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Abstract

This paper presents a method of improving the
quality of subcategorization frames (SCFs) ac-
quired from corpora in order to augment a lexi-
con of a lexicalized grammar. We first estimate
a confidence value that a word can have each
SCF, and create an SCF confidence-value vec-
tor for each word. Since the SCF confidence
vectors obtained from the lexicon of the tar-
get grammar involve co-occurrence tendency
among SCFs for words, we can improve the
quality of the acquired SCFs by clustering vec-
tors obtained from the acquired SCF lexicon
and the lexicon of the target grammar. We ap-
ply our method to SCFs acquired from corpora
by using a subset of the SCF lexicon of the
XTAG English grammar. A comparison be-
tween the resulting SCF lexicon and the rest of
the lexicon of the XTAG English grammar re-
veals that we can achieve higher precision and
recall compared to naive frequency cut-off.

1 Introduction

Recently, a variety of methods have been proposed for
automatic acquisition of subcategorization frames (SCFs)
from corpora (Brent, 1993; Manning, 1993; Briscoe
and Carroll, 1997; Sarkar and Zeman, 2000; Korhonen,
2002). Although these research efforts aimed at enhanc-
ing lexicon resources, there has been little work on evalu-
ating the impact of acquired SCFs on grammar coverage
using large-scale lexicalized grammars with the excep-
tion of (Carroll and Fang, 2004).

The problem when we combine acquired SCFs with
existing lexicalized grammars is lower quality of the ac-
quired SCFs, since they are acquired in an unsupervised
manner, rather than being manually coded. If we attempt
to compensate for the lack of recall by being less strict in
filtering out less likely SCFs, then we will end up with a
larger number of lexical entries. This is fatal for parsing

with lexicalized grammars, because empirical parsing ef-
ficiency and syntactic ambiguity of lexicalized grammars
are known to be proportional to the number of lexical en-
tries used in parsing (Sarkar et al., 2000). We therefore
need some method to improve the quality of the acquired
SCFs.

Schulte im Walde and Brew (2002) and Korho-
nen (2003) employed clustering of verb SCF (probabil-
ity) distributions to induce verb semantic classes. Their
studies are based on the assumption that verb SCF distri-
butions are closely related to verb semantic classes. Con-
versely, if we could induce word classes whose element
words have the same set of SCFs, we can eliminate SCFs
acquired in error from the corpora and predict plausible
SCFs unseen in the corpora. This kind of generalization
would be useful to improve the quality of the acquired
SCFs.

In this paper, we present a method of generalizing
SCFs acquired from corpora in order to augment a lex-
icon of a lexicalized grammar. For words in the ac-
quired SCF lexicon and the lexicon of the target lexical-
ized grammar, we first estimate a confidence value that a
word can have each SCF. We next perform clustering of
SCF confidence-value vectors in order to make use of co-
occurrence tendency among SCFs for words in the lex-
icon of the target lexicalized grammar. Since each cen-
troid value of the obtained clusters indicate whether the
words in that class have each SCF, we eliminate implausi-
ble SCFs and add unobserved but possible SCFs accord-
ing to that value. In other words, we can generalize the
acquired SCFs by the reliable lexicon of the target lexi-
calized grammar.

We applied our method to SCFs acquired from mo-
bile phone news groups corpus by a method described
in (Carroll and Fang, 2004), in order to generalize the
acquired SCFs by using a training portion of the SCF
lexicon of the XTAG English grammar (XTAG Research
Group, 2001), a large-scale Lexicalized Tree Adjoining
Grammar (LTAG) (Schabes et al., 1988). We evaluated
the resulting SCF lexicon by comparing it to the rest of
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(#S(EPATTERN :TARGET |ftp|
:SUBCAT (VSUBCAT NONE)
:CLASSES (22 2985)
:RELIABILITY 0
:FREQSCORE 0.01640195
:FREQCNT 2
:TLTL (VVD VV0)
:SLTL (((|ssh| NN1)))
:OLT1L NIL
:OLT2L NIL
:OLT3L NIL :LRL 0))

Figure 1: An acquired SCF for a verb “ftp”

the lexicon of the XTAG English grammar, and then com-
pared the results with those obtained by naive frequency
cut-off.

