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Abstract

We present a method to approximate a LTAG
grammar by a CFG. A key process in the ap-
proximation method is finite enumeration of
partial parse results that can be generated dur-
ing parsing. We applied our method to the
XTAG English grammar and LTAG grammars
which are extracted from the Penn Treebank,
and investigated characteristics of the obtained
CFGs. We perform CFG filtering for LTAG by
the obtained CFG. In the experiments, we de-
scribe that the obtained CFG is useful for CFG
filtering for LTAG parser.

Introduction

parser (Sarkar, 2000) in terms of empirical time complex-
ity. Although their approach does not guarantee the theo-
retical bound of parsing complexit®(n®) for a sentence

of lengthn, the empirical results of their CFG filtering are
still satisfactory.

In this paper, we propose a novel context-free approxi-
mation method for LTAG by reinterpreting the method by
Yoshinaga et al. in the context of LTAG parsing. A fun-
damental idea is to enumerate partial parse results that
can be generated during parsing. We assign CFG non-
terminal labels to the partial parse results, and then regard
their possible combinations as CFG rules.

In order to investigate the characteristics of CFGs pro-
duced by our method, we applied our method to two kinds
of LTAG grammars. One is the XTAG English gram-
mar, which is a large-scale hand-crafted LTAG, and the
other is LTAG grammars extracted from Penn Treebank
all Street Journal by the grammar extraction method de-

Adjoining Grammar (LTAG) (Schabes et al., 1988) and_.. . in (Mi | 2 Th .
Head-Driven Phrase Structure Grammar (HPSG) (PoIIarﬁfnbed in (Miyao etal., 2003). Then, we compare pars

and Sag, 1994) have attracted much attention in pra
tical application context (Deep Thought Project, 2003, The remainder of the paper is organized as follows.

Kototoi Project, 2001; Kay et al., 1994; Carroll et al., . .
e . . Section 2 introduces background of our research. Sec-
1998). However, inefficiency of parsing with those gram-; . N .
. tion 3 describes our approximation method. Section 4
mars have prevented us from adopting them for practi- . . :
. ) reports experimental results with the two kinds of LTAG
cal usage. Especially in the LTAG framework, although
. . rammars.
many studies proposed parsers that are theoretically effl!
cient (Vijay-Shanker and Joshi, 1985; Schabes and Joshi,
1988; van Noord, 1994; Nederhof, 1998), we do not at¢ Background
tain any practical LTAG parser that runs efficiently with
large-scale hand-crafted grammars such as the XTAG E
glish grammar (XTAG Research Group, 2001). An LTAG consists of a set of tree structures, which are as-
Yoshinaga et al. (Yoshinaga et al., 2003) demonstrategigned to words, calledementary trees. A parse tree is
that a drastic speed-up of LTAG parsing can be achievederived by combining elementary trees using two gram-
when a LTAG grammar is compiled into a HPSG (Yoshi-mar rules calledsubstitution and adjunction. Figure 1
naga and Miyao, 2002) and a CFG filtering technique foshows elementary trees fot”, “run” and*“can”, and
HPSG-Style grammar (Kiefer and Krieger, 2000; Tori-depicts how they are combined by substitution and ad-
sawa et al., 2000) is applied to the obtained HPSG. In ejunction.
periments with the XTAG English grammar, they found Substitution replaces a leaf node of an elementary tree
that an HPSG parser with CFG filtering (Torisawa eby another elementary tree whose root node has the same

al., 2000) outperformed a theoretically efficient LTAG label as the leaf node. In Figure 1, the leaf node labeled

%_.1 Lexicalized Tree-Adjoining Grammar (LTAG)

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.
Pages 171-177.
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Figure 1: LTAG: elementary trees, substitution and ad- Figure 2: CFG filtering
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tree by another elementary tree whose root node and one
leaf node called doot node have the same label as the
internal node. In Figure 1, the internal node labeled “VP”
of a; is replaced by3,, which has a root node and a foot
node labeled “VP."

Figure 3: The existing CF approximation for LTAG

given in the elementary trees, we must examine many
2.2 CFG filtering global constraints in the second phase.

