
Computing Semantic Representation: Towards ACG Abstract Terms as
Derivation Trees

Sylvain Pogodalla
LORIA - Campus Scientifique

BP239
F-54602 Vandœuvre-lès-Nancy – France
Sylvain.Pogodalla@loria.fr

Abstract

This paper proposes a process to build semantic
representation for Tree Adjoining Grammars
(TAGs) analysis. Being in the derivation tree
tradition, it proposes to reconsider derivation
trees as abstract terms (λ-terms) of Abstract
Categorial Grammars (ACGs). The latter of-
fers a flexible tool for expliciting composition-
ality and semantic combination. The chosen
semantic representation language here is an un-
derspecified one. The ACG framework allows
to deal both with the semantic language and
the derived tree language in an equivalent way:
as concrete realizations of the abstract terms.
Then, in the semantic part, we can model lin-
guistic phenomena usually considered as diffi-
cult for the derivation tree approach.

Introduction

When dealing with the computation of semantic repre-
sentation for TAG analysis, two main approaches are usu-
ally considered. The first one gives the derivation trees
a central role for the computation (Schabes and Shieber,
1994; Candito and Kahane, 1998; Kallmeyer, 2002; Joshi
et al., 2003), and the second one relies on a direct compu-
tation on the derived tree (Frank and van Genabith, 2001;
Gardent and Kallmeyer, 2003).

The present article wants to explore the intuition that
the two approaches are indeed bound: derivation trees are
a specification of the operations that are to be processed,
but the derived trees hold the precise descriptions of these
operations. We propose to exhibit those operations by
separating them from the syntactic trees. Then, under the
specifications given by the derivation trees, we show how
to build the semantic representations.

The tools we use for this purpose are Abstract Cate-
gorial Grammars (ACGs) (de Groote, 2001). The main

feature of an ACG is to generate two languages: anab-
stract languageand anobject language. Whereas the ab-
stract language may appear as a set of grammatical or
parse structures, the object language may appear as its
realization, or the concrete language it generates. For in-
stance, (de Groote, 2002) proposes as object language the
tree language of TAGs (encoded in linearλ-terms) and,
as abstract language, a tree language (also encoded in
linearλ-terms) andvery close to the derivation tree lan-
guage. In this paper, we use the same abstract language,
and, as object language,λ-terms that encode underspeci-
fied semantic representation as in (Bos, 1995; Blackburn
and Bos, 2003). Thus, we realize our program to sepa-
rate the computation specification and the operation def-
inition. As for Montague’s semantics, missing informa-
tion is represented by boundλ-variables and replacement
and variable catching by application instead of unifica-
tion (as in (Frank and van Genabith, 2001; Gardent and
Kallmeyer, 2003)).

The next section briefly describes the underlying prin-
ciples of ACGs. Then we show how syntactic parts of
TAGs are modelled and how we translate, through the
abstract terms (our derivation trees), the combination of
intial and auxiliary trees to their semantic representations
by means of some examples.

1 ACG Principles

An ACG G defines:

1. two sets of typedλ-terms: Λ1 (based on the typed
constant setC1) andΛ2 (based on the typed constant
setC2);

2. a morphismL : Λ1 → Λ2;

3. a distinguished typeS.

(de Groote, 2001) defines bothΛ1 andΛ2 as sets oflin-
ear λ-terms. In this paper, we use simply typedλ-terms
for Λ2, using the translation of intuitionnistic logic into

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 64-71.

linear logicA → B = (!A) (B (Girard, 1987; Danos
and Cosmo, 1992). We don’t elaborate on that subject in
this paper, but it does not change the main properties of
ACGs1. Then the abstract languageA(G) and the object
languageO(G) are defined as follows:

A(G) = {t ∈ Λ1|t : S}
O(G) = {t ∈ Λ2|∃u ∈ A(G) t = L(u)}

Note thatL binds the parse structures inA(G) to the
concrete expressions ofO(G). Depending on the choice
of Λ1, Λ2 andL, it can map for instance derivation trees
and derived trees for TAGs (de Groote, 2002), derivation
trees of context-free grammars and strings of the gener-
ated language (de Groote, 2001), derivation trees ofm-
linear context-free rewriting systems and strings of the
generated language (de Groote and Pogodalla, 2003). Of
course, this link between an abstract and a concrete struc-
ture can apply not only to syntactical formalisms, but also
to semantic formalisms.

