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Abstract

Several grammars have been proposed for rep-
resenting RNA secondary structure including
pseudoknots. In this paper, we introduce
subclasses of multiple context-free grammars
which are weakly equivalent to these grammars
for RNA, and clarify the generative power of
these grammars as well as closure property.

1 Introduction

Much attention has been paid to RNA secondary struc-
ture prediction techniques based on context-free grammar
(cfg) since cfg can represent stem-loop structure (Fig-
ure 1 (a)) by its derivation tree and recognition (orsec-
ondary structure predictionin biological words) can be
performed inO(n3) time wheren is the length of an in-
put sequence (primary structure). Especially, techniques
based on CKY (Cocke-Kasami-Younger) algorithm have
been widely investigated (Durbin et al., 1998).Pseu-
doknot(Figure 1 (b)) is one of the typical substructures
found in an RNA secondary structure. An alternative rep-
resentation of a pseudoknot is arc depiction in which arcs
cross (see Figure 2). It has been recognized that pseu-
doknots play an important role in RNA functions such
as ribosomal frameshifting and splicing. However, it is
known that cfg cannot represent pseudoknot structure.

In bioinformatics, a few grammars have been proposed
to represent pseudoknots (Uemura et al., 1999; Rivas and
Eddy, 2000) (also see (Condon, 2003)). In the pioneer-
ing paper, Uemura et al. (1999) define two subclasses
of tree adjoining grammar (tag) calledsl-tagandesl-tag,
and argue that esl-tag is appropriate for representing RNA
secondary structure including pseudoknots. Rivas and
Eddy (2000) provide keen observation on representation
of RNA secondary structure by a sequence with a single
“hole” and introduce a new class of grammars for deriv-
ing sequences with hole. These grammars have gener-

ative power stronger than cfg while recognition can be
performed in polynomial time. However, relation among
the generative power of these grammars and/or mildly csg
has not been clarified.

In this paper, we identify grammars for RNA sec-
ondary structure (Uemura et al., 1999; Rivas and Eddy,
2000) as subclasses of multiple context-free grammar
(mcfg) (Kasami et al., 1988a; Seki et al., 1991) and clar-
ify inclusion relation among the classes of languages gen-
erated by these grammars.

The rest of this paper is organized as follows. Section
2 reviews the grammars mentioned above. In section 3,
these grammars are characterized as subclasses of mcfg.
Generative power and closure property of these grammars
are discussed in section 4. Section 5 concludes the paper.
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Figure 1: Example of RNA secondary structure
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Figure 2: Arc depiction of Figure 1 (b)

2 Preliminaries

2.1 Tree Adjoining Grammar

We will use standard notations for tree adjoining gram-
mar (Joshi and Schabes, 1997). The empty sequence is
denoted byε. For a sequenceα ∈ S∗, let |α| denote the
length ofα.

A tree adjoining grammar(tag) is a 5-tupleG =
(N, T, S, I,A) whereN andT are finite sets of nonter-
minals and terminals respectively,S the start symbol,I
a finite set ofinitial trees (center trees) andA a finite
set ofadjunct trees(auxiliary trees). The path of an ad-
junct tree from the root node to the foot node is called
the backbone. Selective adjoining(SA), null adjoining
(NA) and obligatory adjoining(OA) are defined in the
standard way. For treess andt, if t′ is obtained by ad-
joining s into t, we writet `s t′ (or simply t ` t′). We
write the reflective and transitive closure of` as`∗. We
call t′ a derived tree(or a tree derived fromt) if t `∗ t′

for somet ∈ I ∪A. A noden is inactiveif the constraint
for the node is NA, otherwiseactive. If no active node in
a treet has OA constraint, thent is calledmature. The
tree set of a tagG is defined asT (G) = {t | s `∗ t, s ∈
I andt is mature}. T (G) can be alternatively character-
ized in a bottom up way as follows. Let us define a series
of tree setsT0(G), T1(G), . . . .

(T1) T0(G) = {t ∈ I ∪ A | t is mature}.
(T2) Tn+1(G) = Tn(G) ∪ {t | t0 `s1 t1 `s2 · · · `sk

tk = t, t0 ∈ I ∪ A, si ∈ Tn(G) (1 ≤ i ≤
k), p1, . . . , pk are different addresses oft0, si is
adjoinable tot0 atpi (1 ≤ i ≤ k) andt is mature}.

