
Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 23–27,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

A Core-Tools Statistical NLP Course

Dan Klein

Computer Science Division

University of California, Berkeley

Berkeley, CA 94720

klein@cs.berkeley.edu

Abstract

In the fall term of 2004, I taught a
new statistical NLP course focusing
on core tools and machine-learning al-
gorithms. The course work was or-
ganized around four substantial pro-
gramming assignments in which the
students implemented the important
parts of several core tools, including
language models (for speech rerank-
ing), a maximum entropy classifier, a
part-of-speech tagger, a PCFG parser,
and a word-alignment system. Using
provided scaffolding, students built re-
alistic tools with nearly state-of-the-
art performance in most cases. This
paper briefly outlines the coverage of
the course, the scope of the assign-
ments, and some of the lessons learned
in teaching the course in this way.

1 Introduction

In the fall term of 2004, I taught a new sta-
tistical NLP course at UC Berkeley which cov-
ered the central tools and machine-learning ap-
proaches of NLP. My goal in formulating this
course was to create a syllabus and assignment
set to teach in a relatively short time the impor-
tant aspects, both practical and theoretical, of
what took me years of building research tools to
internalize. The result was a rather hard course
with a high workload. Although the course eval-
uations were very positive, and several of the
students who completed the course were able to

jump right into research projects in my group,
there’s no question that the broad accessibility
of the course, especially for non-CS students,
was limited.

As with any NLP course, there were several
fundamental choice points. First, it’s not possi-
ble to cover both core tools and end-to-end ap-
plications in detail in a single term. Since Marti
Hearst was teaching an applied NLP course dur-
ing the same term, I chose to cover tools and
algorithms almost exclusively (see figure 1 for a
syllabus). The second choice point was whether
to organize the course primarily around linguis-
tic topics or primarily around statistical meth-
ods. I chose to follow linguistic topics because
that order seemed much easier to motivate to the
students (comments on this choice in section 3).
The final fundamental choice I made in decid-
ing how to target this class was to require both
substantial coding and substantial math. This
choice narrowed the audience of the class, but
allowed the students to build realistic systems
which were not just toy implementations.

I feel that the most successful aspect of
this course was the set of assignments, so the
largest section below will be devoted to de-
scribing them. If other researchers are inter-
ested in using any of my materials, they are en-
couraged to contact me or visit my web page
(http://www.cs.berkeley.edu/~klein).

2 Audience

The audience of the class began as a mix of CS
PhD students (mostly AI but some systems stu-
dents), some linguistics graduate students, and

23



a few advanced CS undergrads. What became
apparent after the first homework assignment
(see section 4.2) was that while the CS students
could at least muddle through the course with
weak (or absent) linguistics backgrounds, the
linguistics students were unable to acquire the
math and programming skills quickly enough to
keep up. I have no good ideas about how to ad-
dress this issue. Moreover, even among the CS
students, some of the systems students had trou-
ble with the math and some of the AI/theory
students had issues with coding scalable solu-
tions. The course was certainly not optimized
for broad accessibility, but the approximately
80% of students who stuck it out did what I con-
sidered to be extremely impressive work. For
example, one student built a language model
which took the mass reserved for new words
and distributed it according to a character n-
gram model. Another student invented a non-
iterative word alignment heuristic which out-
performed IBM model 4 on small and medium
training corpora. A third student built a maxent
part-of-speech tagger with a per-word accuracy
of 96.7%, certainly in the state-of-the-art range.

3 Topics

The topics covered in the course are shown in
figure 1. The first week of the course was es-
sentially a history lesson about symbolic ap-
proaches NLP, both to show their strengths (a
full, unified pipeline including predicate logic se-
mantic interpretations, while we still don’t have
a good notion of probabilistic interpretation)
and their weaknesses (many interpretations arise
from just a few rules, ambiguity poorly han-
dled). From there, I discussed statistical ap-
proaches to problems of increasing complexity,
spending a large amount of time on tree and se-
quence models.