The main point here is that ACGs can be mixed in dif-
ferent ways: in a transversal way, were two ACGs use the
same abstract language, or in a compositional way, were
the abstract language of an ACG is the object language
of an other one. In this paper, as described in figure 1,
we use different ACGs and some composition withG:
Λ2 is the tree language of TAGs,Λ1 the tree language of
our derivation trees. For G′, we have the same abstract
language andΛ′

2 is the underspecified representation lan-
guage. In dotted lines is a composition presented in (de
Groote, 2001) between strings and derivation trees we do
not use here.

Derivation trees
Λ1

Derived trees
Λ2

Λ′
2

representations
Underspecified semantic

Strings
Λ3

G′G

Figure 1: Moving from an object language to another

1In particular, this means that, provided there is no vacuous
abstraction inL(C1) and everyc ∈ L(C1) is such that it has
t ∈ C2 as subterm, we can decide if, foru ∈ Λ2 if u ∈ O(G)
and what is (are) the antecedent(s) (Pogodalla, 2004).

2 TAGs as ACGs

This section refers to (de Groote, 2002), which proposes
to encode TAGs into ACGs. Given a TAGG, Λ1 is build
as follows:

• for every non-termninal symbolX, there are two
typesXS and XA standing for places where sub-
stitution and adjunction can occur respectively;

• for every elementary treeγ, there is a constantcγ ∈
C1. Moreover, for every non-terminal symbolX,
there is a constantIX : XA.

For instance, given the trees of table 1, we have the con-
stants and their types (for concision, we suppress param-
eters that are not used in the next examples of this paper,
namely nodes where no adjunction occur2):

cevery : NA

cdog : NA (NS

cchases : SA (VPA (NS (NS (SS

cusually : VPA (VPA

N

every N∗ dog

N

S

N VP

chases N

VP

usually VP∗

Table 1: Examples of elementary trees

To completely define the ACGG, we need to define
Λ2 andL. The types ofΛ2 are made of the single type
τ , representing the type of trees. For any non-terminal
symbolX, there are constantsX0, . . . , Xi wherei is the
maximal number of children of theX nodes in the ele-
mentary trees. For any terminal symbolX in G, there is
a constantX : τ ∈ C2. ThenL is defined by sending
anyXS type to the typeτ , and anyXA types to the type
τ (τ . Corresponding to the trees of table 1, we have
for instance:

L(IX) = λx.x : τ (τ
L(cevery) = λx.N2(every x) : τ (τ
L(cdog) = λN.N(N1dog) : (τ (τ) (τ

L(cchases) = λSV.λx.λy.S(S2x(V
(VP2chases y)))
: (τ (τ) ((τ (τ) (τ (τ (τ

Note that in the adjunction operation, the auxiliary tree
is a parameter. But it also has a higher-order type, that

2For instance, the type ofcevery should beDetA (NA (
NA.

65

is a function from trees to trees. We let the reader check
thatL(cchasesISIVP(cdogcevery)(ccatcsome)) correspond the
derived tree associated toevery dog chases some catof
figure 2.

S

N VP

every chasesN

dog

N

some N

cat

Figure 2: L(cchasesIVP(cdogcevery)(ccatcsome)) =
S2(N2 every(N1 dog))(VP2 chases(N2 some(N1 cat)))

We note two important things. First, the abstract terms,
as cchasesISIVP(cdogcevery)(ccatcsome) can be represented
by a tree structure where the children of a node are its
arguments. Then erasing theIX arguments, and direct-
ing the edges downward if the argument is of typeXS

and upward if the argument is of typeXA, we get the
usual notion of derivation tree. Second, the auxiliary trees
are modelled as higher-order function. We use the same
approach in our semantic modelling, getting some type
raising, as in Montague’s semantics. But let us precise
the ACG we use for the semantic representation.

