¾��©�?¡�¤.¤h���� ����?�f�M�:�:��¬©�¯���M�:���[²=���°¬W¡F�`º������®f¬W�:�¯¡F��1�«/¤¦¡��21JI n`Û9���f¢ E;K 6 ØMÂ � §T®3�©«/�:§[�
�3����¡��Î¤h¡��9���d�WÅ`���:�:���[²*¬W¡F�3������®3¬W�:��¡F�d�l�Î�f�:¡���¡��:�:�¯¡F�3��£
��¡¸�:§[�"¤¦�:��­T®[���3¬W�2¡�¤��¯�:�·¤h���� ����©«=���f¢µ�:§3�M�Ò¡�¤��
�[� ¶ ¬W¡F�3������®f¬W�:�¯¡F�����Î�l�ª¹��©���:��£¯�-�3�:¡���¡��:�:�¯¡F�f��£F��¡*�:§[�
�T®3 �¾��©�³¡�¤*¡�¾f�:�©�:¹���¢¸¤h���� �����¡Q¹��©����£�£×Â � §[�X�3���¯¡��
�3�:¡�¾��M¾f��£��¯�¿�j���:�:�� ³�M�:�¯¡F�Ó¤h¡��?����¬n§·¬W¡F�3������®3¬W�:��¡F�±¤h¡F£çº
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�B¤h���� ��Ê��¡Á¬W¡F ��·¤h�:¡F ��B �¡��:�·�������:���3¬�§3��¢À¬W¡F�`º
������®f¬W�:�¯¡F� Ô �×ÂÕ��Â¯«3¡F�3� ¶ �¯�:§· �¡����=¤¦�n�� ����nßn«f���3¢Ò�:§3�M�
���_�:§[�-�T®3 �¾��©�_¡�¤��:§3�&¡�¾����©�:¹���¢Ê¤h���� ����~���3¬W�����������©«
�:§[���3�:¡�¾��M¾f��£��¯�¿�Ê�:§3�M�-�°¤h���� ���¬W¡F ����-¤h�:¡F 1�Ó�[� ¶
¬W¡F�3�����n®3¬W�:�¯¡F�Ò¢[��¬W�����������©Â

� §3�À�3�:¡�¾f�M¾f�l£��¯�J�7¡�¤Ê� ¤¦���� ³�]/ ���B�WÅ`�3�:��������¢
���¥���©�� ³�a¡�¤±�:§[�¼���3¢f�¯¹T�l¢3®3��£&�3�:¡�¾f�M¾���£��¯�:�¯���Ê¡�¤Ó�¯�:�
¤h���M�:®[�:��� Ô �:§[¡ ¶ �´�M¾�¡�¹�� ���´Ö5�¯²F®[���ÁØ�ßnÂ � ¡  ³� È �
�:§[�B¬©��£�¬©®3£��M�:��¡F��¤h�����:�¯¾�£¯��« ¶ �H���:��®3 �� �:§3�M�°�:§3�����
¤h���M�:®[�:���d�M�:�°���f¢[�©�����3¢[�����©Û��:§T®3�©«/�:§[�°¬W¡F�3¢f�¯�:�¯¡F�3��£
�3�:¡�¾��M¾f��£��¯�¿�B¡�¤¨� ¤¦���� ³�^/1���j�:§[�Ó�3�:¡`¢3®3¬W��¡�¤��:§[�
¬W¡F�3¢3���:�¯¡F�3��£��3�:¡�¾��M¾f��£��¯�:�����)¡�¤5�¯�:�~¤h���M�:®[�:����z

9 Ô /^: 13ß76 _`)a�b
cedgfihHb�hjdgkmlnc�h�o 9 ` Ôqp : 13ß Ô)r ß
¶ §[�©��� p ���_�:§[��¹Z��£�®3�&¡�¤/�:§[�ts�uwv�¤¦���M�:®[���=¡�¤i/³«f���3¢9 ` Ôqp : 13ßd���d�:§[�·�3�:¡�¾��M¾f��£��¯�¿�B¡�¤�¢3���:�f£����`���[²a¹Z��£l®[� p
¡F�a¤¦���M�:®[���xs ¶ �¯�:§3���Ò¬W¡F�f������®3¬W�:�¯¡F�y1�Â � §3���~�f�:¡�¾f�Zº
¾f��£l�¯�J�X�l�*�����:�� ³�M����¢Á®f�:���[²Ê�·�: �¡T¡��:§[��¢Á ³�ZÅ[�� d®3 
£�� È ��£l��§[¡T¡T¢¼¤h¡��� d®3£��M�:�¯¡F�%«_�:���f��¬W�:���[²"�:§3�X�� ��f§f���:���
¡F�Ó®3�:�M²����:�:�M�:�����:��¬©�y���³¬n§3��£�¢³£l���[²F®3�M²�����¬©­T®3�����¯�:�¯¡F�%Â

z { E%�9Ì��)E�Ì.�]|ÁKZ� E�K Ø CF�~})IJ�T�FIJ���
��Ú�Û "$#6â3Ý�#�ñ»â�%
�H� ¤h¡��� j®f£��M����£����[²F®3�M²�� ®3�:� Ô �f�:¡T¢f®3¬W�:�¯¡F�1���3¢
¬W¡F ��3����§[���3�:�¯¡F��ßf���Î�~�3�:��¢f��¬W�:�¯¡F�*�3�:¡`¬W���:�©«Z��� ¶ §3�l¬�§
 ³�����:���[²°¤¦���M�:®[�����-���B�°¤h���� ����M�:�³�:�©�-��¡Ó�:§3�³ �¡F���
�3�:¡�¾��M¾f£¯��¹Z��£l®[���-²F�¯¹����H�:§3�±��¹M����£��M¾f£��d¤h���M�:®[�:����Â³à¿¤
�¼®3�:�M²��H¡�¤d�½¹��©��¾ ���Ê�:® &±¬©�¯�����:£¯�¸¬W¡F ���£¯�©���Á���3¢
¤h�:��­�®3���ª�©«3�:§3���Ò�¯� ¶ ��£l£�§3��¹��j�³�:���:¡F�[²³������®[���3¬W�*¡F�
�:§[��¢3�©���©�� ³���3�M�:��¡F�Ê¡�¤/®3� È �[¡ ¶ �Ê¤h���M�:®[�:���©ÂyÃ-�·�:§[�
¡��:§[�©�/§3���3¢%«Z¬W¡F�3������®3¬W�:��¡F�3�%�f£����&������ ���¡��:�:�����%�:¡F£¯�
���2�:§[�H¤á��¬W�H¡�¤d ±���:�:���3²"¡��Ò£¯¡ ¶ ºJ¬W¡F��Ff¢[���f¬W�H¹��©�:¾[º
¾f������¢´���[¤h¡��� ³�M�:�¯¡F�%«?¾���¬©��®3���X�H�f�:��¢3��¬W�:�¯¡F�¼¾�������¢
¡F�Ó�j¬W¡F�3�:����®3¬W�:�¯¡F�±²����[�©����£��¯É©���y¡Q¹��©�_��£l£f�¯�:�?¤¦�n�� ����©Â
� §3�l�Ê���3�M¾f£¯���X�:§[�" �¡`¢[��£-��¡��3�:¡`¢3®3¬W�H¡��a®f�3¢[�©��º
���:���3¢Ê�d¹��©�:¾Ò���Ó���[¡�¹���£ Ô ¤h¡��~�:§3�M�_¹��©�:¾�ß?���`���:��¬W�:��¬
�f�M�����©���.«`���_£¯¡F�3²j���_���� ³�����:��¬©��£�£¯�³���� ³��£��M�?¹��©�:¾Ê®3�Dº
�M²����¨§f��¹���¾��©���·¡�¾����©�:¹���¢%Â

��Ú&Ù 'Ãâ²åZë�ñ)(»íôð�õ?å�*Uâ,��Ý(âZ�hñ»è�å�ñ"ð6ä�� Ý(ð[è²â3ímí

� ¡±�������©²����M���=¹��©�:¾[ºÐ¾�������¢Ò���3¢·¬W¡F�3�:����®3¬W�:�¯¡F�`ºÐ¾�������¢
È �[¡ ¶ £���¢[²���« ¶ �B d®3���±�WÅ`�����3¢��:§[�X�f�:��¢3��¬W�:�¯¡F�´���Dº
����¬W�
¡�¤��:§3�� �¡T¢3��£`¡�¤ E �3¢[�©���:¡F� Ô Ø�Ù�Ù`Ø�ßnÂ9�H��¾��©²F���
¶ �¯�:§·§f���_�3�:��¢3�l¬W�:�¯¡F�Ê¤¦¡��n j®3£l�gz

