
Synchronous Grammars as Tree Transducers

Stuart M. Shieber
Division of Engineering and Applied Sciences

Harvard University
shieber@deas.harvard.edu

Abstract

Tree transducer formalisms were developed
in the formal language theory community
as generalizations of finite-state transduc-
ers from strings to trees. Independently,
synchronous tree-substitution and -adjoining
grammars arose in the computational linguis-
tics community as a means to augment strictly
syntactic formalisms to provide for parallel se-
mantics. We present the first synthesis of
these two independently developed approaches
to specifying tree relations, unifying their re-
spective literatures for the first time, by using
the framework of bimorphisms as the gener-
alizing formalism in which all can be embed-
ded. The central result is that synchronous tree-
substitution grammars are equivalent to bimor-
phisms where the component homomorphisms
are linear and complete.

1 Motivation

The typical natural-language pipeline can be thought of
as proceeding by successive transformation of various
data structures, especially strings and trees. For in-
stance, low-level speech processing can be viewed as
transduction of strings of speech samples into phoneme
strings, then into triphone strings, finally into words
strings. (Because of nondeterminism in the process,
the nondeterministic string possibilities may be repre-
sented as a single lattice. Nonetheless, the underlying
abstract operation is one of string transduction.) Morpho-
logical processes can similarly be modeled as character
string transductions. For this reason, weighted finite-state
transducers (WFST), a general formalism for string-to-
string transduction, can serve as a kind of universal for-
malism for representing low-level natural-language pro-
cesses (Mohri, 1997).

Higher-level natural-language processes can also be
thought of as transductions, but on more highly struc-

tured representations, for instance trees. Semantic inter-
pretation can be viewed as a transduction from a syntactic
parse tree to a tree of semantic operations whose simpli-
fication to logical form can be viewed as a further trans-
duction. This raises the question as to whether there is
a universal formalism for NL tree transductions that can
play the same role there that WFST plays for string trans-
duction.

In this paper, we investigate the formal properties of
synchronous tree-substitution and -adjoining grammars
(STSG and STAG) from this perspective. In particu-
lar, we look at where the formalisms sit in the pantheon
of tree transduction formalisms. As a particular result,
we show that, contra previous conjecture, STSG is not
equivalent to simple nondeterministic tree transducers,
and place for the first time STSG and STAG into the tree
transducer family. Essential to this unification of the two
types of formalisms is the bimorphism characterization of
tree transducers, little known outside the formal language
theory community.

We begin by recalling the definitions of nondetermin-
istic top-down tree transducers (↓TT), and their descrip-
tion in terms of bimorphisms, and also provide a defini-
tion of STSG and STAG. We show that ↓TT and STSG
differ in their expressive properties; these differences ar-
gue in favor of the synchronous formalisms for NL use.
Finally, we prove the equivalence between STSG and a
new kind of bimorphism, which characterization makes
some of the properties of STSG trivial. This view of
STSG generalizes to provide a bimorphism characteriza-
tion of STAG as well.

This work makes several contributions to our under-
standing of tree transducers and the synchronous for-
malisms. First, it provides the first unification of the two,
placing both in a consistent framework, that of bimor-
phisms. Second, it provides intuition about appropriate
properties of such formalisms for the purpose of natural-
language processing applications, which may help inform
the search for a universal NL tree transduction formalism.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 88-95.

2 Preliminaries

We start by defining the terminology and notations that
we will use for strings, trees, and the like.

We will notate sequences with angle brackets, e.g.,
〈a, b, c〉, with the empty string written ε. The number of
elements in a set or sequence x will be notated |x|.

Trees will have nodes labeled with elements of a
RANKED ALPHABET, a set of symbols F , each with a
non-negative integer RANK or ARITY assigned to it, say
by a function arity, determining the number of children
for nodes so labeled. Symbols with arity zero are called
NULLARY symbols; with arity one, UNARY; with arity
two, BINARY. We write Fn for the set of symbols in
F with arity n. To express incomplete trees, trees with
“holes” waiting to be filled, we will allow leaves to be
labeled with variables, in addition to nullary symbols.

The set of TREES OVER A RANKED ALPHABET F AND

VARIABLES X , notated T (F ,X), is the smallest set such
that

Nullary symbols at leaves f ∈ T (F ,X) for all f ∈
F0;

Variables at leaves x ∈ T (F ,X) for all x ∈ X ;

Internal nodes f(t1, . . . , tn) ∈ T (F ,X) for all f ∈
Fn, n ≥ 1, and t1, . . . , tn ∈ T (F ,X).

