
Proceedings of the Second ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL, pages 1–8,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Teaching Applied Natural Language Processing: Triumphs and Tribulations

Marti Hearst
School of Information Management & Systems

University of California, Berkeley
Berkeley, CA 94720

hearst@sims.berkeley.edu

Abstract

In Fall 2004 I introduced a new course
called Applied Natural Language Process-
ing, in which students acquire an under-
standing of which text analysis techniques
are currently feasible for practical appli-
cations. The class was intended for in-
terdisciplinary students with a somewhat
technical background. This paper de-
scribes the topics covered and the pro-
gramming exercises, emphasizing which
aspects were successful and which prob-
lematic, and makes recommendations for
future versions of the course.

1 Introduction

In Fall 2005 I introduced a new graduate level course
called Applied Natural Language Processing.1 The
goal of this course was to acquaint students with the
state-of-the-art of the field of NLP with an empha-
sis on applications. The intention was for students
to leave the class with an understanding of what is
currently feasible (and just on the horizon) to ex-
pect from content analysis, and how to use and ex-
tend existing NLP tools and technology. The course
did not emphasize the theoretical underpinnings of
NLP, although we did cover the most important al-
gorithms. A companion graduate course on Statis-
tical NLP was taught by Dan Klein in the Com-
puter Science department. Dan’s course focused on

1Lecture notes, assignments, and other resources can be
found at http://www.sims.berkeley.edu/courses/is290-2/f04/ .

foundations and core NLP algorithms. Several com-
puter science students took both courses, and thus
learned both the theoretical and the applied sides of
NLP. Dan and I discussed the goals and content of
our respective courses in advance, but developed the
courses independently.

2 Course Role within the SIMS Program

The primary target audience of the Applied NLP
course were masters students, and to a lesser ex-
tent, PhD students, in the School of Information
Management and Systems. (Nevertheless, PhD stu-
dents in computer science and other fields also took
the course.) MIMS students (as the SIMS mas-
ters students are known) pursue a professional de-
gree studying information at the intersection of tech-
nology and social sciences. The students’ techni-
cal backgrounds vary widely; each year a signifi-
cant fraction have Computer Science undergraduate
degrees, and another significant fraction have so-
cial science or humanities backgrounds. All stu-
dents have an interest in technology and are re-
quired to take some challenging technical courses,
but most non-CS background students are uncom-
fortable with advanced mathematics and are not as
comfortable with coding as CS students are.

A key aspect of the program is the capstone fi-
nal project, completed in the last semester, that (ide-
ally) combines knowledge and skills obtained from
throughout the program. Most students form a team
of 3-4 students and build a system, usually to meet
the requirements of an outside client or customer
(although some students write policy papers and
others get involved in research with faculty mem-

1



bers). Often the execution of these projects makes
use of user-centered design, including a needs as-
sessment, and iterative design and testing of the arti-
fact. These projects often also have a backend de-
sign component using database design principles,
document engineering modeling, or information ar-
chitecture and organization principles, with sensitiv-
ity to legal considerations for privacy and intellec-
tual property. Students are required to present their
work to an audience of students, faculty, and pro-
fessionals, produce a written report, and produce a
website that describes and demonstrates their work.

In many cases these projects would benefit greatly
from content analysis. Past projects have included
a system to query on and monitor news topics as
they occur across time and sources, a system to ana-
lyze when and where company names are mentioned
in text and graph interconnections among them, a
system to allow customization of news channels by
topic, and systems to search and analyze blogs. Our
past course offerings in this space focused on infor-
mation retrieval with very little emphasis on content
analysis, so students were using only IR-type tech-
niques for these projects.

The state of the art in NLP had advanced suffi-
ciently that the available tools can be employed for a
number of projects like these. Furthermore, it is im-
portant for students attempting such projects to have
an understanding of what is currently feasible and
what is too ambitious. In fact, I find that this is a key
aspect of teaching an applied class: learning what
is possible with existing tools, what is feasible but
requires more expertise than can be engineered in a
semester with existing tools, and what is beyond the
scope of current techniques.

3 Choosing Tools and Readings

The main challenges for a hands-on course as I’d
envisioned surrounded finding usable interoperable
tools, and defining feasible assignments that make
use of programming without letting it interfere with
learning.

There is of course the inevitable decision of which
programming language(s) to work with. Scripting
tools such as python are fast and easy to prototype
with, but require the students to learn a new pro-
gramming language. Java is attractive because many

tools are written in it and the MIMS students were
familiar with java – they are required to use it for
two of their required courses but still tend to strug-
gle with it. I did not consider perl since python is a
more principled language and is growing in accep-
tance and in tool availability.