2 Background

2.1 Acquisition of SCFs for Lexicalized Grammars

We start by acquiring SCFs for a lexicalized grammar
from corpora by the method described in (Carroll and
Fang, 2004).

In their study, they first acquire fine-grained SCFs by
the method proposed by (Briscoe and Carroll, 1997; Ko-
rhonen, 2002). Figure 1 shows an example of one ac-
quired SCF entry for a verb “ftp.” Each acquired SCF en-
try has several fields about the observed SCF. We explain
here only its portion related to this study. TheTARGET
field is a word stem (|ftp| in Figure 1), the first number in
theCLASSES field indicates an SCF ID (22 in Figure 1),
andFREQCNT shows how often words derivable from the
word stem had the SCF identified by the SCF ID (2 times
in Figure 1) in the training corpus. The obtained SCFs
comprise the total 163 types of relatively fine-grained
SCFs, which are originally based on the SCFs in the
ANLT (Boguraev and Briscoe, 1987) and COMLEX (Gr-
ishman et al., 1994) dictionaries. In this example, the
SCF ID 22 corresponds to an SCF of intransitive verb.

They then obtain SCFs for the target lexicalized gram-
mar (the LINGO English Resource Grammar (Flickinger,
2000) in their study) by using a handcrafted translation
map from these 163 types to one of the types of SCFs in
the target grammar. They report that they could achieve a
coverage improvement of 4.5% (52.7% to 57.2%) with a
parsing time double (9.78 sec. to 21.78 sec.).

This approach is easily extensible to any lexicalized
grammars, if the grammars have an organized architec-
ture of lexicon, which derive possible lexical entries from
each SCF the grammar defines. Existing lexicalized
grammars usually are equipped with this kind of orga-
nization,e.g., lexical types in LINGO ERG and tree fam-
ilies in the XTAG English grammar.
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Figure 2: Probability distributions of SCFs forapply

2.2 Clustering of Verb SCF Distributions

There are some related work on clustering of SCF prob-
ability distributions (Schulte im Walde and Brew, 2002;
Korhonen et al., 2003). These studies aim at obtaining
verb semantic classes, which closely related to syntactic
behavior of argument selection.

Schulte im Walde and Brew (2002) employed cluster-
ing of verb SCF distributions to induce verb semantic
classes. They first represent a verb SCF distribution by
an n-dimensional vector for each verb. Each element in
the SCF distribution represents a probability that a verb
appears with the corresponding SCF. They then perform
k-Means clustering (Forgy, 1965) of these vectors in or-
der to obtain verb semantic classes.

Korhonen et al. (2003) also conducted clustering
of verb SCF distributions using a different clustering
method including the nearest neighbors clustering and the
Information Bottleneck clustering (Tishby et al., 1999).
They investigated the effect of polysemic verbs on clus-
tering.

Although these studies demonstrated that there is a cer-
tain classification of verbs by clustering of verb SCF dis-
tributions, they do not focus on the improvement of the
quality of the SCF lexicon. In this paper, we focus on the
problem to identify whether a word can have each SCF
and try to obtain word classes whose element words have
the same set of SCFs.

3 Method

The basic idea of our method is first to obtain word
classes whose element words have the same set of SCFs,
using not only acquired SCFs but also existing SCFs in
the target grammar. We then eliminate implausible ac-
quired SCFs and add plausible unseen SCFs according to
the set of SCFs represented by the centroids of the result-
ing clusters.