We abbreviate T (F , ∅), where the set of variables is
empty, as T (F), the set of GROUND TREES over F . We
will also make use of the set of n numerically ordered
variables Xn = {x1, . . . , xn}, and write x, y, z as syn-
onyms for x1, x2, x3, respectively.

Trees can also be viewed as mappings from TREE AD-
DRESSES, sequences of integers, to the labels of nodes at
those addresses. The address ε is the address of the root,
〈1〉 the address of the first child, 〈1, 2〉 the address of the
second child of the first child, and so forth. We will use
the notation t@p to pick out the label of the node at ad-
dress p in the tree t, that is, (using · for the insertion of an
element on a list)

f(t1, . . . , tn)@ε = f

f(t1, . . . , tn)@(i · p) = ti@p

for 1 ≤ i ≤ n .

We can use trees with variables as CONTEXTS in which
to place other trees. A tree in T (F ,Xn) will be called a
context, typically denoted with the symbol C. The nota-
tion C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the tree
in T (F) obtained by substituting for each xi the corre-
sponding ti.

For a context C ∈ T (F ,Xn) and a sequence of n trees
t1, . . . , tn ∈ T (F), the SUBSTITUTION OF t1, . . . , tn

INTO C, notated C[t1, . . . , tn], is defined inductively as
follows:

(f(u1, . . . , um))[t1, . . . , tn]
= f(u1[t1, . . . , tn], . . . , um[t1, . . . , tn])

xi[t1, . . . , tn] = ti .

A tree t ∈ T (F ,X) is LINEAR if and only if no vari-
able in X occurs more than once in t.

3 Tree Transducers and Bimorphisms

The variation in tree transducer formalisms is extraordi-
narily wide and the literature vast. For the purpose of
this paper, we restrict attention to simple nondeterminis-
tic tree transducers operating top-down, which transform
trees by replacing each node with a subtree as specified
by the label of the node and the state of the transduction
at that node.

A NONDETERMINISTIC TOP-DOWN TREE TRANS-
DUCER (↓TT) is a tuple 〈Q,Fin,Fout, ∆, q0〉 where

• Q is a finite set of STATES;

• Fin is a ranked alphabet of INPUT SYMBOLS;

• Fout is a ranked alphabet of OUTPUT SYMBOLS;

• ∆ is a set of TRANSITIONS each of the form

q(f(x1, . . . , xn)) → C[q1(x1), . . . , qn(xn)]

for some f ∈ Fin of arity n, q, q1, . . . , qn ∈ Q,
x1, . . . , xn ∈ Xn, and C ∈ T (Fout,Xn);

• q0 ∈ Q is a distinguished INITIAL STATE.

Given a tree transducer 〈Q,Fin,Fout, ∆, q0〉 and two
trees t ∈ T (Fin ∪ Fout ∪ Q) and t′ ∈ T (Fin ∪ Fout ∪
Q), tree t DERIVES t′ IN ONE STEP, notated t ` t′ if
and only if there is a transition u → u′ ∈ ∆ with u ∈
T (Fin∪Q,Xn) and u′ ∈ T (Fout∪Q,Xn) and trees C ∈
T (Fin∪Fout∪Q,X1) and u1, . . . , un ∈ T (Fin∪Fout),
such that

t = C[u[u1, . . . , un]]

and
t′ = C[u′[u1, . . . , un]] .

The TREE RELATION defined by a ↓TT

〈Q,Fin,Fout, ∆, q0〉 is the set of all tree pairs
〈s, t〉 ∈ T (Fin) × T (Fout) such that q0(s) `∗ t.

For instance, the following rules specify a transducer
that “rotates” subtrees of the form f(t1, f(t2, t3)) to the
tree f(f(t1, t2), t3). (By convention, we take the left-
hand state of the first rule as the start state for the trans-
ducer.)

q(f(x, y)) → f(f(q(x), q1(y)), q2(y))
q1(f(x, y)) → q(x)
q2(f(x, y)) → q(y)
q(a) → a

q(b) → b

89

f
HHH

���
f

@@��
a f

JJ

b a

f

JJ

a b

`∗ f
ZZ��

f
cc##

f

@@��
f

JJ

a b

a

a

b

Figure 1: Local rotation computed by a nonlinear tree
transducer

S
HHH

���
NP1

I

V P
ll,,

V2

like

NP3

cake

S
aaa

!!!
NP3

Kuchen

V P
QQ��

V2

gefällt

NP1

mir

(a) (b)

Figure 2: Example of local rotation in language transla-
tion divergence. Corresponding nodes are marked with
matched subscripts.