5 â�í�å�� ë�(PàUâ ` Ô /jß,6µ�M�:²F ³�ZÅ� 9 ` Ôqp : /jß Ô åFß

6µ�M�:²F ³�ZÅ� � 8 9 ` Ôqp : 13ß@9 Ô 1;: /jß
¶ §[�©���^/ �����B�f�M���:����£)¤h���� ���«�s=�����B ³���:�:�l�[²X¤h���Zº
�:®[�:��« p �n���[²�����¡�¹��©�Ó��¡F�:�:�¯¾�£¯�±¹M��£�®[����¡�¤�s:«y���3¢]1
�����[²����)¡�¹��©�y��£�£[¬©�M���©²�¡����¯���©Â)à{���:®3�¯�:�¯¹���£���«F�:§[�� �¡`¢[��£
²����[�©����£l�¯É©���-¡�¹��©�d�:§[�³�¯���� ±� ¶ �¯�:§3�l� �X¬©�M���©²�¡��:�H��¡
�3�:��¢f��¬W�°�:§3�B ³¡F���Ê�3�:¡�¾f�M¾f£��a¹M��£�®[� ¤¦¡��·�:§3�B ±���:�Dº
���[²·¤h���M�:®[�:�Ó��¬W�:¡F�:���:§[¡F���°������ ³� Ô 9 ` Ôqp : 13ß�ßnÛ9�:§3�l�=���
�:§[��� ¶ ���¯²F§�����¢�¾��d�:§[�~�3��¡�¾f�M¾f��£����J�-¡�¤��:§[��¬©�M���©²�¡��:�
²F�¯¹����·�:§3�=�f�M�:�:����£�¤h���� �� Ô 9 Ô 1;: /jß�ßnÂ

� ¡ ¶ �©¹��©��«T�:§[��������®3¬W�:®3�:�_¡�¤�¡F®[�9��¬©­T®3�¯����¢ È �[¡ ¶ £çº
��¢[²��·���� �¡��:�·¬W¡F ���£¯�WÅ"�:§3��� �:§3�M��¡�¤ E �3¢[�©�n��¡F�[� �
 �¡`¢[��£×Â �`����¬©��Ff¬©��£�£¯��« ¶ �7§3��¹��7� ¶ ¡�²��:¡F®[�f�À¡�¤
�¯���� ³�Ê¡Q¹��©� ¶ §3�l¬�§ ¶ �Á ±�¯²F§ª�Ê²����[�©�n��£��¯É©��zÀ������¢`º
¢3�¯�:��¡F�Ê��¡³�:§[�=²��:¡F®3�f���[²F�_¡�¤5¤h���� �����������¡±¬W¡F�3�:����®3¬oº
�:�¯¡F�3� Ô ¶ §3��¬n§ ¶ ¡F®f£�¢·¾��=���3¢3�l¬©�M����¢Ê¾��Ê�:§[�=¤h¡��� d®3£��
�M¾�¡�¹��Qßn« ¶ �d��£���¡Ó§3��¹��j�:§[��²��:¡F®3�f�~¡�¤
¤h���� ����¨������¡Mº
¬©���M����¢ ¶ �¯�:§Ê����¬�§X¹��©�:¾.Â
ã*��¹���� �:§[� �� ���¡��:�:���3¬W�H¡�¤�¹��©�:¾3ºÐ¾f������¢ È �[¡ ¶ £çº
��¢[²������X£l���[²F®3�M²�����¬©­�®3�l�:�¯�:�¯¡F� Ô � ¡F ³���:��£�£¯¡[« â n�n�nªßn«
¶ �-¾��©²F�l�Ê¾��Ó¤¦¡`¬©®3�:�l�[²j¡F�f£¯�±¡F�·�:§3�-¤¦���� ³�������:��¡`¬©�çº
�M����¢ ¶ �¯�:§Ê�:§[�=¹��©�:¾,�Ó���Ê¤h���� ��t/ôz

9 ` Ôqp : /jßY6 �8�� a��?����� 9 ` Ôqp : 1 � ß@9 Ô 1 � : /jß ÔH� ß
¶ §[�©���<� Ô �[ß~���~�:§3�j���©��¡�¤9¬W¡F�3������®3¬W�:��¡F�3��£���� È ��¢·��¡
¾T�X�:§[�d¤¦�n�� ����*¡�¤)¹��©�:¾���Â � §3����¤h¡��� j®f£��M�:�¯¡F�a²����`º
�©����£���É©���9¡�¹��©�_�:§[�&¬W¡F�3������®f¬W�:�¯¡F�3�)������¡T¬©�l�M����¢ ¶ ���:§±�
¹��©�:¾.«5¾f®3���¯²F�[¡��:���j��£�£9¡��:§3�©�d¬W¡F�3�:����®3¬W�:�¯¡F�3��Â � §3���
®3�3�3��¬W���:�:�M����£��j�:���:������¬W�:�y�:§[�� ³¡T¢[��£ ¶ §[���°�����M�:�:����£
¤h���� ���¤h¡����Ê¹��©�:¾"¢[¡T���=�[¡��j ³�M�:¬�§ ¶ ��£�£ ¶ �¯�:§H���ª�
¤h���� ��*�3�:�©¹`�¯¡F®3�:£��³���©���$�Sþ��Èÿ)�gú�ÿY��w��mt�«`¾f®3�y ³���°¾��
¬W¡F ��f�M�:��¾f£¯� ¶ �¯�:§·���3¡��:§[�©�¨£¯���M���3��¢Ò¬W¡F�3������®f¬W�:�¯¡F�%Â

� ¡d��£l£¯¡ ¶  �¡��:��²����[�©����£ È �3¡ ¶ £¯��¢3²��¨¡�¤�¬W¡F�3�:����®3¬oº
�:�¯¡F�3� ��¡ ������®[���3¬W�´�:§3�2�f�:��¢3��¬W�:�¯¡F�ô�3�:¡`¬W���:�©« ¶ �
Ff�3¢2�:§[�"¾����:�Ê¬W¡F�f������®3¬W�:�¯¡F� ¤¦¡��X�¼���M�:�:����£*¤h���� ��/ ¢3®[���l�[²Á�3�:��¢f��¬W�:�¯¡F�´���Ê�¯¤=��� ¶ �©�:�H�½�[� ¶ £¯�À¡�¾[º
���©�:¹���¢�¤¦�n�� �� ��¡�¾��7£¯���M�n�[��¢%Â �H� �M�3�f£¯�ô¡F®[�
�_�������:�l���±£¯���M���3�©�
��¡�¢[�©���©�� ³�l�[�_�:§[�� �¡F���)¬W¡F ³�f�M�Dº
�¯¾f£��*¬W¡F�f������®3¬W�:�¯¡F�41�� ¤¦¡����:§3�=�f�M�:�:����£�¤h���� ��t/,®3�Dº
���[²B��­T�%Â Ô Ø�ßn«y���f¢¼���� ���¡����M����£¯�Á�l�3���©�:�d�:§[�·¤h���� ��
������¡��:§[�*£¯�WÅ[��¬©��£3�������:�³¤h¡���� ¶ �¯�:§±�j¤h�:��­�®3���3¬W��¡�¤)Ø
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¡F� �:§[��£���� È ��¡41	�yÂD� � §3���¨���3�:®[�����¨�:§3�M�*�:§[�d¡�¹��©�:º
��£�£[¾������9¬W¡F�f������®3¬W�:�¯¡F�°���
�:� È ���Ó������¡�¬W¡F�3�:��¢3�©���M�:�¯¡F�%«
��£¯¡F�[² ¶ ���:§��:§[��¬W¡F�f������®3¬W�:�¯¡F�f�/������¡T¬©�l�M����¢ ¶ �¯�:§d�:§[�
¹��©�:¾.«����Ê�3�:��¢3�l¬W�:���[²d¹Z��£�®3���~¤¦¡������f�M�:�:����£�¤h���� ���Â9 Ô 1 � : /jß����H��­T�%Â ÔH� ß����-�:� ¶ ���¯�������"®f�:���[²Ò�_�������
��®3£��*���f¢Ò¢[�:¡��3�����[²d�:§[�t9 Ô /jßy���©�n  Ô ¬W¤{Â3��­��.Â Ô×â ß�ß
z

