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Abstract ative power stronger than cfg while recognition can be

performed in polynomial time. However, relation among
Several grammars have been proposed for rep-  the generative power of these grammars and/or mildly csg
resenting RNA secondary structure including has not been clarified.
pseudoknots. In this paper, we introduce

subclasses of multiple context-free grammars In this paper, we identify grammars for RNA sec-

which are weakly equivalent to these grammars ~ ondary structure (Uemura et al., 1999; Rivas and Eddy,
for RNA, and clarify the generative power of 2000) as subclasses of multiple context-free grammar
these grammars as well as closure property. (mcfg) (Kasami et al., 1988a; Seki et al., 1991) and clar-

ify inclusion relation among the classes of languages gen-

. erated by these grammars.
1 Introduction

The rest of this paper is organized as follows. Section
reviews the grammars mentioned above. In section 3,
ese grammars are characterized as subclasses of mcfg.
enerative power and closure property of these grammars
are discussed in section 4. Section 5 concludes the paper.

Much attention has been paid to RNA secondary strucz-
ture prediction techniques based on context-free gramm

(cfg) since cfg can represent stem-loop structure (FigG
ure 1 (a)) by its derivation tree and recognition éec-

ondary structure predictiomn biological words) can be
performed inO(n?3) time wheren is the length of an in-
put sequence (primary structure). Especially, techniques

based on CKY (Cocke-Kasami-Younger) algorithm have U G
been widely investigated (Durbin et al., 1998Pseu- C A
doknot(Figure 1 (b)) is one of the typical substructures GeC
found in an RNA secondary structure. An alternative rep- GeC
resentation of a pseudoknot is arc depiction in which arcs AeU
cross (see Figure 2). It has been recognized that pseu- 55-C  GCUCAG3
doknots play an important role in RNA functions such (a)Stem-loop
as ribosomal frameshifting and splicing. However, it is C
known that cfg cannot represent pseudoknot structure. 5"_CAGG

In bioinformatics, a few grammars have been proposed o o o
to represent pseudoknots (Uemura et al., 1999; Rivas and CCAGU
Eddy, 2000) (also see (Condon, 2003)). In the pioneer- e o o
ing paper, Uemura et al. (1999) define two subclasses G UC A G-3’
of tree adjoining grammar (tag) callstitagandesl-tag \ e
and argue that esl-tag is appropriate for representing RNA C
secondary structure including pseudoknots. Rivas and (b)Pseudoknot

Eddy (2000) provide keen observation on representation

of RNA secondary structure by a sequence with a single  Figure 1: Example of RNA secondary structure
“hole” and introduce a new class of grammars for deriv-

ing sequences with hole. These grammars have gener-
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for an adjunct tree, the active node is on the backbone of
the tree. A tad~ is asimple linear tagsl-tag) if and only
if all elementary trees id: are simple linear. An adjunct
tree issemi-simple lineaif it has two active nodes, where
Figure 2: Arc depiction of Figure 1 (b) one is on the backbone and the other is elsewhere. A tag
G is anextended simple linear tggsl-tag if and only if
L all initial trees inG are simple linear and all adjunct trees
2 Preliminaries in G are either simple linear or semi-simple linear.

2.1 Tree Adjoining Grammar Example 1 (Uemura et al, 1999).Let G =

We will use standard notations for tree adjoining gram(V> 7+ 5,7, A) be an sl-tag whereV. = {5}, T' =
mar (Joshi and Schabes, 1997). The empty sequencelfs & 9 ¢} @nd elementary trees ifi and.A are shown

denoted by:. For a sequence € S*, let|a| denote the " Figure 3. In the figurez € {a,c,g.u}, (z,y) €
length ofa. {(a,u), (u,a),(c,g9),(g,c)} and an active node is de-

