Super Tagging and Full Parsing

Alexis Nasr
Lattice
Université Paris 7
Paris, France
al exi s. nasr @i ngui st.jussieu.fr

Abstract

We investigate an approach to parsing in which
lexical information is used only in a first phase,
supertagging, in which lexical syntactic prop-
erties are determined without building struc-
ture. In the second phase, the best parse tree is
determined without using lexical information.
We investigate different probabilistic models
for adjunction, and we show that, assuming
hypothetically perfect performance in the first
phase, the error rate on dependency arc attach-
ment can be reduced to 2.3% using a full chart
parser. This is an improvement of about 50%
over previously reported results using a simple
heuristic parser.

1 Introduction

Over the last ten years, there has been a great increase
in the performance of parsers. Current parsers use the
notion of lexical head when generating phrase structure
parses, and use bilexical dependencies — probabilities that
one particular head depends on another — to guide the
parser. Current parsers achieve an score of about 90%
when measuring just the accuracy of choosing these de-
pendencies (Collins, 1997; Chiang, 2000; Clark et al.,
2002; Hockenmaier and Steedman, 2002). Interestingly,
the choice of formalism (headed CFG, TAG, or CCG)
does not greatly change the parsers’ accuracy, presum-
ably because in all approaches, the underlying informa-
tion is the same — word-word dependencies.
Supertagging followed by “lightweight” parsing has
been proposed as an alternative to full parsing. The idea
behind supertagging (Bangalore and Joshi, 1999) is to ex-
tend the notion of “tag” from a part of speech or a part
of speech including morphological information to a tag
that represents rich syntactic information as well, in par-
ticular active valency including subcategorization (who
can/must be my dependents?), passive valency (who can
be my governor?), and notions specific to particular parts

Owen Rambow
Department of Computer Science
Columbia University
New York, NY, USA
ranbow@s. col unbi a. edu

of speech, such as voice. If words in a string can be
tagged with this rich syntactic information in a supertag,
then, Bangalore and Joshi (1999) claim, the remaining
step of determining the actual syntactic structure is trivial.
They propose a “lightweight dependency parser” (LDA)
which is a heuristically-driven, very simple program that
creates a dependency structure from the sequence of su-
pertags. It uses no information gleaned from corpora at
all, and performs with an (unlabeled) accuracy of about
95%, given the correct supertag.

The question arises how much better we can do if we
use a more sophisticated way of determining the parse
from the supertags, such as a chart parser. Of course, we
do not want to give up the notion of a parsing stage which
is relatively simple. In this paper, we extend the parsing
stage by using a chart parser and probabilistic models, but
we use only models that relate supertags to each other.
In fact, such models are also used during supertagging,
except that in supertagging, the only relation between su-
pertags we are interested in modeling probabilistically is
linear precedence, while for parsing we will use struc-
tural dependency as well. Thus, our approach conserva-
tively extends the supertagging-and-LDA approach, and
remains quite different from the current work on parsing
based on bilexical probability models following (Collins,
1997). A secondary question we investigate in this paper
is the issue of how best to model multiple adjunctions at
a same node.

The paper is structured as follows. In Section 2, we
provide some more mativation for this work. We present
our formalization of TAG and discuss how to derive such
a grammar formalized in that way from a corpus in Sec-
tion 3. We present the parser in Section 4. In Section 5
we discuss three different ways in which we we estimate
parameters for the statistical models. In Section 6, we
present two baselines, and our main results. We discuss
related work in Section 7, and conclude in Section 8.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.

May 20-22, 2004, Vancouver, BC, CA.
Pages 56-63.

2 Motivation

In this paper, we assume we have the correct supertag
and we investigate the quality of the resulting parse. The
state of the art in supertagging is currently in the 80%-
85% range, depending on the grammar (see for example
(Chen, 2001)). Thus, the task we set out to examine is
not a realistic “real-world” task, and the question arises
why we should be interested in the question at all. In
this section, we try to motivate our research agenda by
first arguing why supertag-based non-lexical parsing is
interesting, and then by arguing why we need to show it
is feasible.