In the end I decided to require the students to learn
python because I wanted to use NLTK, the Natural
Language Toolkit (Loper and Bird, 2002). One goal
of NLTK is to remove the emphasis on programming
to enable students to achieve results quickly; and
this aligned with my primary goal. NLTK seemed
promising because it contained some well-written
tutorials on n-grams, POS tagging and chunking,
and contained text categorization modules. (I also
wanted support for entity extraction, which NLTK
does not supply.) NLTK is written in python, and
so I decided to try it and have the students learn a
new programming language. As will be described in
detail below, our use of NLTK was somewhat suc-
cessful, but we experienced numerous problems as
well.

I made a rather large mistake early on by not
spending time introducing python, since I wanted
the assignments to correspond to the lectures and did
not want to spend lecture time on the programming
language itself. I instructed students who had regis-
tered for the course to learn python during the sum-
mer, but (not surprisingly) many of did not and had
to struggle in the first few weeks. In retrospect, I re-
alize I should have allowed time for people to learn
python, perhaps via a lab session that met only dur-
ing the first few weeks of class.

Another sticking point was student exposure to
regular expressions. Regex’s were very important
and useful practical tools both for tokenization as-
signments and for shallow parsing. I assumed that
the MIMS students had gotten practice with regu-
lar expressions because they are required to take a
computer concepts foundations course which I de-
signed several years ago. Unfortunately, the lecturer
who took over the class from me had decided to
omit regex’s and related topics. I realized that I had
to do some remedial coverage of the topic, which
of course bored the CS students and which was not
complete enough for the MIMS students. Again this
suggests that perhaps some kind of lab is needed for
getting people caught up in topics, or that perhaps

2



the first few weeks of the class should be optional
for more advanced students.

I was also unable to find an appropriate textbook.
Neither Scḧutze & Manning nor Jurafsky & Mar-
tin focus on the right topics. The closest in terms
of topic isNatural Language Processing for Online
Applicationsby Peter Jackson & Isabelle Moulinier,
but much of this book focuses on Information Re-
trieval (which we teach in two other courses) and did
not go into depth on the topics I most cared about.
Instead of a text, students read a small selection of
research papers and the NLTK tutorials.

4 Topics

The course met twice weekly for 80 minute periods.
The topic coverage is shown below; topics followed
by (2) indicate two lecture periods were needed.

Course Introduction
Using Large Collections (intro to NLTK)
Tokenization, Morphological Analysis
Part-of-Speech Tagging
Conditional Probabilities
Shallow Parsing (2)
Text Classification: Introduction
Text Classification: Feature Selection
Text Classification: Algorithms
Text Classification: Using Weka
Information Extraction (2)
Email and Anti-Spam Analysis
Text Data Mining
Lexicons and Ontologies
FrameNet (guest lecture by Chuck Fillmore)
Enron email dataset (in-class work) (2)
Spelling Correction / Clustering
Summarization (guest lecture by Drago Radev)
Question Answering (2)
Machine Translation (slides by Kevin Knight)
Topic Segmentation / Discourse Processing
Class Presentations

Note the lack of coverage of full syntactic parsing,
which is covered extensively in Dan Klein’s course.
I touched on it briefly in the second shallow pars-
ing lecture and felt this level of coverage was ac-
ceptable because shallow parsing is often as useful
if not more so than full parsing for most applica-
tions. Note also the lack of coverage of word sense
disambiguation. This topic is rich in algorithms, but

was omitted primarily due to time constraints, but in
part because of the lack of well-known applications.

Based on the kinds of capstone projects the MIMS
students have done in the past, I knew that the most
important techniques for their needs surrounded
text categorization and information extraction/entity
recognition. There are terrific software resources for
text categorization and the field is fairly mature, so
I had my PhD students Preslav Nakov and Barbara
Rosario gave the lectures on this topic, in order to
provide them with teaching experience.

The functionality provided by named entity
recognition is very important for a wide range of
real-world applications. Unfortunately, none of the
free tools that we tried were particularly successful.
Those that are available are difficult to configure and
get running in a short amount of time, and have vir-
tually no documentation. Furthermore, the state-of-
the-art in algorithms is not present in the available
tools in the way that more mature technologies such
as POS tagging, parsing, and categorization are.