The tree f(f(a, f(b, a)), f(a, b)) is transduced to
f(f(f(f(a, b), a), a), b) (as depicted graphically in fig-
ure 1) according to the following derivation:

q(f(f(a, f(b, a)), f(a, b)))

` f(f(q(f(a, f(b, a))), q1(f(a, b))), q2(f(a, b)))

` f(f(f(f(q(a), q1(f(b, a))),
q2(f(b, a))), q(a)), q(b))

` f(f(f(f(a, q(b)), q(a)), a), b)

` f(f(f(f(a, b), a), a), b)

3.1 Nonlinearity Deprecated

Note that intrinsic use is made in this example of the
ability to duplicate variables on the right-hand sides of
rewrite rules. Transducers without such duplication are
linear. Linear tree transducers are incapable of perform-
ing local rotations of this sort.

Local rotations are typical of natural-language appli-
cations. For instance, many of the kinds of translation
divergences between languages, such as that exemplified
in Figure 2, manifest such rotations. Similarly, semantic
bracketing paradoxes can be viewed as necessitating ro-
tations. Thus, linear tree transducers are insufficient for
NL modeling purposes.

Nonlinearity per se, the ability to make copies during
transduction, is not the kind of operation that is character-
istic of natural-language phenomena. Furthermore, non-
linear transducers are computationally problematic. The
following nonlinear transducer generates a perfect binary
tree whose height is identical to that of its single-strand
input.

q(f(x)) → g(q(x), q(x))
q(a) → a

For instance, the tree of height and size four, f(f(f(a))),
transduces to g(g(g(a, a), g(a, a)), g(g(a, a), g(a, a))),
of height four but with fifteen symbols. The size of this
transducer’s output is exponential in the size of its input.
(The existence of such a transducer constitutes a simple
proof of the lack of composition closure of tree transduc-
ers, as the exponential of an exponential grows faster than
exponential.)

In summary, nonlinearity seems inappropriate on com-
putational and linguistic grounds, yet is required for tree
transducers to express the kinds of simple local rotations
that are typical of natural-language transductions. By
contrast, STSG, as described below, is intrinsically a lin-
ear formalism but can express rotations straightforwardly.

3.2 Tree Automata and Homomorphisms

Two subcases of tree transducers are especially impor-
tant. First, tree transducers that implement the identity
relation over their domain are TREE AUTOMATA. A tree
is in the language specified by a tree automaton if it is
transduced to itself by the automaton. The tree languages
so recognized are the regular tree languages (or recogniz-
able tree languages), and are coextensive with those de-
finable by context-free grammars. We take tree automata
to be quadruples by dropping one of the redundant alpha-
bets from the corresponding tree transducer quintuple.

Second, TREE HOMOMORPHISMS are essentially tree
transducers with only a single state, so that the replace-
ment of a node by a subtree proceeds independently
of its context. A homomorphism h : T (Fin) →

T (Fout) is specified by its kernel, a function ĥ :

Fin → T (Fout,X∞) such that ĥ(f) is a tree in
T (Fout,Xarity(f)) for each symbol f ∈ Fin. The kernel

ĥ is extended to the homomorphism h by the following
recurrence:

h(f(t1, . . . , tn)) = ĥ(f)[h(t1), . . . , h(tn)]

that is, ĥ(f) acts as a context in which the homomor-
phic images of the subtrees are substituted. Further re-
strictions can be imposed: A tree homomorphism h is
LINEAR if ĥ(f) is linear for all f ∈ Fin; is COM-
PLETE if ĥ(f) contains every variable in Xarity(f) for all

f ∈ Fin; is ε-FREE if ĥ(f) 6∈ Xarity(f) for all f ∈ Fin;

90

is SYMBOL-TO-SYMBOL if ĥ(f) has exactly one symbol,
for all f ∈ Fin; and is a DELABELING if h is complete,
linear, and symbol-to-symbol.

The import of these two subcases of tree transduc-
ers lies in the fact that the tree relations definable by
tree transducers have been shown also to be character-
izable by composition from these simplified forms, via
an alternate quite distinct formalization based on bimor-
phisms. A BIMORPHISM is a triple 〈L, hin, hout〉 con-
sisting of a regular tree language and two tree homo-
morphisms. The tree relation defined by a bimorphism
consists of all pairs of trees generable by applying the
homomorphisms to elements of the tree language, that
is, {〈hin(t), hout(t)〉 | t ∈ L}. Depending on the type of
tree homomorphisms used in the bimorphism, different
classes of tree relations are defined. In particular, if we
restrict hin to be a delabeling, the tree relations defined
are exactly those definable by ↑TT . As a convenient no-
tation for bimorphisms, we write B(X, Y) for the class
of bimorphisms where hin is restricted to have property
X and hout to have property Y . We use the following
abbrevations for the properties: L[inear], C[omplete], [ε-
]F [ree], S[ymbol-to-symbol], D[elabeling], M [orphism
without restriction]. Thus the tree relations B(D, M)
are exactly those definable by ↑TT . (See the survey by
Comon et al. (1997) and works cited therein.) Though
many classes of bimorphisms have been studied, to our
knowledge, the class B(LC, LC) investigated below has
not.

