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Abstract

Ambiguous keyboards, i.e. several letters host
on the same key (cf. telephone keyboard), pro-
duce candidate lists with words that match the
entered code. These lists have to be disam-
biguated by the user for the intended word.
Consequently, the primary goal is to order these
candidates in a way that the most appropriate
words are placed on top of the suggestion list
for minimal selection costs or to postpone the
attention to suggestions to a final editing step.
This paper reports on promising results for this
goal by inspecting the whole sentence on the
basis of supertagging and lightweight depen-
dency analysis.

1 Introduction

Watch-sized devices which lack space for a full keyboard,
i.e. uniquely addressable keys, on the one hand, and on
the other, Asian language typing or devices for speech-
and motor-impaired people where not all letters can be
addressed directly because so many buttons are not man-
ageable in reasonable time make use of so-called ambigu-
ous or reduced or cluster keyboards (for one of the ear-
liest systems see (Witten, 1982)) — even only realized
virtually on a screen (which does not make any differ-
ence for the following considerations). Typing with am-
biguous keyboards, i.e. keyboards where several letters,
symbols or numbers, respectively, host on one and the
same button (cf. telephone keyboards), basically can be
performed in two different manners. Multi-tapping as ba-
sic encoding method for short message sending (SMS)
on cellular phones uniquely addresses a symbol by a pre-
defined number of button hits in a row. Obviously, this
method is cumbersome and time consuming.

∗The author is now affiliated with the Chair of Computer
Science VI, RWTH Aachen University, Germany.

As a consequence of an observation by (Witten, 1982),
namely that in a dictionary with 24500 words only 8% are
ambiguous if the respective button on a phone keyboard is
pressed only once, predictive methods have emerged on
the market. Predictive text entry devices (e.g., the prod-
uct T9 by Tegic Communications for SMS typing (Kush-
ler, 1998)) have been developed that reduce the number
of keystrokes needed for entering a word by proposing
possible candidates matching the current input. More-
over, the possible candidates for completion all match the
already entered prefix of the word. By selecting one of
the available suggestions (irrespective whether assuming
prediction or completion mode here), the number of key-
presses decreases but the overall time to enter the word
is not necessarily reduced due to the cognitive load that
emerges while scanning the suggested candidate list (see,
e.g., (Horstmann Koester and Levine, 1994)). Conse-
quently, the primary goal is to order these candidates in
a way that the most appropriate words are placed on top
of the suggestion list for minimal selection costs or to
postpone the attention to suggestion lists to a final edit-
ing step. This paper reports on promising results for this
goal by inspecting the whole sentence on the basis of su-
pertagging and lightweight dependency analysis (LDA).

The paper is organized as follows. Section 2 gives a
short overview on related work in the area of predictive
typing. Section 3 presents the sentence-wise approach
based on supertagging and LDA. The experiments and
results achieved with these methods are summarized in
Section 4. Section 5, finally, summarizes our approach
and the conclusions we reached.

2 State of the art in predictive typing

Only for completeness, we mention letter-wise predictive
systems here (see, e.g., LetterWise by (MacKenzie et al.,
2001)) or the Reactive Keyboard by (Darragh and Witten,
1992). For word-wise systems, the easiest way to achieve
appropriate suggestion lists is to sort the list according
to word frequencies obtained from large corpora (see the
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proceedings of the EACL-workshop on language model-
ing for text entry methods (Harbusch et al., 2003) for an
overview of recent n-gram systems). Tanaka et al. (2002)
propose an adaptive language model utilizing prediction
by partial match (PPM (Cleary and Witten, 1984), which
actually originates from the information theory domain
and deals with the problem of improving the compres-
sion rates of arithmetic coding) that lowers the entropy
of a language model by maintaining a list of already seen
contexts and its corresponding successors. In (Matiasek
et al., 2002), a system based on word n-grams with addi-
tional part-of-speech information is outlined. Fazly and
Hirst (2003) also impose part-of-speech information on
prediction. Surprisingly, additional part-of-speech infor-
mation hardly improves the prediction lists. Thus, other
information sources have to be investigated.