3 Semantic representation for TAGs as
ACGs

The semantic representation language we use is an un-
derspecified one presented in (Bos, 1995; Blackburn and
Bos, 2003): the predicate logic “unplugged”. The aim
of this language, theunderspecified representation lan-
guage(URL) is to specify in a single formula the pos-
sible formulas (of thesemantic representation language
(SRL)) associated to an ambiguous expression. For in-
stance, the expressionevery dog chases a cathas the two
possible meanings:

∀x(dog (x) ⇒ ∃y(cat(y) ∧ chases (x, y)))
∃y(cat(y) ∧ ∀x(dog (x) ⇒ chases (x, y)))

To mark the difference between the SRL and the URL,
both being first order languages, we translate the usual
first order logic symbols of SRL. This translation is
straightforward, using boldface symbols (e.g,All , And ,
Imp , etc.). In SRL, the two previous formulas are re-
stated as follows:

All (x, Imp(dog (x), Some(y, And (cat(y), chases (x, y)))))
Some(y, And (cat(y), All (x, Imp(dog (x), chases (x, y)))))

Both these formulas have the property that:

• they have at leat two subformulas: one quantified by
All , one quantified bySome ;

• chases (x, y) is a subformulas of the two quantified
subformulas.

The URL relies on the speficication of subformula con-
straints that the SRL formulas have to satisfy, and the two
SRL formulas above can be described by the following
URL formula:

∃h0h1h2l1l2l3l4l5l6l7xy(l1 : All (x, l2)
∧l2 : Imp(l3, h1) ∧ l3 : dog (x) ∧ l4 : Some(y, l5)
∧l5 : And (l6, h2) ∧ l6 : cat(y)
∧l7 : chases (x, y) ∧ h1 ≥ l7 ∧ h2 ≥ l7 ∧ h0 ≥ l1
∧h0 ≥ l4)

illustrated in figure 3. The syntax of URL is basically the
same that first-order logic, except that if atomic formu-
las remain the same, formulas are built fromholesand
labels, the latter being used as place holder for logical
formulas in the underspecified representation language.
We use the usual logical symbols (∃, ∧), an infix predi-
cate≥ to specify the constraints and an infix operateur:
for URL. The symbolh ≥ l imposes the constraint for a
formula that is associated tol to be a subformula of the
one associated toh. l : p indicates that a predicatep of
SRL is labelled in URL byl.

l1 : All (x, l2) l4 : Some(y, l5)

l5 : And (l6, h2)l2 : Imp(l3, h1)

l3 : dog (x) l6 : cat(y)

h0

l1 l4

l7

l7 : chases (x, y)

Figure 3: URL formula forevery dog chases a cat

We want to underline the difference between URL and
SRL because our concern in this paper is not to build and
manage SRL formulas, but only URL formulas, that is
underspecified representations. So that the object lan-
guage of the ACG we are designing is URL.

Coming back to the figure 1, we established in the pre-
vious section theG ACG to encode TAGs. We know want
to rely on the common abstract language,Λ1, the one of
derivation trees, to build theG′ ACG that model the se-
mantic behaviour, with URL asΛ′

2. So let us now define
G′.

First isΛ′
2:

66

• the types we use aree, h, l, p, t wheree stands for
entities,h for holes,l for labels,p for predicate of
the logical language andt for truth values;

• the constants are≥, :, ∃l, ∃e, ∃h, ∧, Imp , And ,
Some , All and the set of the predicate symbols of
the logical language (dog , chases , etc. in the ex-
amples). Their types are described in table 2.

Note we have three existential quantifiers∃l, ∃h and∃e,
but we usually note them only∃. Moreover, to keep
with the usual logical notation we write∃xP instead of
∃(λx.P) wherex is a free variable ofP .

Finally, to define the ACGG′, we need the lexiconL′.
It transforms the types fromΛ1 as follows:

L′(NS) = (e → h → l → t) ((h → l → t)
L′(NA) = (e → h → l → t)

((e → h → l → t) ((h → l → t)
L′(SS) = h → l → t
L′(SA) = (e → h → l → t)

((e → h → l → t)
L′(VPA) = (h → l → t) ((h → l → t)

Contrary toΛ2, that model derived trees and generates
linear terms, we use inΛ′

2 non-linear terms, as the intu-
itionnistic → shows. The definition ofL′ on the terms
justifies it. We shall introduce this definition in the next
sections, illustrating different linguistic phenomena.