It is not difficult to show thatT (G) = {t | t ∈
Tn(G) for somen ≥ 0 and yield(t) ∈ T ∗}. This charac-
terization ofT (G) by (T1) and (T2) is frequently used in
proofs in section 3.

The language generated byG is defined asL(G) =
{w | w = yield(t), t ∈ T (G)}, which is called atree
adjoining language(tal). Let TAG denote the class of
tags and TAL denote the class of tals. We use the same
notational convention, i.e., a language generated by an
xxg is called an xxl, the class of xxgs is denoted by XXG
and the class of xxls is denoted by XXL.

We now definesimple linear tag(sl-tag) andextended
simple linear tag(esl-tag) introduced in (Uemura et al.,
1999). LetG = (N, T, S, I,A) be a tag. An elementary
tree issimple linearif it has exactly one active node, and

for an adjunct tree, the active node is on the backbone of
the tree. A tagG is asimple linear tag(sl-tag) if and only
if all elementary trees inG are simple linear. An adjunct
tree issemi-simple linearif it has two active nodes, where
one is on the backbone and the other is elsewhere. A tag
G is anextended simple linear tag(esl-tag) if and only if
all initial trees inG are simple linear and all adjunct trees
in G are either simple linear or semi-simple linear.

Example 1 (Uemura et al., 1999). Let G =
(N, T, S, I,A) be an sl-tag whereN = {S}, T =
{a, c, g, u} and elementary trees inI andA are shown
in Figure 3. In the figure,z ∈ {a, c, g, u}, (x, y) ∈
{(a, u), (u, a), (c, g), (g, c)} and an active node is de-
noted byS∗. Figure 4 shows a derivation of a pseudo-
knot.
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Figure 3: Elementary trees in Example 1
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Figure 4: A derivation of a pseudoknot in Example 1

By definition,

SL-TAL ⊆ ESL-TAL ⊆ TAL . (∗1)

On the inclusion relation among CFL, SL-TAL and ESL-
TAL, the following has been shown in Propositions 1 to
3 of (Uemura et al., 1999):

L2 = {]ak
1bk

1]al
2b

l
2]a

m
3 bm

3 ]an
4 bn

4 ] | k, l, m, n ≥ 1}
∈ CFL \ SL-TAL, (∗2)

{anbncn | n ≥ 0} ∈ SL-TAL \ CFL, (∗3)

CFL⊆ ESL-TAL. (∗4)
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2.2 Multiple Context-Free Grammar

A multiple context-free grammar(mcfg) or linear
context-free rewriting system(Vijay-Shanker et al., 1987)
is a 5-tupleG = (N, T, F, P, S) whereN is a finite set
of nonterminals,T a finite set of terminals,F a finite set
of functions,P a finite set of (production) rules andS the
start symbol. For eachA ∈ N , a positive integer denoted
asdim(A) is given andA derivesdim(A)-tuples of ter-
minal sequences. For the start symbolS, dim(S) = 1.
For eachf ∈ F , positive integersdi (0 ≤ i ≤ k) are
given andf is a total function from(T ∗)d1×· · ·×(T ∗)dk

to (T ∗)d0 which satisfies the following condition (F):

(F) Let xi = (xi1, . . . , xidi) denote theith argument of
f for 1 ≤ i ≤ k. Thehth component of function
value for1 ≤ h ≤ d0, denoted byf [h], is defined as

f [h][x1, . . . , xk] = βh0zh1βh1zh2 · · · zhvh
βhvh

(∗)

whereβhl ∈ T ∗ (0 ≤ l ≤ vh) andzhl ∈ {xij | 1 ≤
i ≤ k, 1 ≤ j ≤ di} (1 ≤ l ≤ vh). The total number
of occurrences ofxij in the right hand sides of (∗)
from h = 1 throughd0 is at most one.

Each rule inP has the form ofA0 → f [A1, . . . , Ak]
whereAi ∈ N (0 ≤ i ≤ k) andf : (T ∗)dim(A1) × · · · ×
(T ∗)dim(Ak) → (T ∗)dim(A0) ∈ F . If k ≥ 1, then the rule
is called anonterminating rule, and if k = 0, then it is
called aterminating rule.

