
Verification of Lexicalized Tree Adjoining Grammars

Valerie Barr, Ellen Siefring
Department of Computer Science

Hofstra University
Hempstead, NY 11549-1030 USA

vbarr@hofstra.edu

Abstract

One approach to verification and validation of
language processing systems includes the ver-
ification of system resources. In general, the
grammar is a key resource in such systems. In
this paper we discuss verification of lexicalized
tree adjoining grammars (LTAGs) (Joshi and
Schabes, 1997) as one instance of a system re-
source, and as one phase of a larger verification
effort.

1 Introduction

The work presented here is part of a larger project that has
the goal of developing a suitable automated approach to
verification and validation of natural language processing
(NLP) systems, including structural (white-box) (Beizer,
1990) testing techniques that are suitable for language ap-
plications. In previous work (Barr and Klavans, 2001) we
established that it is worthwhile to adapt for NLP systems
the standard verification, validation, and testing practices
that have been developed in the software engineering and
intelligent systems communities. These new techniques
will supplement the evaluation practices currently car-
ried out and, in many cases, will not require significantly
larger test sets.

For our working definitions we combine definitions
from the intelligent systems community (e.g. (Gonza-
lez and Barr, 2000)) and from the software engineering
community (e.g. (Voas and Miller, 1995)), as follows:

• Verification – the process of ensuring 1)that the
intelligent system conforms to specification, and
2) its knowledge base is consistent and complete
within itself; the application of dynamic software
testing techniques involving both functional (black-
box) and structural approaches.

• Validation – the process of ensuring that the output
of the intelligent system is equivalent to that of hu-
man experts when given the same input.

As we have noted elsewhere (Barr and Klavans, 2001)
there are a number of diagnostic evaluation methods that
do a validation check on a system by carrying out a func-
tional test and comparing actual results to expected re-
sults (provided by and compared by humans). There
are also evaluation methods that allow us to determine
whether a system conforms to its specification.

There are a number of methods that are still needed,
however. First, we need to determine whether the knowl-
edge represented within an NLP system is consistent and
complete. The research presented in this paper begins
to address this topic. Specifically, we detail work we
have done on the verification of Lexicalized Tree Adjoin-
ing Grammars (LTAGs), specifically as implemented in
the XTAG formalism (Joshi and Schabes, 1997). As de-
scribed in the body of the paper, we have constructed a
set of structural and relational tests for a LTAG that iden-
tify certain lexical and syntactic errors. We applied these
tests to subsets of XTAG for English (as examples of a
sublanguage in the XTAG formalism), using off-the-shelf
database software.

In addition to the above, we need to determine ways by
which we can obtain the benefits of structural testing for
NLP systems and their components. This will be the sub-
ject of future research we plan to carry out. An additional
open question, which we do not address here, is whether a
more complete verification process will facilitate greater
automation of the validation process.

NLP systems are built for a large number of application
areas, such as speech recognition, language understand-
ing, language generation, speech synthesis, information
retrieval, information extraction, and inference (Jurafsky
and Martin, 2000). Systems built for these application
areas will differ in terms of the resources they include,
the kind of input they expect, and the kind of output they

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 126-131.



generate. In order to narrow the scope of our work at this
stage, we focus initially on natural language generation
(NLG) systems.

2 Overview of Verification of NLG Systems

Dale and Mellish (Dale and Mellish, 1998) have sug-
gested a direction for improving evaluation of NLG sys-
tems. Their proposal is that, rather than attempt to eval-
uate a complete system, the evaluation effort address the
component tasks of the NLG process. They suggest a
breakdown of the NLG process (Reiter and Dale, 2000;
Dale and Mellish, 1998) into the six tasks of content de-
termination, document structuring, lexical selection, re-
ferring expression generation, aggregation, and surface
realization. This approach is consistent with our proposal
(Barr and Klavans, 2001) that we carry out a component
performance evaluation, in order to determine the impact
on overall system performance of each subpart or sub-
task. In other work (Barr, 2003) we began to address the
verification and validation questions relevant for each of
these generation tasks. (The components of interest will
differ across different types of language systems. See
(Webber et al., 2002) for an example in the Question-
Answering domain).

Another important area to consider is the issue of uti-
lization of linguistic resources by a language processing
system. This is an area that we believe cannot be ade-
quately addressed by traditional testing approaches. Typ-
ically a language processing system has numerous re-
sources within it, such as the lexicon, the grammar, mor-
phological rules, a pragmatics component, and semantic
knowledge (both formal and lexical).