4 Synchronous Grammars and
Bimorphisms

Tree-substitution grammars are composed of a set of
elementary trees over a nonterminal and terminal vo-
cabulary, allowing for nonterminal nodes at the leaves
at which substitution of other elementary trees can oc-
cur (SUBSTITUTION NODES). They can be thought
of as tree-adjoining grammars with substitution but no
adjunction (hence no auxiliary trees). A synchronous
tree-substitution grammar extends a tree-substitution
grammar with the synchronization idea presented by
Shieber (1992). In particular, grammars are composed of
pairs of elementary trees, and pairs of substitution nodes,
one from each tree in a pair, are linked to indicate that
substitution of trees from a single elementary pair must
occur at the linked nodes.

4.1 Tree-Substitution Grammars

A TREE-SUBSTITUTION GRAMMAR (TSG) comprises a
set of ELEMENTARY TREES over a ranked alphabet F ,
where certain frontier nonterminal (non-zero arity) nodes
are marked as sites of substitution. The ability to have
such nonterminal nodes with no children means that we

must augment the definition of well-formed trees. We de-
fine the set of SUBSTITUTABLE TREES OVER A RANKED

ALPHABET F , notated T↓(F) as the smallest set such that

Nullary symbols at leaves f ∈ T↓(F) for all f ∈ F0;

Substitution nodes at leaves f↓ ∈ T↓(F) for all f ∈
Fn, n > 0;

Internal nodes f(t1, . . . , tn) ∈ T↓(F) for all f ∈ Fn,
n ≥ 1, and t1, . . . , tn ∈ T↓(F).

The marker ↓ marks the substitution nodes. In order to
refer to the substitution nodes of a substitutable tree, we
define the substitution paths of a tree t, ↓paths(t) to com-
prise the paths to substitution nodes in t.

A tree-substitution grammar, then, is a triple, 〈F , P, S〉
where F is a ranked alphabet comprising the vocabulary
of the grammar, S ∈ F is the start symbol of the gram-
mar, and P ⊆ T↓(F) is a set of elementary trees. In
order to allow reference to a particular tree in the set P ,
we associate with each tree in P a unique index, conven-
tionally notated with a subscripted α. This further allows
us to have multiple instances of a tree in P , distinguished
by their index. (We will abuse notation by using the index
and the tree that it names interchangably.) Furthermore,
we will assume that each grammar comes with an arbi-
trary ordering on the substitution node paths of a tree αi,
notating this permutation of ↓paths(αi) by ↓paths(αi).
We use this to mandate the child ordering of the children
in derivation trees.

As a simple example, we consider the grammar with
three elementary trees

α1 S(NP↓, V P (V (like), NP↓))

α2 NP (I)

α3 NP (cake)

and start symbol S. The arities of the symbols should be
clear from their usage.

A DERIVATION for a grammar G = 〈F , P, S〉 is a
tree whose nodes are labeled with (indexes of) elemen-
tary trees, that is, a tree D in T (P), satisfying the follow-
ing conditions:

1. For each node α in the tree D with substitution paths
↓paths(α) = 〈p1, . . . , pn〉, the node must have n

immediate children α1, . . . , αn.

2. The root node of each child tree must match the cor-
responding substitution node in the parent, that is,

α@pi = (αi@ε)↓ (1)

for all i, 1 ≤ i ≤ n.

91

3. The tree αr at the root of the derivation tree must
be labeled at its root by the start symbol, that is,
αr@ε = S.

For example, the derivation tree α1(α3, α2) is a well-
formed derivation tree for the sample grammar above,
assuming that ↓paths(α1) = 〈〈2, 2〉, 〈1〉〉. Note, for in-
stance, that α1@〈2, 2〉 = NP = α3@ε.