We define the relation
∗⇒ and derivation trees (refer to

Figure 5) recursively by the following (L1) and (L2):

(L1) If A → α ∈ P (α ∈ T ∗), thenA
∗⇒ α and a tree

with the single node labeledA : α is a derivation
tree forα.

(L2) If A → f [A1, . . . , Ak] ∈ P , Ai
∗⇒ αi =

(αi1, . . . , αi dim(Ai)) (1 ≤ i ≤ k) and t1, . . . , tk

are derivation trees forα1, . . . , αk, then A
∗⇒

f [α1, . . . , αk] where f [α1, . . . , αk] denotes the
dim(A)-tuple of terminal sequences obtained from
the right hand sides of (∗) in condition (F) by sub-
stitutingαij (1 ≤ i ≤ k, 1 ≤ j ≤ dim(Ai)) into
xij , and a tree with the root labeledA : f which has
t1, . . . , tk as (immediate) subtrees from left to right
is a derivation tree forf [α1, . . . , αk].

The language generated by an mcfgG is defined as
L(G) = {w ∈ T ∗ | S ∗⇒ w}.

To introduce subclasses of MCFG, we define a few
terminologies. LetG = (N, T, F, P, S) be an arbitrary
mcfg. The dimensionof G is defined asdim(G) =
max{dim(A) | A ∈ N}. For a functionf ∈ F , let
rank(f) denote the number of arguments off . Therank
of G is defined as rank(G) = max{rank(f) | f ∈ F}.

For a functionf : (T ∗)d1 × · · · × (T ∗)dk → (T ∗)d0 ,
let deg(f) = Σk

j=0dj , which is called thedegreeof
f . Finally, let us define the degree ofG asdeg(G) =
max{deg(f) | f ∈ F}. By definition, deg(G) ≤
dim(G)(rank(G) + 1). With these parameters, we de-
fine subclasses of MCFG. An mcfgG with dim(G) ≤ m
and rank(G) ≤ r is called an(m, r)-mcfg. Likewise, an
mcfgG with dim(G) ≤ m is called anm-mcfg.

It has been proved that

TAL ⊂ (2,2)-MCFL⊂ 2-MCFL⊂ MCFL, (∗5)

where the proper inclusion relation from left to right in
(∗5) were given by Lemma 4.15 of (Seki et al., 1991),
Theorem 1 of (Rambow and Satta, 1994) and Lemma 5
of (Kasami et al., 1988a), respectively.

Example 2. Consider the (2,2)-mcfg
G3 = ({S,A}, {a, c, g, u}, F3, P3, S) for generating
RNA sequences, whereP3 andF3 are as follows:

S → J [A],
A → XS1[A,A] | XS2[A,A] | XS3[A,A],
A → BF1[A,A] | BF2[A,A] | BF3[A,A],
A → BPαβ [A]

((α, β) ∈ {(a, u), (u, a), (c, g), (g, c)}),
A → UP 1,L

α [A] | UP 1,R
α [A] | UP 2,L

α [A] | UP 2,R
α [A]

(α ∈ {a, c, g, u}),
A → (ε, ε),
J [(x1, x2)] = x1x2,

XS1[(x11, x12), (x21, x22)] = (x11, x21x12x22),
XS2[(x11, x12), (x21, x22)] = (x11x21, x12x22),
XS3[(x11, x12), (x21, x22)] = (x11x21x12, x22),
BF1[(x11, x12), (x21, x22)] = (x11, x12x21x22),
BF2[(x11, x12), (x21, x22)] = (x11x12, x21x22),
BF3[(x11, x12), (x21, x22)] = (x11x12x21, x22),
BPαβ [(x1, x2)] = (αx1, x2β),

UP 1,L
α [(x1, x2)] = (αx1, x2),

UP 1,R
α [(x1, x2)] = (x1α, x2),

UP 2,L
α [(x1, x2)] = (x1, αx2),

UP 2,R
α [(x1, x2)] = (x1, x2α).