CFG filtering (Harbusch, 1990; Maxwell Il and Kaplan, CFG filte_ring techniqueg_have also peen developed for
1993; Torisawa and Tsuijii, 1996) is a parsing scheme th&iPSC (Torisawa and Tsujii, 1996; Torisawa et al., 2000;
filters out impossible parse trees using a CFG extractdd€fer and Krieger, 2000). CFG rules are extracted by
from a given grammar prior to parsing. In CFG fiItering,aPply'”g grammar rules tp lexical entries and by enumer-
we first perform an off-line extraction of a CFG from a &ling partial parse resultsgn) that can be generated dur-
given grammar, Context-free (CF) approximation). By N9 parsing (|n_F|gu_re 4): The obt_alned C_FG can capture
using the obtained CFG we can compute efficiently th@lobal constralr)ts given in the lexical entries, because the
necessary condition for parse trees the original gramm&enerated partial parse results preserve the whole con-
could generate. Parsing using the obtained CFG as a fiitraints given in the lexical entries.
ter comprises two phases (Figure 2). In the first phase, As Yoshinaga et al. demonstrated using HPSG-style
we parse a sentence by the obtained CFG. In this phaggammar converted from LTAG, finite enumeration of
the necessary condition represented by the CFG acts partial parse results produces a better CFG filter than the
a filter of parse trees. In the second phase, using trexisting CF approximation for LTAG because of its abil-
whole constraints in the original grammar, we examindty to capture the global constraints. In the paper, we
the generated parse trees, and eliminate overgeneratedinterpret CF approximation of HPSG by Yoshinaga’'s
parse trees. method (Yoshinaga et al., 2003).
The performance of parsers with CFG filtering de-
pends on the degree of the CF approximation (Yoshina . . .
et al., 2003). If CF approximation is good, the numbe%l CF Approximation algorithm for LTAG
of overgenerated parse trees is small. Thus, the key to
achieve efficiency in LTAG parsing is to maintain gram-In this section, we describe an algorithm of our CF ap-
matical restrictions in CFG as efficiently as possible. Th@roximation of LTAG. In the following, we first describe
more of the grammatical constraints in the given graman approximation of LTAG which consists only of single-
mar the obtained CFG captures, the more effectively wanchored elementary trees. We then describe an approx-
can restrict the search space. imation of general LTAG which includes multi-anchored
There are existing CFG filtering techniques forélementary trees.
LTAG (Harbusch, 1990; Poller and Becker, 1998). These In Section 3.1, we introduce a basic idea in our method.
techniques extract CFG rules by simply dividing elemenin Section 3.2, we explain our method in detail. In Sec-
tary trees into branching structures as shown in Figure 3ion 3.3, we explain the way of applying our method to
Since the obtained CFG can capture only local constraintSTAG which comprises multi-anchored elementary trees.
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3.1 Basic ldea