3.1 Representation of Confidence Values for SCFs

We representan SCF confidence-value vector of each
word wi with a vectorvi, an object for clustering. Each
elementvi j in vi represents the confidence value of SCF
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s j for wi, which expresses how reliable a wordwi has
SCFs j. We should note that the confidence value is not
the probability that a wordwi appears with SCFs j but a
probability of existence of SCFs j for the wordwi. In this
study, we assume that a wordwi can have each SCFs j

with a certain (non-zero) probabilityθi j(= p(si j|wi) > 0
where∑ j θi j = 1), but only SCFs whose probabilities ex-
ceed a certain threshold are recognized as SCFs for the
word in the lexicon. We hereafter call this threshold
recognition threshold. Figure 2 exemplifies a probabil-
ity distribution of SCFs forapply. In this context, we
can regard a confidence value of each SCF as the possi-
bility that a probability of a SCF exceeds the recognition
threshold.

One intuitive way to estimate a confidence value is to
assume an observed probability,i.e., relative frequency,
is equal to a probabilityθi j of SCF s j for a word wi

(θi j = f reqi j/∑ j f reqi j wheref reqi j is a frequency count
that a wordwi have the SCFs j in corpora1). We simply
assign 1 to a confidence valuecon fi j when the relative
frequency ofs j for a word wi exceeds the recognition
threshold, and otherwise assign 0 to a confidence value
of con fi j. However, an observed probability is totally
unreliable for infrequent words. For example, when we
use a confidence value derived from a relative frequency
as above, we cannot distinguish cases where a wordw1

appears once with a SCFs j and a wordw2 appears 100
times, always with the SCFs j, which are both the rela-
tive frequency 1. Moreover, even when we would like to
encode confidence values of reliable SCFs in the target
lexicalized grammar, it is also problematic to distinguish
the confidence value of those SCFs with confidence val-
ues of acquired SCFs.

The other promising way to estimate a true probability
θi j is to regard it as a stochastic variable in the context of
Bayesian statistics (Gelman et al., 1995). In this context,
a posteriori distribution of the probabilityθi j of a SCFs j

for a wordwi is given by:

p(θi j|D) =
P(θi j)P(D|θi j)

P(D)

=
P(θi j)P(D|θi j)∫ 1

0 P(θi j)P(D|θi j)dθi j
, (1)

whereP(θi j) is a priori distribution, andD is the data we
have observed. Since every occurrence of SCFs in the
dataD is independent with each other, the dataD can be
regarded as Bernoulli trials in this case. When we observe
the dataD that a wordwi appearsn times and has SCF
s j x(≤ n) times, its conditional distribution is therefore

1We used values ofFREQCNT to obtain frequency counts of
SCFs.

represented by binominal distribution:

P(D|θi j) =
(n

x

)
θx

i j(1−θi j)(n−x). (2)

To calculate thisa posteriori distribution, we need to
define thea priori distribution P(θi j). The question is
which probability distribution ofθi j can appropriately re-
flect prior knowledge. In other words, it should encode
knowledge we use to estimate SCFs for an unknown word
wi. We simply determine it from distributions of proba-
bility values ofs j for known words. We use distributions
of observed probability values ofs j for all words acquired
from the corpus by using a method described in (Tsu-
ruoka and Chikayama, 2001). In their study, they assume
a priori distribution as thebeta distribution defined as:

p(θi j|α ,β) =
θα−1

i j (1−θi j)β−1

B(α ,β)
, (3)

whereB(α ,β) =
∫ 1

0 θα−1
i j (1−θi j)β−1dθi j. The value of

α andβ is determined by moment estimation.2 By sub-
stituting Equations 2 and 3 into Equation 1, we finally
obtain thea posteriori distributionp(θi j|D) as:

p(θi j|α ,β ,D) =

θα−1
i j (1−θi j)β−1

B(α ,β)

( n
x

)
θx

i j(1−θi j)(n−x)

∫ 1
0 P(θi j)P(D|θi j)dθi j

= c ·θx+α−1
i j (1−θi j)n−x+β−1 (4)

wherec =
( n

x

)
/(B(α ,β)

∫ 1
0 P(θi j)P(D|θi j)dθi j).