9 Ô 1 � : /jß B 9 Ô 1 � ß@9 Ô /A: 1 � ß Ô Þ�ß
9 Ô /^: 1 � ß�����¢[�©���©�n ³���[��¢Ò���&���·��­T�%Â Ô)r ßn«�®3�����[²³�
®3�3��¤¦¡���  �3�:¡�¾f�M¾f�l£��¯�J�·¢3�l�������¯¾f®3�:�¯¡F�Ó¡�¹��©�-�:§[�d��¡F�:�:�çº
¾f£¯�-¹M��£�®[����¡�¤/�:§3�� ³���:�����[²�¤¦���M�:®3�:��Â?àD�Ò¬©��£�¬©®f£��M�:���[²9 Ô 1 � ßn«��:§[�a¤¦����­�®[���f¬W�À¡�¤=����¬�§�¬W¡F�3�����n®3¬W�:�¯¡F� Ô �¯�:�
�T®3 �¾��©�_¡�¤/¤¦���� ³���nßy��� ¶ ����²F§ª����¢·¾T�Ó�:§[�*¤¦�:��­T®[���3¬W�
¡�¤���� ��¤h���� �� ¶ §3��¬n§�£��l� È �.��¡&�¯�©«M¾f��£l���3¬©���[²��:§3�)¡�¹��©�:º
��£�£�£�� È ��£l��§[¡T¡T¢�¡�¤Î�:§[�*¬W¡F�3������®3¬W�:��¡F� ¶ �¯�:§°�:§[�-£�� È ��£��çº
§[¡T¡T¢Ê�:§f�M�¨�¯��������¬W¡F�f������®3¬W�:�¯¡F�Ò¤¦¡��0��z

� 8�� 6 E 8 �� 8 ��� a��?����� E 8 ���t  �n��w�¡ Ô ��¢�1 � ß Ô ÚFß
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����¡F�3¢3�l�[²j��¡±�:§[�=�f��¬W�:®3�:���~�:§[¡ ¶ �Ê��¡±�:§[�=¬n§3��£�¢3�:���[zô�õ�ö ��÷ k MHø£ù>ú ÖãÕ)áÓà�Ü ¯ ÕHÖw×Ëû èqüVý ø£ù�þ ÕeèÓÜmÝ@×mÿ�� ÷ ý §?§ ú þ × ç@ÜmÙ�Ü�ÿ êô�� ��÷ k MHø£ù>ú ÕHÖq×Ëû èwN § ü ú û èqüiý ø£ù � ÷ ý §i§ ú9ê þ ÕeèHÜqÝ�×mÿ ê
àD�±¡F�[�-¬W¡F�3¢f�¯�:�¯¡F�%«T���3��£¯¡�²�¡F®3�_��¡��:§[�*¬�§3�l£�¢°§3���M�����[²
�:§[���������3���¯�:�¯¹���¤¦¡��n ·«%����¬�§H¡�¤y�:§[���M¾�¡�¹��³�:¬W���3���=���
¬W¡F j¾f���[��¢ ¶ ���:§B�:§[�³�������3���¯�:�¯¹��³®[�����©�����f¬W��« ð²ó «Î��¡
¤h¡���  � ¶ ¡Ê���[�f®3�~�f���¯���©«����	��º ð?ó ���3¢
����º ð?ó Â � §[�
¤h¡��� ��©�����3�f®[���f���¯��¬W¡����:������¡F�3¢3����¡��:§[�)�M�3�3��¡��3�����M���
����£¯��¬W�:��¡F�a¡�¤)�:§[���:¬W���[�d��¡Ó²�¡·��£¯¡F�3² ¶ ���:§X�:§[�����©��º
¬W���¯¹���¢a®[�����©�����3¬W��«����3¢·�:§[�d£��M�����©�¨��¡°�:§[�����f�M�3�3�:¡Mº
�3���l�M���a����£¯��¬W�:��¡F�%Â Ô �H�B¤¦¡���  ���3��£¯¡�²�¡F®f�±�f���������[²F�
¶ �¯�:§B�:§3�±�����������3�:�¯�:��¹���¤¦¡��� Ò« ðiñ Â ßÀ�H�±�:§[��� Ô ���©�[º
�M���M����£¯�3ß����3�f®[������¬�§��f���¯����¡Á¡F®3�± �¡`¢[��£_��¡½§3��¹��
�¯���WÅ`������¬W�±�B¬W¡��:�:������¡F�3¢f���[²X¤h���� ��4/ ���f¢ ¢3�©���©��º
 ³���3�=�:§[�d¾����:�&¬W¡F�3�:����®3¬W�:�¯¡F��1Ò¤h¡��*�¯�©Â � §3�j �¡`¢[��£
�:��¬W¡���¢f�=�:§[�°¹Z��£�®3�³¤¦��¡F (��­T�%Â Ô Ø�ßn«79 Ô 1;: /jßn«
���d�¯�:�
�:������¡F�3�:�&��¡°����¬�§a���[�f®[�©Â
à{¤
�:§[�����[�f®[�~�����¯���`�¯��£�¢f���±¤h���� ��d�:§3�M�* ³�M�:¬�§3���
���¼�WÅ[�����:���[²B¬W¡F�3�����n®3¬W�:�¯¡F��÷��:§f�M���l�©«)�¯¤��:§3�Ê��¬W���[�Wº
®[�����©�����f¬W�7¬W¡F �¾����3�M�:�¯¡F� ¬W¡����:������¡F�3¢3�¼��¡,���:��£��çº
�M¾f£¯�����:��¡`¬©���M�:�¯¡F�³���³�:§[�¨ �¡`¢[��£�÷��:§3�����:§[��¹M��£�®[��¡�¤9 Ô 1;: /jß ¶ ��£�£�¾���§f�¯²F§[�©�~�:§3���a�¯¤
�[¡±�:®3¬n§X¬W¡F�3�:����®3¬oº
�:�¯¡F���WÅ`�l���:�©Â Ô à{���:§[�B£��M�����©�Ò¬©������«¨�:§3�a¾������Ó¬W¡F�`º
������®f¬W�:�¯¡F�Ò�����³�[� ¶ ¡F�3��« ¶ �¯�:§X£¯¡ ¶ �3���¯¡��~�3��¡�¾f�M¾f��£çº
�¯�¿��Â ß � §T®3�©« ¶ §[���°¬W¡F ³�f�M�����[²j�:§[�&¹Z��£�®3���)�:��¬W¡��n¢[��¢
���H��������¡F�3���³��¡a�:§[�°�M�3�f�:¡��3�����M���³���f¢"���3�M�f�3�:¡��3���¯º
�M���=�f���������[²d¤¦¡��~����¬n§X®[�����©�n���3¬W��«f��§3�¯²F§3�©�~¹Z��£�®3�&¡�¤9 Ô 1;: /jß�¬W¡��:�:������¡F�3¢3����¡"�:§[�X¬�§f��£�¢ qD�:��¬W¡�²F�3�¯É��l�[²�s
�:§[���M�f�3�:¡��3���l�M���*��¬W���[�=¤h¡����:§[��®[�����©�n���3¬W��Â