3.1 Quantification

We start with the classical example of quantitification.
When dealing with quantifiers as adjunct (Abeillé, 1993),
where quantifier is adjoined to the noun, quantifiers are
separated from the verb by the noun in the derivation
trees. Then the problem of the proposition coming from
the VP to be part of the scope of the quantifiers arises.
(Kallmeyer, 2002) proposes to enrich the derivation trees
with additional links to take this kind of linking into ac-
count.

We propose to deal with this kind of problems fol-
lowing the Montague’s approach of quantification (Mon-
tague, 1974): the subject is an argument of the verb, but
it is also a higher order function which has the verb pred-
icate as argument. So the lexicon for the ACGG′ could
define :

L′(cdog) = λq.q(λxhl.h ≥ l ∧ l : dog (x))
L′(ccat) = λq.q(λxhl.h ≥ l ∧ l : cat(x))

L′(cchases) = λbaso.s(b(λx.a(o(λyh′l′.h′ ≥ l′

∧l′ : chases (x, y)))))
L′(cevery) = λrp.λhl.∃h1l1l2l3v1(h ≥ l2

∧l2 : All (v1, l3) ∧ l3 : Imp(l1, h1)
∧h1 ≥ l ∧ r v1 h l1 ∧ p v1 h l)

L′(csome) = λrp.λh′l′.∃h′
1l

′
1l

′
2l

′
3v

′
1(h

′ ≥ l′2
∧l′2 : Ex(v′

1, l
′
3) ∧ l′3 : And (l′1, h

′
1)

∧h′
1 ≥ l′ ∧ r v′

1 h′ l′1 ∧ p v′
1 h′ l′)

It’s easy to check that the translation from the ab-
stract term, or the derivation tree in our sense,t =
cchasesISIVP(cdogcevery)(ccatcsome) by L′ has the expected
form:

L′(cdogcevery) = λp.λhl.∃h1l1l2l3v1(h ≥ l2
∧l2 : All (v1, l3) ∧ l3 : Imp(l1, h1)
∧h1 ≥ l ∧ h ≥ l1 ∧ l1 : dog (v1)
∧p v1 h l)

L′(ccatcsome) = λp.λh′l′.∃h′
1l

′
1l

′
2l

′
3v

′
1(h

′ ≥ l′2
∧l′2 : Ex(v′

1, l
′
3) ∧ l′3 : And (l′1, h

′
1)

∧h′
1 ≥ l′ ∧ h′ ≥ l′1 ∧ l′1 : cat(v′

1)
∧p v′

1 h′ l′)
L′(cchasesISIVP) = λso.s(λx.o(λyh′l′.h′ ≥ l′

∧l′ : chases (x, y)))

Hence forL′(t) we have:

λhl.∃h1l1l2l3v1(h ≥ l2 ∧ l2 : All (v1, l3)
∧l3 : Imp(l1, h1) ∧ h1 ≥ l ∧ h ≥ l1 ∧ l1 : dog (v1)
∧∃h′

1l
′
1l

′
2l

′
3v

′
1(h ≥ l′2 ∧ l′2 : Ex(v′

1, l
′
3)

∧l′3 : And (l′1, h
′
1) ∧ h′

1 ≥ l ∧ h ≥ l′1 ∧ l′1 : cat(v′
1)

∧h ≥ l ∧ l : chases (v1, v
′
1)))

recovering the one from the figure 3 (modulo variable
renaming). To deal with quantification in this exam-
ple, we don’t add any extra-link to the derivation tree
(or abstract term) ones, contrary to (Kallmeyer, 2002).
Both the subject (thes variable inL′(cchases)) and the
object parameter (theo variable) are considered as the
real functors, applyed to the relationchases as in
s(· · · (o(· · · chases (x, y) · · ·))). This implies thatNs
andNPs have higher-order types (see also the semantic
term associated to entities in section 3.4). This is remi-
niscent to Montague’s approach (Montague, 1974).

