
Metagrammars: a new implementation for FTAG

Sébastien Barrier, Nicolas Barrier
Laboratoire de linguistique formelle

Case Postale 7031
2, place Jussieu 75251 Paris Cedex 05, France�

sebastien,nicolas � .barrier@linguist.jussieu.fr

Abstract

This paper describes work on creating elemen-
tary trees for adjective and predicative noun
families (Barrier, 2002; Barrier and Barrier,
2003) using Metagrammars, for the FTAG
grammar (Abeillé, 1991; Abeillé, 2002). Based
on the Candito’s work on Metagrammars (Can-
dito, 1996; Candito, 1999a), it adds a fourth
dimension, specially designed for word order
specification.

1 The metagrammar compiler

Metagrammars represent a TAG as a multiple inheritance
network, whose classes specify syntactic properties. An
important aspect of classes is that they are all related to
one another. Inheritance enables classes that are logi-
cally related to one another to share the behaviors and
attributes that they have in common.

Our metagrammar imposes an overall organization for
syntactic data and formelizes the well-formedness con-
ditions on elementary tree sketches (Vijay-Shanker and
Schabes, 1992; Rogers and Vijay-Shanker, 1994).

Each syntactic property of the hand-written inheritance
network – the hierarchy – is declared as a complete syn-
tactic set of partial descriptions. Those partial descrip-
tions can be seen as syntactic constraints (dominance, lin-
ear precedence, ...) which may leave underspecified the
relation between two nodes – the relation can be further
explained by adding constraints in sub-classes of the net-
work.

In concrete terms, data are defined as global variables
augmented with specific meta-features, constraining for
instance the possible part of speech of a node, or function
for argument ones.

Structures sharing the same initial subcategorization
frame may only differ in the surface realization of the fi-

nal syntactic function of the arguments nodes, according
to their redistribution.

The hand-written hierarchy was initially divided into
3 dimensions, and has been more recently extended to 4
dimensions (Barrier and Barrier, 2003):

� Dimension 1 : initial subcategorization.

� Dimension 2 : redistribution of functions.

� Dimension 3 : Surface realizations of syntactic func-
tions.

� Dimension 4 : word order specification of surface
realizations of syntactic functions.

Contrary to (Vijay-Shanker and Schabes, 1992), we do
not have explicit lexical rules: diathesis alternations are
represented by classes of dimension 2, whereas marked
and unmarked cases are represented by classes of dimen-
sion 3. Dimension 4 allows to express word order in a
directly readable and not confusing way: classes of di-
mension 1 and 2 were clearly inappropriate (word order
has nothing to deal with declaration of grammatical func-
tions), whereas classes of dimension 3 couldn’t predict
the existence or the lack of another argument.

In order to automatically generate elementary trees,
the compiler creates additional classes, named ”crossing-
classes”. Each crossing class inherits from one class of
dimension 1, then inherits from one class of dimension
2, and lastely inherits from classes of dimension 3, repre-
senting the realizations of every function of the final sub-
categorization. Classes of dimension 4 are not crossed
automatically: all the crossings are declared manually
by the metagrammar’s writer so that he can only express
the crossings, which are necessary. Crossings are accord-
ingly only done when all the relevant classes are involved.

Finally each crossing class is translated into one
or more elementary trees, satisfying all inherited con-
straints.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 132-139.