� �M¾f£¯� â �:§[¡ ¶ �*�:§[��¹M��£�®[��¡�¤?£¯¡�²�9 Ô 1;: /jß&��¬W�:¡F���
�:§[�)¬W¡F�f¢3�¯�:�¯¡F�3��«Q�M¤h���©�Î¹M�M�:�`���[²��� �¡F®3���:�.¡�¤3£����M���3���[²
Ô Ø�n`«jØ�n�n`«&���3¢7Ø�n�n�nÀ�l�[�f®[���f�������©Û���¹��©���M²���¢µ¡Q¹��©�
Ø�nÓ�:�� d®3£��M�:�¯¡F�3�oßnÂ � §[�j�:��É��M¾f£¯��¢3�¯Ý��©�:���f¬W�=¾��©� ¶ �©���
�:§[�y� ¶ ¡ Ô  ±�M�:¬�§[��¢����3¢d®3�3 ±�M�:¬�§[��¢�ß%�f���¯���Î¤h¡��Î����¬n§
®[�����©�����f¬W���¿�����* ³�� ³��¬©�)�:§[��¬n§3��£�¢�� �)�M¾f��£l�¯�J����¡d�f��¬ È
¡F®[�5�:§[�_�M�3�3�:¡��f�����M���_�:¬W���[�_¤¦¡��
����®[�����©�����f¬W�y¾�������¢
¡F�Ò£¯���M�n�[��¢Ò�M�:²F®3 ³���ª�¨�:����®3¬W�:®[�:�*�:�©²F®f£��M���¯�:�¯����Â

º[Úw! »3*Uâ
�ÃíZâêð�õ�� ä[àUíZà�ë~(�ï�ð�äUí�åZÝ�à�è�å(ñ»ð�äUí
Ü�� È �±¬�§3�l£�¢[�:���%«%�:§3�± �¡`¢[��£9 ³���:�:� È ���3£¯� ¡�¹��©�:²����[�©�:º
��£��¯É©����«�¾f®3�·�:��¬W¡�¹��©���X¤¦��¡F ��:§[�����H�©�:��¡����·¡F�3£¯��¾��
�:��¬W���¯¹`���[²Ê��¢3¢3���:�¯¡F�3��£Î��¡F���¯�:�¯¹��d�©¹T��¢3���3¬W� Ô E £��l�:§3��§3�
���3¢y�T���©¹����3��¡F�.« â n�nFåFßnÂ � ¡ ¶ �©¹��©��«·�:§3���"�M¾���£��¯�¿�
��¡�¬W¡F�ª¹��©��²��-¡F�Ó�M�f�3�:¡��3���l�M�����M�:²F®3 ³���ª�~������®f¬W�:®[�:���
¤h¡�������¬�§¸¹��©��¾¸�:§[¡F®3£�¢ �[¡����3���©¹����ª���:§[�Ò£l���[²F®3�M²��
£¯���M���3�©�&¤h�:¡F   ³� È ���[²Ó�3�:¡`¢3®3¬W�:�¯¹��j²����[�©����£��¯É��M�:��¡F�3�

ýUO�O=-:QH� � M M�YQì(O�`�TX)*Q=N
T
M(H
- ëmH
-
M�- égP égP�P égP�PnP
��� ô õ�ö è�W?TXO=HJI�-
jMê �jQ �)Q �)Qô � è¯ì(M�W?T>O=H!I(-�jMê �»b �Ðé�P �Ðéoé
��� ô õ�ö è¯ì�M(W?TXO=HJI�-�jZê �Ðé�% �Ðé
Ó �Ðé��ô�� è�W?T>O=H!I(-�jMê ��� �"Ó �"Ó

� �M¾f£¯� â zÎ£¯¡�²Y9 Ô 1;: /jßÎ¤¦¡��5 ³�M�:¬n§[��¢����3¢d®3�3 ³�M�:¬n§[��¢
�:¬W���[�WºJ®3�����©�����3¬W�������¯���©Â

�:®3¬n§·���Aò²�gw���ûçtSu²v
vZw>x ¾)µöÿ=þýÿ)�gwx�
þmþ�� Ô ¬W¤{Â9�WÅ[�� �º
�f£¯� Ô×â ß���� �T��¬W�:�¯¡F�ÁØ�ßnÂ
�H�Ó��������¡F®3�j �¡`¢[��£ ¶ �¯�:§Á�Ò¹��©��¾ �M�3�����M���l�[²Ò���
���"®f��®3��®3��£ Ô ¤h¡����:§3�M�d¹��©�:¾�ß*¬W¡F�f������®3¬W�:�¯¡F�.«Î��¡ ���©�
¶ §[�©�:§3�©�°�:§[�H �¡`¢[��£�¬©���µ¢[�©���©�� ³���3�a�M�3�3��¡��3�����M���
���� ³�����:��¬d�3�:¡����©�:�:�����©Â*�H����¢f¢ �Ê�[� ¶ ¹��©�:¾�x²ú�µ~�
w
��¡d�:§[�&�l�[�f®[�
²����[�©�n�M�:�¯¡F�Ê£¯�WÅ`�l¬W¡F�%« ¶ �¯�:§³¡F�[�&¤h���� ���z

I(-�T<j8RS-:QÐí �S�
@ Ë �
R<-:QÐílN�-
WÈ^aYZQ=)*WB)*O=)*RS-:N Ê � Ë 	�ÌaDB�
@(@��!#PÎ
T>Q=]<N Q=L<'*-
N Ê ��Ï��!@�	,Î

H�T>O=-
]<LXQ=) -:N Ê �
@���DB�
	"��Î
NPÒZM�OJT
H!O=) HCY�TXO�O=-:Q=M TXQ=]�é Í
�!#
7

E ¤¦���©�Á���n�����3���[²�¡F� Ø�n�n�n¥���[�f®3�a�f�������©«���� ¶ §3�l¬�§
x�ú�µ£�
w_�M�3�����M����¡F�3£¯�-�����������3�:���:�¯¹���£¯��« ¶ �)�3���������ª�Î�:§[�
 �¡`¢[��£ ¶ �¯�:§Ê�:§3�=¤¦¡F£l£¯¡ ¶ �l�[²��:¬W���[�WºJ®[�����©�����f¬W���f���¯�Zz

�	��µ���¸ � ������¦ §! �´ �(�(° ª"�»® ¯���©$#%#�° ª"�"® ¯"��µ���¸'& � ¦ §*�(��¶*)<¸mº ª"�&® º+ ��	�	�58�S�
@ Ë ���SA=Ï�Ï
5?9m@����!#C	&�S7
� �
� §[�Ó�:¬W���[�Ó�:�©�3�:���:���ª�:�M�:�¯¡F� §3���j¾��©���½ �¡`¢3��Ff��¢H��¡
�:�� �¡Q¹����:§[�j���� ±���ª�:��¬��3���� ±�¯�:�¯¹����~¡�¤
�:§[�d¹��©�:¾B���3¢
�:§[�Ê�:¡F£¯����¡�¤��:§[�Ò�M�:²F®3 ³���ª�:�©ÂÀã*�¯¹����¼�:§3�l�j���M�:�:����£
���[��®[�©«3�:§[�� �¡`¢[��£� d®3�����3�:��¢3��¬W�� j®3£��:�¯�f£¯�= ³�l�:�:���[²
���� ³�����:��¬-¤h���M�:®[�:����«3¾f������¢·¡F�Ò�:§[��®[�����©�����f¬W��Â