A tree adjoining grammar(tag) is a 5-tupleG = noted byS*. Figure 4 shows a derivation of a pseudo-
(N, T, S.Z, A) whereN andT are finite sets of nonter- <10l o
minals and terminals respectively,the start symbolZ
a finite set ofinitial trees (center treesand A a finite . .
set ofadjunct treeqauxiliary tree§. The path of an ad- s . /~T . S ?\Z S

s s

caggcugaccugcucag

Initial tree  Adjunct trees

junct tree from the root node to the foot node is called l; 5[ | 2

the backbone Selective adjoinindSA), null adjoining

(NA) and obligatory adjoining(OA) are defined in the x/S\ x/S*\ x/S S\x

standard way. For treesandt, if ¢’ is obtained by ad- ; Y ; Y ; ;

joining s into ¢, we writet F, t' (or simplyt F ¢'). We y/| |\

write the reflective and transitive closuretefas-*. We AN

call ¢’ aderived treg(or a tree derived from) if ¢ -* ¢

for somet € ZU A. A noden is inactiveif the constraint Figure 3: Elementary trees in Example 1

for the node is NA, otherwisactive If no active node in

a treet has OA constraint, thenis calledmature The

tree set of atag: is defined ad'(G) = {t | sF" ¢, s € ¢ s S S

7 andt is maturg. T'(G) can be alternatively character- | — ,,a/ || — ,a/ | — ,a/ |

ized in a bottom up way as follows. Let us define a serie§ ) S S

of tree setd (G), T1 (G),. ... "/} gj g ;’; Sl\

(T1) To(G) = {t e TU A | tis maturg. Jg ¢ } é """ !

(T2) T541(G) = Tou(G) U{t | to ks, t1 sy oo by, N u/S
ty =t to € TUA, s; € To(G) (1 < i < | w
k), p1,...,px are different addresses &f, s; is € S|
adjoinable ta atp; (1 < i < k) andt is mature. m €

It is not difficult to show thatT'(G) = {t | t €
T, (G) for somen > 0 and yieldt) € T*}. This charac-  Figure 4: A derivation of a pseudoknot in Example 1
terization of7'(G) by (T1) and (T2) is frequently used in
proofs in section 3.

The language generated by is defined asl(G) =
{w | w = yield(t), t € T(G)}, which is called dree SL-TAL C ESL-TAL C TAL. (+1)

adjoining language(tal). Let TAG denote the class of On the inclusion relation among CFL, SL-TAL and ESL-

tags f”md TAL denqte the class of tals. We use the SAMAL, the following has been shown in Propositions 1 to
notational convention, i.e., a language generated by N (Uemura et al., 1999):

xxg is called an xxl, the class of xxgs is denoted by XXG

By definition,

and the class of xxls is denoted by XXL. Ly = {#akbhtalbbia bbbt | k1, m,n > 1}
We now definesimple linear tag(sl-tag) andextended € CFL\ SL-TAL, (+2)

simple linear tag(esl-tag introduced in (Uemura et al., nyn gn > SL-TAL \ CEL

1999). LetG = (N, T, S,Z,.A) be atag. An elementary {a"7c" [ n = 0} € \ ’ (x3)

tree issimple linearif it has exactly one active node, and CFL C ESL-TAL. (+4)
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2.2 Multiple Context-Free Grammar

A multiple context-free grammarfmcfg or linear
context-free rewriting syste(Wijay-Shanker et al., 1987)
is a 5-tupleG = (N, T, F, P,S) whereN is a finite set
of nonterminalsy” a finite set of terminalst” a finite set
of functions,P a finite set of (production) rules arftithe
start symbol. For eacA € N, a positive integer denoted
asdim(A) is given andA derivesdim(A)-tuples of ter-
minal sequences. For the start symBoldim(S) = 1.
For eachf € F, positive integersl; (0 < ¢ < k) are
given andf is a total function fron{7*)% x - - - x (T*)4x
to (T*)% which satisfies the following condition (F):

(F) Letz; = (a1, ..., x4, ) denote theth argument of
ffor1 < i < k. The hth component of function
value forl < h < d,, denoted byf!"l, is defined as

f[h] [Tla s Zhvy, ﬁhvh

(*)

wherefy,; € T* (0 <1 <wvp) andzp, € {z;; |1 <
i<k, 1<j<d;}(1<1<w,). The total number
of occurrences of;; in the right hand sides of«f
from h = 1 throughd, is at most one.