2.1 Supertag-Based Parsing Is Interesting

There are several reasons to investigate supertag-based
parsing. The main point is that the models involved are
potentially simpler than those in bilexical parsing: no
bilexical structural information is needed for deriving the
parsing model. This holds the promise that when port-
ing a supertagger-based parser to a new domain, a non-
lexical structural model can be reused from a previous do-
main, and only a supertagged corpus in the new domain
is needed (to train the supertagger), not a structurally an-
notated corpus.

Furthermore, this approach uses an explicit lexicalized
grammar. As a consequence, when porting a parser to a
new domain, learned parser preferences in the supertag-
ger can be overridden explicitly for domain-idiosyncratic
words before the parse happens. This overriding can hap-
pen through manually written or learned rules. By way of
anecdotal example, in a recent application of the parser of
Collins (1997) in which the WSJ-trained parser was ap-
plied to rather different text, sentences such as John put
the book on the table were mostly analyzed with the PP
attached to the noun, not the verb (as was always required
in that domain). In the application, this had to be fixed
by writing special post-processing code to rearrange the
output of the parser; in our approach, we could simply
state that put should always have a PP argument before
the parse, and correct any output of the supertagger using
simple hand-written rules.

And finally, we point out that is is a different approach
from the dominant bilexical one, and it is always worth-
while to pursue new approaches, especially as the perfor-
mance of the bilexical parsers seems to be plateauing. In
fact recent work has questioned to what extent bilexical
parsers even profit from bilexical information that they
use (Gildea, 2001; Klein and Manning, 2003).

2.2 But IsSupertag-Based Parsing Feasible?

Bangalore and Joshi (1999) claim that supertagging is
“almost parsing”. What this means is that the syntactic
information provided by supertags is so rich that there
is little structural ambiguity left and the parse is almost

57

entirely determined by the supertags. In fact, since the
supertags determine both active and passive valency, the
only remaining ambiguity is related to attachment of trees
to nodes with the same label; for example, the standard
PP-attachment ambiguity of see a man with a telescope is
resolved in the supertags, as the tag for with specified ad-
junction to a VP or an NP. The remaining issues of struc-
tural ambiguity which are not resolved by supertags in-
clude conjunctions, noun-noun compounds (which how-
ever are not given meaningful analyses in the PTB), at-
tachment of adjuncts in sentences with several clauses
(such as John told Mary to leave today), and so on.

There is thus both a practical and a theoretical interest
in knowing how much ambiguity remains after supertag-
ging, or, put differently, to what extent supertagging is
in fact “almost parsing”. Practically, the performance of
a parser with correct supertags as input gives us an up-
per bound on supertag-based parsing. The current figure
of 95% (using the heuristic LDA) may seem a bit low as
an upper bound. Theoretically, it is interesting to know
to what extent, in a corpus, syntactic structure is disam-
biguated by specifying both active and passive valency of
words.

3 Representing a TAG as a Set of FSMs

For the purpose of our parser, we represent a Tree Ad-
joining Grammar as a set of finite-state machines (FSMs).
The FSMs form a (lexicalized) Recursive Transition Net-
work (RTN). To extract an RTN from the Penn Treebank
(PTB), we first extract a TAG, and then convert it to an
RTN. This first step does not represent the research re-
ported in this paper, and we describe it only for the sake
of clarity. We use the approach of (Chen, 2001) (which
is similar to (Xia et al., 2000) and (Chiang, 2000)). We
use sections 02 to 21 of the Penn Treebank. However,
we optimize the head percolation in the grammar extrac-
tion module to create meaningful dependency structures,
rather than (for example) maximally simple elementary
tree structures. For example, we include long-distance
dependencies (wh-movement, relativization) in elemen-
tary trees, we distinguish passive transitives without by-
phrase from active intransitives, and we include strongly
governed prepositions (as determined in the PTB annota-
tion, including passive by-phrases) in elementary verbal
trees. Generally, function words such as auxiliaries or
determiners are dependents of the lexical head,* conjunc-
tions (including punctuation functioning as conjunction)
are dependent on the first conjunct and take the second
conjunct as their argument, and conjunction chains are
represented as right-branching rather than flat.

1This is a linguistic choice and not forced by the formal-
ism or the PTB. We prefer this representation as the resulting
dependency treeis closer to predicate-argument structure.

