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Abstract

This paper propcsesa hovel metha to compile sta-
tistical modek for machinetranshtion to achiee
efficient decaling. In our method,eachstatistcal
submoe! is repregntedby a weightedfinite-gate
tranglucer(WFST),andall of thesubmoaIsareex-
pancedinto a compaition modelbeforehand Fur-
thermae, the ambiguity of the compasition model
is redwcedby the stafstics of hypotreseswhile de-
coding. The experimentalresuts showthatthe pro-
posal modelrepresenationdrastically improvesthe
efficiency of demding compare to the dynamic
compodgion of the submalels, which correponds
to corventionalappraches

1 Intr oduction

Recenty, resarchon staisticd machire trarslation
hasgrown along with theincreasdn compuationd
powver aswell asthe amountof bilingual corpaa.
Thebasicideaof modelirg machineranslation was
proposedby Brown etal. (199), who assunedthat
machire trandation canbe modela on noisy chan
nels. The soure languageis encoed from atarget
languageby a noisy chanrel, andtrandation is per-
formedasadecaling processfrom soucelanguage
to target langage.

Knight (1999) shawved that the trarslation prob-
lem defined by Brown et al. (1993 is NP-
compldge. Therefae, with this model it is al-
mostimpossble to seart for optimal solutionsin
the decodng process. Several studes have pro-
posal method for seaching subopimal solutions.
Bemer et al. (1999 and Och et al. (2001) pro-
posal suchdepthfirst searchmethod asstackde-
codes. WandandWaibel (1997) andTillmann and
Ney (2003) proposedbreadh-first searchmethod,
i.e. beamsearch Germann(2001) and Watanale
and Sumita(2003 proposedgreely type decodng
method. In all of thes seach algarithms, betta
representaion of the statigical model in sysems
canimprove the searchefficiengy.

For modelrepresenation,a seart methodbasel
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onweightal finite-statetransduce (WFST) (Mohri
etal.,20) hasachievedgreatsuccesin thespeeb
recoqition field. Thebasicideais thateachstatis
tical modelis repregntedby a WFST andthey are
compogd befordnand;the compsedmodelis op-
timized by WFST opeations sud as determiriza-
tion andminimization. This fully expandedmodel
permitsefficient seaches. Our motivation is to ap-
ply this appioachto machinetrangation. However,
WFSToptimizationopertionssuchasdetermiriza-
tionarenearly impossbleto applyto WFSTsin ma-
chine trandation becawse they are muchmore am-
biguousthanspeeb recoqition. To redue theam-
biguity, we propse a WFST optimization methal
thatconsgdersthe staistics of hypotheseswhile de-
coding.

Some appracheshave appied WFST to sta-
tistical machire trandation.  Knight and Al-
Onaizan (1998 proposed the represenation of
IBM model 3 with WFSTs; Bangaloreand Ric-
cardi (2001) studied WFST modelsin call-routing
tasks and Kumar and Byrne (2003) modelel
phrese-baed trarslation by WFSTs. All of thes
studesmainlyfocussdontherepresenttion of ead
submoe! usedin machinetrarslation. However,
few studieshave focuedon the integrationof eadh
WFSTsubmodeto improve thedecodng efficiency
of machnetrarslation.

To this end, we propase a methodthat expands
all of the submoelsinto a compogion model, re-
ducing theambiguty of the expandedmodelby the
statstics of hypotheseswhile decodng. First, we
explain the transhtion model (Brown et al., 1993
Knight and Al-Onaizan 1998) that we used as a
basefor our decaling reseach. Second our pro-
posal methodis introduced Finally, experimental
resuts shav that our propasedmetha dradically
improvesdemdingefficiency.

2 IBM Model

For our decodng reseach, we assumethe IBM-
stylemodelirg for transhtionpropaedin Brown et
al. (1993. In this model trarslation from Japaese



f to English e attemptdo find the e thatmaximizes
P(e|f). UsingBayes rule, P(e| f) is rewritten as

argmaz.P(e|f) = argmaz.P(f|e)P(e),
where P(e) is referedto asalanguagemodeland
P(f|e) is referedto asatrandation model. In this
pape, we useword trigram for a languagemodel
andIBM model3 for atrarslation model.