5 Using NLTK

5.1 Benefits

We used the latest version of NLTK, which at the
time was version 1.4.2 NLTK supplies some pre-
processed text collections, which are quite useful.
(Unfortunately, the different corpora have different
types of preprocessing applied to them, which of-
ten lead to confusion and extra work for the class.)
The NLTK tokenizer, POS taggers and the shallow
parser (chunker) have terrific functionality once they
are understood; some students were able to get quite
accurate results using these and the supplied train-
ing sets. The ability to combine different n-gram
taggers within the structure of a backoff tagger also
supported an excellent exercise. However, a some-
what minor problem with the taggers is that there is
no compact way to store the model resulting from
tagging for later use. A serialized object could be
created and stored, but the size of such object was
so large that it takes about as long to load it into
memory as it does to retrain the tagger.

2http://nltk.sourceforge.org

3



5.2 Drawbacks

There were four major problems with NLTK from
the perspective of this course. The first major prob-
lem was the inconsistency in the different releases
of code, both in terms of incompatibilities between
the data structures in the different versions, and
incompatibility of the documentation and tutorials
within the different versions. It was tricky to de-
termine which documentation was associated with
which code version. And much of the contributed
code did not work with the current version.

The second major problem was related to the first,
but threw a major wrench into our plans: some of the
advertised functionality simply was not available in
the current version of the software. Notably, NLTK
advertised a text categorization module; without this
I would not have adopted NLTK as the coding plat-
form for the class. Unfortunately, the most current
version did not in fact support categorization, and
we discovered this just days before we were to be-
gin covering this topic.

The third major problem was the incompleteness
of the documentation for much of the code. This
to some degree undermined the goal of reducing the
amount of work for students, since they (and I) had
to struggle to figure out what was going on in the
code and data structures.

One of these documentation problems centered
around the data structure for conditional probabil-
ities. NLTK creates a FreqDist class which is ex-
plained well in the documentation (it records a count
for each occurrence of some phenomenon, much
like a hash table) and provides methods for retriev-
ing the max, the count and frequency of each oc-
currence, and so on. It also provides a class called
a CondFreqDist, but does not document its meth-
ods nor explain its implementation. Users have to
scrutinize the examples given and try to reverse en-
gineer the data structure. Eventually I realized that
it is simply a list of objects of type FreqDist, but
this was difficult to determine at first, and caused
much wasting of time and confusion among the stu-
dents. There is also confusion surrounding the use
of the method namescountand frequencyfor Fre-
qDist. Count refers to number of occurrences and
frequency to a probability distribution across items,
but this distinction is never stated explicitly although

it can be inferred from a table of methods in the tu-
torial.

A less dramatic but still hampering problem was
with the design of the core data structures, which
make use of attribute tags rather than classes. This
leads to rather awkward code structures. For exam-
ple, after a sentence is tokenized, the results of tok-
enization are appended to the sentence data structure
and are accessed via use of a subtoken keyword such
as ‘TOKENS’. To then run a POS tagger over the
tokenized results, the ‘TOKENS’ keyword has to be
specified as the value for a SUBTOKENS attribute,
and another keyword must be supplied to act as the
name of the tagged results. In my opinion it would
be better to use the class system and define objects
of different types and operations on those objects.

6 Assignments

One of the major goals of the class was for the stu-
dents to obtain hands-on experience using and ex-
tending existing NLP tools. This was accomplished
through a series of homework assignments and a fi-
nal project. My pedagogical philosophy surround-
ing assignments is to supply as much as the function-
ality as necessary so that the coding that students do
leads directly to learning. Thus, I try to avoid mak-
ing students deal with details of formatting files and
so on. I also try to give students a starting point to
build up on.

The first assignment made use of some exercises
from the NLTK tutorials. Students completed to-
kenizing exercises which required the use of the
NLTK corpus tool accessors and the FreqDist and
CondFreqDist classes. They also did POS tagging
exercises which exposed them to the idea of n-
grams, backoff algorithms, and to the process of
training and testing. This assignment was challeng-
ing (especially because of some misleading text in
the tagging tutorial, which has since been fixed) but
the students learned a great deal. As mentioned
above, I should have begun with a preliminary as-
signment which got students familiar with python
basics before attempting this assignment.

For assignment 2, I provided a simple set of regu-
lar expression grammar rules for the shallow parser
class, and asked the students to improve on these.
After building the chunker, students were asked to

4



choose a verb and then analyze verb-argument struc-
ture (they were provided with two relevant papers
(Church and Hanks, 1990; Chklovski and Pantel,
2004)). As mentioned above, most of the MIMS stu-
dents were not familiar with regular expressions, so
I should have done a longer unit on this topic, at the
expense of boring the CS students.