The derived tree for a derivation tree D is gener-
ated by performing all of the requisite substitutions.
This can be defined directly, but to highlight the re-
lationship with homomorphisms, we define it by map-
ping the substitutable trees into contexts, using a ho-
momorphism kernel ĥD. For each tree α ∈ P , with
↓paths(α) = 〈p1, . . . , pn〉, ĥD(α) is the tree generated
by replacing each node at address pi by the variable
xi. For example, the context corresponding to the ele-
mentary tree S(NP↓, V P (V (like), NP↓)) with respect
to the assumed substitution path ordering 〈〈2, 2〉, 〈1〉〉 is
S(x2, V P (V (like), x1)). Because the substitution nodes
of a tree all occur at its frontier, ĥD(α) is always a tree
in T (F ,Xn), and by construction is linear and complete.
Hence, the associated homomorphism hD is also linear
and complete.

We define the derived tree corresponding to a deriva-
tion tree D as the application of this homomorphism to
D, that is hD(D). For the example above, the derived
tree is that shown in Figure 2(a):

hD(α1(α3, α2))

= ĥD(α1)[hD(α3), hD(α2)]
= S(x2, V P (V (like), x1))[α3, α2]
= S(NP (I), V P (V (like), NP (cake)))

4.2 Synchronous Tree-Substitution Grammars

We perform synchronization of tree-substitution gram-
mars as per the approach taken for synchronizing tree-
adjoining grammars in earlier work (Shieber, 1992). Syn-
chronous grammars consist of pairs of elementary trees
with a linking relation between nodes in one tree and
nodes in the other. Simultaneous composition operations
occur at linked nodes. In the case of synchronous tree-
substitution grammars, the composition operation is sub-
stitution, so the linked nodes are substitution nodes.

We define a synchronous tree-substitution grammar,
then, as a quintuple G = 〈Fin,Fout, P, Sin, Sout〉,
where

• Fin and Fout are the input and output ranked alpha-
bets, respectively,

• Sin ∈ Fin and Sout ∈ Fout are the input and output
start symbols, and

• P is a set of elementary linked tree pairs, each of
the form 〈t, t′, _〉, where t ∈ T↓(Fin) and t′ ∈

T↓(Fout) are input and output substitutable trees and
_ ⊆ ↓paths(t) × ↓paths(t′) is a relation over sub-
stitution nodes from the two trees.

In order to guarantee that derivations for the syn-
chronized grammars are isomorphic, we need to im-
pose consistent orderings on the substitution nodes for
paired trees. We therefore choose an arbitrary order-
ing 〈pin,1 _ pout,1, . . . , pin,n _ pout,n〉 over the linked
pairs, and take ↓paths(t) = 〈pin,1, . . . , pin,n〉 and
↓paths(t′) = 〈pout,1, . . . , pout,n〉.

We define Gin = 〈Fin, Pin, Sin〉 where Pin =
{t | 〈t, t′, _〉 ∈ P}; this is the left projection of the syn-
chronous grammar onto a simple TSG. The right projec-
tion Gout can be defined similarly.

A synchronous derivation was originally defined as a
pair 〈Din, Dout〉 where (following Shieber (1992)):1

1. Din is a well-formed derivation tree for Gin, and
Dout is a well-formed derivation tree for Gout.

2. Din and Dout are isomorphic.

The derived tree pair for a derivation 〈Din, Dout〉 is then
〈hD(Din), hD(Dout)〉.

5 The Bimorphism Characterization of
STSG

The central result we provide relating STSG to tree trans-
ducers is this: STSG is equivalent to B(LC, LC). To
show this, we must demonstrate that any STSG is re-
ducible to a bimorphism, and vice versa.

5.1 Reducing STSG to B(LC, LC)

Given an STSG G = 〈Fin,Fout, P, Sin, Sout〉, we need
to construct a bimorphism characterizing the same tree
relation. All the parts are in place to do this. We start
by recasting derivations as single derivation trees from
which the left and right derivation trees can be projected
via homomorphisms. Rather than taking a derivation to
be a pair of isomorphic trees Din and Dout, we take it to
be the single tree D isomorphic to both, whose element
at address p is D@p = 〈Din@p, Dout@p〉. Condition (2)
on the well-formedness of a synchronous derivation thus
being trivially satisfied, we simply need to require that the
trees obtained by projecting this new derivation tree on its
first and second elements are well-formed derivation trees
in the projected TSGs. These projections Din and Dout

can be reconstructed by homomorphisms extending hin

1In the earlier version, a third condition required that the iso-
morphic operations are sanctioned by links in tree pairs. This
condition can be dropped here, as it follows from the previous
definitions. In particular, since the substitution path orderings
are chosen to be compatible, it follows that the isomorphic chil-
dren of isomorphic nodes are substituted at linked paths.