aﬁ] = ﬁhozhlﬁhlzfﬂ te

Each rule inP has the form ofdg — f[A1,..., Ak
whered; € N (0 <i < k)andf : (T*)3mAD) x ... x
(T*)dim(A) — (7*)dim(4o) ¢ p|f k£ > 1, then the rule
is called anonterminating ruleand if & = 0, then it is
called aterminating rule

We define the relatios> and derivation trees (refer to
Figure 5) recursively by the following (L1) and (L2):

(L1) If A - a € P (a € T*), thenA = o and a tree
with the single node labeled : « is a derivation
tree fora.

(L) If A — f[Ay,...,A] € P, 4 = o =
(aila-- » X dim(A )) (1 < i < k?) andtl,...,tk

are derivation trees fori,...,os, then A =
flea, ..., ax] where flas,...,au] denotes the

dim(A)-tuple of terminal sequences obtained from

the right hand sides ok in condition (F) by sub-
stituting a;; (1 < ¢ <k, 1 < j < dim(4;)) into
x;5, and a tree with the root labeletl: f which has
ty,...,t, as (immediate) subtrees from left to right
is a derivation tree fof[a, . .., ag).

The language generated by an mafyis defined as
LG)={weT*|S=w

To introduce subclasses of MCFG, we define a fe
terminologies. LetG = (N, T, F, P, S) be an arbitrary
mcfg. Thedimensionof G is defined asdim(G)
max{dim(A) | A € N}. For a functionf € F, let
rank( f) denote the number of arguments fof Therank
of G is defined as rar;) = max{rank(f) | f € F}.
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For a functionf : (T*)% x --- x (T*)% — (T*)%,
let deg(f) ¥¥_yd;, which is called thedegreeof
f- Finally, let us define the degree 6f asdeg(G) =
max{deg(f) | f € F}. By definition, deg(G) <
dim(G)(rankG) + 1). With these parameters, we de-
fine subclasses of MCFG. An mcfg with dim(G) < m
and rankG) < r is called an(m, r)-mcfg. Likewise, an
mcfg G with dim(G) < m is called anm-mcfg.

It has been proved that

TAL C (2,2)-MCFL C 2-MCFL ¢ MCFL,  (x5)
where the proper inclusion relation from left to right in
(x5) were given by Lemma 4.15 of (Seki et al., 1991),
Theorem 1 of (Rambow and Satta, 1994) and Lemma 5
of (Kasami et al., 1988a), respectively.

Example 2. Consider the (2,2)-mcfg
Gs = ({S,A}, {a,c,g,u}, F5, P3,S) for generating
RNA sequences, wher; and F5 are as follows:

S — J[A],
A — XS51[4, A] | XS2[A, A] | X S3]A, A],
A — BF\[A Al | BF»[A, Al | BF3[A, A],

A — BP,sl4]
((a, 8) € {(a,u), (u, a), (¢, 9), (9, 0)}),

A~ UPYHA]| UPYR(A] | UP2HA] | UP2(A
(a € {a,c,g,u}),

A — (g,e),

J[($1,$2)] = T172,

XS1[(z11,212), (721, T22)] = (211, 217122 22),
XS2[(IU11711 ), ($217I22)} (111$21,$121’22),
XSs[(l‘lthQ), (I217$22)] (T11$21$127$22),
BF[(w11,712), (721, T22)] = (%11, T12721T22),
BFQ[(xuaiElz), ($217$22)] ($11$12,x219€22),
BFS[(1711,9312), (1721,I22)] (I11I12I21,$22),
BP,s[(z1,x2)] = (w1, x20),

UPy"[(z1,22)] = (amy, 2),

UPy (21, 20)] = (210, 22),

UP3E (21, 20)] = (21, axs),
UP2E((x1,25)] = (21, 2000).