Dimension 1
The class (DI-TRANS) inherits

from (SUBJ), (OBJ) and (IND-OBJ)
(SUBJ) Class (OBJ) Class (IND-OBJ) Class

Variable ������� stands for �	��

� Variable ������� stands for �	����� Variable ������� stands for �����
and bears Subject function and bears Object function and bears Indirect Object function

Dimension 2
The class (NO-REDIS) inherits from (VB-MORPH)

(VB-MORPH) Class
Variable ��� stands for �

Variable ������� stands for !�
Variable ��"$#%�'&(� stands for �)

���

���*���

��"$#��'&(�

Dimension 3
The class (SUBJ-CAN) inherits The class (OBJ-CAN) inherits The class (IND-OBJ-CAN) inherits

from (POS-SUBJ) from (POS-OBJ) from (POS-IO)
(POS-SUBJ) allows to group all (POS-OBJ) allows to group all (POS-IO) allows to group all
the realizations of the Subject the realizations of the Object the realizations of the Indirect Object

(SUBJ-CAN) Class (OBJ-CAN) Class (IND-OBJ-CAN) Class
Variable "$� bears Subject function Variable "�� bears Object function Variable �+� bears Indirect Object function

Variable �,�.-/� stands for 01&()
Variable "2� stands for �	�3�4�

���

"$� �������

�������

��"$#%�'&(� "��

�������

��"$#%�'&.� �+�

�'�.-/� "2�

Dimension 4
(OBJ 5 IO) Class

This class will be used when both (OBJ-CAN) and (IND-OBJ-CAN) will appear

���*���

"�� ���

Table 1: Verbal hierarchy for di-transitive verbs

133

An inheritance hierarchy such as the one shown in Ta-
ble 1, allows to represent the relevant tree sketch for the
english sentence Max gives a book to Peter. It will be
compiled out of an initial subcategorization with subject,
direct object and indirect object (dimension 1), an active
canonical redistribution (dimension2), canonical realiza-
tions of subject, direct object and indirect object (dimen-
sion 3), and a special word order, specifying indirect ob-
ject follows direct object (dimension 4).

The compiler will automatically cross (DI-TRANS),
(NO-REDIS), (SUBJ-CAN), (OBJ-CAN) and (IND-
OBJ-CAN) classes. As (OBJ-CAN) and (IND-OBJ-
CAN) are crossed, (OBJ � IO) will also be crossed with
the other classes. The resulting tree sketch will be the
conjunction of all quasi-tree descriptions contained in
each class. The nodes with same variables will unify;
the variables with same function will also unfify.

�

������� 	 �

	�
 ���
��� �����

���
 ��� � �

Figure 1: Elementary tree for Mary gives a book to Peter

Note that the metagrammar compiler makes use of
variables as global variables. There is no way to use local
variables. Linear precedence can’t be expressed without
reference to dominance.

The Metagrammar compiler we use was first devel-
oped by (Candito, 1999a) in Lucid Common Lisp and has
been in part reimplemented in CLISP by (Barrier, 2002).
It generates tree sketches in both XTAG or TAGML2 for-
mat with t-feature structures (see below).

2 Choices and implementation

2.1 Linguistics principles and general choices

As mentionned in (Abeillé et al., 2000), FTAG elemen-
tary trees respect the following well-formedness princi-
ples :

� Strict lexicalization: all elementary trees are an-
chored by at least one lexical element (the empty
string cannot anchor a tree by itself)

� Semantic consistency: no elementary tree is seman-
tically void

� Semantic minimality: elementary trees correspond
to no more than one semantic unit

� Predicate argument cooccurence principle : an ele-
mentary tree is the minimal syntactic structure that
includes a leaf node for each realized semantic argu-
ment of the anchor(s)

Semantic minimality and consistency imply that func-
tion words appear as co-anchors.

Most of the linguistic analyses follow those of
(Abeillé, 1991; Abeillé, 2002) (except that clitic argu-
ments are substituted and not adjoined), complemented
by (Candito, 1999a). We dispense with most empty cate-
gories, especially in the case of extraction. Semantically
void (or non autonomous) elements, such as complemen-
tizers, argument marking prepositions or idiom chunks
are co-anchors in the elementary tree of their governing
predicate.

Passive is characterized by a particular morphology,
with a substitution node for the auxiliary verb. Causative
constructions are analyzed as complex predicates, with a
flat structure, with a substitution node for the causative
verb.