E ¹��©���M²���¢���¬W�:¡F�:�´Ø�n¥�:�� d®3£��M�:�¯¡F�f�©«��:§[�´ �¡`¢[��£
�3�:��¢f��¬W�:���[¡Q¹���£_���� ³�����:��¬±�f���� ³�¯�:��¹����*¤¦¡����:§[�°¹��©�:¾
x�ú�µ£�
wj���Ó�:§3���~®3���M²�� ¶ �¯�:§Ê���3�:¡�¾f�M¾���£��¯�¿��¡�¤?Â r Ùd¤h¡���Xú�u³�mwª«�Â r�G ¤¦¡����ôþ���wª«=���3¢ �3�©²F£��¯²F�¯¾f£��a�3��¡�¾f�M¾f��£��¯º
�:�¯���·¤h¡��Ò¡��:§[�©�X�3���� ³���:�¯¹����©Â � §[�H�:¡F£¯���Ê�3����¢3��¬W����¢
¤h¡��Á�:§[�¸�M�:²F®3 ³���ª�:�©« ¶ �¯�:§ ���:��¡`¬©���M����¢ �3��¡�¾f�M¾f��£��¯º
�:�¯���©«��M�:��úmü3w�µöÿ Ô ÂþÙ�nªßn«6ÿ)�gw��pw Ô ÂþÙ r ßn«`���3¢ôü3þmú�½ Ô ÂþÙ�ÙFßnÂ
� §[�- �¡`¢[��£%§3���_²����3�©����£��¯É©��¢Ê�:§[�-¤h���M�:®[�:�-¹M��£�®[���_¡�¤
�X¬W¡F�f������®3¬W�:�¯¡F�½¬W¡��:�:������¡F�3¢f���[²·��¡X�:§3�°®3�:�M²��Ó¡�¤��
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���3¢ ²����3�©����£��¯É��M�:�¯¡F����¡7�[¡�¹���£°�:�¯�:®3�M�:��¡F�3� Ô E £�£¯���%«
Ø�Ù�ÙFÞ�Ûgo��¯��¡�²F�Ð« â n�n â ßnÂ)Ö[¡��y�WÅ`�� ³�f£¯��«3o&�¯��¡�²F� Ô×â n�n â ß
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�:§[¡ ¶ ���[²
�f�M�:�:�l¬©®3£��M��¤h���M�:®[�:���©«~�M�:�X��£l£BF[Å`��¢%Â � §[�Ò¬W¡F�f�[��¬oº
�:�¯¡F�3�l���Ó ³¡T¢[��£&¡�¤ E £�£���� Ô Ø�Ù�ÙFÞ�ßÒ���Ê�M¾f£¯� ��¡¸ ³� È �
�������©�:�����:���3²d²����3�©����£��¯É��M�:�¯¡F�f�_¡�¹��©�¨�M�:²F®f ����ª���:����®3¬oº
�:®[�:�Ò�:�T���:�ZÅ¸���3¢¸���� ³�����:��¬©�©Â � ¡ ¶ �©¹��©��«¨£����M���3���[²
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­T®3�¯�:��¢ È �[¡ ¶ £¯��¢[²��½¬©���f�[¡��X¾��Á®3����¢¥��� �����µ£����`º
²F®3�M²��j�:��� È ¡��:§[�©���:§3���Ò£l�� ³�¯����¢Ê¬W¡F ��3����§[���3�:�¯¡F�.Â
Ã*�f£¯�j�*¤h� ¶ ¬W¡F ���®[�:�M�:�¯¡F�3��£3 ³¡T¢[��£l�
¢3�¯�:��¬W�:£¯�d��¢`º
¢[�:������£¯���M���3���3² ¡�¤*�M�:²F®3 ³���ª�³�����n®3¬W�:®[�:�Ò¬W¡F�3�:����®3¬oº
�:�¯¡F�3��Â Ñ §3���3² Ô×â n�n r ß��3�:���������:�³�B¬W¡F ��f®[�:�M�:��¡F�3��£
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��£���¡H�:§3¡ ¶ �:§3�M���:§3�Ê ³¡T¢[��£_¬©���¸®f���·�¯�:����¬©­�®f�¯�:��¢
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®3���&�:§[��  ���±�3�:¡`¢3®3¬W�:�¯¡F�%Â Ñ §3�l£�¢[�:���³ ±���³¾��©²F���°¾��
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Abstract

I describe steps toward “deep lexical ac-
quisition” based on naive theories, moti-
vated by modern results of developmental
psychology. I argue that today’s machine
learning paradigm is inappropriate to take
these steps. Instead we must develop com-
putational accounts of naive theory repre-
sentations, mechanisms of theory acquisi-
tion, and the mapping of naive theories to
lexicalizable concepts. This will enable
our theories to describe the flexibility of
the human conceptual apparatus.

1 Where We Are Now

The present Machine Learning Paradigm
Much of computational linguistics has converged

onto a machine learning paradigm that provides us
soothing clarity. The machine learning approach de-
fines a problem as a mapping problem – map some
acoustic stream onto a list of word tokens, map a list
of word tokens onto a parse tree, map a parse tree
onto a set of semantic roles or “logical form”, map
each word in a tree onto its best sense, and so on.
We then develop a learning algorithm to accomplish
the desired mapping. Multiple groups describe how
well their algorithm maps various test sets given var-
ious training sets, and describe a “result” to improve
upon. The clarity provided by this paradigm is so
soothing, one gets the sense we can turn a crank,
and indeed, in many cases, progress has been made
proceeding precisely along these lines.

Turning the crank on deep lexical acquisition,
however, we might feel something is missing. What
is it? Underlying any model of deep lexical acquisi-
tion is a theory of thehuman conceptual apparatus.
Unlike our handle on acoustic streams, word lists,
and parse trees, our handle on a suitable “output”
for the space of word meanings is remarkably poor.
Somehow, via experience (of some kind or another),
children acquire a mapping from a space of vocabu-
lary items to a space of lexicalizable concepts – the
lexicon; our task as modelers is to figure out how
this mapping can occur. Many models for the space
of lexicalizable concepts exist: concepts are points
in Rn, concepts are Jackendoff’s lexical concep-
tual structures, concepts are FrameNet’s frame ele-
ments, concepts are Schankian script activators, con-
cepts are distributions over syntactic frames, con-
cepts are grounded in sensorimotor statistics, or all
of the above. Almost everyone nowadays reports
how their algorithm accomplished some mapping to
one or more of these models of concepts. They have
to, because today’s de facto idea of what constitutes
a “result” according the machine learning paradigm
today is to do exactly this.

The Golden Oldies formed our concept models
Our models of conceptual spaces didnot origi-

nate from computational linguists following the ma-
chine learning paradigm. They were proposed from
linguists, psychologists and philosophers back in
earlier eras - what we will call Golden Oldies –
when the idea of a “result” was somewhat differ-
ent. There are too many to recall: Quine (1960)
argued that the linguist watching the natives utter-
ing Gavagai! in the context of a rabbit would nec-
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essarily require far more constraints than met the
eye. Brown (1957) showed that children used syn-
tactic cues to disambiguate between possible mean-
ings; Landau and Gleitman (1985) followed on these
insights, showing just how deep it could be, that
even blind children could learnlook andsee, basing
their mapping on syntactic constraints. Chomsky’s
(1965) notion of “deep structure” – proposed to ac-
count for commonplace syntactic phenomena – mo-
tivated many insights explored in Gruber (1965)’s
thesis, Fillmore (1968)’s classical thematic roles,
and Jackendoff (1983)’s Lexical conceptual struc-
tures. Hale and Keyser and many linguists labored
under the MIT Lexicon project in the 1980s to deter-
mine the fundamental features of the lexicon; many
of these hard-earned observations appear in Levin
(1993). Schank (1972)’s Conceptual dependency
theory, Minsky (1975)’s Frames were proposed for
the broader goals of capturing commonsense knowl-
edge. Quillian’s (1968) and Miller et al (1990)’s
WordNet were not intended for models of lexical ac-
quisition or databases to be used in computational
linguistics but as models of human semantic mem-
ory. Many other Golden Oldies exist, and our debt
to them is quite large. Ask what motivates our col-
lection of subcategorization statistics or what drives
the quest for semantic roles, and the roots are found
in the science questions of the Golden Oldies.

The present Myopic Learning Paradigm
It would have been extremely myopic to take any

one of these classical results and accuse their authors
of not demonstrating a learning algorithm, not evalu-
ating them on large corpora, and not getting together
in workshops to share the results on test sets. The
standard for what constituted a result back then con-
sisted of none of these things, because today’s ma-
chine learning paradigm was just not present then.
The questions were:

• Question (1): What is a lexicalizable concept?

• Question (2): How can a word-concept map-
ping be learned from evidence?

But for reasons that no one really talks about,
somehow, the standard of what constitutes a result
changed from some balance of Question (1) and (2)
to a machine learning paradigm essentially focused

on Question (2). The dependency between Ques-
tion (1) and (2) is quite well-understood, but do we
have an adequate answer to (1)? We tell ourselves:
We’ve gotta build better parsers, speech recognizers,
search engines, machine translation systems, so...
let’s take shortcuts on Question (1) so as to make
progress on Question (2). For many, that shortcut
consists of semantic role labels and learning from
frame distributions. These shortcuts don’t answer
Question (1), unfortunately.

2 Where We Need to Go

While the Golden Oldies were used as the founda-
tions of today’s lexical acquisition, psychology be-
gan to sing a new tune, still balancing Questions (1)
and (2).