Functions have mnemonic names whereXS, BF , BP
and UP stand for crossing, bifurcation, base pair and
unpair, respectively. The RNA sequenceagacuu
in Figure 4 can be generated by the above rules
as follows: A

∗⇒ BPgc[(ε, ε)] = (g, c), A
∗⇒

BPau[(g, c)] = (ag, cu), A
∗⇒ BPau[(ε, ε)] = (a, u),

A
∗⇒ XS2[(ag, cu), (a, u)] = (aga, cuu) and S

∗⇒
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J [(aga, cuu)] = agacuu. G3 has a derivation tree
(Figure 5) foragacuu which represents the pseudoknot
shown in Figure 4.

S : J

A : XS2

A : BPau A : BPau

A : BPgc

A : (ε, ε)

A : (ε, ε)

Figure 5: A derivation tree inG3

Recognition problem for mcfg can be solved in poly-
nomial time:

Proposition 1 (Kasami et al., 1988b; Seki et al., 1991).
Let G be an mcfg withdeg(G) = e. For a givenw ∈ T ∗,
whetherw ∈ L(G) or not can be decided inO(ne) time
wheren = |w|.

3 Subclasses of MCFG

3.1 A Subclass of MCFG for SL-TAL

GrammarsG and G′ are called weakly equivalent if
L(G) = L(G′). Remember that each elementary tree
in an sl-tag contains exactly one active node as shown in
Figure 6 (An inactive node and an active node are denoted
like Aφ andB∗, respectively in the figure). By utilizing
this restriction, we can define a translation from an sl-tag
into a weakly equivalent (2,2)-mcfg simpler than that of
(Vijay-Shanker et al., 1986). Namely, for an adjunct tree
in Figure 6 (a), construct an mcfg ruleA → f [B] where
f [(x1, x2)] = (u1x1v1, v2x2u2). This translation moti-
vates us to define the following subclass of (2,1)-MCFG.

Aφ

Aφu1 v1 v2 u2

B*

(a)

Sφ

u1 u2

B*

u3

(b)

Figure 6: Elementary trees in sl-tag

Definition 1. A (2,1)-mcfgG = (N, T, F, P, S0) is an
sl-mcfgif G satisfies the following conditions (1) and (2):

(1) For each nonterminalA other thanS0, dim(A) = 2.

(2) Each nonterminating rule has the form of either
S0 → J [A] whereJ [(x1, x2)] = x1x2 or A →
f [B] whereA,B ∈ N \ {S0} andf [(x1, x2)] =
(u1x1v1, v2x2u2) for someuj , vj ∈ T ∗ (j = 1, 2).
Such a functionf is called asimple linear func-
tion.

Lemma 2. SL-TAL = SL-MCFL.

Proof. (SL-TAL ⊆ SL-MCFL) Let G = (N, T, S, I,A)
be a given sl-tag. We will construct an sl-mcfgG′ =
(N ′, T, F, P, S0) as follows:

(1) N ′ = N ∪{S0} wheredim(S0) = 1 anddim(A) =
2 for eachA ∈ N .

(2) P (and F ) are the smallest sets which satisfy the
following conditions (a) through (c):

(a) S0 → J [S] ∈ P andJ ∈ F .

(b) For each adjunct treet ∈ A shown in Figure 6
(a),

• A → f [B] ∈ P and f ∈ F where
f [(x1, x2)] = (u1x1v1, v2x2u2), and

• A → (u1v1, v2u2) if B in Figure 6 (a) does
not have OA constraint (i.e.,t is mature).

(c) For each initial treet ∈ I shown in Figure 6
(b),

• S → g[B] ∈ P and g ∈ F where
g[(x1, x2)] = (u1x1u2, x2u3), and

• S → (u1u2, u3) if t is mature.

We can show that there exists a treet ∈ Tn(G) for some
n ≥ 0 such that yield(t) = w1Aw2 (A ∈ N, w1, w2 ∈
T ∗) if and only if A

∗⇒G′ (w1, w2).
(SL-MCFL ⊆ SL-TAL) Let G = (N, T, F, P, S0)
be a given sl-mcfg. Construct an sl-tagG′ =
(N ′, T, S0, I,A) as follows:

(1) N ′ = N ∪ {X} whereX 6∈ N .

(2) I consists of initial trees shown in Figure 7 (a) for
S0 → J [A] ∈ P .