For oblique complements, we distinguish between a-
objects, de-objects, locatives and other prep-objects, de-
pending on the pronominal realization of the comple-
ment.

2.2 New families for FTAG

We have chosen not to reuse Candito’s verbal hierarchy
because of inconsistencies: it was not fully documented
and hard to understand. Some classes of dimension 3 in-
herit from classes of dimension 1 or 2, which is normally
not allowed by the metagrammar concept. Furthermore,
this verbal hierarchy contains some empty classes.

We developed 34 new families: 16 adjectival families
allow us to create 2690 tree sketches, whereas 18 support
verb families allow us to create over 10.000 tree sketches.

2.2.1 Adjectival families

We regard the adjective as the local head of the ad-
jectival predicate, and consider object predicate’s con-
structions as an alternative of causative constructions. An
unique family provides tree sketches for both predicative
and attibutive adjectives, so that we can encode relative
clauses or clitics for different kind of adjective comple-
ments. We describe the concept of subject as the cate-
gory modified by the adjective. No object function can
be found: all the complements of the adjectival predicate
are always indirect ones.

Our grammar covers the following types of redistribu-
tion :

� Predicative adjective : Jean est barbu

134

� Causative : Sarah Vaughan rend les gens heureux

� Passive causative : Des gens sont rendus heureux

� Impersonal causative passive : Il est rendu impossi-
ble de faire cela

� Impersonal : Il est inacceptable de dormir ici

� Attributive adjective : Un homme heureux

The syntactic realizations covered are canonical po-
sition, extraction (cleft and relativized), clitic or non-
realized.

2.2.2 Predicative noun families
The lexical head is only the predicative noun, whereas

the support verb is substituted into the tree associated
with the noun. This differs from the light verb fami-
lies from XTAG (and also from the previous versions of
FTAG) where the verb and the noun both anchor the tree.
An unique family provides tree sketches for support verb
constructions and nominal phrases.

Our grammar covers the following types of redistribu-
tion :

� Active: Max commet un crime contre Luc

� Passive: Un crime est commis par Max contre Luc

� Middle: Un crime se commet contre Luc en 5 min-
utes

� Causative: Léa fait commettre une crime à Max con-
tre Luc

� Passive Impersonal: Il est commis un crime par Max
contre Luc

� Impersonal Middle: il se commet un crime toutes les
5 minutes

� Nominal phrase: le crime de Max contre Luc

The syntactic realizations covered are canonical posi-
tion, extraction (cleft, relativized and questionned), clitic
and non-realized.

Datasheet for adjective and predicative noun hierar-
chies can be found at the end of this article. Each page
represents Dimension 1, 2 and 3. Dimension 4 is not
shown since it is not particular to these hierarchies. It
is specially used for clitic word order.

2.3 Main difficulties

A typical error consists in encoding more than a class
expects. One may de facto limit the syntactic proper-
ties sharing. Metagrammars do not exempt from study-
ing syntactic phenomena but force ones to understand
what classes share with in terms of syntactic properties.

Since arguments are realized as independent functions the
metagrammar’s writer not only has to find a way to ar-
range them correctly inside the tree but has to encode his
classes so that they can be reused for another category.

Another place metagrammars and inheritance net-
works go wild is in making very deep hierarchy. It can
be very tedious to look many levels up to the tree to find
out what a particular inherited variable is supposed to be:
it is easy to create complex hierarchy that is hard to un-
derstand, even for the metagrammer’s writer who created
it. Inheritance, just like many other elements of OOP is
just a tool. If the problem calls for it, it seems interest-
ing to use it, but one doesn’t see it as a solution to all
problems. With proper usage, metagrammars will save
the writer from retyping and will show him that different
linguistic objects are related.

3 Current and future work

To take advantage of the hierarchical representation of
tree sketches within our metagrammar, we characterize
tree sketches as feature structures we call t-feature struc-
tures (Abeillé et al., 1999).