There are a number of aspects of system behavior
that are affected by the various resources. For exam-
ple, it would be useful to clarify exactly how an incom-
plete lexicon affects system behavior. Or there may be
sub-processes within a language generation system that
should be verified separately because they utilize only a
subset of the available resources. We are also interested in
how the various resources participate in the input-output
relationship. For example, can we determine which of a
system’s linguistic resources contributes to the transfor-
mation of an input to an output? Can we pinpoint exactly
how each element of an output is affected by each lin-
guistic resource? If the grammar in a generation system
is capable of parsing a sentence, is there some context in
which the system will generate that sentence?

Developing mechanisms for addressing these issues
will enable us to more accurately assess the overarching
verification issue, which is whether the system does the
task, and only the task, for which it was intended. As part
of our larger project we intend to define what it means
to evaluate all the linguistic resources for completeness
and consistency. As a first step in this aspect of verifica-

tion, we focus on an assessment of the completeness and
consistency of the grammar alone.

Previous testing approaches have attempted to iden-
tify grammar errors through evaluation of parse system
coverage using test-suite or corpus-based methods (Do-
ran et al., 1994; Doran et al., 1997; Bangalore et al.,
1998; Prasad and Sarkar, 2000). While these testing ap-
proaches are vital to a complete test plan, the source of er-
rors identified through these methods must be manually
researched and categorized as a grammar or application
defect. If a grammar error is suspected, the underlying
grammar must be examined to determine if the error is a
coverage issue or grammar fault. Our structural approach
to grammar verification insures that grammar defects are
identified and corrected early in the testing cycle, before
the grammar is embedded in a component application,
such as a parser. Our expectation is that this will improve
grammar reliability, and subsequent test efforts may then
focus on coverage and application defect issues.

3 Grammar Verification

The first step in verifying a grammar is to assess con-
sistency and completeness. We cannot necessarily do
this by applying existing methods from other domains.
How we do it depends on the kind of grammar used. We
have, from the expert systems’ realm, methods and tools
that are suitable for rule-based systems (for example, the
TRUBAC tool (Barr, 1999)). However, the rule formal-
ism, while used in some aspects of NLP, is frequently
not used for grammar representation. Yet adapting to the
grammar of an NLP system the underlying approach used
for rule-based systems may give us the ability to deter-
mine consistency and completeness of a grammar.

The grammar formalism we focus on initially is the
Lexicalized Tree Adjoining Grammar (LTAG), based on
the original TAG formalism(Joshi et al., 1975; Joshi,
1987; Joshi and Schabes, 1997). Analysis of the consis-
tency and completeness of an LTAG will serve as a first
step toward the full verification and validation of the gen-
eration system in which the LTAG is used.

Our motivation to work with LTAGs, particularly with
the XTAG formalism (XTAG Research Group, 2001), is
threefold. First, we chose XTAG for English as a vehicle
to demonstrate proof of concept of our verification ap-
proach. Certainly, given the extensive work that has been
done on the XTAG for English, we did not anticipate that
we would find any errors in the grammar. However, our
expectation is that a verification methodology for XTAG
grammars could also be adapted to other key grammar
formalisms as well. Second, we assume that there are
language systems for which a smaller, domain specific,
grammar and sub-language would be desired. The gram-
mar might be a subset of an existing XTAG, such as the
XTAG for English, or it might be a newly constructed

127



grammar that employs the XTAG formalism (Kinyon and
Prolo, 2002). The verification steps we propose would be
able to detect errors or potential problems in such a gram-
mar. Finally, any language system will be tested with a
domain specific test suite. However, a set of static ver-
ification tests can serve as a useful and important step
before a black-box test is carried out, and can potentially
unearth grammar problems that might be masked in func-
tional test results.

4 LTAG Verification

While it is possible that existing mechanisms for evaluat-
ing the consistency and completeness of the antecedent-
consequent rules in an expert system could be used to
do the same for the rewrite rules making up a phrase-
structure grammar (PSG), these are not relevant for a
grammar made up of trees, not rules. Given a grammar
made up of trees, we cannot directly apply the charac-
teristics that are used in evaluating rule-bases for consis-
tency and completeness (conflict, redundancy, circularity,
subsumption, unreachability, dead-ends, etc.), but rather
must adapt the concepts of completeness and consistency
for use with LTAGs.

The characteristics we currently check for in an LTAG
can be divided into two categories, structural and rela-
tional. Structural tests include ensuring that each elemen-
tary tree is properly lexicalized, structurally correct and
unique. This includes checking for proper tree hierarchy
(e.g. unique root, one parent for each child node, proper
tree level and node order) as well as TAG specific checks
(e.g. each tree is properly anchored, leaf nodes marked
with a phrasal label are substitution sites, no adjunction
nodes exist in initial trees, label of adjunction node and
root must be the same in an auxiliary tree). Trees with
identical structures are flagged. Generally, structural er-
rors will arise from incorrect coding or errors in the trans-
lation of the LTAG into a machine representation.