The fundamental idea of our approximation method is to ) L .
enumerate partial parse results that can be generated dur-  Figure 6: Division of a tree into two parts
ing parsing. We obtain a CFG by assigning CFG non-
terminal labels to the partial parse results, and regar
ing bottom-up derivation relationships between the pa% 2 Algorithm
tial parse results as CFG rules. Table 1 shows pseudo-code of our approximation algo-
By recursively applying substitution and adjunctionrithm. The algorithm takes LTA® as input and outputs
to elementary trees, we enumerate partial parse resuRsCFGG'.
derivable by LTAG. We adopt one of the existing mode, We start by explaining the top-level function
head-corner traversal (van Noord, 1994) (Figure 5), to ‘ ‘ extract cfgfromltag.’’ The function
recursively apply grammar rules. iteratively picks up two active partial parse trees from
In the first step of head-corner traversal, an elementatfie set of active partial trees generated so far, and
tree is taken as input and a directed path from an anchapplies possible grammar rules. Whenever a new active
node callechead-corner to the root node is defined in a partial parse tree is generated, we assign a new CFG
certain manner. The path traverses along all the nodes iton-terminal label and add it to the set. In case that
the elementary tree. Then, grammar rules are incremenew partial parse results have not been added during one
tally applied to each node along the path. iteration, we exit withG’, which is the resulting CFG.
We assign a non-terminal label of CFG to a subtree. The function' * appl y rul es’’ applies the gram-
A labeled subtree must include all information for enu-mar rules to two active partial trees, and change the pro-
meration. We determine this subtree as follows. A tregessing node to the next node. We apply unary rule in
is divided into two parts, at the node to which we are apline 5, substitution in line 8, and adjunction in line 12.
plying a grammar rule (Figure 6). The “lower” part of Let us consider the extraction of CFG from LTAG de-
the tree is a subtree below the node to which we are affined in Figure 1. Figure 7 shows the extraction pro-
plying a grammar rule. The “upper” part consists of thecess. The initial active partial treés B andC originate
nodes to which we will apply grammar rules in the restfrom a1, a,, and ;. In the first iteration in the func-
of enumeration. We need only the “upper” part of thetion * * extract cfg_fromltag’’, two partial ac-
tree that includes all information necessary in the rest dive trees,D andE, and two CFG rulesD — B and
the enumeration process. In this paper, we call the node — C are extracted. In the second iteration, one partial
to which we are applying a grammar rulepeocessing active treef and two CFG ruleds — D EandF — E
node and we call the upper part of a tree active par-  are extracted. In the third iteration, one partial active tree,
tial tree. CFG non-terminal labels are assigned to eacks, and one CFG rul€; — AF are extracted.
active partial tree. When substitution is applied to an active partial tree,
By assigning CFG non-terminals to generated activéhe size of the parent’s active partial tree is smaller than
partial trees, we obtain CFG rules as bottom-up deriveehild’s active partial trees. Thus, the number of gener-
tion relationships between them. In Figure 7, the fol-ated active partial trees is finite, and the number of non-
lowing CFG rules are obtaineds — AF, F — E, terminal labels in the obtained CFG is finite as well. In
E - DE,D —- BandE — C. other words, if the CFG rules comprise only substitutions,
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Table 1: The pseudo code of our algorithm

INPUT: G /*
QUTPUT: G /*

LTAG */
CFG */

T: [/* a set of all active partial trees for nth iteration generated so far */
NT,: /* a set of new active partial trees for nth iteration */
Initialize:
Th =
NT, : = etree(G)
G :=9¢
n:=1
1: procedure extract cfgfromltag(G)
2: begin
3: while ( NTa#¢ )
4. Tn .= Tn,lUNTn
5: foreach nty in ( NT, )
6: foreach thy in ( Ty)
7: NT : = apply-_rules( t,, nty )
8: NThi1 = NTUNTh 1
9: end foreach
10: end foreach
11: n++
12: end while
13: return G
14: end extract cfgfromltag
1: procedure apply._rul es(ty, t)
2: begin
3: NT := ¢
4: if ( sibling( cnode( tg ) ==nil ) ) /* if we cannot apply grammar rules */
5: NT = unary( t1 )
6: G = makerule( t;, NT ) U G
7: else if ( sibling( cnode( t; ) ) == “‘subst’’ ) /* if we can apply substitution */
8: NT = substitute( ty, t1 )
9: G = makerule( tp, t1) UG
10: else if ( sibling( cnode( t; ) ) == ‘“‘foot’’ ) /* if we can apply adjunction */
11: if ( depthfoot( t1 ) == 1 || count_adjoing( t1 ) <= LIMT)
12: NT = adjoin( t;, t2)
13: G = makerule( tp, t1) UG
14: if ( depthfoot( t1 ) >= 2 && count_adjoing( tg ) >LIMT)
15: NT = =«
16: G = makerule( tp, t1) UG
17: end if
18: end if
19: return NT
20: end applyrules
etree: To return the elementary trees with head-corner paths.
c_node: To return the processing node of the argument.
unary: To return an active partial tree with the node
which we will apply the grammar rules after.
nake_rul e: To return the CFG rule of arguments

substitute: To apply the rule and to return new active partial tree,
if we can apply the grammar rule of substitution to the arguments,
To apply the rule and to return new active partial tree,

if we can apply the grammar rule of adjunction to the arguments.