92

that projects on the first component and hout that projects
on the second, respectively. These homomorphisms are
trivially linear and complete (indeed, they are mere dela-
belings). Then the paired derived trees can be constructed
as hD(hin(D)) and hD(hout(D)), respectively. Thus the
mappings from the derivation tree to the derived trees
are the compositions of two linear complete homomor-
phisms, hence linear complete homomorphisms them-
selves. We take the bimorphism characterizing the STSG
tree relation to be 〈LD, hD ◦ hin, hD ◦ hout〉 where LD

is the language of well-formed synchronous derivation
trees.

To show that the language LD is a regular tree lan-
guage, we construct a top-down nondeterministic au-
tomaton 〈QG,FG, ∆G, qG〉 recognizing it. The states
of the automaton QG are elements of Fin × Fout, ex-
pressing the allowable pair of symbols labeling the roots
of the tree pair dominated by the state. The start state
is q0 = 〈Sin, Sout〉. The alphabet FG of the trees is
composed of pairs 〈αin, αout〉 of elementary trees, such
that 〈αin, αout, _〉 ∈ P , the arity of which is the num-
ber of substitution nodes in each tree, or equivalently,
|_|. For each elementary tree pair 〈αin, αout, _〉 ∈ P ,
where ↓paths(αin) = 〈p1, . . . , pn〉 and ↓paths(αout) =
〈r1, . . . , rn〉, there is a single transition in ∆G of the
form:

〈αin@ε, αout@ε〉(〈αin, αout〉(x1, . . . , xn))
→ 〈αin, αout〉(〈αin@p1, αout@r1〉(x1), . . . ,

〈αin@pn, αout@rn〉(xn))

We must verify that for any tree D recognized by this
automaton hin(D) and hout(D) are well-formed deriva-
tion trees for their respective TSGs.

To show that hin(D) is a well-formed derivation tree
(and symmetrically, for hout(D)), we must demonstrate
that the three definitional conditions hold. Consider a
node in the tree of the form 〈αin, αout〉. This node must
have been admitted by virtue of some transition of the
form above.

1. By construction, there must be an elementary tree
pair 〈αin, αout, _〉 ∈ P , and the node must have n

immediate children corresponding to ↓paths(αin) =
〈p1, . . . , pn〉.

2. Each child node, say the i-th, which we can
notate 〈αin,i, αout,i〉, again by construction,
must be admitted by a transition of the form
〈αin@pi, αout@ri〉(〈αin,i, αout,i〉(· · ·)). Any
matching transition enforces the requirement
that 〈αin@pi, αout@ri〉 = 〈αin,i@ε, αout,i@ε〉
hence that αin@pi = (αin,i@ε)↓ and
αout@ri = (αout,i@ε)↓, as required.

3. Since the start state is 〈Sin, Sout〉, the root of the
derivation tree must be a node 〈αin,r, αout,r〉 such
that αin,r@ε = Sin and αout,r@ε = Sout.

Thus, each of the two projection trees hin(D) and
hout(D) are well-formed derivation trees for their respec-
tive grammars, and the tree relation defined by the STSG
is in B(LC, LC).

5.2 Reducing B(LC, LC) to STSG

The other direction is somewhat trickier to prove,
but can be done. Given a bimorphism 〈L, hin, hout〉
over input and output alphabets Fin and Fout, re-
spectively, we construct a corresponding STSG G =
〈F ′

in,F ′
out, P, Sin, Sout〉. By “corresponding”, we mean

that the tree relation defined by the bimorphism is ob-
tainable from the tree relation defined by the STSG via
delabelings of the input and output that map F ′

in to Fin

and F ′
out to Fout. (Recall that delabelings are just many-

to-one renamings of the symbols.)
As the language L is a regular tree language, it is gen-

erable by a nondeterministic top-down tree automaton
〈Q,Fd, ∆, q0〉. We use the states of this automaton in
the input and output alphabets of the STSG. The input al-
phabet of the STSG is F ′

in = Fin∪(Q×Fin), composed
of the input symbols of the bimorphism, along with some
special symbols that pair states with the input symbols,
and similarly for the output alphabet. The pair symbols
mark the places in the tree where substitutions occur, al-
lowing control for appropriate substitutions. In order to
generate the trees actually related by the original bimor-
phism, the nodes labeled with such pairs can be projected
on their second component by a simple delabeling.

The basic idea of the STSG construction is to construct
an elementary tree pair for certain sequences of transi-
tions from ∆. However, it is easiest understood by start-
ing with the construction for the special case in which the
homomorphisms are ε-free. In this case, as we will see,
the pertinent sequences are just the single transitions. For
the nonce, then, we assume hin and hout to be ε-free,
relaxing this assumption later.