As mentioned above, I organized the lectures
around linguistic topics rather than mathemat-
ical methods. However, given the degree to
which the course focused on such foundational
methods, this order was perhaps a mistake. For
example, it meant that simple word alignment
models like IBM models 1 and 2 (Brown et

al., 1990) and the HMM model (Vogel et al.,
1996) came many weeks after HMMs were intro-
duced in the context of part-of-speech tagging.
I also separated unsupervised learning into its
own sub-sequence, where I now wish I had pre-
sented the unsupervised approaches to each task
along with the supervised ones.

I assigned readings from Jurafsky and Mar-
tin (2000) and Manning and Schütze (1999) for
the first half of the course, but the second half
was almost entirely based on papers from the re-
search literature. This reflected both increasing
sophistication on the part of the students and
insufficient coverage of the latter topics in the
textbooks.

4 Assignments

The key component which characterized this
course was the assignments. Each assignment
is described below. They are available for
use by other instructors. While licensing
issues with the data make it impossible to put
the entirety of the assignment materials on
the web, some materials will be linked from
http://www.cs.berkeley.edu/~klein, and
the rest can be obtained by emailing me.

4.1 Assignment Principles

The assignments were all in Java. In all cases,
I supplied a large amount of scaffolding code
which read in the appropriate data files, con-
structed a placeholder baseline system, and
tested that baseline. The students therefore al-
ways began with a running end-to-end pipeline,
using standard corpora, evaluated in standard
ways. They then swapped out the baseline
placeholder for increasingly sophisticated imple-
mentations. When possible, assignments also
had a toy “miniTest” mode where rather than
reading in real corpora, a small toy corpus was
loaded to facilitate debugging. Assignments
were graded entirely on the basis of write-ups.

4.2 Assignment 1: Language Modeling

In the first assignment, students built n-gram
language models using WSJ data. Their lan-
guage models were evaluated in three ways by

24



Topics Techniques Lectures

Classical NLP Chart Parsing, Semantic Interpretation 2
Speech and Language Modeling Smoothing 2
Text Categorization Naive-Bayes Models 1
Word-Sense Disambiguation Maximum Entropy Models 1
Part-of-Speech Tagging HMMs and MEMMs 1
Part-of-Speech Tagging CRFs 1
Statistical Parsing PCFGs 1
Statistical Parsing Inference for PCFGs 1
Statistical Parsing Grammar Representations 1
Statistical Parsing Lexicalized Dependency Models 1
Statistical Parsing Other Parsing Models 1
Semantic Representation 2
Information Extraction 1
Coreference 1
Machine Translation Word-to-Word Alignment Models 1
Machine Translation Decoding Word-to-Word Models 1
Machine Translation Syntactic Translation Models 1
Unsupervised Learning Document Clustering 1
Unsupervised Learning Word-Level Clustering 1
Unsupervised Learning Grammar Induction 2
Question Answering 1
Document Summarization 1

Figure 1: Topics Covered. Each lecture was 80 minutes.

the support harness. First, perplexity on held-
out WSJ text was calculated. In this evaluation,
reserving the correct mass for unknown words
was important. Second, their language models
were used to rescore n-best speech lists (supplied
by Brian Roark, see Roark (2001)). Finally, ran-
dom sentences were generatively sampled from
their models, giving students concrete feedback
on how their models did (or did not) capture in-
formation about English. The support code in-
tially provided an unsmoothed unigram model
to get students started. They were then asked
to build several more complex language mod-
els, including at least one higher-order interpo-
lated model, and at least one model using Good-
Turing or held-out smoothing. Beyond these re-
quirements, students were encouraged to acheive
the best possible word error rate and perplexity
figures by whatever means they chose.1 They
were also asked to identify ways in which their
language models missed important trends of En-

1After each assignment, I presented in class an hon-
ors list, consisting of the students who won on any mea-
sure or who had simply built something clever. I initially
worried about how these honors announcements would
be received, but students really seemed to enjoy hearing
what their peers were doing, and most students made the
honors list at some point in the term.

glish and to suggest solutions.