The transhtion modelis reptresentd as follows
congdering all possilbe word alignments.

P(fle) = Y P(f.ale).

ThelBM modelonly assunesa oneto-mary word
alignment,wherea Japaeseword f in the j-th po-
sition comectsto the Englishword e in the a;-th
postion.

ThelBM model3 useghefollowing P(f,ale).

Plf.ale) = < m<;0¢0 >p6nz¢>0(1 — po)? -
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¢; the a numberof f words comectirg to e;,
andit is called fertility. Note, however, that ¢
is the numbe of words comectirg to null words.
n(¢le;) is corditional probaility where English
word e; comectsto ¢ wordsin f. n(¢le;) is
called fertility probability. t(f;|e;) is condtional
probability where English word e; is trarslatedto
Japaeseword f; andcalledtranshtionprobability.
d(j)i,1, m) is conditional probability wherethe En-
glish word in the i-th postion conrectsto the the
Japaesewordin the j-th postion on condtion that
the lengh of the English senteice e and Japaese
senteice f arel andm, respetively. d(j|i,l,m)
is called distartion probability. In our experiment,
we usedtheIBM model3 while assumig congant
distartion probability for simplicity.

3 WEFST CascadeModel

WEFST s afinite-stde device in which output sym-
bols and output weightsare definedaswell asin-
putsymbols Usingcompogion (PereiraandRiley,
1997, we canobtainthe combired WFST T3 o Ty
by comectirg eachoutput of 77 to aninput of 7.
If we assunetha eachsubmoel of Equation(1) is
represente by aWFST, a corventional decalercan
be consderedto compase submodés dynamially.

kaku:each/
t(kaku|each)

tekisuto:text/
t(tekisuto|text)

ha:NULL/
t(ha|NUL

Figure2: T Modd

tex:text/1.0

NULL:e/1-p0

S~ g0

Figure3: NULL Model

Themainideaof the propsedappoachis to com-
putethe compgsition befarehard.

Figure 1 shaws the trarslation process modelel
by a WFST cascade. This WFST cas@de model
(Knight andAl-Onaizan, 1998)repregntsthe IBM
model 3 descibed in the previous section. Any
possble permugtionsof the Japaesesentaceare
inputed to the cascae. First, T mode(1) trans
latesthe Japaeseword to an Englishword. NULL
mode(/V) delges spedal word NULL. Fertility
mode(£’) meges the samecortinuous words into
oneword. At eachstagetheprobability representa
by the weightof a WFST is acawmulated Finally,
the weight of language model(L) is accumiated.
If WFST I represens all permugtiors of the input
senteice,decaling canbe consteredto searchfor
thebestpathof I o T'o N o F' o L. Therefae,com-
puting T o N o I' o L in advana canimprove the
efficiengy of thedecocbr.

ForT, N, and F', we adog the representaion of
Knight andAl-Onaizan(199). For L, we adog the
representaion of Mohri et al. (2002. Figures 2—
5 showexamples of submoe| represenation with
WEFSTS. b(z) in Figure5 stards for a backoff pa-
rameter Conditional branchesare representedby
nonckterministic pathsin the WFST.

4 Ambiguity Reduction

If we candetaminize a fully-expanded WFST, we
can achieve the best perfomanceof the decodbr.
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However, the composd WFST for machne trans
lation is not obviously deteminizabk. The word-
to-word translation modelT" strongly contiibutesto
WEFSTs ambiguity while the e trarsition of othe
submoetls alsocortributesto ambiguity. Mohri et
al. (2002 proposeda tecmiquethatadded specia
symbok allowing the WFST to be deteminizale.
Determiniation using this techngue, however, is
not expeded to acheve efficient decodng in ma-
chine trandation becawse the WFSTs of machire
trandation areinherently ambiguas.