Functions have mnemonic names whéf€, BF', BP

\gnd UP stand for crossing, bifurcation, base pair and

unpair, respectively. The RNA sequenegacuu
in Figure 4 can be generated by the above rules
as follows: A = BP,[(c,¢)] (g,¢), A =

BP,.[(g,¢)] = (ag,cu), A = BP,,[(c,¢)] = (a,u)

A = XSy[(ag,cu), (a,u)] (aga,cuu) and S =



J[(aga,cuu)] = agacuu. Gs has a derivation tree (2) Each nonterminating rule has the form of either
(Figure 5) foragacuu which represents the pseudoknot Sy — J[A] where J[(z1,22)] = z122 OF A —

shown in Figure 4. O f[B] whereA,B € N\ {So} and f[(z1,z2)] =
(ulxlvl,v2x2u2) for someu;,v; € T (] = 172)
S:J Such a functionf is called asimple linear func-
| tion. O
A: XS,

~ ~ - —gL-
A :lBPW A | BP. Lemma 2. SL-TAL = SL-MCFL.
A:BP, A:(e € Proof. _(SL-TAL - SL-MCFL) LetG = (N,T,5,Z,A)
| be a given sl-tag. We will construct an sl-maofgf =
A: (g €) (N',T,F,P,Sy) as follows:
(1) N’ = NU{Sp} wheredim(Sp) = 1 anddim(4) =
Figure 5: A derivation tree idr3 2 for eachd € N.

(2) P (and F') are the smallest sets which satisfy the

Recognition problem for mcfg can be solved in poly- following conditions () through (c):

nomial time:

Proposition 1 (Kasami et al., 1988b; Seki et al., 1991). (@) So — J[S] € PandJ € F.

Let G be an mcfg withdeg(G) = e. For a givenw € T*, (b) For each adjunct trelec A shown in Figure 6

whetherw € L(G) or not can be decided i@(n°) time (@),

wheren = |w|. 0 e A — f[B] € Pandf € F where
f[(l’l,xg)] = (ulxlvl,v2x2u2), and

3 Subclasses of MCFG o A — (ujv1,vouy) if BinFigure 6 (a) does

31 A Subclass of MCEG for SL-TAL not have OA constraint (i.et,is mature).

GrammarsG and G’ are called weakly equivalent if () For each initial tree € I shown in Figure 6

L(G) = L(G'). Remember that each elementary tree (b),

in an sl-tag contains exactly one active node as shown in oS — g[B] € Pandg € F where
Figure 6 (An inactive node and an active node are denoted 9l(z1,22)] = (urz1u2, 22u3), and

like A? and B*, respectively in the figure). By utilizing o S — (uyuz,u3) if t is mature.

this restriction, we can define a translation from an sl-tag

into a weakly equivalent (2,2)-mcfg simpler than that ofVe can show that there exists a tree T, (G) for some

(Vijay-Shanker et al., 1986). Namely, for an adjunct tre@ = 0 such that yiel@) = w; Aws (A € N, wy,wy €

in Figure 6 (a), construct an mcfg rule — f[B] where 1) if and only if A =/ (w1, ws).

fl(z1,22)] = (u121v1, vawaus). This translation moti- (SL-MCFL C SL-TAL) Let G = (N,T,F,P,5))

vates us to define the following subclass of (2,1)-MCFGbe a given sl-mcfg.  Construct an sl-tag’ =
(N',T,Sy,Z,A) as follows:

A° st
(1) NN =NuU{X}whereX ¢ N.
A (2) 7 consists of initial trees shown in Figure 7 (a) for
7 Sy — J[A] € P.
(3) Ais the smallest set satisfying:
u, v, A° v, u, u, U, Uy
@) () e ForeachA — f[B] € P wheref[(z1,x2)] =

(uyx1v1, vawaus), the adjunct tree shown in
Figure 6 (a) belongs tal.

e For eachA — (uj,us) € P, the adjunct tree
in Figure 7 (b) belongs tal.