In the second step, we directly compile a set of FSMs
which are used by the parser. To derive a set of FSMs
from a TAG, we do a depth-first traversal of each el-
ementary tree in the grammar (but excluding the root
and foot nodes of adjunct auxiliary trees) to obtain a
sequence of nonterminal nodes. As usual, the elemen-
tary trees are tree schemas, with positions for the lexi-
cal heads. Substitution nodes are represented by obliga-
tory transitions, adjunction by optional transitions (self-
loops). (Note that in this paper, we assume adjunction as
defined by Schabes and Shieber (1994).) Each node be-
comes two states of the FSM, one state representing the
node on the downward traversal on the left side (the left
node state), the other representing the state on the up-
ward traversal, on the right side (the right node state).
For leaf nodes, the two states immediately follow one an-
other. The states are linearly connected with e-transitions,
with the left node state of the root node the start state, and
its right node state the final state (except for predicative
auxiliary trees — see below). We give a sample grammar
in Figure 1 and the result of converting one of its trees to
an FSM in Figure 2.

For each pair of adjacent states representing a substitu-
tion node, we add transitions between them labeled with
the names of the trees that can substitute there. For the
lexical head, we add a transition on that head. For foot-
nodes of predicative auxiliary trees which are left auxil-
iary trees (in the sense of Schabes and Waters (1995), i.e.,
all nonempty frontier nodes are to the left of the footn-
ode), we take the left node state as the final state. Finally,
in the basic model in which adjunctions are modeled as
independent, we proceed as follows for non-leaf nodes.
(In Section 5, we will see two other models that treat
non-leaf nodes in a more complex manner.) To each non-
leaf state, we add one self loop transition for each tree in
the grammar that can adjoin at that state from the speci-
fied direction (i.e., for a state representing a node on the
downward traversal, the auxiliary tree must adjoin from
the left), labeled with the tree name. There are no other
types of leaf nodes since we do not traverse the passive
valency structure of adjunct auxiliary tees. The result of
this phase of the conversion is a set of FSMs, one per el-
ementary tree of the grammar, whose transitions refer to
other FSMs.

Note that the treatment of footnodes makes it impossi-
ble to deal with trees that have terminal, substitution or
active adjunction nodes on both sides of a footnode. It
is this situation (iterated, of course) that makes TAG for-
mally more powerful than CFG; in linguistic uses, it is
very rare, and no such trees are extracted from the PTB.?

20ur construction cannot handle Dutch cross-serial depen-
dencies (not surprisingly), but it can convert the TAG anaysis
of wh-movement in English and similar languages, because the
predicative auxiliary verbal trees do not have terminal or substi-

58

As a result, the grammar is weakly equivalent to a CFG.
In fact, the construction treats a TAG as if were a Tree
Insertion Grammar (T1G, Schabes and Waters (1995)), or
rather, it coerces a TAG to be a TIG: during the traversal,
both terminal nodes and nonterminal (i.e., substitution)
nodes between the footnode and the root node are ignored
(because the traversal stops at the footnode), thus impos-
ing the constraint that the trees may not be wrapping trees
and that no further adjunction may occur to the right of
the spine in a left auxiliary tree.

4 Parsing with FSMs

The parsing algorithm is a simple extension of the chart
parsing algorithm for CFG. The difference is in the use
of finite state machines in the items in the chart. In the
following, we will call ¢-FSM an FSM M if it is derived
from tree ¢ in the original TAG (or TIG) grammar G. If
T is the parse table for input sentence W and GDG G,
then T; ; contains (M, q) where M is a t-FSM, and ¢
is one of the final states of M, iff we have a complete
derivation of substring w; - - - w; in G such that the root
of the derivation tree is labeled ¢.

Before starting the parse, we create a tailored grammar
by selecting those trees associated with the words in the
input sentence, and substituting the actual words for the
positions of the lexical head. (Note that the crucial issue
is how to associate trees with words in a sentence; in this
paper, we assume that the correct tree is used.)

Initialization: We start by adding, foreach i, 1 < <
n, w; to Tz,l

Completion: If T; ; contains either the input symbol
w or an item (M, ¢) such that ¢ is a final state of M, and
M is at-FSM, then add to T; ; all (M’, ¢') such that M’
is a FSM which transitions from a start state to state ¢’ on
input w or ¢.

Add a single backpointer from (M’,¢') in T;, to
(M,q)orwinT; ;.