Figure 2: Tree sketch for a causative construction used
for an adjectival predicate

While the automatic generation of the grammar in-
sures consistency, errors may still propagate but on a
larger scale, with dramatic effects if it remains unde-
tected. These feature-structures keep track of the succes-
sive mapping steps that are performed during the genera-

135

���
����� ���

�
	 �
�
�
������� �
� �

� ���

���
����� � �
� �����
�����

�
 � ���

�
	 �!� �
������� �
� � 	

� �"�

Un homme fier de sa fille Max qui est fier de sa fille
A man proud of his daughter Max who is proud of his daughter

�$#
 #&%

'�(%
' �

 %)�
�
� �

������� �
� � 	

� �"�
� �

'
��� �

�
 � ��	 ��� �

C’est de sa fille qu’est fier Max
It is of his daughter that Max is proud

Table 2: Some elementary trees taken from n0A(den1) family

�
��� � � �*	 �
� �

�)���+� ��� � �"�

�
�*	 �,.- %�� 0/1/2,1��3 � �!� �

������� �
�546� ��� �

�
� �
������� ��� � ���

Max commet un crime contre Luc Un crime est commis par Max contre Luc
Max commits a crime against Luc A crime is commited by Max against Luc

�
�87

�9	 �
� �
�)����� ��� � �"�

 ,1- % � /�/2,.��3 � �
� �
������� �

�546� ��� �

� 7
�*	 �
� �
������� �
� �

��� �
�
�
�

������� ��� � �"�

Un crime contre Luc est commis par Max Le crime de Max contre Luc
A crime against Luc is committed by Max Max’s crime against Luc

Table 3: Some elementary trees taken from the :<;�= �?>A@ :)BDC family

136

tion process.
Characterizing tree sketches as a combination of fea-

tures allows us to refer to a set of tree sketches simply by
under specifying a feature structure.

It could also be interesting to merge all the hierachies
into one. But this will probably be a hard task1. Each
Metagrammar’s writer has indeed his own view of spe-
cific problems.

We hope to evaluate our grammar in few weeks by us-
ing treebank ’Le Monde’ developed at Paris 7 University
(Abeillé et al., 2003).

References

Anne Abeillé and Owen Rambow. 2000. Tree Adjoining
grammars. CSLI Publications.

Anne Abeillé, Marie-Hélène Candito, and Alexandra
Kinyon. 1999. Ftag: current status and parsing
scheme. In Vextal’99.

Anne Abeillé, Marie-Hélène Candito, and Alexandra
Kinyon. 2000. The current status of FTAG. In Pro-
ceedings of TAG+5.

Anne Abeillé, Nicolas Barrier, and Sébastien Barrier.
2001. FTAG, une grammaire LTAG du français. Tech-
nical Report 1.0.

Anne Abeillé. 1991. Une grammaire lexicalisée
d’arbres adjoints pour le français. Ph.D. thesis, Uni-
versité Paris 7.

Anne Abeillé. 2002. Une grammaire électronique du
français. CNRS Editions.

Anne Abeillé, Lionel Clément, and François Toussenel.
2003. Building a treebank for French. In A. Abeillé,
editor, Treebanks: building and using parsed corpora,
pages 165–188. Kluwer academic publishers.

Sébastien Barrier and Nicolas Barrier. 2003. Une
métagrammaire pour les noms prédicatifs du français.
In TALN 2003.

Nicolas Barrier. 2002. Une métagrammaire pour les ad-
jectifs du français. In TALN 2002.

Davy Boonen. 2001. Le prédicat adjectival en ftag. Mas-
ter’s thesis, Université Paris 7.

Marie-Hélène Candito. 1996. A principle-based hier-
archical representation of ltag. In Proceedings B������
COLING.

Marie-Hélène Candito. 1999a. Représentation modu-
laire et paramétrable de grammaires électroniques lex-
icalisées, application au français et à l’italien. Ph.D.
thesis, Université Paris 7.