Figure 6: Elementary trees in sl-tag

Definition 1. A (2,1)-mcfgG = (N, T, F, P,Sp) is an

sl-mcfgif G satisfies the following conditions (1) and (2): Proof of L(G) = L(G") can be done in a similar way to
the converse direction. O

(1) For each nonterminal other thanSy, dim(A) = 2.
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A° (3) A — ¢[B, D] wheredim(4) = dim(D) = 2,

So dlm(B) =1,9¢ {Cl, CQ, 03, C4} and
Cq [$1, ($2179622)] = (551332171022)7
on X Colz1, (x21, x22)] = (T2121, T22),
A Cslz1, (x21, x22)] = (T21, T1%22),
04[$1, (@1@22)] = ($21,$22I1)~ ]
u, A° u,
& Lemma 3. ESL-TAL = ESL-MCFL.
(@ (b)

Proof. (ESL-TAL C ESL-MCFL) Let G =
Figure 7: Constructed elementary trees (N,T,S,7,A) be a given esl-tag in normal form
(Uemura et al., 1999). We construct an esl-mcfg
G' = (N',T,F,P,Sy) from G as follows:
3.2 A Subclass of MCFG for ESL-TAL

In this subsection, we will define a subclass of (2,2)—(1)
MCFG which exactly generates ESL-TAL. L&f =
(N,T, 5,7, A) be a given esl-tag. By virtue of PTOPe”y (2) P (and F') are the smallest sets which satisfy the
2 of (Uemura et al., 1999), we can assume tfias in following conditions (&) through (d):

normal form such that for every semi-simple linear ad-

N' =NU{4"| Ae N} wheredim(A’) = 1 and
dim(A) =2for A € N.

junct treet € A, yield(t) € N. Thus, for each leab (a) Foreactd € N, A’ — J[A] € PandJ € F.
of ¢, eitherv is the foot node or the label of is ¢ (see (b) Same as (2) (b) (c) in the proof (BL-TAL C
Figure 8). From this observation, we define a subclass SL-MCFL) in Lemma 2. B

of (2,2)-MCFG by adding rules corresponding to adjunct

trees shown in Figure 8 to the definition of sl-mcfg. (c) For each semi-simple linear adjunct tree

shown in Figure 8 (1),
e A— (C4[B',D] € PandC, € F,and

A¢
o A — (g,¢) € Pif tis mature.
A° D’ (d) For each semi-simple linear adjunct tree (2)
through (4) in Figure 8, the rules usiidg, Cs
. and Cy, respectively, instead af; belong to
l A° € A .
We can show that there exists a tree T,,(G) for some
) 2 n > 0 such that yiel@t) = w; Aws (A € N, wy,ws €
A T*)ifand only if A ¢ (w,ws).
. A0 Proof of (ESL-MCFL C ESL-TAL) is similar and is
D omitted here. O
. . . 3.3 A Subclass of MCFG for RPL
B D B
| | | Rivas and Eddy (2000) introducerossed-interaction
A° € A° grammar(cig) which is similar to mcfg, and defineNA

3) ) pseudoknot gramma(rpg) as a subclass of CIG to de-
scribe RNA secondary structure including pseudoknots.

. . . . . In this subsection, we reformulate RPG as a subclass of
Figure 8: Semi-simple linear adjunct trees in normal formyceg.

o _ Definition 3. A (2,2)-mcfgG = (N, T, F, P, S) is called
Definition 2. A (2,2)-mcfgG = (N, T, F, P,5) is an  an rpg if a nonterminating rule is one of the following
esl-mcfgif each nonterminating rule has one of the fol-forms (1) through (3):

lowing forms (1) through (3):

(1) A — J[B].
(1) A — J[B] wheredim(A) = 1 anddim(B) = 2.