Children have naive theories
Developmental psychology after the Golden

Oldies has shown just how deep our “deep lexical
acquisition” theories have to be. On this view, word
meanings are couched in changingnaive theoriesof
how the world works. The model of the child is that
the child possesses a naive theoryT ∗ changing state
from T1 to T2, and that there is a space of concepts
accessible fromT1 that substantively different from
the space of concepts accessible fromT2. A learner
undergoesradical conceptual change. Developmen-
tal psychology has not been explicit about the pre-
cise form ofT ∗, nor have they characterized howT ∗

relates to lexicalizable concepts. But their contribu-
tions inform us about the fundamental ingredients
of concepts (Question (1)) and inform us what deep
lexical acquisition must consist of (Question (2)).

A few examples must suffice in place of a review
(c.f. Gopnik and Meltzoff (1997)). Keil (1989)’s
transformation studies illustrate theory change in the
domain of biology. First, children are shown a pic-
ture of a skunk; then, are told a story – that the an-
imal received either (A) surgery or (B) a shot in in-
fancy – and then are shown a picture of a raccoon.
Young preschool children judge that the animal is
a raccoon, as if they base their judgements on su-
perficial features. Children between 7 and 9 (T2)
on the other hand, judge that the raccoon-looking
figure in (A) is still a skunk. Adults (T3) judge
that the raccoon-looking figure in both conditions is
still a skunk. Apparently, preschoolers’ theoryT1
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lacks the belief that an animal’s kind is determined
at birth, but this becomes part of the adult’sT3.

Similarly, preschool children atT1 have concept
of deathinvolving a belief in a continued existence
in an alternate location (like sleep); When asked
whether dead people dream, eat, defecate, and move,
4 to 6 year olds will say that dead people do all of
these, except move (Slaughter et al, 2001). Missing
in T1 are the causes of death (a total breakdown of
bodily functions) and that death is an irreversible, in-
evitable end. Between 4 and 6, children become su-
perficially aware of the general function of various
body parts (e.g “You need a heart to live”). Other
phenomena serve the same point: the child atT1
thinks unclemeans friendly middle-aged man, and
at T2 thinks it means parent’s brother. The child at
T1 thinks islandmeans a beachy territory and atT2
thinks it means body of land surrounded by water
(Keil 1989). And, “theory of mind” concepts/words
such asbelief, desire, wonder, pretend (Wellman
and Bartsch 1995, Leslie 2000) are similarly situ-
ated.

How “theory-like” T1 and T2 are is subject to
considerable debate (diSessa 1993, Leslie 2000).
disessa (1993) describes a large number of causal
“p-prims” that are highly context specific and con-
siderably larger in number than what Carey (1985)
describes; these are shown to apply to everyday
physical phenomena – “force as mover”, “vaccu-
ums impel”, “overcoming”, “springiness”, “bigger
means lower pitch (or slower)”, to name a few. Each
of these have a FrameNet-like causal syntax, of
some unknown mapping to vocabulary items. Sim-
ilarly, Rozenblit and Keil (2003) show that non-
expert adults have a remarkably superficial notion
of how common mechanisms work – such as how a
helicopter changes from hovering to forward flight.
Theories may be suspiciously weak.

Students have alternative frameworks

Educational psychologists have characterizedT ∗

by asking a different, more practical question: why
is it difficult for science students to learn certain sci-
entific concepts (weight, density, force, heat, . . .)
when they come to class? The broad insight is this:
students come to class not as blank slates but with
alternativepre-conceptions that must be understood.
Data on their pre-conceptions yields clues as to con-

tents ofT ∗, well before they walk into science class.
Again, a few examples illustrate the point.

Many studies on physics misconceptions have ob-
served deeply held views on the motion of pro-
jectiles (McCloskey 1983, Halloun and Hestenes
1985). Ask students to predict what happens when
a projectile is thrown upward at an angle, and their
answers will typically be consistent with one of (a-c)

These answers are consistent with an “impetus” the-
ory of motion, where an object’s motion is exclu-
sively dominated by whatever “impetus” the thrower
provides it. Medieval scientists such as Buridan
also held similar beliefs; Newtonian mechanics, of
course, shows that the answer is a parabola. disessa
(1993) report a wider array of these types of physics
misconceptions in a theoretical framework.

Likewise, ask students for their knowledge of how
their eyeswork, and they reveal an “extramission”
belief: something somehow shoots out from the eye
and reaches the objects (Winer et al 2002); they also
say that eye is the sole organ in the body responsi-
ble for vision. Plato and da Vinci shared these same
beliefs. Systematic catalogues of these sorts of ob-
servations have been compiled for just about every
domain – e.g. megaphones create sounds, heat is a
substance, eggs are not alive, the moon and sun are
the same size, and so forth (AAAS 1993).

3 What Steps We Must Take

Consider this fascinating phenomena from the Best
of Today and the comfort of the grammar-generates-
sentence relation will be replaced by queasiness: the
termstheory, concept, andchangeare most unclear,
as many developmental psychologists freely admit.
But computational linguists may contribute signifi-
cantly to rendering new clarity: If the Golden Oldies
drove the efforts on today’s shallow lexical acquisi-
tion, the Best of Today’s Psychology may drive the
results of tomorrow’s progress in deep lexical acqui-
sition.
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Figure 1:(a) The Model of Concepts from the Golden Oldies: used in the present Machine Learning Paradigm; (b) The Universal
Theory Model of Concepts: necessary for deep lexical acquisition

The new framework: Universal Theory
We have much progress to make: We cande-

scribenaive theories precisely; we candescribehow
theory acquisition occurs; we candescribethe map
from naive theories to a set of lexicalizable concepts.
We candescribehow vocabulary acquisition occurs.
Figure 1(a) shows the Golden Oldies model of con-
cepts that we must abandon: a Vocabulary Acquisi-
tion Device receives a fixed hypothesis space of pos-
sible concepts completely determined by a fixed set
of primitives; Figure 1(b) shows theUniversal The-
ory Model of Conceptsthat we must take steps to-
wards: ATheory Acquisition Device(TAD) outputs
a stateT ∗ that describes a learners’s naive theory; A
Concept GeneratorG mapsT ∗ to a set of lexical-
izable conceptsG(T ∗). A Vocabulary Acquisition
Device(VAD) usesG(T ∗) to learn a lexicon. The
theory of the TAD states isUniversal Theory(UT);
a UT metalanguage enables an abstract characteriza-
tion of possible theories– each possible theory de-
scribes a system of kinds, attributes, relations, part-
whole relations, and causal mechanisms. Within this
Universal Theory Model of Concepts, we can begin
to answer the following core questions:

1. what is the initial state of the TAD?
2. what are possible final states of the TAD?
3. how can the TAD change state?
4. how can the TAD useT ∗ to parse experience?
5. how does the concept generatorG mapT ∗ onto

a set of lexicalizable conceptsG(T ∗)?
6. how can the VAD useG(T ∗)?

We have made progress on these core questions
Many of these questions have been addressed al-

ready in computational models where a candidate

UT metalanguage and theoryT ∗ is latent. diSessa
(1993) catalogs sets of p-prims in naive physics.
Atran (1995) describes a theory of family struc-
ture. Gopnik et al (2004) uses Bayesian networks to
model preschooler’s causal reasoning aboutblickets.
McClelland and Rogers (2004) describe connection-
ist models of some of Carey (1985)’s classic results.

In my own work, I have been situating the ele-
ments of the Universal Theory Model of Concepts in
a microgenesis study, where adult subjects undergo
a T1 to T2 transition (Niyogi 2005). The transition
can be understood with a minimal UT metalanguage
needed to characterize a set of possible theories:T ∗

is characterized by a interrelated sets of kinds, at-
tributes, relations, and causal laws.T1 andT2 are
described in that UT metalanguage, and the simplest
concept generatorG is described that mechanically
mapsT1 and T2 onto G(T1) and G(T2). Sub-
jects undergo theory change in a Blocksworld uni-
verse (see Figure 2(a)) while learning 3 verbs (gorp,
pilk, seb) that refer to the causal mechanisms gov-
erning the universe. Subjects interact with a set of
29 blocks, some of which activate other blocks on
contact. On activation, subjects are shown a transi-
tive verb frame (“Z isgorpingL, “U is sebbingF”,
“D is pilking Y”) in a Word Cue Area. Unbeknownst
to subjects, each block belongs to 1 of 4 kinds (A, B,
C or D) and 3 activation mechanisms exist between
them: lawab: As activateBs, lawc’: Cs activateCs,
andlawd: Ds activateDs; each of the 3 verbs refers
to one the 3 mechanisms. Subjects are probed for
the naming conditions on each of the 3 verbs.