adj oi n:
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LTAG can be converted to CFG in finite size.
We must be careful about the depth of a foot node of
an auxiliary tree when adjunction is applied to an active

partial tree. If the depth of a foot node is one, active parE:?nverting those trees into single anchored trees. When

tial tree becomes the same as one of the wo active partig grammar includes multi-anchored elementary trees, we

trees to W.hiCh adjunction are applieq. If th(_a depth of asimply replace an anchor node of them by a node to which
foot node is two or more, parent’s active partial tree takeﬁan be applied a grammar rule of substitution (FQin

a form of a combination of two active part.lal tree; (F'g'Figure 9), and add a new elementary tree (@-" to”
ure 8). This means that the number of active partial trees Figure 9)

increases infinitely, if there are some auxiliary trees with
a foot node at depth two or more. 4
In order to prevent the infinite increase of active partial
trees, we count the number of the applications of adjunan order to observe the characteristics of CFG obtained
tion which generates new active partial trees, and assidy our method, we performed three experiments. In Sec-
a special non-terminak” to active partial trees when the tion 4.1, we apply our method to the XTAG English
number of the applications reach a certain threshold. Wgrammar. In Section 4.2, we apply our method to LTAG
thenadd CFG rules, — X xand+x — * Xforallnon- grammars of various size extracted from a corpus, and
terminal labels X” in order to guarantee that the resultedinvestigate the relation between the size of LTAG gram-
CFG can generate all parse trees that LTAG can generatfars and the specification of the obtained CFG. In Sec-
By using these rules, resulted CFG always generate pargén 4.3, we examine the characteristics of the obtained
trees which are derivable by the given grammar. Thus theFG in terms of the parsing speed, and compare the pars-
obtained CFG can be used as a filter. ing speed of a CKY parser using the obtained CFG with
the parsing speed of an existing LTAG parser.

Figure 9: compiling XTAG English grammar

Experiments

3.3 Extention to LTAG including multi-anchored
trees 4.1 Experiment on threshold value of adjunction

Our method can be applied to LTAG with elementaryWe applied our algorithm to the XTAG English grammar.
trees which contain only one anchor. It is the reason thdh Table 2, we show the obtained CFG approximation of
the path from a head node to a root node becomes sd¢he XTAG English grammar. In this experiment, we var-
tled uniquely. The above approximation algorithm a hanied threshold value of times of adjunction, which gener-
dle general LTAG with multi-anchored trees by simplyates a new active partial tree, 0.
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Table 2: approximating the XTAG English grammar by5 Concluding Remarks and Future

CEG direction
# of elementary trees of XTAG 924 In this paper, we showed an approximating method of
# of terminal labels 924 LTAG by CFG. A specification of a CFG obtained from
# of non-terminal labels 2,779 the XTAG English grammar shows that our method is ef-
# of rules 31,503 ficient in the number of CFG rules. In addition, we com-

pared parsing performance between the existing LTAG
parser and the CKY parser with CFG which is obtained
) . . . from automatically extracted LTAG grammars. The com-
Eveniif the threshold is small, an obtained CFG is US€sison showed that the obtained CFG is useful for CFG
ful for parsing, because we hardly perform an adjunctiotiyiering for a LTAG parser. We will implement CFG fil-

using an auxiliary tree with a foot node with the depthygying for 4 L TAG parser, and verify the efficiency of CFG
of two or more in LTAG parsing. The maximum numberfiltering with our approximated CFG.

of the possible rules is,279x (9244 2,779) 4+ 2,779x

(9244-2,779) x (924+2,779) = 370338116519 448.

Our method produced 31,503 rules (aboi0®08% of References
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Table 3: LTAG grammars extracted from Penn Treebank Wall Street Journal

corpus 02-06 | 02-11 | 02-16 | 02-21
# of words 2285 | 3662 | 5074 | 6056
# of non-terminals 190 207 211 216
# of elementary tree 1061 | 1484 | 1854 | 2111

Table 4: Obtained CFG from LTAG grammars

corpus 02-06 | 02-11| 02-16| 02-21
# of terminal labels 1061 | 1484 1854 2111
# of non-terminal labely 1768 | 2780 3458 3911
# of rules 45173 | 92908 | 129542 | 154407
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