1Of course, it does not mean all the new tree sketches cannot
be combined into one grammar.

Marie-Hélène Candito. 1999b. Un outil multilingue de
construction semi-automatique de grammaire d’arbres
adjoints. In TAL, volume 40.

Laurence Danlos. 1992. Support verb constructions. In
Journal of French Linguistic Study.

Laurence Danlos. 1998. GTAG, un formalisme lexicalisé
pour la génération inspiré de TAG. In TAL, volume
39.2.

Bertrand Gaiffe, Benoı̂t Crabbé, and Azim Roussanaly.
2002. A new metagrammar compiler. In Proceedings
of TAG+6.

Kim Gerdes. 2002. Topologie et grammaires formelles
de l’allemand. Ph.D. thesis, Université Paris 7.

Jacqueline Giry-Schneider. 1978. Les nominalisations
en français. Droz. Genève-Paris.

Jacqueline Giry-Schneider. 1987. Les prédicats nom-
inaux en français. Droz. Genève-Paris.

Jan Goes. 1999. L’adjectif entre nom et verbe. Duculot.

Maurice Gross. 1981. Les bases empiriques de la notion
de prédicat sémantique. In Langages, volume 63.

Zellig Harris. 1968. Mathematical structures of lan-
guage. Wiley-Interscience.

Alexandra Kinyon. 2000. Even better than supertags:
introducing hypertags. In Proceedings of TAG+5.

Michèle Noailly. 1990. Le substantif épithète. PUF.
Paris.

Michèle Noailly. 1999. L’adjectif en français.
OPHRYS. Paris.

J. Rogers and K. Vijay-Shanker. 1994. Obtaining trees
from their descriptions, an application to tree adjoining
grammar. In Computational intelligence, volume 10.4.

K. Vijay-Shanker and Y. Schabes. 1992. Structure shar-
ing in lexicalized tree adjoining grammar. In Proceed-
ings of COLING-92.

137

Annexe A - Datasheet for Adjectives

Family Example Family Example

n0A Jean est barbu n0A(as1) Jean est attentif à ne blesser personne
John is bearded John is cautious not to hurt anyone

n0A(pn1) Jean est fort en histoire n0A(des1) Jean est certain qu’ils viendront
John is good at history John is convinced they will come

n0A(an1) Jean est sourd à cette proposition n0A(an1)(des2) Jean est reconnaissant à Marie de faire ses devoirs
John is deaf to this proposal John thanks Mary for doing his homework

n0A(den1) Jean est amoureux de Marie s0A Prendre le thé sur la pelouse est inacceptable
John is in love with Mary Having tea out on the lawn is unacceptable

n0A(an1)(pn2) Jean est supérieur à Marie en histoire s0A(pn1) Prendre le thé est bon pour la santé
John is higher than Mary at history Having tea is good for health

n01(an1)(den2) Jean est redevable de 10 � à Marie s0A(ps1) Faire du sport est bon pour éviter les crises cardiaques
John owes Mary 10� Doing sport is good to prevent heart attacks

n0A(den1)(pn2) Jean est quitte de ses dettes envers la société s0A(an1) Prendre le thé est nécessaire aux hommes
John has paid his debt to society Having tea is necessary to men

n0A(ps1) Boire du thé est bon pour le mal de tête s0A(den1) Faire du sport est indépendant de vos autres activités
Having tea is good for headaches Doing sport is independant from your other activities

Table 4: Adjectival families

Initial subject
Construction N Cl S Redistribution Example
Predicative adjective + + + No redistribution Jean est barbu
Causative + + - Subject � Object Sarah Vaughan rend les gens heureux

Causer � Subject
Passive causative + + + Causer � Par obj Des gens sont rendus heureux (par Sarah)

Object � Subject
Impersonal causative passive + + + Causer � empty Il est rendu impossible de faire cela