The students learned a great deal from working to
improve the grammar rules, but the verb-argument
analysis portion was not particularly successful, in
part because the corpus analyzed was too small to
yield many sentences for a given verb and because
we did not have code to automatically find regu-
larities about the semantics of the arguments of the
verbs. Other causes of difficulty were the students’
lack of linguistic background, and the fact that the
chunking part took longer than I expected, leaving
students little time for the analysis portion of the as-
signment.

Assignments 3 and 4 are described in the follow-
ing subsections.

6.1 Text Categorization Assignment

As mentioned above, text categorization is useful for
a wide range SIMS applications, and we made it a
centerpiece of the course. Unfortunately, we had to
make a mid-course correction when I suddenly real-
ized that text categorization was no longer available
in NLTK.

After looking at a number of tools, we decided
to use the Weka toolkit for categorization (Witten
and Frank, 2000). We did not want the students to
feel they had wasted their time learning python and
NLTK, so we decided to make it easy for the stu-
dents to reuse their python code by providing an in-
terface between it and Weka.

My PhD student Preslav Nakov provided great
help by writing code to translate the output of our
python code into the input format expected by Weka.
(Weka is written in java but has command line and
GUI interfaces, and can read in input files and store
models as output files.) As time went on we added
increasingly more functionality to this code, tying it
in with the NLTK modules so that the students could
use the NLTK corpora for training and testing.3

3Available at http://www.sims.berkeley.edu/courses/is290-
2/f04/assignments/assignment3.html

Both Preslav and I had used Weka in the past but
mainly with the command-line interface, and not
taking advantage of its rich functionality. As with
NLTK, the documentation for Weka was incomplete
and out of date, and it was difficult to determine how
to use the more advanced features. We performed
extended experimentation with the system and de-
veloped a detailed tutorial on how to use the system;
this tutorial should be of general use.4

For the categorization task, we used the “twenty
newsgroups” collection that was supplied with
NLTK. Unfortunately, it was not preprocessed into
sentences, so I also had to write some sentence split-
ting code (based on Palmer and Hearst (1997)) so
students could make use of their tokenizer and tag-
ger code.

We selected one pair of newsgroups which con-
tained very different content (rec.motorcycles
vs. sci.space). We called this the diverse
set. We then created two groups of news-
groups with more homogeneous content (a)
rec.autos, rec.motorcycles, rec.sport.baseball,
rec.sport.hockey, and (b)sci.crypt, sci.electronics,
sci.med.original, sci.space. The intention was to
show the students that it is easier to automatically
distinguish the heterogeneous groups than the
homogeneous ones.

We set up the code to allow students to adjust the
size of their training and development sets, and to
separate out a reserved test set that would be used
for comparing students’ solutions.

We challenged the students to get the best scores
possible on the held out test set, telling them not to
use this test set until they were completely finished
training and testing on the development set. (We re-
lied on the honor system for this.) We made it known
that we would announce which were the top-scoring
assignments. As a general rule I avoid competition
in my classes, but this was kept very low-key; only
the top-scoring results would be named. Further-
more, innovative approaches that perhaps did not do
as well as some others were also highlighted. Stu-
dents were required to try at least 2 different types
of features and 3 different classifiers.

This assignment was quite successful, as the stu-

4Available at http://www.sims.berkeley.edu/courses/is290-
2/f04/lectures/lecture11.ppt

5



dents were creative about building their features,
and it was possible to achieve very strong results
(much stronger than I expected) on both sets of
newsgroups. The best scoring approaches got 99%
accuracy on the 2-way diverse distinction and 97%
accuracy on the 4-way homogeneous distinction.

6.2 Enron Email Assignment

Many of the SIMS students are interested in social
networking and related topics. I decided as part of
the class that we would analyze a relatively new text
collection that had become available and that con-
tained the potential for interesting text mining and
analysis. I was also interested in having the class
help produce a resource that would be of use to other
classes and researchers. Thus we decided to take on
the Enron email corpus,5 on which limited analysis
had been done.

My PhD student Andrew Fiore wrote code to pre-
process this text, removing redundancies, normal-
izing email addresses, labeling quoted text, and so
on. He and I designed a database schema for repre-
senting much of the structure of the collection and
loaded in the parsed text. I created a Lucene6 in-
dex for doing free text queries while Andrew built a
highly functional web interface for searching fielded
components. Andrew’s system eventually allowed
for individual students to login and register annota-
tions on the email messages.