When we determine the value of the recognition
threshold ast, we can calculate a confidence valuecon fi j

that a wordwi can haves j by integrating thea posteriori
distributionp(θi j|D) from the thresholdt to 1:

con fi j =
∫ 1

t
c ·θx+α−1

i j (1−θi j)n−x+β−1dθi j (5)

By using this confidence value, we can express an SCF
confidence-value vectorvi for a wordwi in the acquired
SCF lexicon (vi j = con fi j).3

In order to combine SCF confidence-value vectors for
words acquired from corpora and those for words in the

2The expectation value and variance of the beta distribution
are made equal to those of the observed probability values.

3By using the fact that
∫ 1
0 P(θi j|α ,β) = 1, we can calculate

con fi j as follows.

con fi j =

∫ 1
t c ·θx+α−1

i j (1−θi j)n−x+β−1dθi j∫ 1
0 c ·θx+α−1

i j (1−θi j)n−x+β−1dθi j

=

∫ 1
t θx+α−1

i j (1−θi j)n−x+β−1dθi j∫ 1
0 θx+α−1

i j (1−θi j)n−x+β−1dθi j
(6)
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Input: a set of SCF confidence-value
vectors V = {v1,v2, . . . ,vn} ⊆ Rm

a distance function d : Rm ×Zm → R
a function to compute a centroid

µ : {v j1 ,v j2 , . . . ,v jl
}→ Rm

Output: a set of clusters Cj

while cluster members are not stable do
foreach cluster Cj

Cj = {vi|∀cl ,d(vi,c j) ≤ d(vi,cl)}
end foreach
foreach clusters Cj

c j = µ(Cj)
end foreach

end while

return Cj

Figure 3: Clustering algorithm for SCF confidence-value
distributions

lexicon of the target grammar, we also represent SCF
confidence-value vectors for the words in the target gram-
mars. In this paper, we express SCF confidence-value
vectorsv′i for words in the SCF lexicon of the target gram-
mar by:

v′i j =
{

1− ε wi has s j in the lexicon
ε otherwise

(7)

whereε expresses an unreliability of the lexicon. In this
study, we simply set it to the machine epsilon. In other
words, we trust the lexicon as much as possible.

3.2 Clustering Algorithm for SCF
Confidence-Value Distributions

We next present a k-Means-like clustering algorithm for
SCF confidence-value vectors, as shown in Figure 3.
Given an initial assignment of data objects tok clusters,
our algorithm computes a representative value of each
cluster calledcentroids. Our algorithm then iteratively
updates clusters by assigning each object to its closest
centroid and recomputing centroids until cluster members
become stable.

Although our algorithm is roughly based on the k-
Means algorithm, it is different in an important respect.
We define the elements of the centroid values of the ob-
tained clusters as a discrete value of 0 or 1 because we
want to obtain clusters which include words that have the
exactly same set of SCFs. We then derive a distance func-
tion d to calculate the distance from a data objectvi to
each centroidcm. Since the distance function is used to
determine the closest cluster forvi, we define the func-
tion d to output the probability thatvi has the SCF set
expressed by centroidcm as follows:

d(vi,cm) = ∏
cm j=1

vi j · ∏
cm j=0

(1− vi j). (8)

By using this function, we can determine the closest clus-
ter as argmax

Cm

d(vi,cm).

After every assignment, we determine a next centroid
cm of each clusterCm as follows:

cm j =




1 when ∏
vi∈Cm

vi j > ∏
vi∈Cm

(1− vi j)

0 otherwise
(9)

We then address the way to determine the number of
clusters and initial assignments of objects. In this paper,
we assume that the most of the possible set of SCFs for
words are included in the target lexicalized grammar, and
make use of the existing sets of SCFs for the words in the
lexicon of the target grammar to determine the possible
set of SCFs for words out of the lexicon. We first ex-
tract SCF confidence-value vectors from the lexicon of
the target grammar by regardingε = 0 in Equation 7.
By eliminating duplications from them, we obtain SCF
centroid-value vectorscm. We then initialize the number
of clustersk to the number ofcm and use them as initial
centroids.4