To overcane this prodem, we propase a novel
WFSToptimizationapprachthatusesdecalingin-
formation. First, our methodmelgesWFST states
by consiteringthestaisticsof hypothresesvhile de-
coding. After memging the states, reduindantedges

whosebeaginning states end states input symbads,
andoutput symbolsarethe sameare alsoreducel.
IBM modelsconsder all possible alignmentswhile
a decoar seartiesfor only the most appopriae
alignment. Therefoe, there are mary redundan
states in the full-exparsion WFST from the view-
point of decaling.

We adoped a standird decaling algorithm in
the speeb recogiition field, wherethe forward is
beam-garchandthe backwardis A* search Since
beam-garchis adopedin theforward passthe ob-
tained resuls are not optimd but sutoptimal. All
input permutaions arerepregntedby a finite-gate
acceppor (Figure6), whereeachstatecorrepondsto
input postionsthatarealreadyread In theforward
seart, hypaheses are maintanedfor eachstateof
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Figure5: TrigramLanguageModel

thefinite-stateacceptor.

The WFST states that alwaysappea togeherin
thesamehypahesidist of theforward beam-sarch
shoud be equatd if the staes contribute to cor-
recttrarslation. Let M be a full-expanson WFST
modelandRe f; beaWFSTthatrepregntsthecor-
rect transhtion of an input sentece f. For eadt
f, the states of M that always apper togeterin
thesamehypahesidlist in the courseof decodng f
with M o Ref; arememgedin our method Simply
memging states of M/ mayincreasemodelerrors but
Ref corredstheerrois cause by meging staes.

Unlike ordinary FSA minimizaton, statesare
meiged without constdering their sucesso staes.
If the weight represens probability, thesumn of the
weightsof output transtions may not be 1.0 after
memging staes,andthenthecmdition of probability
may be destoyed. Sincethe decaler doesnot sum
up all possble paths but searclesfor the mostap-
propriate paths this kind of statemeiging doesnot
poseaserbusproblemin pracice.

In the following experiment, we measurd the
assaiation betwee staes by ¢? in Gale and
Church (1991). ¢? is a x?-like statstic that is
bourdedbetwea 0 and 1. If the ¢? of two states
is higher than the specifiedthredold, these two
states are meiged. The definition of ¢? is asfol-
lows, wherea = freq(q1,q2), b = freq(q1) — a,
¢ = freq(qa) —a,andd = N —a—b—c. N
is the totd numbe of hypahess lists. freq(q)
(freq(qi,q2)) is the numbe of hypotesislists in
which ¢ appears(both¢; andg, apper).

(ad — bc)?

¢ =
(a+b)(a+c)(b+d)(c+d)

{1}—, {1.2
/

— {2 {2.3}—{1.2,3}

\{3} {1,3

Figure6: FSAfor All Input Permutatios

Merging the beginning and end statesof a trarn
sition whoseinputis € (e transtion for shat) may
cau® a problemwhendecodng. In ourimplemen
tation, weight is basicdly minusiog probability, and
its lower bourd is 0 in theoly. However, there exists
negatie e transtion that originatedfrom the back
off value of n-gram. If we meigethe beginning and
end states of the negative ¢ transition, the seart
processwill notstopdueto the nggative € loop. To
avoid this problem,we rouncedthe negative weight
to 0 if thenggative e loop appearsduring meiging.

In the preliminary experiment, a weight-pushng
opetion (Mohri andRiley, 2001) was also effec-
tive for deleting negative ¢ trangtion of our full-
exparsionmodek. However, pushing catsesanim-
balarce of weightsamongpathsif the WFST s not
deteministic. As aresut of thisimbalane, we can-
not compae pathcoss whenpruning. In fact, our
preliminary experiment shaved that pushed full -
exparsion WFST doesnot work well. Therefae,
we adoped a simplermethal to dealwith a nega-
tive e loop asdescibedabove.