Scanning: If (M, q1) is in T; i, and Tj1,; contains
either the input symbol w or the item (Ma, g2) where g2
is a final state and M5 is a t-FSM, then add (M, q) to
T; ; (if not already present) if A transitions from ¢; to ¢
on either w or ¢.

Add a double backpointer from (M1,¢q) in T;; to
(M, q1) in T; (left backpointer) and to either w or
(Ma, g2) in Ty41; (right backpointer).

Note that because we are using a dependency gram-
mar, each scanning step corresponds to one attachment
of a lexical head to another. At the end of the parsing
process, a packed parse forest has been built. The non-
terminal nodes are labeled with pairs (M, ¢) where M
is an FSM and ¢ a state of this FSM. Obtaining the de-
pendency trees from the packed parse forest is performed

tution nodes on both sides of the foot node.

to ty
s NP
NP| VP N:<>
Vo NP HEAD
HEAD

tas t30
VP VP
| P
Ad|V<> PO NP
HEAD HE|AD

Figure 1: Sample small grammar: trees for a transitive verb, a nominal argument, and two VP adjuncts from the right

t30

:t4:has:t4:

t28 U

Figure 2: FSM derived according to Model 1 for tree ¢ from the grammar in Figure 1, instantiated for the verb has

in two stages. In a first stage, a forest of binary phrase-
structure trees is obtained from the packed forest and in
a second stage, each phrase-structure tree is transformed
into a dependency tree.

5 Probabilistic Models

The parser introduced in Section 4 associates to a su-
pertag sequence S = Si...S, one or several analyses.
Each analysis A can be seen as a set of n — 1 attach-
ment operations and the selection of one supertag token
as the root of the analysis (the single supertag that is not
attached in another supertag). For the sake of uniformity,
we will consider the selection of the root as a special kind
of attachment, A is therefore of cardinality n. In the fol-
lowing, LEFT(x,y) (respect. RIGHT (x,y)) denotes
the set of attachments that occurred on the left (respect.
right) side of node y of supertag =. For an attachment op-
eration A, O(A) returns its type (adjunction, substitution,
root). Root designates the unique event in A that selects
the root.

From a probabilistic point of view, each attachment op-
eration is considered as an event and an analysis A as the
jointevent Ay, ..., A,. Alarge range of different models
can be used to compute such a joint probability, from the
simplest which considers that all events are independent
to the model that considers that they are all dependent.
The three models that we descibe in this section vary in
the way they model multi-adjunction (when several aux-
iliary trees are attached to a single node from the same di-
rection). The reason to focus on this phenomenon comes

59

from the fact that it is precisely at this level that much of
the structural ambiguity occurs. For example, in a sen-
tence containing three or more conjoined NPs (such as
dogs, hamsters, cats, and bats), there is massive ambigu-
ity of attachment, as each conjunction can attach to any
of the preceding nouns. However, only one structure (in
our corpus, the right-branching one) is correct. Thus, a
precise model is needed. The three models described be-
low consider that substitution operations are independent
of all the other attachments that make up an analysis. The
general model is therefore:

P(A) P(Root)

[1

A€ A|O(A)=subst
[l PEZEFT(s,4))

s€S,ie€nodes(s)

II

s€S,i€nodes(s)

X P(A)

P(RIGHT (s, 1))

This basically follows (Resnik, 1992; Schabes, 1992).
The models we discuss here differ in how to compute the
terms P(RIGHT (s,i)) and P(LEFT(s,1)).

The probability of each attachment is estimated by
maximum likelihood (the counts are obtained in the same
step as the grammar extraction), and are added to the cor-
responding transition in the governor’s automaton as its
weight. When the probabilistic model associates different

aP(@a)

p, P(b)
%
- »4./%
O
"‘?}\0\& ;
aP@ ’
P(ENDISTART)

b,P(blb)

P(pos=0)

bP(bpos>d) .

b,P(b,pos>2) -
T Py pos=l)

Figure 3: Three models of adjunction; these correspond to the last node of the FSM in Figure 2, with the model on the
left exactly as shown in Figure 2; here, a represents t3o of Figure 2 and b, tog

probabilities to attachments that were not distinguished in
an automaton, the structure of the latter will be changed
in order to account for this difference. This change in the
structure will, of course, leave unchanged the language
recognized by the automaton . The three models for ad-
junction will be illustrated on a simple example where
two supertags a and b are candidate for adjunction at a
given node. In the following models, we estimate pa-
rameters from the corpus obtained by running the TAG
extraction algorithm over the PTB training corpus. We
can then easily count the relevant events.