A term like L′(cchases) also shows the exact contribu-
tion of every node. For instance, theb variable stands for
the semantic contribution of theS node, whereas thea
variable stands for the semantic contribution of theVP.
That is the former can act both on the predicate and its
argument (see the type ofL′(SA)), whereas the latter can
only modify the whole relation. The next sections illus-
trate this point, with adverbs and raising verbs. Then,
modelling verbs with phrasal arguments, we show how
theb variable can act.

In the sequel of the paper, whenever we introduce a
new term which has a similar constrution to a previous
one, we don’t give its explicit definition (e.g.loves, simi-
lar tochases).

3.2 Adverbs

In the semantic representation we associate tocchasesin
the previous section, we see, between the subjects and
the “VP relation”, an argumenta. Its type (L′(VPA) =
(h → l → t) ((h → l → t)) shows it is a verb mod-
ifier. So let us introduce a new consantcusually : VPA (

67

≥ : h → l → t specifies the underspecification constraints
: : l → p (t labels the logical predicates
∧ : t (t (t conjunct of descriptions
∃l : (l → t) (t existential quantifier on labels
∃h : (l → t) (t existential quantifier on holes
∃e : (e → t) (t existential quantifier on entities

And , Imp : l → h → p conjonction and implication in the embedded logical language
dog , cat : e → p predicates in the embedded logical language
chases : e → e → p predicate in the embedded logical language

Table 2: Typing of constants ofΛ′
2

VPA ∈ C1. We can associate it, withL′, to the term:

λa.λr.λhl.∃h1l1(r h l ∧ h ≥ l1 ∧ l1 : U(h1)
∧h1 ≥ l ∧ a(λh′l′.h′ ≥ l′)h l1)

Its first argument,a, correspond to the verb modifier that
could also be adjoined to this node (for instance an other
adverballedgelly). The second argument,r, corresponds
to the verb predicate it modifies. Here, it isl that the ad-
verbU should also dominate (h1 ≥ l). Then, to express
that usually is an opaque modifier is just indicating that
the labell1 of U has to be the lowest point in the modifi-
cation induced bya. That isl1 is also the label argument
of a.

Socusually(calledgedlyIVP) is mapped to

λr.λhl.∃h1l1(r h l ∧ h ≥ l1 ∧ l1 : U(h1)
∧h1 ≥ l ∧ ∃h′

1l
′
1(h ≥ l1 ∧ h ≥ l′1 ∧ l′1 : A(h′

1)
∧h′

1 ≥ l1))

where every subformula ofh′
1 is a subformula ofA. Since

h′
1 dominatesl1 which is the label ofU, U(h1) is always

a subformula ofA.
As mentionned in (Gardent and Kallmeyer, 2003),

there are adverbs that would not have this opaque be-
haviour and rather pass the label of the verb predicate to
other possibles modifiers. In this case, the argument ofa
is notl1, but simplyl. We illustrate it in the next example,
even if not on adverbs.

3.3 Raising Verbs

Raising verbs likeseemshave been modelled in TAGs as
adverbs. We can use exactly the same semantic encoding
as for adverbs, except that this time it is not considered as
opaque. Hence its associated term inΛ′

2 is:

λa.λr.λhl.∃h1l1(r h l ∧ h ≥ l1 ∧ l1 : seems (h1)
∧h1 ≥ l ∧ a(λh′l′.h′ ≥ l′)h l)

3.4 Verbs with Phrasal Arguments

Going upward in the syntactic tree, we can now try to
model expressions that act onS nodes likeclaims (see

table 3). Coming back to our modelling ofchases, we
had ab argument of typeL′(SA) = (e → h → l →
t) ((e → h → l → t). So we can associate to a term
cclaims : NS (SA (SA ∈ Λ1 a term inΛ′

2:

λspr.λy.p(s(λxhl.∃l1h1(h ≥ l1∧
l1 : claims (x, h1) ∧ ryh1l)))

which specifies thatx claims something, the latter being
dominated byh1 (henceclaims).