We finally update the acquired SCFs using each ele-
ment’s value in the centroid of each cluster and the confi-
dence value of SCFs in this order. We first eliminate SCF
s j for wi in a clusterm when the valuecm j of the centroid
cm is 0, and add SCFs j for wi in a clusterm when the
valuecm j of the centroidcm is 1. This is becausecm j rep-
resents whether the words in that class can have SCFs j.
We then eliminate implausible SCFss j for wi from the
resulting SCFs according to its corresponding confidence
valuecon fi j. We call this eliminationcentroid cut-off. In
the following experiments, we compare this cut-off with
naivefrequency cut-off, which uses only relative frequen-
cies to eliminate SCFs andconfidence cut-off, which uses
only confidence values to eliminate SCFs. Note that fre-
quency cut-off and confidence cut-off use only corpus-
based statistics to eliminate SCFs.

4 Experiments

We applied our method to an SCF lexicon acquired
from 135,902 sentences of the mobile phone news group
archived by Google.com, which is the same data used
in (Carroll and Fang, 2004). The number of the result-
ing SCFs is 14,783 for 3,864 word stems. We then trans-
lated them to an SCF lexicon for the XTAG English gram-
mar (XTAG Research Group, 2001) by using a translation
map manually defined by Ted Briscoe. It defines a map-
ping from 23 out of 163 possible SCF types into 13 out of
57 XTAG SCFs calledtree families listed in Table 1. The
number of resulting SCFs for the XTAG English gram-
mar was 6,742 for 2,860 word stems.

4When a lexicon of the grammar is not comprehensive or
less accurate, we should determine the number of clusters using
other algorithms (Bischof et al., 1999; Hamerly, 2003).
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Table 1: Tree families of the XTAG English grammar
mapped from 23 out of 163 SCF types

Tree family Explanation
Tnx0Ax1 Adjective small clause
Tnx0Vnx1 Transitive
Tnx0Vs1 Sentential complement
Tnx0Vnx2nx1 Ditransitive
Tnx0Vnx1Pnx2 Multiple anchor ditransitive with PP
Tnx0Vnx1pnx2 Ditransitive with PP
Tnx0Vplnx1 Transitive verb Particle
Tnx0Vpl Intransitive verb Particle
Tnx0Vnx1s2 Sentential complement with NP
Tnx0Vpnx1 Intransitive with PP
Ts0Vnx1 Transitive sentential subject
Tnx0Vax1 Intransitive with adjective
Tnx0Vplnx2nx1 Ditransitive verb Particle

In order to evaluate our method, we split the SCF lexi-
con of the XTAG English grammar into the training por-
tion and the test portion. The training portion includes
9,427 SCFs for 8,399 words, while the test portion in-
cludes 433 SCFs for 280 words The test portion is se-
lected from the SCF lexicon for words that are observed
in the acquired SCF lexicon. We extract SCF confidence-
value vectors from the training portion and combine them
with the SCF confidence-value vectors obtained from the
acquired SCFs. The number of the resulting data objects
is 8,679.5 We also make use of the SCF confidence-value
vectors obtained from the training SCF lexicon as an ini-
tial centroid by regardingε as 0. The total number of
them was 35.6 We then performed clustering of these
8,679 data objects into 35 clusters.

We finally evaluate precision and recall of the resulting
SCFs by comparing them with the test SCF lexicon of the
XTAG English grammar.

We first compare confidence cut-off with frequency
cut-off to investigate effects of Bayesian estimation. Fig-
ure 4 shows precision and recall of the resulting SCF sets
using confidence cut-off and frequency cut-off. We mea-
sured precision and recall of the SCF sets obtained using
confidence cut-off whose recognition thresholdt = 0.01
(confidence cut-off 0.01), 0.03 (confidence cut-off 0.03),
and 0.05 (confidence cut-off 0.05) by varying threshold
for the confidence value from 0 to 1. We also measured
those for the SCF sets obtained using frequency cut-off
by varying threshold for the relative frequency from 0
to 1. The graph apparently indicates that the confidence
cut-offs outperformed the frequency cut-off. When we

5We used the SCF confidence-value vectors for words which
are included in the XTAG English grammar. When both the
training SCF lexicon and the acquired SCF lexicon have the
same words, we simply used an SCF confidence-value vector
obtained from the acquired SCF lexicon.