This collection consists of approximately 200,000
messages after the duplicates have been removed.
We wanted to identify a subset of emails that might
be interesting for analysis while at the same time
avoiding highly personal messages, messages con-
sisting mainly of jokes, and so on. After doing nu-
merous searches, we decided to try to focus primar-
ily on documents relating to the California energy
crisis, trading discrepancies, and messages occur-
ring near the end of the time range (just before the
company’s stock crashed).

After selecting about 1500 messages, I devised an
initial set of categories. In class we refined these.
One student had the interesting idea of trying to
identify change in emotional tone as the scandals
surrounding the company came to light, so we added
emotional tone as a category type. Each message

5http://www-2.cs.cmu.edu/ enron/
6http://lucene.apache.org

was then read and annotated by two students using
the pre-defined categories. Students were asked to
reconcile their differences when they had them.

Despite these safeguards, my impression is that
the resulting assignments are far from consistent and
the categories themselves are still rather ad hoc and
oftentimes overlapping. There were many difficult
curation issues, such as how to categorize a message
with forwarded content when that content differed
in kind from the new material. If we’d spent more
time on this we could have done a better job, but as
this was not an information organization course, I
felt we could not spend more time on perfecting the
labels. Thus, I do not recommend the category la-
bels be used for serious analysis. Nevertheless, a
number of researchers have asked for the cleaned
up database and categories, and we have made them
publicly available, along with the search interface.7

The students were then given two weeks to pro-
cess the collection in some manner. I made sev-
eral suggestions, including trying to automatically
assign the hand-assigned categories, extending some
automatic acronym recognition work that we’d done
in our research (Schwartz and Hearst, 2003), using
named entity recognition code to identify various ac-
tors, clustering the collection, or doing some kind of
social network analysis. Students were told that they
could extend this assignment into their final projects
if they chose.

For most students it was difficult to obtain a strong
result using this collection. The significant excep-
tion was for those students who worked on ex-
tending our acronym recognition algorithm; these
projects were quite successful. (In fact, one student
managed to improve on our results with a rather sim-
ple modification to our code.) Students often had
creative ideas that were stymied by the poor quality
of the available tools. Two groups used the MAL-
LET named entity recognizer toolkit8 in order to do
various kinds of social network analysis, but the re-
sults were poor. (Students managed to make up for
this deficiency in creative ways.)

I was a bit worried about students trying to use
clustering to analyze the results, given the general
difficulty of making sense of the results of cluster-

7http://bailando.sims.berkeley.edu/enronemail.html
8http://mallet.cs.umass.edu

6



ing, and this concern was justified. Clustering based
on Weka and other tools is of course memory- and
compute-intensive, but more problematically, the re-
sults are difficult to interpret. I would recommend
against allowing students to do a text clustering exer-
cise unless within a more constrained environment.

In summary, students were excited about build-
ing a resource based on relatively untapped and very
interesting data. The resulting analysis on this un-
tamed text was somewhat disappointing, but given
that only two weeks were spent on this part of the
assignment, I believe it was a good learning experi-
ence. Furthermore, the resulting resource seems to
be of interest to a number of researchers, as was our
intention.

6.3 Final Projects

I deliberately kept the time for the final projects
short (about 3 weeks) so students would not go over-
board or feel pressure to do something hugely time-
consuming. The goal was to allow students to tie
together some of the different ideas and skills they’d
acquired in the class (and elsewhere), and to learn
them in more depth by applying them to a topic of
personal interest.

Students were encouraged to work in pairs, and
I suggested a list of project ideas. Students who
adopted suggested projects tended to be more suc-
cessful than those who developed their own. Those
who tried other topics were often too ambitious and
had trouble getting meaningful results. However,
several of those students were trying ideas that they
planned to apply to their capstone projects, and so
it was highly valuable for them to get a preview of
what worked and what did not.

One suggestion I made was to create a back-of-
the-book indexer, specifically for a recipe book, and
one team did a good job with this project. Another
was to improve on or apply an automatic hierarchy
generation tool that we have developed in our re-
search (Stoica and Hearst, 2004). Students working
on a project to collect metadata for camera phone
images successfully applied this tool to this prob-
lem. Again, social networking analysis topics were
popular but not particularly successful; NLP tools
are not advanced enough yet to meet the needs of
this intriguing topic area. Not surprisingly, when
students started with a new (interesting) text collec-

tion, they were bogged down in the preprocessing
stage before they could get much interesting work
done.