So for instance, an expressionPaul claims
John loves Mary would give the abstract term
cloves(cclaimscPaulIS)IVPcJohncMary and its underspeci-
fied representation (L′(cPaul) = λP.Pp):

λhl.∃l1h1(h ≥ l1 ∧ l1 : claims (p, h1)
∧h1 ≥ l ∧ l : loves (j, m)))

because

L′(cclaimscPaul) = λr.λy.λhl.∃l1h1(h ≥ l1
∧l1 : claims (p, h1) ∧ ryh1l)

L′(clovestIVP

cJohncMary) = (λP.P j)(t(λx.(λQ.Qm)
(λyh′l′.h′ ≥ l′∧
l′ : loves (x, y))))

= (λP.P j)(t(λx.λh′l′.h′ ≥ l′

∧l′ : loves (x, m)))

S

N VP

claims S∗

VP

seems VP∗

S

N S

VP

to love

N

Table 3: Few more trees

Let us now illustrate the long distance dependancy be-
haviour, together with phrasal arguments. We can see that

68

if the syntactic properties of the infinitiveto love(see ta-
ble 3) really differs from the ones ofloves, their semantic
counterpart only differs in the order of argument (and an
extraL′(SA) whose role should be precised). We can
naturally associate toL′(cto love) the term:

λbaos.s(b(λx.a(o(λyh′l′.h′ ≥ l′ ∧ l′ : loves (x, y)))))

Then analyzing a long distance dependencyMary Paul
claims John seems to loveis the same as analyzing the
previous example, except that theIVP term is replaced by
cseemsand the order of the other arguments is exchanged:
cloves(cclaimscPaul)(cseemsIVP)cMarycJohn. The contribution
ofL′(cseemsIVP) toL′(clove) is just adding the conjonction
of (modulo the variable renaming)∃h2l2(h1 ≥ l ∧ l :
loves (j, m) ∧ h1 ≥ l2 ∧ l2 : seems (h2) ∧ h2 ≥ l)
instead of onlyh1 ≥ l ∧ l : loves (j, m))) so that we
finally have:

λhl.∃l1h1(h ≥ l1 ∧ l1 : claims (p, h1)
∧∃h2l2(h1 ≥ l ∧ l : loves (j, m) ∧ h1 ≥ l2
∧l2 : seems (h2) ∧ h2 ≥ l)

which is the expected result.

3.5 Wh-questions

This section provides an example of an adjunction oc-
curring on the root node of an auxiliary tree which
is itself adjoined to a third tree. The expressionwho
does Paul think John said Bill liked, can be analyzed
with the constantscwho : WHS ∈ Λ1 and cliked :
SA (VPA (WHS (NS (SS ∈ Λ1, that
correspond to the trees of figure 4. The two other
constantscdoes think and csaid, corresponds to the auxil-
iary trees of the same figure and the derivation tree is
cliked(csaidcJohn(cdoes thinkcPaulIS))IVPcwhocBill .

Then, we can extendL′ as follows:

L′(cwho) = λphl.∃v1h
′′
1 l′′1 (h ≥ l′′1

∧ l′′1 : W(v1, h
′′
1) ∧ h′′

1 ≥ l ∧ pv1h
′′
1 l)

L′(cliked) = λbaos.o(b(λy.a(s(λxh′l′.h′ ≥ l′

∧ l′ : liked (x, y)))))
L′(csaid) = λsbr.b(λy.s(λxhl.∃h1l1(h ≥ l1

∧ l1 : S(x, h1) ∧ h1 ≥ l ∧ ryh1l)))
L′(cdoes think) = λsbr′.b(λy.s(λxhl.∃h′

1l
′
1(h ≥ l′1

∧ l′1 : T(x, h′
1) ∧ h′

1 ≥ l ∧ r′yh′
1l)))

who

WH

S

N VP

S

liked

WH

S

N VP

said S∗

S

N VP

think S∗

S

does

Figure 4: Wh-question example

Then, we have :

L′(cdoes thinkcPaulIS) = L′(t0)
= λr′λyhl.∃l′1h′

1(h ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ r′yh′
1l)

L′(csaidcJohnt0IS) = L′(t1)
= λr.λyhl.∃l′1h′

1(h ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ ∃h1l1(h′
1 ≥ l1 ∧ l1 : S(j, h1)