The only approach that goes beyond a word-wise step-
by-step disambiguation we are aware of is reported in
(Rau and Skiena, 1996). Instead of permanently chang-
ing between two modes, i.e. a phase where a word is
typed and a phase where it is disambiguated in a list of
current suggestions, the user can solely concentrate on
the process of text entry in a sentence-wise approach.
Here, a telephone keypad that distributes the 26 letters
and the blank character (word delimiter) on 9 keys serves
as ambiguous keyboard (i.e. 3 letters are placed on one
key at a time). The end of the sentence is marked un-
ambiguously using the “#” key. Sentence disambigua-
tion applies the Viterbi algorithm and involves word bi-
gram probabilities and part-of-speech information ex-
tracted from the Brown Corpus. The results obtained by
simulating the typing of various text samples with this
framework look promising. For various domains, the per-
centage of correct words ranges from 92.86 to 97.67%.
This is due to the relatively high number of keys and low
number of ambiguous words, respectively.

A possible way of entering commonly used expres-
sions such as “how are you” or “could you please open
the door” fast is the use of sentence compansion (see e.g.
in (Copestake, 1997; McCoy et al., 1998)). So, from the
input “open door”, the system would generate “could you
please open the door”. This cogeneration approach needs
three knowledge sources, namely a grammar and a lexi-
con, statistical information about collocations, i.e. syn-
tagmatically related words, and a set of templates. A
thinkable drawback for the user might be that the ex-
panded sentences sound monotonous by and by. In con-
trast, flexibility and individuality are valuable features of
direct and unrestricted text entry systems. Thus, the mo-
tivation of typing on a sentence level is reasonable. The
idea is to make use of the syntactic relations that exist in
the sentence the user wants to express and exploit them to
present more accurate candidate lists that allow for faster
selection by moving likely matches to the top.

a g j l m c f h k o s b d e i
q r w z ä t u v x y ü ß n p ö -
Button 1 Button 2 Button 3

Figure 1: The layout of the letter keys for German.

3 Sentence-wise predictive typing based on
Supertagging

In this paper, we report on results for a sentence-wise text
entry system with a highly reduced ambiguous keyboard
containing only three letter keys and one command key
(the setting results from needs of our disabled test sub-
jects). Nevertheless, the presented system called UKO-II
(Harbusch and Kühn, 2003) is adaptive with respect to
the number of keys, i.e. the system can be tailored to any
number of keys where the symbol distribution is matter
of definition.

The distribution of the letters on the keys that is used
in this work is language-specific by applying a genetic
algorithm which optimizes the candidate lists’ length and
overall selection costs for a given lexicon. For German
and English, the dictionaries are based on the CELEX
lexical database (Baayen et al., 1995). The current key-
board layout of the letter keys for the German language is
depicted in Figure 1. In contrast to the approach in (Rau
and Skiena, 1996), the word delimiter (space) is coded
unambiguously by entering the command mode.1 So for
example, in order to enter guten Morgen (“good morn-
ing”) the user types the code sequence 1 2 2 3 3

1 2 1 1 3 3 . For the first code, there exist 48
possible words (guten, außen, wohin, . . . ), for the second,
there are 30 entries (wollen, morgen, Morgen, . . . ). This
small example already allows for a total of 1440 sentence
hypotheses.

3.1 N-best Supertagger

The entire technique that is chosen to achieve our goal is
based on supertagging, a procedure that associates so-
called supertags, i.e. elementary trees in the grammar
formalism of Lexicalized Tree-Adjoining Grammar (see,
e.g., (Joshi and Schabes, 1997)) that code local dependen-
cies, with the corresponding words of the sentence (see,
e.g., (Bangalore and Joshi, 1999)). The core of the pre-
sented system is an n-best supertagger that is based on
a second-order Hidden Markov Model (see (Bäcker and
Harbusch, 2002)) and is able to find the n best sentence
hypotheses for a sequence of coded words.