(3) A is the smallest set satisfying:

• For eachA → f [B] ∈ P wheref [(x1, x2)] =
(u1x1v1, v2x2u2), the adjunct tree shown in
Figure 6 (a) belongs toA.

• For eachA → (u1, u2) ∈ P , the adjunct tree
in Figure 7 (b) belongs toA.

Proof ofL(G) = L(G′) can be done in a similar way to
the converse direction.
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S0

AOA

ε

(a)

Aφ

u1 u2Aφ

X*

(b)

Figure 7: Constructed elementary trees

3.2 A Subclass of MCFG for ESL-TAL

In this subsection, we will define a subclass of (2,2)-
MCFG which exactly generates ESL-TAL. LetG =
(N, T, S, I,A) be a given esl-tag. By virtue of Property
2 of (Uemura et al., 1999), we can assume thatG is in
normal form such that for every semi-simple linear ad-
junct treet ∈ A, yield(t) ∈ N . Thus, for each leafv
of t, eitherv is the foot node or the label ofv is ε (see
Figure 8). From this observation, we define a subclass
of (2,2)-MCFG by adding rules corresponding to adjunct
trees shown in Figure 8 to the definition of sl-mcfg.

Aφ

Aφ

D*B*

ε

(1)

Aφ

Aφ

D*

B*

ε

(2)
Aφ

Aφ

D*

B*

ε

(3)

Aφ

Aφ

D* B*

ε

(4)

Figure 8: Semi-simple linear adjunct trees in normal form

Definition 2. A (2,2)-mcfgG = (N, T, F, P, S0) is an
esl-mcfgif each nonterminating rule has one of the fol-
lowing forms (1) through (3):

(1) A → J [B] wheredim(A) = 1 anddim(B) = 2.

(2) A → f [B] wheref is a simple linear function.

(3) A → g[B,D] where dim(A) = dim(D) = 2,
dim(B) = 1, g ∈ {C1, C2, C3, C4} and

C1[x1, (x21, x22)] = (x1x21, x22),
C2[x1, (x21, x22)] = (x21x1, x22),
C3[x1, (x21, x22)] = (x21, x1x22),
C4[x1, (x21, x22)] = (x21, x22x1).

Lemma 3. ESL-TAL = ESL-MCFL.

Proof. (ESL-TAL ⊆ ESL-MCFL) Let G =
(N, T, S, I,A) be a given esl-tag in normal form
(Uemura et al., 1999). We construct an esl-mcfg
G′ = (N ′, T, F, P, S0) from G as follows:

(1) N ′ = N ∪ {A′ | A ∈ N} wheredim(A′) = 1 and
dim(A) = 2 for A ∈ N .

(2) P (and F ) are the smallest sets which satisfy the
following conditions (a) through (d):

(a) For eachA ∈ N , A′ → J [A] ∈ P andJ ∈ F .

(b) Same as (2) (b) (c) in the proof of(SL-TAL ⊆
SL-MCFL) in Lemma 2.

(c) For each semi-simple linear adjunct treet
shown in Figure 8 (1),

• A → C1[B′, D] ∈ P andC1 ∈ F , and
• A → (ε, ε) ∈ P if t is mature.

(d) For each semi-simple linear adjunct tree (2)
through (4) in Figure 8, the rules usingC2, C3

andC4, respectively, instead ofC1 belong to
P .

We can show that there exists a treet ∈ Tn(G) for some
n ≥ 0 such that yield(t) = w1Aw2 (A ∈ N, w1, w2 ∈
T ∗) if and only if A

∗⇒G′ (w1, w2).
Proof of (ESL-MCFL ⊆ ESL-TAL) is similar and is
omitted here.

3.3 A Subclass of MCFG for RPL

Rivas and Eddy (2000) introducecrossed-interaction
grammar(cig) which is similar to mcfg, and defineRNA
pseudoknot grammar(rpg) as a subclass of CIG to de-
scribe RNA secondary structure including pseudoknots.
In this subsection, we reformulate RPG as a subclass of
MCFG.

Definition 3. A (2,2)-mcfgG = (N, T, F, P, S) is called
an rpg if a nonterminating rule is one of the following
forms (1) through (3):

(1) A → J [B].

