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Abstract

A Landscape Model analysis, adopted
from the text processing literature, was
run on transcripts of tutoring sessions, and
a technique developed to count the occur-
rence of key physics points in the result-
ing connection matrices. This point-count
measure was found to be well correlated
with learning.

1 Introduction

Human one-to-one tutoring often yields significantly
higher learning gains than classroom instruction
(Bloom, 1984). This difference motivates natu-
ral language tutoring research, which hopes to dis-
cover which aspects of tutorial dialogs correlate with
learning. Much of this research focuses on various
dialog characteristics. For example, (Graesser et al.,
1995) argue that the important components of tutor-
ing include question answering and explanatory rea-
soning. In other work (Litman et al., 2004) examine
dialog characteristics that can be identified automat-
ically, such as ratio of student to tutor words, and
average turn length.

In this paper, rather than look at characteristics
of the tutoring dialog itself, we feed the dialog
into a computational model of student memory, in
which we then find a measure correlated with learn-
ing. This “Landscape Model” (van den Broek et al.,
1996) proves useful for predicting how much stu-
dents remember from tutoring sessions, as measured
by their learning gains.

We will first briefly describe the Landscape
Model. Then we will describe the tutoring experi-
ments from which we draw a corpus of dialogs, and
how the model was applied to this corpus. Finally,
we cover the model’s success in predicting learning.

2 The Landscape Model

The Landscape Model was designed by van den
Broek et al. (1996) to simulate human reading com-
prehension. In this model, readers process a text
sentence-by-sentence. Each sentence contains ex-
plicitly mentioned concepts which are added into
working memory. In addition, the reader may
re-instantiate concepts from earlier reading cycles
or from world knowledge in an effort to maintain
a coherent representation. Concepts are entered
into working memory with initial activation values,
which then decay over subsequent reading cycles.

After concepts are entered, the model calculates
connection strengths between them. Two concepts
that are active in working memory at the same time
will be given a link. The higher the levels of con-
cept activation, the stronger the link will be. Van den
Broek et al. (1996) give this formula for calculating
link strengths:
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This defines the strength of the connection be-

tween concepts x and y as the product of their acti-
vations (A) at each cycle i, summed over all reading
cycles.

Two matrices result from these calculations. The
first is a matrix of activation strengths, showing all
the active concepts and their values for each reading
cycle. The second is a square matrix of link val-
ues showing the strength of the connection between
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each pair of concepts. Van den Broek et al. (1996)
demonstrate a method for extracting a list of indi-
vidual concepts from these matrices in order of their
link strengths, starting with the strongest concept.
They show a correlation between this sequence and
the order in which subjects name concepts in a free-
recall task.

In van den Broek’s original implementation, this
model was run on short stories. In the current work,
the model is extended to cover a corpus of transcripts
of physics tutoring dialogs. In the next section we
describe this corpus.

3 Corpus of Tutoring Transcripts

Our corpus was taken from transcripts collected
for the ITSPOKE intelligent tutoring system project
(Litman and Silliman, 2004). This project has col-
lected tutoring dialogs with both human and com-
puter tutors. In this paper, we describe results using
the human tutor corpus.

Students being tutored are first given a pre-test to
gauge their physics knowledge. After reading in-
structional materials about physics, they are given a
qualitative physics problem and asked to write an es-
say describing its solution. The tutor (in our case, a
human tutor), examines this essay, identifies points
of the argument that are missing or wrong, and en-
gages the student in a dialog to remediate those
flaws. When the tutor is satisfied that the student
has produced the correct argument, the student is al-
lowed to read an “ideal” essay which demonstrates
the correct physics argument. After all problems
have been completed, the student is given a post-test
to measure overall learning gains. Fourteen students
did up to ten problems each. The final data set con-
tained 101,181 student and tutor turns, taken from
128 dialogs.

4 Landscape Model & Tutoring Corpus

Next we generated a list of the physics concepts nec-
essary to represent the main ideas in the target solu-
tions. Relevant concepts were chosen by examining
the “ideal” essays, representing the complete argu-
ment for each problem. One hundred and twelve
such concepts were identified among the 10 physics
problems. Simple keyword matching was used to
identify these concepts as they appeared in each line

Concept Name Keywords
above above, over

acceleration acceleration,accelerating
action action, reaction
affect experience,experienced
after after, subsequent

air friction air resistance, wind resistance
average mean

ball balls, sphere
before before, previous
beside beside, next to

Table 1: Examples of concepts and keywords

of the dialog. A small sample of these concepts and
their keywords is shown in Table 1.

Each concept found was entered into the working
memory model with an initial activation level, which
was made to decay on subsequent turns using a for-
mula modeled on van den Broek (1996). Concept
strengths are assumed to decay by 50% every turn
for three turns, after which they go to zero. A sam-
ple portion of a transcript showing concepts being
identified, entering and decaying is shown in Table
2. Connections between concepts were then calcu-
lated as described in section two. A portion of a
resulting concept link matrix is shown in Table 3.

It should be noted that the Landscape model has
some disadvantages in common with other bag-of-
words methods. For example, it loses information
about word order, and does not handle negation well.

As mentioned in section two, van den Broek et al.
created a measure that predicted the order in which
individual concepts would be recalled. For our task,
however, such a measure is less appropriate. We
are less interested, for example, in the specific or-
der in which a student remembers the concepts “car”
and “heavier,” than we are in whether the student re-
members the whole idea that a heavier car acceler-
ates less. To measure these constellations of con-
cepts, we created a new measure of idea strength.