Let tN1 = t1t2 · · · tN be a sequence of supertags for a
sentence wN

1 = w1w2 · · ·wN . We are interested in the

1In command mode, the mapping of the letter keys is
changed to commands like delete last key or space. Thus, the
command button functions as a meta key and allows for hierar-
chical menu structures which are not further discussed here.
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most probable tag sequence t̂N1 which is defined by

t̂N1 = argmaxtN
1

P (tN1 |wN
1 ). (1)

According to Bayes’ law and additional assumptions that
the words are independent of each other, the probability
of a supertag sequence given a sentence, P (tN1 |wN

1 ), can
be rewritten as

P (tN1 |wN
1 ) ≈

N∏
i=1

P (ti|ti−2ti−1)P (wi|ti), (2)

where maximum likelihood estimation (MLE) is used for
the probabilities by relative frequencies derived from an
annotated training set of supertagged sentences. For un-
known events, Good-Turing discounting in combination
with Katz’s back-off is applied.

Usually, a dynamic programming technique (i.e. the
Viterbi algorithm) finds the best supertag sequence of a
sentence (cf. Equation 1) for a given HMM efficiently by
storing the best local sequence probability and a back-
pointer to the predecessor state for each word position in
the sentence. In order to find the n best paths through
the HMM trellis, we have to allow the backpointer ta-
ble to hold not only the best predecessor, but the n best
predecessor states sorted by the corresponding log prob-
ability. Since we deal with trigrams in Equation 2, the
states of the HMM have to be coded as supertag pairs,
thus P (ti|ti−2ti−1) = P (〈ti−1, ti〉|〈ti−2, ti−1〉). This
leads to the following recurrence formula for state prob-
abilities at position k in the sentence wN

1 , 1 ≤ k ≤ N :

δk(〈ti−1, ti〉) = max
〈ti−2,ti−1〉

[
δk−1(〈ti−2, ti−1〉)·

P (〈ti−1, ti〉|〈ti−2, ti−1〉)
] · P (wk|〈ti−1, ti〉)

(3)

The values in the δ-table are used to build an additional
table which yields the n best local hypothesis scores

φk(sj , si) = δk−1(si)P (sj |si)P (wk|sj) (4)

for states si = 〈ti−2, ti−1〉 and sj = 〈ti−1, ti〉. For
each sj , the number of predecessors si can be limited
to n. The corresponding backpointers are stored in a ta-
ble ψk(sj ,m) = si where m = 1 denotes the best and
m = n the nth predecessing state.

Now, after this forward-trellis step, a backward-tree
search is applied in order to find the n most promising su-
pertag sequences which are used to adjust the candidate
lists and move likely matches to the top. The evaluation
function f(〈ti−1, ti〉) that associates the current path cost
with a state 〈ti−1, ti〉 can directly use the log probabilities
from the forward-trellis step as a heuristic h(〈ti−1, ti〉).
This approach leads to greedy search. An important note
is that the heuristic is optimal since it actually returns

the exact path costs to the goal. By also incorporating
the backward partial path costs g(〈ti−1, ti〉) of the search
process, i.e. f = g + h, we arrive at A* search. The
resulting system is able to generate the n best supertag
hypotheses for a given sentence. For a more detailed pre-
sentation of the system, see (Hasan, 2003).

3.2 Incorporating ambiguous codes

The starting point is an ambiguously coded word se-
quence typed with a reduced keyboard as introduced in
the beginning of this section. Every code generates a list
of words and every word has several supertags associated
with it. A supertagger is used to find the most likely su-
pertag sequence for the sentence and on the basis of this
information, the candidate list becomes reordered such
that the most likely words (which are the lexical anchors
of the supertags) appear at the top. Due to the ambiguous
coding, the number of supertags for a code (which corre-
sponds to the supertags of all word expansions of a code)
is so large that the best supertag sequence is not sufficient
to improve the results significantly. Therefore, we use the
n-best tree-trellis approach from Section 3.1 in order to
produce more than one hypothesis. At this point, the code
sequence of each sentence is associated with a list of the
n best supertag sequences found by the supertagger.

Every word usually has several supertags, since the
lexical items of an LTAG are almost always associated
with several elementary structures that encode the vari-
ous local dependencies of each word. And since every
code expands to several matching words, the result is a
set of supertag sets that form a trellis (cf. detailed view in
Figure 2). This trellis is the basis for the tree-trellis search
that finds the n best supertag hypotheses for a given sen-
tence. Figure 2 also shows the different expansion steps
for the sentence ich habe ein kleines Problem (“I have a
little problem”).