We define a simple nondeterministic transformation on
trees in T (F ,Xn) controlled by a sequence of n+1 states
in Q:

C(f(t1, . . . , tk), q, q1, . . . , qn)
= {〈q, f〉(t1, . . . , tk)[〈q1, N1〉↓, . . . , 〈qn, Nn〉↓]

| N1, . . . , Nn ∈ F}

In essence, the transformation replaces the root symbol
by pairing it with the state q, and replaces the n variables
with new pairs of a state qi and an arbitrarily chosen sym-
bol Ni. (The nondeterminism arises in the choice of the
Ni.) These latter symbols are taken to be substitution

93

F
cc##

G

F

ee%%
G

A

G

A

G

A

hin⇐= f

@@��
g

f

SS��
g

a

g

a

g

a

hout=⇒ D
aaaa

!!!!
E

N

D
HHH

���
D
ZZ��

E

N

D

ee%%
E

N

N

N

Figure 3: Example of bimorphism construction

nodes in the generated tree. Importantly, this transforma-
tion is partial; it applies to any tree in T (F ,Xn), with the
exception of those trees that consist of a variable alone.

We use the transformation C to generate elementary
tree pairs corresponding to transitions in ∆. For each
transition q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) ∈
∆, we construct the elementary tree pairs 〈tin, tout, _〉,
where tin ∈ C(ĥin(f), q, q1, . . . , qn) and tout ∈

C(ĥout(f), q, q1, . . . , qn) and _ links the corresponding
paths in the two trees, that is, the paths at which corre-
sponding variables occur in the trees ĥin(f) and ĥout(f).
Since hin and hout are linear and complete, this notion is
well-defined. The applications of C are well-defined only
when ĥin(f) and ĥout(f) are in the domain of C, that is,
it is not a lone variable, hence the requirement that hin

and hout be ε-free.
An example may clarify the construction. Take the lan-

guage of the bimorphism to be defined by the following
two-state automaton:

q(f(x, y)) → f(q′(x), q′(y))
q(a) → a

q′(g(x)) → g(q(x))

This automaton uses the states to alternate g’s with f ’s
and a’s level by level. For instance, it admits the middle
tree in Figure 3. With input and output homomorphisms
defined by

ĥin(f) = F (x, y) ĥout(f) = D(y, D(x, N))

ĥin(g) = G(x) ĥout(g) = E(x)

ĥin(a) = A ĥout(a) = N

the bimorphism so defined generates the tree relation in-
stance exemplified in the figure.

The construction given above generates the schematic
elementary tree pairs in Figure 4 for this bimorphism.
(The tree pairs are schematic in that we use a ∗ to stand
for an arbitrary symbol in the appropriate alphabet.) The
reader can verify that the grammar generates a tree pair

whose delabeling is that shown in Figure 3 generated by
the bimorphism.

Now, we turn to the considerably more subtle consid-
erations of non-ε-free homomorphisms. In a linear com-
plete homomorphism, the only possible case of non-ε-
freeness that is possible is for unary function symbols,
that is ĥ(f) = x, so that h(f(x)) = h(x). Intuitively
speaking, such cases in bimorphisms should (and will)
correspond to STSG elementary trees that have just a sin-
gle node, so that they contribute no structure to the de-
rived trees.

If, for some symbol f , both hin and hout are non-
ε-free, then any tree rooted in such a symbol, f(t), is
mapped, respectively, to hin(t) and hout(t). But in that
case, we can eliminate the unary symbol f , eliminat-
ing transitions in the automaton of the form q(f(x)) →
f(q′(x)) by adding, for all transitions with q′ on the left
hand side, identical transitions with q on the left-hand
side. We then construct the STSG for the simplified au-
tomaton.

The situation is more complicated if only one of the
two homomorphisms, say hin, is non-ε-free. In this case,
we have that hin(f(x)) = hin(x) but hout(f(x)) =
C[hout(x)] for nontrivial context C, thus introducing
structure on the output with no corresponding structure
on the input. We will call such a unary symbol ASYM-
METRIC. A sequence of asymmetric symbols can intro-
duce unbounded amounts of material on the output with
no corresponding material on the input (or vice versa).
The key is thus to construct all possible such sequences
of asymmetric symbols and chop them into a bounded set
of minimal cycles, using these to generate single elemen-
tary tree pairs. We arrange that in such cycles, the state
and symbol at the root will be identical to the state and
symbol at the end of the sequence. For example, sup-
pose we have asymmetric symbols f and g and an ε-free
symbol k with the following automaton transitions:

q(k(x)) → k(q(x))

q(f(x)) → f(q(x))

q(g(x)) → g(q′(x))

q′(f(x)) → f(q′(x))

q′(f(x)) → f(q′′(x))

q′(g(x)) → g(q′(x))

q′′(k(x)) → k(. . .)