(2) A → BF [E1, E2] wheredim(A) = 2, dim(E1) =
dim(E2) = 1 andBF [x1, x2] = (x1, x2).
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(3) A → f [B,D] where dim(A) = dim(B) =
dim(D) = 2, f ∈ {XS1, XS2, XS3,W},
XSi (i = 1, 2, 3) is defined in Example 2 and
W [(x11, x12), (x21, x22)] = (x11x21, x22x12).

Proposition 4.

RPL⊆ (2,2)-MCFL. (∗6)

We obtain the following property on recognition com-
plexity.

Proposition 5. For a givenw ∈ T ∗ (n = |w|), whether
w ∈ L or not can be decided inO(n6) time if L is an rpl,
O(n5) time if L is an esl-tal, andO(n4) time if L is an
sl-tal.

Proof. For an rpgG, deg(G) ≤ 6, for an esl-mcfgG,
deg(G) ≤ 5 and for an sl-mcfgG, deg(G) ≤ 4. The
proposition follows from Proposition 1, Lemmas 2 and
3.

The above complexity results were first shown in (Ue-
mura et al., 1999) for ESL-TAL and SL-TAL and in (Ri-
vas and Eddy, 2000) for RPL by providing an individual
recognition algorithm for each class. On the other hand,
by identifying these classes of languages as subclasses of
MCFL, we can easily obtain the same results as stated in
Proposition 5. Akutsu (2000) defines a structure called
a simple pseudoknot and proposes anO(n4) time exact
prediction algorithm andO(n4−δ) time approximation
algorithm without using grammar. Note that the set of
simple pseudoknots can be generated by an sl-tag.

4 Inclusion Relation

First, we summarize the inclusion relation among the
classes of languages stated in (∗1) through (∗6).

Proposition 6. (1) (CFL ∪ SL-TAL) ⊆ ESL-TAL ⊆
TAL ⊂ (2,2)-MCFL.

(2) RPL⊆ (2,2)-MCFL⊂ 2-MCFL⊂ MCFL.

In the following, we refine the above proposition.

4.1 (CFL ∪ SL-TAL ) ⊂ ESL-TAL

First, we introduce a normal form of esl-mcfg and then
show closure properties of SL-TAL and ESL-TAL. By
using sl-mcfg and esl-mcfg, we can prove these proper-
ties in a simple way. Some of these properties will be
used for proving inclusion relation between SL-TAL and
ESL-TAL.

Definition 4. An esl-mcfg is in normal form if the fol-
lowing conditions (1) and (2) hold:

(1) For each A → f [B] where f [(x1, x2)] =
(u1x1v1, v2x2u2) is a linear function,|u1v1v2u2| =
1.

(2) For eachA → (u1, u2) (u1, u2 ∈ T ∗), u1 = u2 =
ε.

Remark that a similar normal form is defined for esl-tag
in (Uemura et al., 1999). It is easy to prove the following
lemma.

Lemma 7. For a given esl-mcfgG, a normal form esl-
mcfg G′ can be constructed fromG such thatL(G′) =
L(G).

Theorem 8. SL-TAL and ESL-TAL have the following
properties.

(1) SL-TAL contains every linear language.

(2) SL-TAL is closed under union, homomorphism, in-
tersection with regular languages and regular substi-
tution, but is not closed under concatenation, Kleene
closure, positive closure or substitution.

(3) ESL-TAL is closed under intersection with regular
languages and substitution.

Proof. (1) For linear cfg rulesA → u1Bv1 and
A → u, construct sl-mcfg rulesA → f [B] where
f [(x1, x2)] = (u1x1v1, x2) andA → (u, ε), respec-
tively.

(2) (regular substitution) LetG = (N, T, F, P, S0) be
an sl-mcfg in normal form. We also assume that
each ruleA → f [B] ∈ P has a unique label, sayr,
and writer : A → f [B] ∈ P . Lets : T → 2(T ′)∗ be
a regular substitution and for eachα ∈ T , lets(α) =
L(Gα) whereGα = (Nα, T ′, Pα, Sα) is a regu-
lar grammar. We now construct an sl-mcfgG′ =
(N ′, T ′, F ′, P ′, S0) such thatL(G′) = s(L(G)) as
follows. G′ will simulate Gα by a linear function
instead of generatingα ∈ T . To do this, we intro-
duce a nonterminalX [r] in G′ whereX ∈ Nα and
r : A → f [B] ∈ P such that the definition off
containsα ∈ T .