After typing the words of a sentence with the ambigu-
ous keyboard, the code sequence is expanded and the can-
didate list is obtained according to the CELEX lexicon.
After that, the possible supertags are looked up in the
trained language model, i.e. all supertags that occurred in
the training corpus with its corresponding lexical anchor
are primed for the n-best tree-trellis search. The hypothe-
ses that are returned by the search are then used to reorder
the candidate lists. The effect is that likely words of the
trained language model will move to the top of the match
lists and improve the overall accuracy of the system.

3.3 Filtering ungrammatical hypotheses

In a second step, a lightweight dependency analysis (Ban-
galore, 2000) on the list of supertag hypotheses found
by the n-best search is used as an additional knowledge
source in order to determine likely chunks of the sen-
tence. The dependencies coded in the elementary trees
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detailed view
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Figure 2: Coping with ambiguous words: disambiguation of coded words and the corresponding supertag expansion.

(supertags) can be used to actually derive a shallow parse
of the sentence in linear time.2 We use a dependency cov-
erage criterion which determines how many dependency
slots of each supertag are filled to the left and right of
its lexical anchor. The hypotheses that have a maximum
number of covered elements are used to adjust the final
candidate lists, i.e. the supertag hypotheses that span the
largest portion of the sentence and seem most “consis-
tent” are moved to the top. This method is applied in
order to discard hypotheses that have syntactic inconsis-
tencies.

Figure 3 illustrates the rearrangements of the ambigu-
ously typed sentence ich habe ein kleines Problem (“I
have a little problem”). The three marked hypotheses all
have a maximum coverage of 5, i.e. all supertags have
their dependency slots filled, whereas the other hypothe-
ses have coverages less than 5. One can see that lo-
cal word probabilities would suggest ist kann die kleines
Problem (“is can the little problem”). The information
that is provided by the surviving hypotheses is used for
additional final adjustments of the candidate lists to be
presented to the user. We call this reordering process

2We decided for LDA because it considers more syntactic
knowledge than simple chunking techniques, while still being
very efficient in comparison to full TAG parsing.

match list boosting, or shortly boosting (see Figure 3 for
an example).

4 Evaluation

For an evaluation of the techniques presented in the pre-
vious section, the ambiguous typing of a sample text is
simulated and processed with the n-best supertagger. As
performance criteria, the accuracy and the average rank
of the correct word are compared to the values obtained
from the baseline approach using the word frequencies
from the CELEX lexical database (approx. 320 000 word
types). For this purpose, a lexicalized tree adjoining
grammar is needed because of the lightweight depen-
dency analysis performed in the last step of the n-best
approach. The trigram HMM is directly trained on a cor-
pus that is annotated with supertags.

For the experiments, the corpus and LTAG developed
in (Bäcker and Harbusch, 2002) is used. It comprises 250
labeled sentences (approx. 2000 words), whereof 225 are
used for training and 25 for testing. Since the correspond-
ing LTAG is rather small, containing only 127 elementary
trees (58 initial and 69 auxiliary trees), this directly im-
pacts on the size of the trained HMM and the runtime
of the LDA. Therefore, it was possible to run the n-best
supertagger for up to 2000 hypotheses in an acceptable
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Figure 3: Example for rearranging word hypotheses according to the results of supertagging and LDA.

amount of time. On a 1.4GHz AMD Athlon, the eval-
uation of the reference test set needs approx. 10.58s for
n = 250, i.e. 423ms per sentence. The adjustments of
the match lists can therefore be performed in real-time
for smaller values of n.

Coping with unknown words in ambiguous typing is a
more complicated problem. If the word is not in the dic-
tionary, it has to be disambiguated letter by letter for all
the keys of the code. Since the primary goal was not to
simulate a specific keyboard but to evaluate whole sen-
tences with the n-best supertagging framework, the dic-
tionary was patched by adding the unknown words with
a zero-frequency and thus contained all words of the cor-
pus.