5 Experiments
5.1 Effect of Full Expansion

To clarify the effectivenes of a full-exparsion ap-
proach, we compaedthe compuatioral cogswhile
using the samedecaler with both dynamic com-
postion and statc compgsition, a full-expanson
modelin othe words. In the forward beam-sarch,
ary hypahesiswvhoseprobability is lowerthan1/10
of thetop of thehypohesidlist is prunal. In thisex-
perimer, permutaion is restrided, andwordscan
bemoved6 postionsatmost. Thetrandationmodel
wastrained by GIZA++ (OchandNey, 2003) and
the trigram was trained by the CMU-Cambridge
Statstical Language Modeing Toolkit v2 (Clarkson
andRosenéld, 1997).

For the experiment, we used a Japamese-te
Englishbilingualcorpusconssting of exampk sen-
tences for a rule-based machire trarslation sys-
tem. Eachlanguagesentenceis alignedin the cor-
pus. Thetotal numbe of sentecepairsis 20,201
We used17,678pairsfor training and 2,526 pairs



for the test. The average lengh of Japanesesen-
tences was8.4words,andthatof English senteges
was6.7 words. The Japaesevocabularyconssted
of 15,510 words, and the English vocabulary was
11,8® words.Tablel shavsthesizeof the WFSTs
usedin the experiment. In these WFSTs, specid
symbok thatexpresshaginningandendof sentece
areaddedto the WFSTsdescrbedin the previous
secton. The NIST score(Doddington 2002) and
BLEU Score(Papinen et al., 2002 were usedto
measue transhtionaccuagy.

Table2 shavs the expetimentalresuts. Thefull -
exparsionmodelprovidedtrandationsmorethanl10
timesfasterthancorventionaldynamiccompgasition
submoels without degradng accuray. However,
theNIST scores areslightly different. In thecourse
of compasition, somepatts thatdo notread thefi-
nal statesareproduced In thefull-expanson model
thesepatls aretrimmed. Thesetrimmedpaths may
caue aslight differencein NIST scores

5.2 Effect of Ambiguity Reduction

To showthe effect of ambiguty redudion, we com-
paredthe transhtionresuts of threedifferent mod-
els. Model O is the full-expanson modeldescrbed
abore. Model R is a reduced model by using our
proposedmethodwith a 0.9 ¢? threshold. Model
R2 is aredued modelwith the staistics of the de-
code without usingthe correct transhtion WFST.
In otherwords, R2 rediwcesthe staes of the full-
exparsion model more rougHy than R. The ¢?
thredold for R2 is setto 0.85 so that the size of
the producedWFSTis almostthe sameas R. Table
3 shavsthemodelsize. To obtdn demderstatidics
for calcuhting ¢2, all of the sentace pairs in the
training setwere used. When obtaning the statis
tics, ary hypahesiswhoseprobability is lower than
1/10%5 of thetop of the hypahesislist is pruredin
theforwardbean-search

The transhtion experiment was conducted by
sucessvely charging the beamwidth of the for-
ward search Figures 7 and 8 shav the resuts of
the trarslation experiments,revealing that our pro-
posal model canredue the decodng time by ap-
proximately half. This modelcanredue decodng
time to amuchgreaer extentthantheroughreduc
tion model,indicatingthatour statemeiging criteria
arevalid.

6 Conclusions

We proposeda methodto compile statistcal mod-
elsto achieve efficientdecoding in amachire trans
lation sysem. In our method,eachstatigical sub
modelis repregntedby a WFST, andall submalels

arecompaedbeforénand To redue the ambiguity
of the composd WFST, the statsare meiged ac-
cordng to the statisticsof hypahesea while decod
ing. As aresut, we reducel decodng time to ap-
proximately 1/20 of dynamiccompasition of sub
models which correpondsto the corventioral ap-
proach.

In this paper we appied the state meiging
methodto a fully -expardedWFST andshowedthe
effectivenessof this appioach. However, the stae
meging methdl itself is geneal and independen
of the fully-exparded WFST. We can apgdy this
methodto eachsubmoeal of machinetrarslation.
More geneally, we canappl it to all WFSTlike
models including HMMs.
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Figure7: Ambiguity Reduction (BLEU)
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