6We used the SCF confidence-value vectors that appear with
more than two words.
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Figure 4: Precision and recall of the resulting SCFs using
confidence cut-off and frequency cut-off
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Figure 5: Precision and recall of the resulting SCFs using
confidence cut-off and frequency cut-off

compare confidence cut-offs with different recognition
thresholds, we can improve precision using higher recog-
nition threshold while we can improve recall using lower
recognition threshold. This result is quite consistent with
our expectations.

We then compare centroid cut-off with confidence cut-
off to observe effects of clustering using information in
the lexicon of the XTAG English grammar. Figure 5
shows precision and recall of the resulting SCF sets using
centroid cut-off and confidence cut-off with the recogni-
tion thresholdt = 0.03 by varying the threshold for the
confidence value. In order to show the effects of infor-
mation of the training SCF lexicon, centroid cut-off 0.03*
is SCFs obtained by clustering of SCF confidence-value
vectors in the acquired SCFs only with random initial-
ization. The graph apparently shows that clustering is
meaningful only when we make use of the reliable SCF
confidence-value vectors obtained from the manually tai-
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SCF # SCFs frequency cut-off confidence cut-off 0.03 centroid cut-off 0.03
Precision Recall Precision Recall Precision Recall

Tnx0Ax1 12(1) na (0 / 0) 0.000 (0 / 12) na (0 / 0) 0.000 (0 / 12) na (0 / 0) 0.000 (0 / 12)
Tnx0Vnx1 267(222) 0.959 (212 / 221) 0.794 (212 / 267) 0.958 (253 / 264) 0.948 (253 / 267) 0.956 (260 / 272) 0.974 (260 / 267)
Tnx0Vs1 38(29) 0.357 (10 / 28) 0.263 (10 / 38) 0.381 (8 / 21) 0.211 (8 / 38) 0.323 (10 / 31) 0.263 (10 / 38)
Tnx0Vnx2nx1 21(16) 0.105 (6 / 57) 0.286 (6 / 21) 0.185 (10 / 54) 0.476 (10 / 21) 0.122 (9 / 74) 0.429 (9 / 21)
Tnx0Vnx1Pnx2 8(4) 0.200 (3 / 15) 0.375 (3 / 8) 0.200 (2 / 10) 0.250 (2 / 8) 0.250 (2 / 8) 0.250 (2 / 8)
Tnx0Vnx1pnx2 5(1) 0.024 (1 / 41) 0.200 (1 / 5) 0.029 (1 / 34) 0.200 (1 / 5) na (0 / 0) 0.000 (0 / 5)
Tnx0Vplnx1 40(23) 0.538 (7 / 13) 0.175 (7 / 40) 0.667 (6 / 9) 0.150 (6 / 40) 0.778 (7 / 9) 0.175 (7 / 40)
Tnx0Vpl 20(0) na (0 / 0) 0.000 (0 / 20) na (0 / 0) 0.000 (0 / 20) na (0 / 0) 0.000 (0 / 20)
Tnx0Vnx1s2 11(6) 0.083 (1 / 12) 0.091 (1 / 11) 0.200 (1 / 5) 0.091 (1 / 11) 0.200 (1 / 5) 0.091 (1 / 11)
Ts0Vnx1 8(1) 0.000 (0 / 2) 0.000 (0 / 8) na (0 / 0) 0.000 (0 / 8) na (0 / 0) 0.000 (0 / 8)
Tnx0Vax1 2(1) 0.000 (0 / 9) 0.000 (0 / 2) 0.000 (0 / 3) 0.000 (0 / 2) 0.000 (0 / 1) 0.000 (0 / 2)
Tnx0Vplnx2nx1 1(0) 0.000 (0 / 2) 0.000 (0 / 1) na (0 / 0) 0.000 (0 / 1) na (0 / 0) 0.000 (0 / 1)