4.1 Baseline

The baseline results are achieved with the simple uni-
gram approach where the frequencies of the words that
are stored in the lexicon order the candidate list in de-
scending order, i.e. with highest frequency first. As eval-
uation criteria, the accuracy of rank r and the average
match position is chosen. More formally, let

fr(w|c) =
{

1 if w ∈ matches(c) ∧ rank(w) = r
0 else

(5)
be a binary function that returns 1 if a disambiguated tar-
get word w correctly occurs on the rth position of the can-
didate list of its code c, which is given by matches(c).

Reference test set evaluation, r̄ = 3.02
r = 1 r = 2 r = 3 r = 4 r = 5

acc(r) [%] 50.26 28.04 5.29 7.41 1.59
cac(r) [%] 50.26 78.30 83.59 91.00 92.59

Table 1: The baseline results of ambiguously typing the
test corpus.

For a test corpus containing a total of N words, the ac-
curacy of rank r for the given corpus can be computed
as

acc(r) =
∑

w fr(w|c)
N

. (6)

For a cumulative accuracy, i.e. where the target words
appear within the first r ranks of the candidate lists, the
single accuracy values are summed:

cac(r) =
r∑

i=1

acc(i). (7)

The second evaluation measure is the average rank of
words of the test corpus. It is simply computed by

r̄ =
∑

w rank(w)
N

. (8)

The results for the baseline are outlined in Table 1. Ap-
parently, the unigram approach places approx. 50% of the
target words on the first position of the candidate lists.
92.6% of the words appear within the first 5 ranks. The
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Reference test set evaluation (a)
Average for n = 1, . . . , 1000, r̄ = 2.18

r = 1 r = 2 r = 3 r = 4 r = 5
acc(r) [%] 61.84 23.01 1.84 8.38 0.55
cac(r) [%] 61.84 84.85 86.69 95.07 95.62

Single best results (b)
Overall best for n = 592, r̄ = 2.11 (b.1)
acc(r) [%] 66.67 18.52 1.59 8.47 0.53
cac(r) [%] 66.67 85.19 86.78 95.25 95.78
Best accuracy/time trade-off for n = 250, r̄ = 2.16 (b.2)
acc(r) [%] 61.90 22.75 2.12 8.47 0.53
cac(r) [%] 61.90 84.65 86.77 95.24 95.77

Trigram experiment (c)
Average for n = 1, . . . , 1000, r̄ = 2.91
acc(r) [%] 60.01 19.64 4.09 6.59 2.26
cac(r) [%] 60.01 79.65 83.74 90.33 92.59

Upper bound experiment (d)
Average for n = 1, . . . , 1000, r̄ = 2.11
acc(r) [%] 68.07 16.92 1.85 8.22 0.55
cac(r) [%] 68.07 84.99 86.84 95.07 95.62

Table 2: The improved results using the n-best supertag-
ger/LDA system and additional experiments with tri-
grams and an upper bound.

rank expectation for the reference test set is 3, i.e. the
user has to scroll two times on average before selecting
the desired word.

4.2 N-best system

This section reports on the improvements obtained with
the system using the n-best supertagger and additional
LDA. The results show that the approach yields better
rankings than the simple word-wise prediction method
(baseline) and also outperforms a trigram language
model. The overall results are shown in Table 2. The first
part (a) shows the values computed for the reference test
set, namely the average for the full evaluation runs with
hypothesis sizes ranging from 1 to 1000. When compar-
ing the values to those in Table 1, a significant improve-
ment for the reference test set is visible. The cumulative
accuracy of rank 1 raises by approx. 12%, i.e. 61.8% of
the target words are now placed on top of the candidate
lists. For the other ranks, the improvement is not as big
as for rank 1, but there is still a significant increase. With
the n-best approach, 95.6% are placed within the top 5
ranks, whereas the average rank drops down to 2.18. The
overall best run of this evaluation session is given in (b.1).
The maximum occurred for the hypothesis size n = 592,
i.e. the 592 best supertag sequence hypotheses for the
ambiguously coded sentences are used for adjusting the
candidate lists. This result also shows that the biggest
variation takes place for rank 1. The changes in cumu-
lative accuracy for ranks ≥ 2 are very small for larger
values of n. The graphs in Figure 4 give an overview
on the differences between the n-best approach and the

baseline and also show the slightly better performance of
A* search when compared to greedy search.