∧ h1 ≥ l ∧ ryh1l))

This yields the following result:

L′(clikedt1IVPcwhocBill) = (λo.o(λyhl.∃l′1h′
1(h ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ ∃h1l1(h′
1 ≥ l1 ∧ l1 : S(j, h1)

∧ h1 ≥ l ∧ h1 ≥ l

∧ l : liked (b, y)))))L′(cwho)
= λhl.∃v1h

′′
1 l′′1 (h ≥ l′′1

∧ l′′1 : W(v1, h
′′
1) ∧ h′′

1 ≥ l

∧ ∃l′1h′
1(h

′′
1 ≥ l′1

∧ l′1 : T(p, h′
1) ∧ h′

1 ≥ l

∧ ∃h1l1(h′
1 ≥ l1 ∧ l1 : S(j, h1)

∧ h1 ≥ l ∧ h1 ≥ l

∧ l : liked (b, v1))))

which is the expected one, withW binding the variablev1

and dominatingT, itself dominatingS, itself dominating
liked (b, v1).

3.6 Control Verbs

Control verbs, as presented in (Gardent and Kallmeyer,
2003) or (Frank and van Genabith, 2001), with adjunc-

69

tion on aS node (see table 4) to produce an expression
like John tries to sleep, with the adjunction oftries toon
sleep, is a problem for our approach.

Indeed, it is build from the term
csleep(ctries toIVPcJohnIS)IVP and the typing discipline
makest = ctries toIVPcJohnIS of type SA, henceL′(t) of
type (e → h → l → t) (e → h → l → t. If it is
clear that the first argument of type(e → h → l → t)
concerns thesleep predicate (with something like
λxhl.h ≥ l ∧ l : sleep (x)), the result should not have
anye possible argument (it has been filled withj).

In other worlds, if we look at adjunctions onS nodes
in previous sections, the subtrees always lack anN (John
seems to lovex, or John said Bill likedx) and are al-
ways transformed into a subtree lacking anN too (Paul
claims John seems to lovex, or does Paul think John said
Bill liked x). This is not the case anymore with control
verbs where the subtree forx sleepturns intoJohn tries
to sleep.

So control verbs cannot be dealt with directly that way
with our techniques. We need for instance to differentiate
the SA type into the usual one(e → h → l → t) (
e → h → l → t and another one(e → h → l →
t) (h → l → t. This could be done with a special
SPro node, or with an extended type system (for instance
additives of linear logic to manage disjunctive types). But
this requires further investigation and goes beyond this
article.

S

N VP

tries to S∗

S

VP

sleep

Pro

Table 4: Derived trees for control verbs

Conclusion

We propose to reconsider semantic representation com-
putation for TAG from the derivation trees. But deriva-
tion trees here are understood as abstract terms of ACGs,
even if the informations born by each of the formalism are
essentially the same. Whereas they hold the specification
of how trees should combine, the locality of computing
the meanings held by the different nodes is described in
the object vocabulary. It obviates the addition of extra
links to manage scoping and shows that derivation trees,
by themselves, are enough, even if further investigation
are required to handle control verbs.

It also clearly defines the compositional aspects of
building semantic representations with a clear and mod-
ular distinction between syntax and semantics. The latter

point lacks in the derived tree approaches. Moreover, the
mathemetical primitives we use are very simple (if ex-
pression not always are) and are the same both on the
syntactic and the semantic side, and no external princi-
ples need to be added.

So, from the ACG point of view, both syntax and se-
mantics are dealt with in an equivalent way: as object
languages of the same abstract language. This is interest-
ing because the computation engine to go from the object
language to the abstract language in an ACG does not de-
pend on the object language. So the underlying process
remains the same for all that cases:

• to compute a derived tree, then a derivation tree,
from a string;

• to compute a derivation tree from a URL formula;

• to compute a derived tree, then a string, from a
derivation tree;

• to compute an URL formula from a derivation tree.

So that going from one to the other (parsing or generation,
in the usual sense) is as difficult (or as easy) as going the
other way. Of course, on the semantic side, it means the
initial point is an URL formula, and it gives no hint on
how to build it from an SRL formula, nor on how to deal
with the logical equivalence (be it on the SRL or on the
URL level).