Relational tests look at the relationships between tree
structures to identify that:

1. Each auxiliary tree can adjoin in at least one derived
tree structure, i.e. every auxiliary tree can be used.

2. Each non-S rooted initial tree can substitute in at
least one derived tree structure, i.e. every initial tree
can be used.

3. At least one substitution operation can be performed
at every substitution node in a derived tree, i.e. a tree
exists for each substitution node.

4. All derived trees built using substitution operations
are finitely bounded with no recursive end nodes (no
recursive sentences or phrases). We cannot elimi-
nate recursion, since adjunction allows unbounded

sentences. However, if we consider only substitu-
tion, we can insure that a tree substituted at a node
does not contain a node with the same phrasal label
as an ancestor node.

5. Every sentence that can be built using substitution
operations alone has a unique derivation tree struc-
ture. While the existence of multiple derivation tree
structures does not necessarily represent a grammar
error if part-of-speech ambiguity is considered, it
could indicate conflicting semantic representations
if tree anchors are not properly chosen with respect
to linguistic relevance.

These checks on the grammar enable us to identify po-
tential grammar errors such as

1. superfluous trees, which could be indicative of miss-
ing trees or errors in other trees. (A tree T may be
superfluous, or unusable, because there is no other
tree that presents a suitable adjunction or substitu-
tion use for T, or because there are errors that pre-
vent a suitable adjunction or substitution site from
being identified as such).

2. invalid tree structures, a grammar error which could
cause an incorrect generation path to be chosen.

3. missing trees, which may indicate incom-
plete/inaccurate linguistic realization or com-
municative intent compromised.

4. duplicate trees, which will violate consistency.

5. redundant trees, which may indicate conflicting lin-
guistic interpretations of anchor. This could hap-
pen if the linguistic assumptions on how elementary
trees should be formed are not consistently followed
in the grammar.

We are presently working on an extension of the work
presented here that will identify relational problems in
feature based LTAGs. (A static analysis approach that
identifies structural problems with feature structures in
XTAG (typographical errors, reference of undefined fea-
tures, equating of incompatible features) is introduced in
(Sarkar and Wintner, 1999)).

5 Implementation

We have constructed a system that carries out the above
verification checks for an LTAG, employing a relational
data representation of LTAG tree structures using the
Oracle Database Management System. This relational
database model provides the benefits of data indepen-
dence (with the ability to separate the physical imple-
mentation from the logical view), multiple views of the
same data (through structured queries across tables), data

128



consistency (enforcing completeness and consistency of
schema), and management of data relationships (via ta-
ble indexes, primary and foreign keys). In addition, the
DBMS approach allows us to efficiently manage and ac-
cess large quantities of structured data which insures fu-
ture scalability for large grammars. Data verification is
performed using SQL*PLUS, the PL/SQL language and
reporting tool of the Oracle Database Client/Server prod-
uct.

The system operates in four stages: tree conversion,
structural testing, relational testing and reporting. Ora-
cle tables are used to store type, classification, and node
information about each tree. Tree structures in the gram-
mar are automatically converted into the SQL Data Ma-
nipulation Language format to systematically build the
associated Oracle tables. Structural tests are performed
on each converted table to insure tree and lexical consis-
tency. Relational tests perform comparisons on groups
of tree structures to identify missing trees, unused trees
and, using substitution operations alone, recursive and
non-unique derivations. Control and error information is
generated during the verification process.

Initially, tree structures are converted to a non-indexed
database table set. This enables structural tree errors such
as duplicate nodes to be identified and classified by our
testing tool, not the DBMS product. A second conversion
is then performed to assign primary and foreign keys to
tables, encapsulating the data relationships into the struc-
tures. Tree nodes are stored as separate table rows, with
identifying tree hierarchy represented as three-tuples of
(level, order, parent order). Tree traversals may be ac-
complished in any order using either the indexed keys or
identifying node characteristics (e.g. substitution nodes).
Substitution and adjunction operations are performed us-
ing constrained table join operations.

6 Results

We have used the XTAG for English to test our gram-
mar verification tool. Since XTAG system releases have
been extensively utilized and broadly tested (Doran et al.,
1994; Doran et al., 1997; Bangalore et al., 1998; Prasad
and Sarkar, 2000; XTAG Research Group, 2001), we did
not expect our verification tool to uncover any structural
grammar defects in the current release of XTAG. We did,
however, expect to identify non-unique derivation struc-
tures due to inherent sentence ambiguity in the English
language. Additionally, we expected to identify as du-
plicates certain tree structures that are unique when node
features are taken into account.