5.1 Modd 1: Independent Adjunctions

In this model, an adjunction on one node is considered in-
dependent from the other adjunctions that can take place
on the same node. The probability of each adjunction
depends on the dependent supertag, on the governor su-
pertag, and on the node of the governor supertag at which
the attachment takes place. However, it is independent of
the order of the attachment. The model does therefore not
distinguish between attachments that only differ in their
order. This model corresponds to the left part of figure 3,
the attachment of an a, for example, does not depend
on what was attached before and how many attachment
took place. For example, the probability of the sequence
abab being adjoined is modeled as follows (we use here
and subsequently a simplified notation where P(a) des-
ignates the adjunction of « at the relevant node in the rel-
evant tree):

P(abab) = P(a)P(b)P(a)P(b)

5.2 Model 2: Positional Model

This model adds to the first one the knowledge of the
order of an attachment. But when modeling the prob-

60

ability that supertag a attaches on a given node at or-
der 4, it does not take into account the attachments that
happened for order < i. Such models also add a new
parameter which is the maximum number of attachment
that are distinguished. The graphical representation of
the model as a finite state automaton, as it appears to the
right in Figure 3, gives an intuitive account of the nature
of the model. It is made of a series of transitions between
consecutive pairs of nodes. The first “bundle” of tran-
sitions models the first attachment on the node, the sec-
ond bundle, the second attachment, and so on, until the
maximum number of attachments is reached. This limit
on the number of attachments concerns only the proba-
bilistic part of the automaton, more attachment can oc-
cur on this node, but their probabilities will not be distin-
guished. These attachments correspond to the loops on
state 2 of the automaton. e-transitions allow the attach-
ments to stop at any moment by transitioning to state 3.
(The e-transitions are shown as dotted lines for reading
convenience, they are formally regular transitions in the
FSM.) Under Model 2, the probability of the sequence
abab being adjoined is:

P(abab) P(a,pos =1

P(b,pos =2

P(a,pos > 2
(

P(b,pos > 2

X X X

)
)
)
)

5.3 Mode 3: N-Gram Model

The previous model takes into account the order of an
attachment and disregards the nature of the attachments
that happened before (or after) a given attachment. The
model described here is, in a sense, complementary to

the previous one since it takes into account, in the proba-
bility of an attachment, the nature of the attachment that
occurred just before and ignores the order of the current
attachment. The probability of a series of attachments
on the same side of the same node will be computed by
an order-1 Markov chain, represented as a finite state au-
tomaton in the central part of Figure 3. The transitions
with probabilities P(x|ST ART) (respect. P(END|x))
correspond to the occurrence of supertag x as the first (re-
spect. the last) attachment at this node and the transition
with probability P(EN D|ST ART) corresponds to the
null adjunction (the probability that no adjunction occurs
at a node). The probability of the sequence abab being
adjoined is now:

P(abab) P(a|START)
bla)

(
(
(a[b)
(
(

a~lae)

"U

bla)
P(ENDIb)

X X X X

5.4 Finding the n-best parses

We extend our parser by augmenting entries in the parse
table with probabilities. As usual, only the highest prob-
ability is retained for a given analysis. The algorithm for
extracting parses is augmented to choose the best parse
(or n-best parses) in the usual manner. Note that the dif-
ferent models discussed in this section only affect the
manner in which the TAG grammar extracted from the
corpus is converted to an FSM; the parsing algorithm (and
code) is always the same.

6 Results

In this study, we are interested in exploring how parsing
performs in the presence of the correct supertag. As a re-
sult, in the following, we report on data which has been
correctly supertagged. We used Sections 02 to 21 of the
Penn Treebank for training, the first 800 sentences of Sec-
tion 00 for development, and Section 23 for testing only.
The figures we report are accuracy figures: we evaluate
how many dependency relations have been found. The
root node is considered to have a special dependency re-
lation. There is no need to report recall and precision,
as each sentence always has a number of dependency re-
lations which is equal to the number of words. In the
evaluation, we disregard true (non-conjunction) punctua-
tion. The figures for the LDA are obtained by using the
LDA as developed previously by Bangalore Srinivas, but
using the same grammar we used for the full parser. Note
that none of the numbers reported in this section can be
directly compared to any numbers reported elsewhere, as

61

this task differs from the tasks discussed in other research
on parsing.