(2) A — BF[E1, E>] wheredim(A) = 2, dim(E,) =
(2) A — f[B] wheref is a simple linear function. dim(Es) = 1 andBF[z1, z2] = (21, x2).
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(3) A — f[B,D] wheredim(A) = dim(B) =
dlm(D) = 2, f S {XSl,XSQ,XS;g,W},
XS; (i=1,2,3) is defined in Example 2 and
W[(fl?n,»’clz), (1721,$22)] = (111$21,I22I12)-

(1) For eachA — f[B] where f[(x1,z)]

(u1 101, vaw2usg) is @ linear functionfu; vy vaus| =
1.

(2) Foreachd — (uy,uz) (u,us € T*), uy = ug =

Proposition 4.

RPL C (2,2)-MCFL (+6)

E. O

Remark that a similar normal form is defined for esl-tag

in (Uemura et al., 1999). Itis easy to prove the following
o lemma.

We obtain the following property on recognition com--€mma 7. For a given esl-mcfg7, a normal form esl-

plexity.

mcfg G’ can be constructed fro® such thatZL(G’) =

L(G). O

Proposition 5. For a givenw € T* (n = |w|), whether
w € L or not can be decided iR (n°) time if L is an rpl,
O(n®) time if L is an esl-tal, and(n*) time if L is an
sl-tal.

Proof. For an rpgG, deg(G) < 6, for an esl-mcfgG,
deg(G) < 5 and for an sl-mcfg, deg(G) < 4. The
proposition follows from Proposition 1, Lemmas 2 and
3. O

Theorem 8. SL-TAL and ESL-TAL have the following
properties.

(1) SL-TAL contains every linear language.

(2) SL-TAL is closed under union, homomorphism, in-

tersection with regular languages and regular substi-
tution, but is not closed under concatenation, Kleene
closure, positive closure or substitution.

The above complexity results were first shown in (Ue-(3) ESL-TAL is closed under intersection with regular

mura et al., 1999) for ESL-TAL and SL-TAL and in (Ri-
vas and Eddy, 2000) for RPL by providing an individual

languages and substitution.

recognition algorithm for each class. On the other hand’roof. (1) For linear cfg rulesA — wu;Bv; and
by identifying these classes of languages as subclasses of 4 — u, construct sl-mcfg rulest — f[B] where

MCFL, we can easily obtain the same results as stated in

Proposition 5. Akutsu (2000) defines a structure called
a simple pseudoknot and proposes@m?) time exact
prediction algorithm andD(n*~?) time approximation
algorithm without using grammar. Note that the set of
simple pseudoknots can be generated by an sl-tag.

4 Inclusion Relation

First, we summarize the inclusion relation among the

classes of languages stated:t)(through §6).

Proposition 6. (1) (CFL U SL-TAL) C ESL-TAL C
TAL C (2,2)-MCFL.

(2) RPLC (2,2)-MCFL C 2-MCFL c MCFL. O

In the following, we refine the above proposition.

4.1 (CFL USL-TAL) C ESL-TAL

First, we introduce a normal form of esl-mcfg and then
show closure properties of SL-TAL and ESL-TAL. By
using sl-mcfg and esl-mcfg, we can prove these proper-
ties in a simple way. Some of these properties will be
used for proving inclusion relation between SL-TAL and
ESL-TAL.

Definition 4. An esl-mcfg is in normal form if the fol-
lowing conditions (1) and (2) hold:
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fl(z1,22)] = (w2101, 22) @andA — (u, ), respec-
tively.

(2) (regular substitution) Les = (N, T, F, P, Sp) be

an sl-mcfg in normal form. We also assume that
each ruleA — f[B] € P has a unique label, say
andwriter : A — f[B] € P. Lets : T — 2(T")" pe
aregular substitution and for eache T, lets(a) =
L(G,) whereG, = (N,,T’,P,,S,) is a regu-
lar grammar. We now construct an sl-mafff =
(N, T',F', P, Sy) such thatL(G") = s(L(G)) as
follows. G’ will simulate G, by a linear function
instead of generating € 7. To do this, we intro-
duce a nonterminak"! in G’ whereX € N, and
r : A — f[B] € P such that the definition of
containsy € T'.

o N'=NU{XI| X e N \{Su}, a €T, r:
A — f[B] € P}.