Impersonnal � Subject
Attributive adjective + - - Subject � Subject epi Un homme heureux
Impersonal - - + Subject � Sentencial Il est inacceptable de commettre des erreurs

indirect cmpl
Impersonal � Subject

Table 5: Redistribution frame for adjectives

Surface realizations
Nominal Clitic Cleft Sentencial Relativized Non-realized

Subject Canonical X Nominal X qui
Inverted Sentencial

Prep-obj X Nominal X X X
Sentencial

A-obj X X Nominal X X X
Sentencial

De-obj X X Nominal X dont X
Sentencial

Prep-obj2 X Nominal X X
De-obj2 X Nominal X dont X
Indirect Sentencial cmpl X
Predicative object Anteposed X

Postposed
Par-Obj X X

Table 6: Surface realization of syntactic functions for adjectives

138

Annexe B - Datasheet for Predicative Nouns

Family Example Family Example

n0vN Max prend un bain n0vPN(as1) Max a de la peine a dormir
Max takes a bath Max has difficulty in sleeping

n0vN(an1) Max fait du chantage à Luc s0vN Prendre le thé sur la pelouse fait scandale
Max blackmails Luc Having tea out on the lawn scandalized people

n0vN(den1) Max fait la censure de cette page s0vN(den1) Prendre le thé sur la pelouse fait la joie de Luc
Max censors this page Having tea out on the lawn gives great pleasure to Luc

n0vN(loc1) Max fait un pélerinage à Lourdes s0vPN(den1) Faire du sport est à l’avantage de Max
Max goes on a pilgrimage to Lourdes Doing sport gives an advantage to Max

n0vN(pn1) Max commet un crime contre Luc n0vN(den1)(an2) Max fait le récit de son histoire à Luc
Max commits a crime against Luc Max gives an account of his story to Luc

n0vN(des1) Max a l’espoir de réussir n0vN(den1)(pn2) Max fait la division de 4 par 2
Max hopes he will succeed Max divides 4 by 2

n0vN(ps1) Max fait un effort pour rester calme n0vN(den1)(loc2) Mac fait une expédition de livres en Somalie
Max makes an effort to stay calm Max send books in Somalia

n0vPN(pn1) Max est en colère contre Luc n0vN(pn1)(pn2) Max fait une plaisanterie sur Luc avec Léa
Max is angry with Lux Max makes a joke with Léa on Luc

n0vPN(den1) Max est dans l’ignorance de cet incident n0vN(an1)(des2) Max a donné l’ordre à Luc de partir
Max is unaware of this event Max has ordered Luc to go

Table 7: Predicative nouns families

Construction Redistribution Example
Passive object � subject Un crime est commis par Max contre Luc

subject � par object Un crime contre Luc est commis par Max
Middle subject � empty Un crime se commet contre Luc en 5 minutes

object � subject Un crime contre Luc se commet en 5 minutes
Causative-A subject � empty Léa fait commettre un crime à Max contre Luc

causer � subject
Impersonal Middle subject � empty Il se commet un crime toutes les 5 minutes

Impers � subject
Impersonal Passive subject � par object Il est commis un crime par Max contre Luc

impers � subject Il est commis un crime contre Luc par Max
Nominal phrase object � empty Le crime de Max contre Luc

prep object � cdn

Table 8: Redistribution frame for predicative nouns

Surface realizations
Nominal Clitic Cleft Sentencial Relativized Questionned Non-realized

Subject Canonical X Nominal X qui X
Inverted

Predicative Noun X Nominal que
Prep Obj X Nominal X X X X

A-Obj X X Nominal X X X
De-obj X X Nominal dont X X

Prep-Obj2 X Nominal X X X
A-Obj2 X X Nominal X X X
Indirect X

sentencial cmpl
Par-Obj X Nominal X X

Table 9: Surface realization of syntactic functions for predicative nouns

139