• N ′ = N ∪{X [r] | X ∈ Nα \{Sα}, α ∈ T, r :
A → f [B] ∈ P}.

• F ′ consists ofJ , UP 1,L
β , UP 1,R

β , UP 2,L
β ,

UP 2,R
β (β ∈ T ′) of Example 2 andEPS[ ] =

(ε, ε).
• P ′ is the smallest set satisfying:

– If S0 → J [A] ∈ P , thenS0 → J [A] ∈ P ′.
– Assume thatr : A → f [B] ∈ P where

f [(x1, x2)] = (αx1, x2) (α ∈ T ). If
X → βY ∈ Pα (X, Y ∈ Nα, β ∈ T ′),
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then X [r] → UP 1,L
β [Y [r]] ∈ P ′, and if

X → β ∈ Pα (X ∈ Nα, β ∈ T ′), then
X [r] → UP 1,L

β [B] ∈ P ′ where S
[r]
α is

identified withA for simplicity.
– For the other rules inP , similar con-

struction can be defined. For example, if
f [(x1, x2)] = (x1, x2α) (α ∈ T ), then we
will useUP 2,R

β instead ofUP 1,L
β .

Proof ofL(G′) = s(L(G)) is easy.
The other closure properties can be easily proved.
(concatenation) LetL = {]ak

1bk
1]al

2b
l
2 | k, l ≥ 1}

and L′ = {]am
3 bm

3 ]an
4 bn

4 ] | m,n ≥ 1}, both of
which are sl-tals. An sl-mcfg which generatesL
is such thatS0 → J [S], S → add]][A] where
add]][(x1, x2)] = (]x1, ]x2), A → f [A] | B
wheref [(x1, x2)] = (a1x1b1, x2) andB → g[B] |
(a1b1, a2b2) where g[(x1, x2)] = (x1, a2x2b2).
Construction of an sl-mcfg which generatesL′ is
similar. The concatenation of them, i.e.,LL′ = L2

defined in (∗2) is not an sl-tal.
(Kleene closure, positive closure) By the next corol-
lary, SL-TAL is a union closed full trio. If SL-TAL is
closed under Kleene closure or positive closure, then
by Theorem 3.1 of (Mateescu and Salomaa, 1997),
SL-TAL is closed under concatenation, which is a
contradiction.
(substitution) LetL1 = {]d1]d2]d3]d4]}, which is
a finite language and thus an sl-tal, and lets be a
substitution such thats(di) = {an

i bn
i | n ≥ 1} (1 ≤

i ≤ 4), which is also an sl-tal by (1) of this theorem.
Thens(L1) = L2 defined in (∗2), which is not an
sl-tal.

(3) (intersection with regular languages) Same as the
proof of Theorem 3.9 (3) of (Seki et al., 1991).
(substitution) Easy.

Corollary 9. SL-TAL is a full trio (or cone). (That is,
SL-TAL is closed under homomorphism, inverse homo-
morphism and intersection with regular languages.) ESL-
TAL is a substitution closed full abstract family of lan-
guages (full AFL). (That is, ESL-TAL is a full trio and
closed under union, concatenation, Kleene closure and
substitution.)

Proof. (full trio) By Theorem 3.2 of (Mateescu and Sa-
lomaa, 1997) and (2) of Theorem 8. (full AFL) By Theo-
rem 3.3 of (Mateescu and Salomaa, 1997) and (1), (3) of
Theorem 8.

Now we show inclusion relation between SL-TAL and
ESL-TAL.

Theorem 10. Let L3 =
{]ak

1bk
1ck

1]al
2b

l
2c

l
2]a

m
3 bm

3 cm
3 ]an

4 bn
4 cn

4 ] | k, l, m, n ≥ 1}.
Then,L3 ∈ ESL-TAL \ (CFL∪ SL-TAL).