e I’ consists of J, UPy*, UPy", UPS",
UPE’R (8 € T') of Example 2 andEPS[ ]| =
(e,€).

e P’ is the smallest set satisfying:

— If Sy — J[A] € P, thenSy, — J[A] € P'.
— Assume thatr : A — f[B] € P where

fl(x1,22)] = (ax1,22) (@ € T). |If
X = BY € Po (X,Y € No, B €T),



then X'l — UPy*[Yl"] € P', and if Proof. Let h; be a homomorphism such thit(a;) =

X - pg€eP, (X € N,, B € T/), then aq, hl(bl) = by, hl(cl) = C andhl(x) =cforx e

X — UPY*[B] € P whereSyis {aibi,ci|i =234} U{t}. Thenhy(Ls) = {afbjcf |

identified with A for simplicity. k > 1}, which is not a cfl. Since CFL is closed under
— For the other rules inP, similar con- homomorphism.Ls is not a cfl. Similarly, leth, be a

struction can be defined. For example, iftomomorphism such thab(c;) = e fori = 1,2,3 and

fl(@1,22)] = (21,220) (a € T), then we identity on the other symbols. Thén(Ls3) = L, defined

will use UPE’R instead inPé’L. in (x2), which is not an sI-t_aI. By Theorem 8 (_2)3 is not
) an sl-tal. We can easily give an esl-mcfg which generates
Proof of L(G’) = s(L(G)) is easy. Ls. O

The other closure properties can be easily proved.

(concatenation) LeL. = {#a¥bifabtl | k,1 > 1} 4.2 RPL=(2,2)-MCFL
and L/ = {#a5b3"fa}b}t | m,n > 1}, both of
which are sl-tals. An sl-mcfg which generatés
is such thatS, — J[S], S — add*[A] where
add*((z1,22)] = (fz1,822), A — f[A] | B
Wheref[(l’l,l'g)] = ((llxlbl,l'g) andB — g[B] |

We introduce a condition (S) which states that for each
argument(z;y, z;2) of a function of an mcfg, the order
of the occurrences of its components andx;- is not
interchanged in the function value.

(a1b1, azby) where g[(z1,22)] = (#1,a272b2). (S) Let G = (N, T, F,P,S) be a 2-mcfg andf be an
Construction of an sl-mcfg which generatés is arbitrary function inF such that

similar. The concatenation of them, i.&[" = L,

defined in ¢2) is not an sl-tal. fl(xi1,212), - - (1, Tn2)] = (a1, as).
(Kleene closure, positive closure) By the next corol-

lary, SL-TAL is a union closed full trio. If SL-TAL is For eachi (1 <+ < n), if both of z;; andx;2 occur

closed under Kleene closure or positive closure, then  in ajas, thenz;; occurs to the left of the occurrence
by Theorem 3.1 of (Mateescu and Salomaa, 1997), of z;9, i.e., a1ae = Bix;1 0224203 for someg; €
SL-TAL is closed under concatenation, whichisa  (NUT)* (1 <j <3).

contradiction.

(substitution) Letl, = {#di8dstdstdst}, which is Lemma 11. For a given 2-mcfd~, we can construct a 2-
a finite language and thus an sl-tal, andddte a McfgG’ satisfying condition (S) and(G’) = L(G). O
substitution such that(d;) = {a{'b;' [n > 1} (1< Lemma 12. Let G = (N,T,F, P, S) be a (2,2)-mcfg

i < 4), whichis also an sl-tal by (1) of this theorem. satisfying condition (S). Then we can construct an@g
Thens(Ly) = Lo defined in ¢2), which is not an  gych that.(G’) = L(G).

sl-tal.