Subjects’ responses indicate that their TAD state
changes fromT ∗ = T1 (there is 1 kind of block
governed by 1 causal mechanismlawq) to T ∗ = T2
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(a) (b)

Figure 2:(a) Subjects try to learn the laws and word meanings in a “Causal Blocksworld” computer application by dragging and
dropping blocks onto each other. Cues to the meaning of 3 verbs (gorp, pilk andseb) are given in a Word Cue Area. Shown is how
two kinds of subjects –T2 Subjects andT1 Subjects – clustered the blocks; the clusters for the kindsA, B, C andD (boxed) are
clear forT2 Subjects but no such differentiation is apparent forT1 subjects; (b) WhenT ∗ = T1, all 3 verbs can only be mapped
to a single concept inG(T1) = {Q} (dashed arrows); WhenT ∗ = T2, gorp, pilk andsebcan be mapped to 3newconceptsAB, C′

andD in G(T2) (solid arrows).

(there are 4 kinds of blocks governed by 3 distinct
causal mechanisms,lawab, lawc’ and lawd). But
this is not true for all subjects: some remain “T1
subjects” while others move onto become “T2 sub-
jects”. Critically, whenT ∗ = T1, the verbs can only
be mapped to a single concept inG(T1) = {Q};
WhenT ∗ = T2, the verbs can be mapped to 3 dis-
tinct concepts inG(T2) = {AB, C′, D} (See Figure
2(b)). OnceT ∗ = T2, subjects can “parse” the ac-
tivation and infer the hidden kind and causal mech-
anism involved. Critically, subjects cannot learn to
distinguish the 3 verbs untilT ∗ = T2, when the
3 new concepts emerge inG(T ∗). Thengorp, pilk
andjeb may be mapped onto those 3 new concepts.
These verbs are thus theory-laden in the same way
asdeath, uncleandisland.

This UT architecture concretelydissolves the
Puzzle of Concept Acquisition (Laurence and Mar-
golis 2002): how can a person ever acquire a “new”
concept, when a fixed set of primitives exhaustively
span the space of possible concepts? Taking the
viewpoint of the learner’s VAD at a specific moment
in time with aspecificT ∗, it has access tojust those
concepts inG(T ∗) – acquisition of a new concept
is possible ifT ∗ changes. Taking the viewpoint of
the learner’sspeciesacross all possible times, the
species has access to theunion of G(T ∗) over all
possible TAD states – thus a “new” concept for the
species is impossible. Which viewpoint one takes is
a matter of perspective. Critically, the Golden Oldies
model of concepts does not expose the TAD state re-

vealed in the UT model of concepts (Fig. 1a,b).
Universal Theory and the Linguistic Analogy

Computational linguists can progress on these
questions, because naive theories are like gram-
mars. Just as a grammar generates a set of possible
sentences, a theoryT ∗ generates a set of possible
worlds. Just as the space of possible grammars is re-
stricted, so is the space of possible theories. Just as
learning a grammar consists of picking a point from
a space of possible grammars, learning a theory con-
sists of picking a point from the space of possible
theories. The task of writing a naive theory is like
writing a grammar. The task of characterizing the
space of possible theories requires a theory meta-
language just as characterizing the space of possible
grammars requires a grammar metalanguage.

Moreover, research into naive theories does not
proceedseparatelyfrom the program of research in
grammar. The two programs are bridged by the con-
cept generatorG: T ∗ generatesG(T ∗), a set of lexi-
calizable concepts. An adequate account ofG would
generate concepts present in a particular language,
for every language, and for every possibleT ∗.

Miller et al (1990) distinguish between a con-
structive and a differential lexicon. In adifferential
theory of the lexicon, meanings can be represented
by any symbols that enable a theorist to distinguish
among them; In aconstructive theoryof the lexi-
con, the representation should “contain sufficient in-
formation to support an accurate construction of the
concept (by either a person or a machine)”.
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The conceptual analyst who desires to produce a
constructivetheory of the lexicon has four kinds of
accounts to provide: (see Niyogi 2005)

• an explanatory account of the space of possible
theories, for all persons P

• an explanatory account of the space of possi-
ble concepts, for all persons P, for all possible
theories

• a descriptive account of a specific theoryT ∗

held by a representative person P (e.g. of a 3-
year old or of a 10-year old)

• a descriptive account of a specific lexiconL
held by a representative person P (e.g. a 3-
year old Chinese speaker, 3-year old English
speaker, 10-year old Chinese speaker, 10-year
old Chinese speaker)

We may envision a “theory-based lexicon” that
would capture thetwo key state variables in Figure
1(b), the two descriptive accounts above: (1)T ∗ for
an idealized human; (2) a set of vocabulary items
mapped to points inG(T ∗). Very limited instances
of a theory-based lexicon can be constructed already
for subjects at the end of the experiment – such a
theory-based lexicon has (1)T2 in the UT metalan-
guage; (2) the mapping inL to G(T2): gorp = AB,
pilk = C′, seb= D. This constructivetheory-based
lexicon would be in stark contrast todifferentiallex-
icons such as WordNet and FrameNet.
Grounding language in perception is insufficient

Many have proposed deep lexical acquisition by
“grounding language in perception” (Siskind 1996,
Regier 1996, Roy and Pentland 2002, Yu and Bal-
lard 2004), constructing systems that can learn to ut-
ter, e.g. red, banana, hit and triangle in contexts
where there are, e.g., three triangles hitting red ba-
nanas. Such systems also propose a space of possi-
ble concepts exhausted by afixedset of primitives,
as in the Golden Oldies model. The initial state of
the TAD (T ∗(t = 0)) can explicitly incorporate all
these attributes and relations (contact, luminance,
. . .); but then, the TAD canfurther change state
to yield new kinds, attributes, relations, and causal
mechanisms not present in the initial state, but mo-
tivated by the data (see Gopnik and Meltzoff 1997).
As such, vague appeal to grounding is insufficient;
associative processes that may work onred, hit, ba-

nana, eye, threeare extremely challenging to gen-
eralize tocolor, kind, wonder, pilk, seb, telescope,
maybeand uninventedgrooblesthat cannot be per-
ceived. Again, developmental psychology provides
some insight on what theoretical innovations would
be required for a suitable interface to sensorimotor
apparatus (c.f. Mandler 2004).
Commonsense AI gives UT foundations

Primitives well beyond the sensory apparatus
have been developed to describe physical systems
qualitatively (Regier 1975, Forbus 1984). They
show us some of the possibilities of whatT ∗ and
candidate UT metalanguages may look like (quan-
tity spaces, kinds, attributes, relations, part-whole
relations, and causal mechanisms that interrelate
these sets). Regier (1975)’s description of atoi-
let appears particularly close to Rozenblit and Keil
(2003)’shelicopter. Later qualitative AI frameworks
of Forbus (1984) and Kuipers (1994) may be ap-
plied to McCloskey (1982)’s intuitive physics and
disessa’s (1993) p-prims. Except for the work of
Hobbs, Pustejovsky and their colleagues, few have
mapped commonsense theories onto the lexicon.
Similar domain-general elements of naive math and
causality are present in the workds of Hobbs et al
(1987), Kennedy and McNally (2002)’s degree rep-
resentations for gradable predicates, Talmy (1988)’s
force dynamics, and the quantity spaces of Kuipers
(1994) and Forbus (1984). These disparate frame-
works provide foundational elements for a UT met-
alanguage.
Shortcuts on UT foundations will not work