We use two different baselines. First, we use the per-
formance of the LDA of (Bangalore and Joshi, 1999).
The performance of the LDA on Section 00 is about
94.3%, on Section 23 95.1%. Second, we use the full
chart parser, but randomly choose a parse from the parse
forest. This baseline measures to what extent using a
probabilistic model in the chart parser actually helps.
The performance of this baseline is 94.7% on Section
00, 94.6% on Section 23. As we can see, the supertags
provide sufficient information to result in high baselines.
The results are summarized in Figure 4.

There are several clear conclusions to be drawn from
Figure 4. First, a full parse has advantages over a heuris-
tic parse, as even a random choice of a tree from the
parse forest in the chart (i.e., without use of a probabilis-
tic model) performs nearly as well as the heuristic LDA.
Second, the use of even a simple probabilistic model us-
ing no lexical probabilities at all, and modeling adjunc-
tions as entirely independent, reduces the error rate over
the non-probabilistic baseline by 22.8%, to 4.04%. Third,
the modeling of multiple adjunctions at one node as in-
dependent is not optimal, and two different models can
further reduce the error rate substantially. Specifically,
we can increase the error reduction to 53.0% by mod-
eling the first adjunction (from left to right) separately
from all subsequent ones. However, presumably due to
sparseness of data, there is no major advantage to using
more than one position (and modeling the first and second
adjunction separately). Furthermore, switching to the n-
gram model in which an adjunction is conditioned on the
previously adjoined supertag as well as the governing su-
pertag, the error reduction is further increased slightly to
56.6%, with an error rate of 2.27%. This is the best result
obtained on the development corpus.

7 Related Work

We are not aware of any other work that directly investi-
gates the extent to which supertagging determines pars-
ing. Chiang (2000) also parses with an automatically
extracted TIG, but unlike our approach, he uses stan-
dard TAG/TIG parsing techniques (i.e., he reconstructs
the derived tree in the chart, not the derivation tree).
Rogers (1994) proposes a different context-free variant,
“regular-form TAG”. The set of regular-form TAGs is a
superset of the set of TIGs, and our construction can-
not capture the added expressive power of regular-form
TAG. Our conversion to FSMs is very similar to that of
Evans and Weir (1997). One important difference is that
they model TAG, while we model TIG. Another differ-
ence is that they use FSMs to encode the sequence of ac-
tions that need to be taken during a standard TAG parse
(i.e., reconstructing the derived tree), while we encode

Method Accuracy on Sec 00 | Accuracy on Sec 23
Baseline: LDA 94.35% 95.14%
Baseline: full parse with random choice 94.73% 94.69%
Model 1 (Independent Adjunction) 95.96%

Model 2 (Positional Model): 1 position 97.54%

Model 2 (Positional Model: 2 position 97.49%

Model 2 (Positional Model: 3 position 97.57%

Model 3 (N-Gram Model), using Supertag 97.73% 97.61%
Model 3 (N-Gram Model), using Category 97.29%

Figure 4: Results (accuracy) for different models using the Gold-Standard supertag on development corpus (Section
00, first 800 sentences) with add-0.001 smoothing, and for the best performing model as well as the baselines on the

test corpus (Section 23)

the active valency of the lexical head in the FSM. A re-
sult, in retrieving the derivation tree, each item in the
parse tree corresponds to an attachment of one word to
another, and there are fewer items. Furthermore, our
FSMs are built left-to-right, while Evans and Weir only
explore FSMs constructed bottom-up from the lexical an-
chor of the tree (not unlike (Eisner, 2000)). As a result,
we can perform a strict left-to-right parse, which is not
straightforwardly possible in standard TAG parsing using
FSMs.

Our parsing algorithm is similar to the work of
Alshawi et al. (2000). They use cascaded head automata
to derive dependency trees, but leave the nature of the
cascading under-formalized. Eisner (2000) provides a
formalization of a system that uses two different automata
to generate left and right children of a head. His formal-
ism is very close to the one we present, but we use a single
automaton. Also, the relation to an independently pro-
posed syntactic formalism such as TAG is less obvious.