There is a minimal cycle such that q′(f(g(f(x)))) =
f(g(q′(f(x)))). Note that the state q′ and symbol f at
the root are duplicated at the bottom. There is a simi-
lar cycle of the form q′(f(f(x))) = f(q′(f(x))). For
each such cycle, we construct a linked tree pair with a
trivial input tree labeled with a pair of the state and an
arbitrary symbol N from the input alphabet—〈q′, N〉 in

94

αf =

〈

〈q, F 〉
b

bb
"

""
〈q′, ∗〉↓ 〈q′, ∗〉↓

〈q, D〉
aaa

!!!
〈q′, ∗〉↓ D

cc##
〈q′, ∗〉↓ N

{〈1〉 _ 〈2, 1〉, 〈2〉 _ 〈1〉}

〉

αg =

〈

〈q′, G〉

〈q, ∗〉↓

〈q′, E〉

〈q, ∗〉↓

{〈1〉 _ 〈1〉}

〉

αa =
〈

〈q, A〉 〈q, N〉 {}
〉

Figure 4: Generated STSG for example bimorphism

the example. The corresponding output tree is generated
by composing the nontrivial output trees and applying C
to this compound tree in the obvious way. Since the path
language in the tree language of a tree automaton is regu-
lar, a decomposition of the paths into a bounded number
of bounded-length cycles can always be done, leading to
a finite number of elementary tree pairs. Note that since
the label of the root for the appropriate input tree 〈q′, f〉
is identical to the label to replace the (single) variable, the
tree pair is constructed in a way consistent with C, hence
the workings of the rest of the STSG.

In addition, for each minimal sequence start-
ing with a symbol that is non-ε-free on the input
and leading to such a cyclic state/symbol pair, a
tree pair is similarly generated. In the example,
the sequence corresponding to the automaton sub-
derivation q(k(f(g(f(x))))) = k(f(g(q′(f(x)))))
would lead us to generate a tree pair with
〈C(ĥin(k), q, q′), C(ĥin(k)[ĥout(f)[ĥout(g)]], q, q′), _〉
where _ links the two leaf nodes labeled with
state/symbol pairs.

Similarly, we require elementary tree pairs correspond-
ing to minimal tails of sequences of asymmetric sym-
bols starting in a cyclic state/symbol pair and ending in
a symbol non-ε-free on the input. These three types of
sequences can be pieced together to form any possible
sequence of unary symbols admitted by the automaton,
and the corresponding tree pairs correspond to the com-
positions of the homomorphism trees.

6 Discussion

By placing STSG in the class of bimorphisms, which
have already been used to characterize tree transducers,
we provide the first synthesis of these two independently
developed approaches to specifying tree relations, unify-
ing their respective literatures for the first time. The rela-
tion between a TAG derivation tree and its derived tree is
not a mere homomorphism. The appropriate morphism
generalizing linear complete homomorphisms to allow
adjunction can presumably be used to provide a bimor-
phism characterization of STAG as well, further unifying
these strands of research.

The bimorphism characterization of STSG has imme-
diate application. First, the symmetry of the tree rela-
tions defined by an STSG is a trivial corollary. Second,
it has been claimed in passing that synchronous tree-
substitution grammars are “equivalent to top-down tree
transducers.” (Eisner, 2003). This is clearly contravened
by the distinction between B(LC, LC) and B(D, M).
Third, the bimorphism characterization of tree transduc-
ers has led to a series of composition closure results. Sim-
ilar techniques may now be applicable to synchronous
formalisms, where no composition results are known. For
instance, the argument for the lack of composition clo-
sure in B(LCF, LCF) (Arnold and Dauchet, 1982) may
be directly applicable to a similar proof for B(LC, LC),
hence for STSG; the conjecture remains for future work.

References
A. Arnold and M. Dauchet. 1982. Morphismes et bi-

morphismes d’arbres. Theoretical Computer Science,
20(1):33–93, March.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. 1997.
Tree automata techniques and applications. Avail-
able at: http://www.grappa.univ-lille3.
fr/tata. release of October 1, 2002.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, Sapporo, Japan, July.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Linguis-
tics, 23(2):269–311.

Stuart M. Shieber. 1992. Restricting the weak-generative
capacity of synchronous tree-adjoining grammars. In
Proceedings of the Second TAG Workshop, University
of Pennsylvania, Philadelphia, Pennsylvania, June 24–
26.

95