(3) (intersection with regular Iangugges) Same as tﬁ%ﬁ%f';;;tssm g c(é\rqa:i,;i an’ ](Déi)vss ggngtrggf gn (rzr;?é)
proof C.Jf T_heorem 3.9(3) of (Sekietal., 1991). weakly equivalent t@~ as follows. The number of func-
(substitution) Easy. tions f : (T%)? x (T*)? — (T*)? satisfying condition

Corollary 9. SL-TAL is a full trio (or cone). (Thatis, (S)is 18. A half of them can be obtained from the other

SL-TAL is closed under homomorphism, inverse homohalf of them by interchanging the first and second argu-

morphism and intersection with regular languages.) ESIments. Among the remaining nine functions, four are

TAL is a substitution closed full abstract family of lan-rPg functions. The others arf = (211, 212721222),

guages (full AFL). (That is, ESL-TAL is a full trio and f2 = (z11212,221222), f3 = (211212821, 222), f1 =

closed under union, concatenation, Kleene closure af@i1, z21222212), f5 = (Z11221722,212). (We omit

substitution.) variables in the left hand sides.) For example, —
) f1[B, D] can be simulated bA — XS5[B, Y], Y1 —

Proof. (full trio) By Theorem 3.2 of (Mateescu and Sa'BF[YQ,Y?,], Yy — e andY; — J[D]. The other four

lomaa, 1997) and (2) of Theorem 8. (full AFL) By Theo-fynctions can be simulated by rpg functions in a similar
rem 3.3 of (Mateescu and Salomaa, 1997) and (1), (3) Q\fay. 0
O

Theorem 8.
By Proposition 6 (2), Lemmas 11 and 12, we obtain the

Now we show inclusion relation between SL-TAL and .
following theorem.

ESL-TAL.

Theorem 10. Let L; = Theorem 13. RPL = (2,2)-MCFL. O
{takbkchtabbl b ia o ctaibicit | k,l,m,n > 1}.  The following corollary follows from Proposition 6, The-
Then,L; € ESL-TAL \ (CFLU SL-TAL). orems 10 and 13.
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Corollary 14. (CFLUSL-TAL) C ESL-TAL C TAL c¢  Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.

RPL = (2,2)-MCFL. O 1975. Tree adjunct grammars]. Computer & System
) i , Sciences, 10(1):136-163.

Whether the inclusion ESL-TAIC TAL is proper or not ) i .

is an open problem. Aravind K. Joshi and Yves Schabes. 1997ee adjoin-

ing grammarsin Grzegorz Rozenberg and Arto Salo-
. maa, Eds., Handbook of Formal Languages, volume 3
5 Conclusions (Beyond Words):69-123. Springer.

In this paper, some formal grammars for RNA secondargravind K. Joshi, K. Vijay-Shanker, and David J. Weir.
structure have been identified as subclasses of MCFG and1988. The convergence of mildly context-sensitive

their generative powers have been compared. To the au-grammar formalisms Institute for Research in Cog-
thors’ knowledge, the exact definition of pseudoknot in a Nitive Science, University of Pennsylvania.

biological or geometrical sense is not known and then ifadao Kasami, Hiroyuki Seki, and Mamoru Fuijii.
is difficult to answer which class of grammars is the min- 1988. Generalized context-free grammar and multiple

imum to represent pseudoknots. However, SL-TAG can- context-free grammar IEICE Trans., J71-D(5):758—

not generate RNA sequences obtained by repeating a sim-/ 82 (in Japanese).

ple pseudoknot shown in Figure 2 by2f, and ESL-TAG ~ Tadao Kasami, Hiroyuki Seki, and Mamoru Fujii. 1988.
(or ESL-MCFG) can be the minimum grammars which On the membership problem for head languages and
can represent such a class of pseudoknots. multiple context-free languageslEICE Trans., J71-

Meanwhile, Satta and Schuler (1998) introduce a sub- D(6):935-941 (in Japanese).
class of TAG (, which we will calBS-TAGand show that Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 200@n
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erative power of ESL-TAG, SS-TAG and (2,2)-MCFG @nd Arto Salomaa, Eds., Handbook of Formal Lan-
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251. Springer.
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derived) tree (see Figures 4 and 5). Comparison of tHéwen Rambow and Giorgio Satta. 1994A two-
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