In related work (Rambow et al., 2002), we have used
the same automata constructed from an extracted TAG
for parsing, but instead of using them in a chart parser,
we have used them to construct a single large FSM that
produces a dependency tree. Needless to say, the number
of embeddings allowed by such an approach is limited.

8 Conclusion

We have provided further evidence for the claim of
Bangalore and Joshi (1999) that supertagging is “almost
parsing”, and we have quantified the “almost” to be
97.7%.2 This figure represents the dependency accuracy
that can be obtained when the input is represented as a
sequence of supertags, with no lexical information used
in the parse (and hence not in the training of the parser,
either). This shows that an architecture is viable in which
all information related to the specific lexemes is assigned

3We note that this fi gure holds for the particular grammar
that we used; other grammars may result in different fi gures.

in a first pass before structure is constructed, and structure
is constructed only in a second pass in which no lexical
information is used (other than the lexical emit probabil-
ity for supertags). This result motivates further research
into supertagging accuracy. If supertagging accuracy is
improved, a lightweight parser in conjunction with su-
pertagging may perform as well as a full bilexical parser,
or even better. Furthermore, for certain applications, a
lightweight parser may be appealing because only the su-
pertagger needs to be retrained which can be done with
less effort. Finally, the explicit and declarative nature
of the grammar used makes it easy to write hand-written
rules to override the supertagger in cases in which the ap-
plication designer wishes to correct a systematic parser
error.

References

Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas.
2000. Learning dependency translation models as col-
lections of finite-state head transducers. cl, 26(1):45—
60.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing. Computational
Linguistics, 25(2):237-266.

John Chen. 2001. Towards Efficient Statistical Parsing
Using Lexicalized Grammatical Information. Ph.D.
thesis, University of Delaware.

David Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
38th Meeting of the Association for Computational
Linguistics (ACL’00), pages 456-463, Hong Kong,
China.

Stephen Clark, Julia Hockenmaier, and Mark Steedman.
2002. Building deep dependency structures with a
wide-coverage ccg parser. In acl02, pages 327-334.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics, Madrid, Spain, July.

62

Jason Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. In Harry C. Bunt and Anton
Nijholt, editors, New Developments in Natural Lan-
guage Parsing. Kluwer Academic Publishers.

Roger Evans and David Weir. 1997. Automaton-based
parsing for lexicalized grammars. In 5th International
Workshop on Parsing Technologies (IWPT97), pages
66-76.

Daniel Gildea. 2001. Corpus variation and parser per-
formance. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing
(EMNLPO1), pages 167-202, Pittsburgh, PA.

Julia Hockenmaier and Mark Steedman. 2002. Gener-
ative models for statistical parsing with combinatory
categorial grammar. In acl02, pages 335-342.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In 41st Meeting of the Associa-
tion for Computational Linguistics (ACL’03).

Owen Rambow, Srinivas Bangalore, Tahir Butt, Alexis
Nasr, and Richard Sproat. 2002. Creating a finite-
state parser with application semantics. In Proceed-
ings of the 19th International Conference on Compu-
tational Linguistics (COLING 2002), Taipei, Republic
of China.

Philip Resnik. 1992. Probabilistic tree-adjoining gram-
mar as a framework for statistical natural language
processing. In Proceedings of the Fourteenth In-
ternational Conference on Computational Linguistics
(COLING ’92), Nantes, France, July.

James Rogers. 1994. Capturing cfls with Tree Adjoin-
ing Grammars. In 32nd Meeting of the Association for
Computational Linguistics (ACL’94). ACL.

Yves Schabes and Stuart Shieber. 1994. An alterna-
tive conception of tree-adjoining derivation. Compu-
tational Linguistics, 1(20):91-124.

Yves Schabes and Richard C. Waters. 1995. Tree In-
sertion Grammar: A cubic-time, parsable formalism
that lexicalizes Context-Free Grammar without chang-
ing the trees produced. Computational Linguistics,
21(4):479-514.

Yves Schabes. 1992. Stochastic lexicalized tree-
adjoining grammars. In Proceedings of the 14th In-
ternational Conference on Computational Linguistics
(COLING’92).

Fei Xia, Martha Palmer, and Aravind Joshi. 2000. A
uniform method of grammar extraction and its appli-
cations. In Proc. of the EMNLP 2000, Hong Kong.

63