The results from our grammar verification on XTAG
are encouraging. We ran our grammar verification tool on
an XTAG set of 1,135 trees with a total of 11,514 nodes.
We are able to make the following observations from our
results:

• There are no errors in tree hierarchy. Every tree has
one unique root node. Each non-root node has one
parent node and consistent tree node level and order-
ing.

• Two tree structures have unidentified part of speech
node values. Both trees have internal nodes of ’p’.
Since we consider case in our validation of POS,
these nodes were flagged as errors.

• There were 128 duplicate tree structures in the gram-
mar. This was an anticipated result. Our expectation
is that when we consider node features these trees
will be identified as unique structures.

• Every tree was properly lexicalized. That is, there
was at least one anchor node identified for each tree
structure.

• There were three errors in tree classification. One
tree was classified as an auxiliary tree but struc-
turally looks like an initial tree. Two trees were clas-
sified as initial trees but structurally look like auxil-
iary trees. We used XTAG tree naming conventions
as alpha or beta to drive our classification scheme. It
must be determined if the conversion requirements
must be modified or if this is a tree classification
discrepancy in XTAG.

• Other than the three trees with classification dis-
crepancies, every elementary tree was structurally
correct. Every non-terminal node on the frontier
marked with a phrasal label was identified as a sub-
stitution node. There were no internal nodes marked
for substitution, and in the initial trees no internal
nodes were marked as adjunction nodes . For auxil-
iary trees, there was one unique adjunction node per
tree. This adjunction node was on the frontier and
matched the POS node value of the tree root.

• Every non-S rooted initial tree was able to substitute
in at least one derived tree structure. All initial trees
could be used in the grammar.

• Every auxiliary tree was able to adjoin in at least
one derived tree structure. All auxiliary trees could
be used in the grammar.

• There exists at least one tree eligible for substitution
at each substitution node in the grammar. Substitu-
tion operations may be performed until all frontier
nodes are terminals.

• Application performance could be improved by
database performance and tuning techniques. While
proof of concept, not processing efficiency, was the

129



initial motivation for this work, subsequent devel-
opment efforts should consider performance as an
implementation requirement.

Identifying non-unique derivation structures using the
full XTAG has proven more difficult. While the use of
Oracle as our implementation paradigm allows us to ef-
ficiently retrieve, manipulate and store large amounts of
data, our attempt to build all possible sentence derivations
for a complete grammar proved too exhaustive. We mod-
ified our approach to maintain derived tree structures and
linearize the nodes for comparison. This worked for sim-
ple sentence structures but did not scale up to more com-
plex sentences. We continue to work on a viable solution
for this problem. It may be that we are facing a limitation
inherent in our choice of the database management sys-
tem approach. A more recursive-based implementation
strategy may be necessary.

One motivation of this work is to provide a tool for ver-
ification of smaller, domain specific grammars that may
be subsets of larger grammars, such as XTAG. We sim-
ulated such a grammar by extracting a subset of XTAG
trees and applying our verification tool to this grammar.
Since the tree subset was randomly chosen without lin-
guistic significance, we expected our verification tool to
identify gaps in the grammar. Our verification tool re-
ported several defects in the grammar including missing
trees for substitution nodes and unused elementary trees.
Working with a subset of 105 trees from XTAG, our sys-
tem was able to identify 5 duplicate tree structures, 7
missing trees for substitution nodes and one superfluous
tree. The complete verification process on this subset of
105 trees with an average of 12 nodes per tree took less
than 20 seconds.

We expanded our test subset to simulate additional
grammar errors. Duplicate tree structures were identified
when node features were ignored. Extracted tree struc-
tures were manually changed to generate structural er-
rors. Tree nodes were added to produce recursive phrases.
Trees needed for sentences with multiple parses were se-
lected for the grammar subset.

Our verification tool successfully identified all gram-
mar defects with this handcrafted grammar subset. While
some implementation issues remain for large grammars,
we have shown that stand-alone grammar verification can
be a useful initial test strategy in a complete NLP struc-
tural test plan. Grammar errors can be identified and cor-
rected at their source, before the grammar is embedded
in a component application. This improves grammar re-
liability so subsequent test efforts may focus on coverage
and application defect issues.