Finally, it underlines the interesting feature of ACG
to transport or transmit structures from one language to
anoher, illustrated between a syntactic formalism and
a semantic formalism for TAGs. As suggested by an
anonymous referee, the same approach could be used
to provide semantic representations to expressions be-
longing tom-linear context-free languages, since abstract
terms have already been proposed for them (de Groote
and Pogodalla, 2003).

References
Anne Abeilĺe. 1993. Les nouvelles syntaxes. Armand

Colin Éditeur, Paris.

Patrick Blackburn and Johan Bos. 2003. Com-
putational semantics for natural language.
http://www.iccs.informatics.ed.ac.
uk/˜jbos/comsem/book1.html . Course Notes
for NASSLLI 2003.

Johan Bos. 1995. Predicate logic unplugged. InPro-
ceedings of the Tenth Amsterdam Colloquium.

Marie-Hélène Candito and Sylvain Kahane. 1998. Can
the tag derivation tree represent a semantic graph? an
answer in the light of meaning-text theory. InProceed-
ings of the Fourth International Workshop on Tree Ad-
joining Grammars and Related Framework (TAG+4),
volume 98-12 ofIRCS Technical Report Series.

70

Vincent Danos and Roberto Di Cosmo. 1992. The linear
logic primer. http://www.pps.jussieu.fr/
˜dicosmo/CourseNotes/LinLog/ . An intro-
ductory course on Linear Logic.

Philippe de Groote and Sylvain Pogodalla. 2003.m-
linear context-free rewriting systems as abstract cat-
egorial grammars. In Richard Oehrle and James
Rogers, editors,MOL 8, proceedings of the eighth
Mathematics of Language Conference.

Philippe de Groote. 2001. Towards abstract catego-
rial grammars. InAssociation for Computational Lin-
guistics, 39th Annual Meeting and 10th Conference of
the European Chapter, Proceedings of the Conference,
pages 148–155.

Philippe de Groote. 2002. Tree-adjoining grammars as
abstract categorial grammars. InTAG+6, Proceedings
of the sixth International Workshop on Tree Adjoining
Grammars and Related Frameworks, pages 145–150.
Universit̀a di Venezia.

Anette Frank and Josef van Genabith. 2001. Glue
tag: Linear logic based semantics construction for
ltag - and what it teaches us about the rela-
tion between lfg and ltag. In Miriam Butt and
Tracy Holloway King, editors,Proceedings of the
LFG ’01 Conference, Online Proceedings. CSLI
Publications. http://cslipublications.
stanford.edu/LFG/6/lfg01.html .

Claire Gardent and Laura Kallmeyer. 2003. Semantic
construction in feature-based tag. InProceedings of
the 10th Meeting of the European Chapter of the Asso-
ciation for Computational Linguistics (EACL).

Jean-Yves Girard. 1987. Linear logic.Theoretical Com-
puter Science, 50:1–102.

Aravind K. Joshi, Laura Kallmeyer, and Maribel Romero.
2003. Flexible composition in ltag: Quantifier scope
and inverse linking. In Harry Bunt, Ielka van der Sluis,
and Roser Morante, editors,Proceedings of the Fifth
International Workshop on Computational Semantics
IWCS-5.

Laura Kallmeyer. 2002. Using an enriched tag deriva-
tion structure as basis for semantics. InProceedings
of the Sixth International Workshop on Tree Adjoining
Grammar and Related Frameworks (TAG+6).

Richard Montague, 1974. The Proper Treatment of
Quantification in Ordinary English, chapter 1. In Port-
ner and Partee (Portner and Partee, 2002).

Sylvain Pogodalla. 2004. Using and extending ACG
technology: Endowing categorial grammars with an
underspecified semantic representation. InProceed-
ings of Categorial Grammars 2004, Montpellier, June.

Paul Portner and Barbara H. Partee, editors. 2002.For-
mal Semantics: The Essential Readings. Blackwell
Publishers.

Yves Schabes and Stuart M. Shieber. 1994. An alterna-
tive conception of tree-adjoining derivation.Compu-
tational Linguistics, 20(1):91–124.

71