6.4 Reflecting on Assignments

Although students were excited about the Enron col-
lection and we created a resource that is actively be-
ing used by other researchers, I think in future ver-
sions of the class I will omit this kind of assignment
and have the students start their final projects sooner.
This will allow them time to do any preprocessing
necessary to get the text into shape for doing the
interesting work. I will also exercise more control
over what they are allowed to attempt (which is not
my usual style) in order to ensure more successful
outcomes.

I am not sure if I will use NLTK again or not. If
the designers make significant improvements on the
code and documentation, then I probably will. The
style and intent of the tutorials are quite appropriate
for the goals of the class. Students with stronger
coding background tended to use java for their final
projects, whereas the others tended to build on the
python code we developed in the class assignments,
which suggests that this kind of toolkit approach is
useful for them.

7 Conclusions

Overall, I feel the main goals of the course were met.
Although I am emphasizing how the course could be
improved, most students were quite positive about
the class, giving it an overall score of 5.8 out of 7
with a mode of 6 in their anonymous course reviews.
(This is on the low side for my courses; most who
gave it low scores found the programming too diffi-
cult.)

Most students found the material highly stimulat-
ing and the work challenging but not overwhelming.
Several students mentioned that a lab session with
a dedicated TA would have been desirable. Sev-
eral suggested covering less material in more depth
and several commented that the Enron exercise was
a neat idea although not entirely successful in execu-
tion. Students remarked on liking reading research
papers rather than a textbook (they also liked the rel-
atively light reading load, which I feel was appropri-
ate given the heavy assignment load). Some students

7



wanted more emphasis on real-world applications; I
think it would be useful to have guest speakers from
industry talk about this if possible.

I would like to see more research tools devel-
oped to a point to which they can be applied more
successfully, especially in the area of information
extraction. I would also recommend to colleagues
that careful control be retained over assignments and
projects to ensure feasibility in the outcome. It is
more difficult to get good results on class projects in
NLP than in other areas I’ve taught. As we so often
see in text analysis work, it can often be difficult to
do better than simple word counts for many projects.

I am interested in hearing ideas about how to ac-
commodate both the somewhat technical and the
highly technical students, especially in the early
parts of the course. Perhaps the best solution is to
offer an optional laboratory section, at least for the
first few weeks, but perhaps for the entire term, but
this solution obviously requires more resources.

When designing this course I did a fairly extensive
web search looking for courses that offered what I
was interested in, but didn’t find much. I used the
proceedings of the ACL-02 workshop on teaching
NLP (where I learned about NLTK) as well as the
NLP Universe. I think it would be a good idea to
start an archive of teaching resources; ACM SIGCHI
is in the midst of creating such an educational digital
library and this example is worth studying.9

Acknowledgements

Thanks to Preslav Nakov, Andrew Fiore, and Bar-
bara Rosario for their help with the class, and for
all the students who took the class. Thanks also to
Steven Bird and Edward Loper for developing and
sharing NLTK, and for their generous time and help
with the system during the course of the class. This
work was supported in part by NSF DBI-0317510.

References

Timothy Chklovski and Patrick Pantel. 2004. Verbo-
cean: Mining the web for fine-grained semantic verb
relations. InProceedings of EMNLP, Barcelona.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-

9http://hcc.cc.gatech.edu/

phy. American Journal of Computational Linguistics,
16(1):22–29.

Edward Loper and Steven Bird. 2002. Nltk: The natural
language toolkit. InProceedings of the ACL Work-
shop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational
Linguistics, Philadelphia.

David Palmer and Marti A. Hearst. 1997. Adaptive mul-
tilingual sentence boundary disambiguation.Compu-
tational Lingiustics, 23(2).

Ariel Schwartz and Marti Hearst. 2003. A simple
algorithm for identifying abbreviation definitions in
biomedical text. InProceedings of the Pacific Sym-
posium on Biocomputing (PSB 2003), Kauai, Hawaii.

Emilia Stoica and Marti Hearst. 2004. Nearly-automated
metadata hierarchy creation. InProceedings of HLT-
NAACL Companion Volume, Boston.

Ian H. Witten and Eibe Frank. 2000.Data Mining:
Practical machine learning tools with Java implemen-
tations. Morgan Kaufmann, San Francisco.

8