We must resist the urge to take shortcuts on
these foundations. Simply creating slots for foun-
dational phenomena will impede progress. Puste-
jovsky (1995)’s observations for co-composition
have clearly illustrated how much flexibility our in-
terpretation systems must have, e.g. inHe enjoyed
the beer/movie. But specifying the telic role ofbeer
andmovieto bedrink andwatch does not consti-
tute an adequate theory – we require constraints that
relate to the state space of the human conceptual ap-
paratus. Pustejovsky (1995)’s telic, formal, constitu-
tive, agentive roles may be mapped ontoT ∗’s char-
acterization of artifacts, materials, and so on. We
require nothing less than absolute conceptual trans-
parency.
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We must bridge UT to analogy
Lakoff and Johnson (1980) and subsequent cog-

nitive linguistics work have catalogued a stunning
level of metaphoric usage of language. Lexical ex-
tension of items such asilluminate in, e.g. Analo-
gies illuminate us on theory acquisitionare couched
in terms of conceptual metaphors such as “ideas are
light”. Significant steps have been taken to model
analogical mapping (c.f. Falkenhainer et al 1989,
Bailey et al 1997) and conceptual blending (Faucon-
nier and Turner 1998). These processes may moti-
vate TAD state changes. In most cases, the the un-
derlying predicates in the source and target domains
are ad hocly constructed; a natural source of these
predicates may be the sets internal toT ∗ (kinds, at-
tributes, relations, causal mechanisms); similarity
between domains may be determined by the struc-
tural properties of the UT metalanguage andG. If
T ∗ incorporates the common causal mechanisms be-
hind ideas and light transmission, for example, then
one may strive for a shorter lexicon where the vo-
cabulary itemilluminatehappens to be used in both
domains with “one” core entry. An adequate theory
of this process would obviously reduce the number
of so called “senses” in word sense disambiguation.

4 What We Assumed Wrong

Modern computational linguistics appears to have
made a set of assumptions that deserve reanalysis,
given the availability of other options.

Assumption: A fixed alphabet of meaning com-
ponents exists, and we know what it is

A key assumption dating to the Golden Oldies is
that the meaning of a sentence is adequately cap-
tured by a “logical form” (LF) characterized by a
fixed alphabetof meaning components (e.g. the-
matic roles, lexical semantic primitives, conceptual
dependency primitives). Today’s computational lin-
guistics program uses this assumption to demon-
strate systems that answer “who did what to whom,
where, why,. . .” questions, given sentences like:

John saw the man with the telescope.
John hit the man with the umbrella.

Is the computational linguist is expected to be sat-
isfied when systems can answerWho saw the man
with the telescope?or Who did John hit with the um-
brella? This year’s CoNLL Shared Task, mapping

sentences onto semantic roles, assumes the above.
But try these: Does John have eyes? Were they ever
open when he was looking through the telescope?
Could John know whether the man was wearing un-
derwear? Did the umbrella move? Did John move?
Did the man feel anything when he was hit? Was
John alive? Was the man alive? Why would John
need a telescope to see the man, when he has eyes?
Why would John use an umbrella when his hands
would do? Something is missing in these systems.

We should be more accountable. Developmen-
tal psychology showed that theory change and con-
ceptual change is possible, proving this assumption
is wrong: the alphabet behind sentence meaning
is a varying set of lexicalizable conceptsG(T ∗).
Missing in today’s systems attaching AGENT (or
FrameNet’s Perceiverpassive, or Impactor) toJohn
and INSTRUMENT toumbrellaandtelescopeisT ∗,
and a mapping of the lexical items toG(T ∗). What
T ∗ must contain, in some as yet unknown form, is
a T of physics described by McCloskey and disessa
(1993), a T of vision studied by Landau and Gleit-
man (1985) and Winer et al (2002), a T of body
studied by Carey (1985), a T of materials and arti-
facts studied by Hobbs et al (1987) and Pustejovsky
(1995). ThisT ∗, when mapped viaG, forms the al-
phabet of the above 2 sentences.
Assumption: The machine learning paradigm
can treat deep lexical acquisition.

If we reject the assumption that there is some
“meaning” of a sentence spanned by a set of mean-
ing primitives, the soothing clarity of the machine
learning paradigm is no longer available. We cannot
map parse trees onto sentence meanings. The pos-
sibility of “Putting Meaning in Your Trees” (Palmer
2004) completely disappears. We may still use the
machine learning paradigm to parse, disambiguate
and recognize speech. But these results are of lit-
tle use to model theory, concept and lexical acquisi-
tion, because there is no output representation where
a suitable training set could be collected. The human
conceptual apparatus is not that simple: the VAD re-
quiresG(T ∗) (which changes, asT ∗ changes), and
for thatwe need explanatory accounts of UT and G,
and must recognize the diverse ways the TAD may
change state.
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Assumption: Paths from shallow to deep lexical
acquisition exist

The Golden Oldies Models of concepts (Figure
1a) and the Universal Theory models of concepts
(Figure 1b) areincommensurable. The path from
the shallow to the deep cannot be declared to exist
by fiat. Wishful thinking is inappropriate, because
one architecture is more powerful than the other: the
Golden Oldies model did not expose the TAD state
space. Instead, lexical semantics results obtained
under the Golden Oldies model require translation
into the UT model: the privileged position syntactic
positions that motivated thematic roles and lexical
semantics primitives, the bi-partite event structure
revealed through adverbial modification, and so on.
This translation is mediated inG, and will not yield
a notational variant of what we started with.

Assumption: Verb classes determine meanings
We must distinguish between a representation of

verb meaningsdetermined bythe distribution of
subcategorization frames andcued bythese frames.
Landau and Gleitman (1990) showed that verb’s par-
ticipation in some frames but not others arecues
that a child uses to constrain verb meaning. Levin
and Rappaport-Hovav (1998) explicitly distinguish
structural and idiosyncraticcomponents of mean-
ing. But neither claim that verb classes or statistical
distributions of subcategorization framesdetermine
verb meaning. Yet VerbNet maps verbs to predicates
in precisely this way: (Kingsbury et al 2002).

cure, rob, . . .: Verbs of Inalienable Possession
cause(Agent,E) location(start(E),Theme,Source)
marry, divorce, . . .: Verbs of Social Interaction
social interaction(. . .)

The distinction betweencure and rob, or between
marry anddivorce is not astonishing to the English
speaker. Causal mechanisms behind disease, pos-
session, and the marital practices that were labeled
idiosyncraticby the lexical semanticist must be cap-
tured inT ∗.

Assumption: Language is separate from general
systems of knowledge and belief

This “defining” assumption helped for the Golden
Oldies, but innovations in developmental psychol-
ogy motivate dropping this assumption. The bridge
is provided by the concept generatorG: it maps a
naive theoryT ∗ (general systems of knowledge and

belief) toG(T ∗), used by the VAD (language).

Assumption: Real-world knowledge is Bad
The absence of the soothing clarity of the machine

learning paradigm and presence of real world knowl-
edge inT ∗ brings forth 2 associations:

Early Schank/Cyc = Much Knowledge = UT research = Bad
Statistics = Little Knowledge = shallow semantics = Good

The associations lead to the inference that Universal
Theory research will suffer a similar fate as the 70s
Schankian program and the Cyc program (Schank
1972, Lenat and Guha 1990). However, this infer-
ence is incorrect. The 70s Schankian program and
Cyc efforts did not carefully consider the constraints
of syntactic phenomena or developmental psychol-
ogy. Schank and his colleagues stimulated research
in qualitative physics and explanation-based learn-
ing that addressed many of these deficiencies, but
there is much work to be done to bridge today’s ef-
forts in deep lexical acquisition to this.

Assumption: Others will provide us the answers
Lexical semanticists now rely on cognitive expla-

nations far more heavily than ever before. Jack-
endoff (2002) concludes: “someone has to study
all these subtle frameworks of meaning - so why
not linguists?” Levin and Rappaport-Hovav (2003),
addressing denominal verbs such asmop and but-
ter, now freely point to “general cognitive prin-
ciples” rather than situate knowledge in the lexi-
con. Rather than consume lexical semantics of the
Golden Oldies, we can draw upon our toolbox to
again answer Question (1): “what is a lexicalizable
concept?”

5 We Must Change Our Concepts

Stop working with models of concepts from the
Golden Oldies. Start questioning whether results
under the machine learning paradigm are reallyre-
sults. Change your concept of aresult. Learn how
children do theory, concept and vocabulary acqui-
sition. Expose the fundamental ingredients of con-
cepts. Change your concept ofdeep. Change your
concept ofcomputational linguistics. Radical con-
ceptual change is possible. Write some new songs,
and sing some new tunes. We can have some Great
Golden Oldies of Tomorrow.
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