5 Measuring Idea Strength

The connection strength matrices described above
encode data about which concepts are present in
each dialog, and how they are connected. To extract
useful information from these matrices, we used the
idea of a “point.” Working from the ideal essays,
we identified a set of key points important for the
solution of each physics problem. These key points
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Turn Text Concepts
car heavier acceleration cause

Student I don’t know how to answer this it’s got to be slower, cause,
it’s the car is heavier but

5 5 0 0

Tutor yeah, just write whatever you think is appropriate 2.5 2.5 0 0
Student ok, 1.25 1.25 0 0
Essay The rate of acceleration will decrease if the first car is towing

a second, because even though the force of the car’s engine
is the same, the weight of the car is double

5 0.625 5 5

Student ok 2.5 0 2.5 2.5
Tutor qualitatively,um, what you say is right, you have correctly

recognized that the force, uh, exerted will be the same in
both cases,uh, now, uh, how is force related to acceleration?

1.25 0 5 1.25

Table 2: Portion of a transcript, showing activation strengths per turn

car heavier acceleration cause decelerates decrease
car 0 35.9375 115.234375 102.34375 33.203125 33.2

heavier 0 0 3.125 3.125 3.125 3.13
acceleration 0 0 0 107.8125 42.1875 42.19

cause 0 0 0 0 33.203125 33.2
decelerates 0 0 0 0 0 66.41

decrease 0 0 0 0 0 0

Table 3: Portion of link value table, showing connection strengths between concepts

are modeled after the points the tutor looks for in
the student’s essay and dialog. For example, in
the “accelerating car” problem, one key point might
be that the car’s acceleration would decrease as the
car got heavier. The component concepts of this
point would be “car,” “acceleration,” “decrease,” and
“heavier.” If this point were expressed in the di-
alog or essay, we would expect these concepts to
have higher-than-average connection strengths be-
tween them. If this point were not expressed, or only
partially expressed, we would expect lower connec-
tion strengths among its constituent concepts.

The strength of a point, then, was defined as the
sum of strengths of all the links between its compo-
nent concepts. Call the point in the example above
“� � .” point � � has n = 4 constituent concepts, and
to find its strength we would sum the link strengths
between their pairs: “car-acceleration,” “car-
decrease,” “car-heavier,” “acceleration-decrease,”,
“acceleration-heavier,” and “decrease-heavier.” Us-
ing values from Table 3, the total strength for the
point would therefore be:
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For each point, we determined if its connections

were significantly stronger than the average. We
generate a reference average �0/&1 	��
��� by taking 500
random sets of n concepts from the same dialog and
averaging their link weights, where n is the number
of concepts in the target point 1. If the target point
was found to have a significantly (p 2 .05 in a t-test)
larger value than the mean of this random sample,
that point was above threshold, and considered to be
present in the dialog.

The number of above-threshold points was added
up over all dialogs for each student. The total point-
count for student S is therefore:
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Where P is the total number of points in all di-
alogs, and T is a threshold function which returns 1
if �D�E�F���4	��
���A���HG � /?1 	��@�A� , and 0 otherwise.

Fifty-seven key points were identified among the
ten problems, with each point containing between
two and five concepts. The next section describes
how well this point-count relates to learning.

1500 was chosen as the largest feasible sample size given
runtime limitations
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6 Results: Point Counts & Learning

We first define “concept-count” to be the number of
times physics concepts were added to the activation
strength matrix. This corresponds to each “5” in Ta-
ble 2. Now we look at a linear model with post-test
score as the dependant variable, and pre-test score
and concept-count as independent variables. In this
model pre-test score is significant, with a p-value
of .029, but concept-count is not, with a p-value of
.270. The adjusted R squared for the model is .396

Similarly, in a linear model with pre-test score and
point-count as independent variables, pre-test score
is significant with a p-value of .010 and point-count
is not, having a p-value of .300. The adjusted R
squared for this model is .387.

However, the situation changes in a linear model
with pre-test score, concept-count and point-count
as independent variables, and post-test score as the
dependent variable. Pre-test is again significant with
a p-value of .002. Concept-count and point-count
are now both significant with p-values of .016 and
.017, respectively. The adjusted R-squared for this
model rises to .631.

These results indicate that our measure of points,
as highly associated constellations of concepts, adds
predictive power over simply counting the occur-
rence of concepts alone. The number of concept
mentions does not predict learning, but the extent to
which these concepts are linked into relevant points
in the Landscape memory model is correlated with
learning.

7 Discussion

Several features of the resulting model are worth
mentioning. First, the Landscape Model is a model
of memory, and our measurements can be inter-
preted as a measure of what the student is remem-
bering from the tutoring session taken as a whole.

Second, the point-counts are taken from the en-
tire dialog, rather than from either the tutor or stu-
dent’s contributions. Other results suggest that it
would be interesting to investigate the extent to
which these points are produced by the student, the
tutor, or both...and what effect their origin might
have on their correlation with learning. For exam-
ple, (Chi et al., 2001) investigated student-centered,
tutor-centered and interactive hypotheses of tutoring

and found that students learned just as effectively
when tutor feedback was suppressed. They suggest,
among other things, that students self-construction
of knowledge was encouraging deep learning.

8 Summary and Future Work

We have shown that the Landscape Model yields a
measure significantly correlated with learning in our
human-human tutoring corpus. We hope to continue
this work by investigating the use of well researched
NLP methods in creating the input matrix. In ad-
dition, machine learning methods could be used to
optimize the various parameters in the model, such
as the decay rate, initial activation value, and point
strength threshold.
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