As a second part to assignment 1, students
trained class-conditional n-gram models (at the
character level) to do the proper name identi-
fication task from Smarr and Manning (2002)
(whose data we used). In this task, proper name
strings are to be mapped to one of {drug, com-

pany, movie, person, location}. This turns
out to be a fairly easy task since the different
categories have markedly different character dis-
tributions.2 In the future, I will move this part
of assignment 1 and the matching part of assign-
ment 2 into a new, joint assignment.

4.3 Assignment 2: Maximum Entropy /
POS Tagging

In assignment 2, students first built a general
maximum entropy model for multiclass classi-
fication. The support code provided a crippled
maxent classifier which always returned the uni-
form distribution over labels (by ignoring the
features of the input datum). Students replaced
the crippled bits and got a correct classifier run-

2This assignment could equally well have been done
as a language identification task, but the proper name
data was convenient and led to fun error analysis, since
in good systems the errors are mostly places named after
people, movies with place names as titles, and so on.

25



ning, first on a small toy problem and then on
the proper-name identification problem from as-
signment 1. The support code provided opti-
mization code (an L-BFGS optimizer) and fea-
ture indexing machinery, so students only wrote
code to calculate the maxent objective function
and its derivatives.

The original intention of assignment 2 was
that students then use this maxent classifier as a
building block of a maxent part-of-speech tagger
like that of Ratnaparkhi (1996). The support
code supplied a most-frequent-tag baseline tag-
ger and a greedy lattice decoder. The students
first improved the local scoring function (keep-
ing the greedy decoder) using either an HMM
or maxent model for each timeslice. Once this
was complete, they upgraded the greedy decoder
to a Viterbi decoder. Since students were, in
practice, generally only willing to wait about 20
minutes for an experiment to run, most chose to
discard their maxent classifiers and build gener-
ative HMM taggers. About half of the students’
final taggers exceeded 96% per-word tagging ac-
curacy, which I found very impressive. Students
were only required to build a trigram tagger
of some kind. However, many chose to have
smoothed HMMs with complex emission mod-
els like Brants (2000), while others built maxent
taggers.

Because of the slowness of maxent taggers’
training, I will just ask students to build HMM
taggers next time. Moreover, with the relation
between the two parts of this assignment gone, I
will separate out the proper-name classification
part into its own assignment.

4.4 Assignment 3: Parsing

In assignment 3, students wrote a probabilis-
tic chart parser. The support code read in
and normalized Penn Treebank trees using the
standard data splits, handled binarization of n-
ary rules, and calculated ParsEval numbers over
the development or test sets. A baseline left-
branching parser was provided. Students wrote
an agenda-based uniform-cost parser essentially
from scratch. Once the parser parsed cor-
rectly with the supplied treebank grammar, stu-
dents experimented with horizontal and vertical

markovization (see Klein and Manning (2003))
to improve parsing accuracy. Students were
then free to experiment with speed-ups to the
parser, more complex annotation schemes, and
so on. Most students’ parsers ran at reasonable
speeds (around a minute for 40 word sentences)
and got final F1 measures over 82%, which is
substantially higher than an unannotated tree-
bank grammar will produce. While this assign-
ment would appear to be more work than the
others, it actually got the least overload-related
complaints of all the assignments.

In the future, I may instead have students im-
plement an array-based CKY parser (Kasami,
1965), since a better understanding of CKY
would have been more useful than knowing
about agenda-based methods for later parts of
the course. Moreover, several students wanted
to experiment with induction methods which
required summing parsers instead of Viterbi
parsers.