As can be seen in all graphs, enhancing the search from
1-best (Viterbi) to n-best has the largest effect for values
of n < 250. After approx. 250 hypotheses, the results do
not improve significantly, at least for higher cumulative
ranks. In general, a hypothesis size of n = 250 (cf. Ta-
ble 2 (b.2)) shows good results since the value for cac(5)
does not increase any more for n ≥ 250 and the compu-
tation time is quite fast.

Another method of evaluating the n-best supertagger is
the possibility to look at the target words of the sentences
that are typed ambiguously and use only the hypotheses
that match closest for adjusting the candidate lists (cf. re-
sults in Table 2 (d)). Clearly, this procedure is illegal for
an objective evaluation since we are already looking at
the desired result we want to achieve, but nevertheless
it gives an upper bound of what accuracy the n-best su-
pertagger can theoretically reach by just picking the most
promising hypotheses. The detailed evaluation graphs are
given in Figure 5. As can be seen, the accuracy between
the two approaches differs only for lower ranks (cf. (c)),
while for higher ranks (cf. (d) and (e)), the graphs are
nearly identical. This means that for the higher rank ac-
curacy, the n-best supertagger already performs in an op-
timal way for the reference test set and it actually cannot
get any better with this kind of training material. It is as-
sumed that with a larger training corpus and thus better
language model, the rankings can be further improved.

An interesting constellation is revealed in Figure 5 (a)
where the trigram approach outperforms supertagging for
lower hypothesis sizes considering rank 1, whereas the
accuracy cannot compete for higher ranks (cf. (b)). This
is possibly due to the sparseness of data, i.e. the few
learned estimations lead to overproportionally many mis-
classifications for a small hypothesis search space. This
claim has to be verified on the basis of more data.

5 Conclusion

In this paper, we have presented a sentence-wise predic-
tive typing method based on an n-best Hidden Markov
Model Supertagger for typing with a four-button ambigu-
ous keyboard. The main idea is to utilize the syntactic
dependencies that exist between the words of a sentence
and use this information to adjust the candidate lists such
that more likely words appear at the top. Instead of being
distracted by a list of proposals after every keypress, the
user has to pay attention to the prediction list only at the
end of the sentence. So the user can concentrate on what
(s)he wants to express in the first phase, i.e. the ambigu-
ous typing of the whole sentence, and disambiguate the
target words from the candidate lists in a second phase.
First evaluations show that users like this mode better
than word-wise disambiguation. Further evaluations have
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Figure 4: Backward search: A* vs. Greedy, cumulative accuracy for ranks r = 1, . . . , 5 and average match position r̄.
BASE refers to the unigram baseline, STAG/GREEDY is the supertagging+LDA approach with A* and Greedy search,
respectively.
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Figure 5: Comparison of the baseline (unigram model, BASE), supertagging+LDA (STAG), a trigram approach (TRI-
GRAM) (Figures (a) and (b)) and an upper bound experiment (BEST) (Figures (c)–(f)).
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to be carried out in the future to prove this claim.
As for future work, experiments should be carried out

with an enhanced training corpus. Furthermore, a com-
parison has to be performed with the sentence-wise ap-
proach in (Rau and Skiena, 1996). Both systems have to
deploy a 9-button keyboard, the LTAG underpinning the
supertagging approach and the same lexicon. Under the
current circumstances, a direct comparison is not possi-
ble.

As it is known (see, e.g., (Baayen, 1991)) that high
frequency words often only differ in one letter, and thus,
remain highly competitive in all syntactic approaches, we
are going to add semantic features (taken from WordNet
(Miller, 1995)) to the supertags. We expect that rear-
rangements in the prediction list according to semantic
clusters will considerably improve the accuracy of pre-
dictions.
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Karin Harbusch, Michael Kühn, and Harald Trost, edi-
tors. 2003. Proceedings of the Workshop on Language
Modeling for Text Entry Methods, Budapest, Hungary.
Association for Computational Linguistics.
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