Table 2: Precision and recall for 400 SCFs obtained from freqency cut-off, confidence cut-off 0.03, and centroid cut-off
0.03

lored lexicon. The centroid cut-off using the lexicon
boosted precision and recall compared to the confidence
cut-off and the centroid cut-off without the lexicon.

We finally investigate precision and recall of the re-
sulting SCFs for every SCF type in order to evaluate ef-
fects of our method on each SCF. Table 2 shows preci-
sion and recall of the SCFs by using frequency cut-off
(the threshold for the relative frequency 0.092), confi-
dence cut-off 0.03 (the threshold for the confidence value
0.953), centroid cut-off 0.03 (the threshold for the confi-
dence value 0.889)7 by using thresholds for the relative
frequency and the confidence value that preserve exactly
400 SCFs. The numbers in curly brackets in # of SCFs
colum show the number of SCFs in the test SCF lexicon
that are acquired from the training corpus. The left and
right numbers in curly brackets in the precision columns
show the number of correct SCFs against all SCFs in the
resulting SCF lexicon while those in the recall columns
show the number of correct SCFs against all SCFs in the
test SCF lexicon. We can observe a tendency that the
confidence cut-off and the centroid cut-off preserve more
transitive (Tnx0Vnx1) SCF. This is because some SCFs
of Tnx0Vnx1 in the test SCF lexicon are not observed
in the training corpus but are predicted bya priori dis-
tribution for SCF Tnx0Vnx1. Also, the centroid cut-off
tends to reduce implausible SCFs of Tnx0Vnx1Pnx2 and
Tnx0Vax1. Since the threshold for the confidence value
of the centroid cut-off 0.03 (0.889) is smaller than that of
the confidence cut-off 0.03 (0.953), the clustering could
eliminate implausible SCFs without reducing recall.

In short, one reason why the centroid cut-off outper-
forms the confidence cut-off (or the frequency cut-off) is
due to the way how the centroid cut-off eliminate SCFs
not existed in the lexicon. When we eliminate SCFs with
lower relative frequency under the assumption that those
SCFs tend to be wrongly acquired SCFs, it must also
eliminate correct SCFs with low relative frequencies. By
using co-occurrence tendency among SCFs as another

7Since no word takes SCF Tnx0Vpnx1 in the test SCF lexi-
con, we omit it here.

criteria to judge the implausibility of the SCFs, we can
eliminate more wrongly acquired SCFs because they tend
to violate the co-occurrence tendency. Another reason
why the centroid cut-off and the confidence cut-off out-
perform the the frequency cut-off is due to the way how
those cut-offs add new unseen SCFs. We can add plausi-
ble SCFs from those SCFs which is reliable according to
theira priori distribution. Furthermore, since the centroid
cut-off makes use of the co-occurrence tendency among
SCFs, it adds only SCFs which are plausible in terms of
corpus-based statistics (confidence value) under the re-
striction provided by the co-occurrence tendency among
SCFs in the lexicon of the target grammar.

5 Concluding Remarks and Future Work

In this paper, we presented a novel way to improve the
quality of SCFs acquired from corpora in order to aug-
ment a lexicalized grammar with them. By applying our
method to the acquired SCF lexicon using the XTAG En-
glish grammar, we showed that our method improved
both precision and recall of the resulting SCFs compared
to the naive frequency-based cut-off.

In future work, we are going to investigate the pars-
ing performance of the XTAG English grammar aug-
mented with SCFs obtained by our method. We will
apply our method to lexicalized grammars with rela-
tively smaller lexicon,e.g., the LINGO English Resource
Grammar (Flickinger, 2000).
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