Proof. Let h1 be a homomorphism such thath1(a1) =
a1, h1(b1) = b1, h1(c1) = c1 andh1(x) = ε for x ∈
{ai, bi, ci | i = 2, 3, 4} ∪ {]}. Thenh1(L3) = {ak

1bk
1ck

1 |
k ≥ 1}, which is not a cfl. Since CFL is closed under
homomorphism,L3 is not a cfl. Similarly, leth2 be a
homomorphism such thath2(ci) = ε for i = 1, 2, 3 and
identity on the other symbols. Thenh2(L3) = L2 defined
in (∗2), which is not an sl-tal. By Theorem 8 (2),L3 is not
an sl-tal. We can easily give an esl-mcfg which generates
L3.

4.2 RPL = (2,2)-MCFL

We introduce a condition (S) which states that for each
argument(xi1, xi2) of a function of an mcfg, the order
of the occurrences of its componentsxi1 andxi2 is not
interchanged in the function value.

(S) Let G = (N, T, F, P, S) be a 2-mcfg andf be an
arbitrary function inF such that

f [(x11, x12), . . . , (xn1, xn2)] = (α1, α2).

For eachi (1 ≤ i ≤ n), if both of xi1 andxi2 occur
in α1α2, thenxi1 occurs to the left of the occurrence
of xi2, i.e., α1α2 = β1xi1β2xi2β3 for someβj ∈
(N ∪ T )∗ (1 ≤ j ≤ 3).

Lemma 11. For a given 2-mcfgG, we can construct a 2-
mcfgG′ satisfying condition (S) andL(G′) = L(G).

Lemma 12. Let G = (N, T, F, P, S) be a (2,2)-mcfg
satisfying condition (S). Then we can construct an rpgG′

such thatL(G′) = L(G).

Proof. Let G = (N, T, F, P, S) be an arbitrary (2,2)-
mcfg satisfying condition (S). We construct an rpgG′

weakly equivalent toG as follows. The number of func-
tions f : (T ∗)2 × (T ∗)2 → (T ∗)2 satisfying condition
(S) is 18. A half of them can be obtained from the other
half of them by interchanging the first and second argu-
ments. Among the remaining nine functions, four are
rpg functions. The others aref1 = (x11, x12x21x22),
f2 = (x11x12, x21x22), f3 = (x11x12x21, x22), f4 =
(x11, x21x22x12), f5 = (x11x21x22, x12). (We omit
variables in the left hand sides.) For example,A →
f1[B,D] can be simulated byA → XS2[B, Y1], Y1 →
BF [Y2, Y3], Y2 → ε andY3 → J [D]. The other four
functions can be simulated by rpg functions in a similar
way.

By Proposition 6 (2), Lemmas 11 and 12, we obtain the
following theorem.

Theorem 13. RPL = (2,2)-MCFL.

The following corollary follows from Proposition 6, The-
orems 10 and 13.
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Corollary 14. (CFL∪ SL-TAL) ⊂ ESL-TAL ⊆ TAL ⊂
RPL = (2,2)-MCFL.

Whether the inclusion ESL-TAL⊆ TAL is proper or not
is an open problem.

5 Conclusions

In this paper, some formal grammars for RNA secondary
structure have been identified as subclasses of MCFG and
their generative powers have been compared. To the au-
thors’ knowledge, the exact definition of pseudoknot in a
biological or geometrical sense is not known and then it
is difficult to answer which class of grammars is the min-
imum to represent pseudoknots. However, SL-TAG can-
not generate RNA sequences obtained by repeating a sim-
ple pseudoknot shown in Figure 2 by (∗2), and ESL-TAG
(or ESL-MCFG) can be the minimum grammars which
can represent such a class of pseudoknots.

Meanwhile, Satta and Schuler (1998) introduce a sub-
class of TAG (, which we will callSS-TAG) and show that
ss-tals are recognizable inO(n5) time. The definition of
ss-tag is slightly more general than that of esl-tag while
keeping the constraint such that there exists (at most) one
active node in the backbone. We conjecture that the gen-
erative power of ESL-TAG, SS-TAG and (2,2)-MCFG
with deg(G) ≤ 5 are all the same.

Secondary structure is represented by a derivation (or
derived) tree (see Figures 4 and 5). Comparison of the
tree generative power of esl-tag and rpg is an interest-
ing problem. To apply these grammars to RNA structure
prediction, a probabilistic model should be introduced by
extending these grammars such as stochastic cfg (Durbin
et al., 1998), which is left as future work.
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