4.5 Assignment 4: Word Alignment

In assignment 4, students built word alignment
systems using the Canadian Hansards training
data and evaluation alignments from the 2003
(and now 2005) shared task in the NAACL
workshop on parallel texts. The support code
provided a monotone baseline aligner and eval-
uation/display code which graphically printed
gold alignments superimposed over guessed
alignments. Students first built a heuristic
aligner (Dice, mutual information-based, or
whatever they could invent) and then built IBM
model 1 and 2 aligners. They then had a choice
of either scaling up the system to learn from
larger training sets or implementing the HMM
alignment model.

4.6 Assignment Observations

For all the assignments, I stressed that the stu-
dents should spend a substantial amount of time
doing error analysis. However, most didn’t, ex-
cept for in assignment 2, where the support code
printed out every error their taggers made, by
default. For this assignment, students actually
provided very good error analysis. In the fu-
ture, I will increase the amount of verbose er-

26



ror output to encourage better error analysis for
the other assignments – it seemed like students
were reluctant to write code to display errors,
but were happy to look at errors as they scrolled
by.3

A very important question raised by an
anonymous reviewer was how effectively imple-
menting tried-and-true methods feeds into new
research. For students who will not be do-
ing NLP research but want to know how the
basic methods work (realistically, this is most
of the audience), the experience of having im-
plemented several “classic” approaches to core
tools is certainly appropriate. However, even
for students who intend to do NLP research,
this hands-on tour of established methods has
already shown itself to be very valuable. These
students can pick up any paper on any of these
tasks, and they have a very concrete idea about
what the data sets look like, why people do
things they way they do, and what kinds of er-
ror types and rates one can expect from a given
tool. That’s experience that can take a long time
to acquire otherwise – it certainly took me a
while. Moreover, I’ve had several students from
the class start research projects with me, and,
in each case, those projects have been in some
way bridged by the course assignments. This
methodology also means that all of the students
working with me have a shared implementation
background, which has facilitated ad hoc collab-
orations on research projects.

5 Conclusions

There are certainly changes I will make when I
teach this course again this fall. I will likely
shuffle the topics around so that word align-
ment comes earlier (closer to HMMs for tagging)
and I will likely teach dynamic programming so-
lutions to parsing and tagging in more depth
than graph-search based methods. Some stu-
dents needed remedial linguistics sections and
other students needed remedial math sections,
and I would hold more such sessions, and ear-

3There was also verbose error reporting for assign-
ment 4, which displayed each sentence’s guessed and gold
alignments in a grid, but since most students didn’t speak
French, this didn’t have the same effect.

lier in the term. However, I will certainly keep
the substantial implementation component of
the course, partially in response to very positive
student feedback on the assignments, partially
from my own reaction to the high quality of stu-
dent work on those assignments, and partially
from how easily students with so much hands-
on experience seem to be able to jump into NLP
research.

References

Thorsten Brants. 2000. TnT – a statistical part-of-
speech tagger. In ANLP 6, pages 224–231.

Peter F. Brown, John Cocke, Stephen A. Della
Pietra, Vincent J. Della Pietra, Fredrick Jelinek,
John D. Lafferty, Robert L. Mercer, and Paul S.
Roossin. 1990. A statistical approach to machine
translation. Computational Linguistics, 16(2):79–
85.

Dan Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics and Speech Recognition. Prentice Hall, Engle-
wood Cliffs, NJ.

T. Kasami. 1965. An efficient recognition and syn-
tax analysis algorithm for context-free languages.
Technical Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford, MA.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In ACL 41, pages
423–430.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, Mas-
sachusetts.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In EMNLP 1,
pages 133–142.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguis-
tics, 27:249–276.

Joseph Smarr and Christopher D. Manning. 2002.
Classifying unknown proper noun phrases without
context. Technical report, Stanford University.

Stephan Vogel, Hermann Ney, and Christoph Till-
mann. 1996. HMM-based word alignment in sta-
tistical translation. In COLING 16, pages 836–
841.

27