7 Conclusions and Future Work

The set of structural and relational checks we have de-
scribed can serve as the first stage of verification analysis
for an LTAG. At present we have a stand-alone system,
easily usable by an NLG researcher, that will convert a
grammar into the DBMS format and perform the LTAG
verification checks. More experimentation needs to
be done to determine how the static identification of
grammar errors affects the overall system development
process and the quality of the final system. In addition,
as these grammar checks do not guarantee any kind
of semantic coherence, we are presently extending our
approach to feature-based LTAGs, where elements of se-
mantic coherence are enforced within the structure of the
grammar components, so that a verified grammar is more
likely to generate semantically coherent sentences. Much
work remains to address the larger issues of resource
verification, verification of generation tasks, and the
application of structural testing to language processing
systems. Finally, we plan to apply our verification
approach to more complex grammars, including one that
generates text combined with gestures for an embodied
conversational agent.

Acknowledgments
The authors thank Bonnie Webber and Matthew Stone

for their continued interest in and suggestions about this
work.

References
Srinivas Bangalore, Anoop Sarkar, Christine Doran, and

Beth Ann Hockey. 1998. Grammar and parser
evaluation in the xtag project. InProceedings of
the Workshop on Evaluation of Parsing Systems,
Granada,Spain. Language Resources and Evaluation
Conference.

Valerie Barr and Judith Klavans. 2001. Verification and
validation of language processing systems: Is it evalu-
ation? InProceedings of the Workshop on Evaluation
Methodologies for Language and Dialogue Systems,
ACL2001, Toulouse, France. Association of Compu-
tational Linguists.

Valerie Barr. 1999. Applications of rule-base cover-
age measures to expert system evaluation.Journal of
Knowledge Based Systems, 12:27–35.

Valerie Barr. 2003. A proposed model for effective ver-
ification of natural language generation systems. In
Proceedings of Florida Artificial Intelligence Research
Symposium 2003, Saint Augustine, FL.

Boris Beizer. 1990.Software Testing Techniques. Van
Nostrand Reinhold, New York.

Robert Dale and Chris Mellish. 1998. Towards evalu-
ation in natural language generation. InProceedings

130



of the 1st International Conference on Language Re-
sources and Evaluation, Granada, Spain, May.

C. Doran, D. Egedi, B.A.Hockey, B. Srinivas, and
M. Zaidel. 1994. Xtag system - a wide coverage gram-
mar for english. InProceedings of the International
Conference on Computational Linguistics (COLING
’94), Kyoto, Japan.

Christine Doran, Beth Hockey, Philip Hopely, Joseph
Rosenzweig, Anoop Sarkar, B. Srinivas, Fei Xia,
Alexis Nasr, and Owen Rambow. 1997. Maintain-
ing the forest and burning out the underbrush in xtag.
In Proceedings of the Workshop on Computational En-
vironments for Grammar Development and Language
Engineering (ENVGRAM), Madrid, Spain. Association
of Computational Linguists.

Avelino Gonzalez and Valerie Barr. 2000. Validation and
verification of intelligent systems - what are they and
how are they different?Journal of Experimental and
Theoretical Artificial Intelligence, 12(4), October.

A. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors,Hand-
book of Formal Languages, volume 3, pages 69–124.
Springer, Berlin.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars.Journal of Computer
and System Sciences, 10:136–163.

Aravind Joshi. 1987. An introduction to tree adjoining
grammars. In A. ManasterRamer, editor,Mathematics
of Language, pages 87–113. John Benjamins, Amster-
dam.

Daniel Jurafsky and James Martin. 2000.Speech and
Language Processing. Prentice-Hall, New Jersey.

Alexandra Kinyon and Carlos A. Prolo. 2002. A classi-
fication of grammar development strategies. InPro-
ceedings of the Workshop on Grammar Engineering
and Evaluation, pages 43–49, Taipei, Taiwan.

Rashmi Prasad and Anoop Sarkar. 2000. Comparing
test-suite based evaluation and corpus-based evalua-
tion of a wide-coverage grammar for english. InUs-
ing Evaluation within Human Language Technology
Programs: Results and Trends, Athens, Greece. LREC
2000 Satellite Workshop.

Ehud Reiter and Robert Dale. 2000.Building Natural
Language Generation Systems. Cambridge University
Press, Cambridge, UK.

Anoop Sarkar and Shuly Wintner. 1999. Typing as a
means for validating feature structures. InProceedings
of Computational Linguistics in The Netherlands 1999
(CLIN99), Utrecht. CLIN.

Jeffrey M. Voas and Keith W. Miller. 1995. Soft-
ware testability: The new verification.IEEE Software,
12(3):17–28.

Bonnie Webber, Claire Gardent, and Johan Bos. 2002.
Position statement: Inference in question answering.
In LREC’02 Workshop on Question Answering: Strat-
egy and Resources. Las Palmas.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for English. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania.

131


