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Abstract

Thispaperproposesanovel method to compilesta-
tistical models for machinetranslation to achieve
efficient decoding. In our method,eachstatistical
submodel is representedby a weightedfinite-state
transducer(WFST),andall of thesubmodelsareex-
pandedinto a composition modelbeforehand. Fur-
thermore, the ambiguity of the composition model
is reducedby thestatisticsof hypotheseswhile de-
coding. Theexperimentalresults showthatthepro-
posed modelrepresentationdrastically improvesthe
efficiency of decoding compared to the dynamic
composition of the submodels,which corresponds
to conventionalapproaches.

1 Intr oduction

Recently, researchonstatistical machinetranslation
hasgrown along with theincreasein computational
power aswell as the amountof bilingual corpora.
Thebasicideaof modeling machinetranslation was
proposedby Brown etal. (1993), whoassumedthat
machine translation canbemodeled on noisy chan-
nels. Thesource languageis encodedfrom a target
languageby a noisychannel, andtranslation is per-
formedasadecodingprocessfrom sourcelanguage
to target language.

Knight (1999) showed that the translation prob-
lem defined by Brown et al. (1993) is NP-
complete. Therefore, with this model it is al-
most impossible to search for optimal solutions in
the decoding process. Several studies have pro-
posed methods for searching suboptimal solutions.
Berger et al. (1996) and Och et al. (2001) pro-
posed suchdepth-first searchmethods asstackde-
coders. WandandWaibel(1997) andTillmann and
Ney (2003) proposedbreadth-first searchmethods,
i.e. beamsearch. Germann(2001) andWatanabe
andSumita(2003) proposedgreedy type decoding
methods. In all of these search algorithms, better
representation of the statistical model in systems
canimprove thesearchefficiency.

For modelrepresentation,a search methodbased

on weighted finite-statetransducer (WFST) (Mohri
etal.,2002)hasachievedgreatsuccessin thespeech
recognition field. Thebasicideais thateachstatis-
tical modelis representedby a WFSTandthey are
composed beforehand;the composedmodel is op-
timized by WFST operations such asdeterminiza-
tion andminimization. This full y expandedmodel
permitsefficient searches.Our motivation is to ap-
ply this approachto machinetranslation. However,
WFSToptimizationoperationssuchasdeterminiza-
tion arenearly impossibleto applyto WFSTsin ma-
chine translation becausethey aremuchmoream-
biguousthanspeech recognition. To reduce theam-
biguity, we proposea WFST optimizationmethod
thatconsidersthestatisticsof hypotheseswhile de-
coding.

Some approacheshave applied WFST to sta-
tistical machine translation. Knight and Al-
Onaizan (1998) proposed the representation of
IBM model 3 with WFSTs; Bangaloreand Ric-
cardi (2001) studied WFST modelsin call-routing
tasks, and Kumar and Byrne (2003) modeled
phrase-based translation by WFSTs. All of these
studiesmainlyfocusedontherepresentationof each
submodel usedin machinetranslation. However,
few studieshave focuedon the integrationof each
WFSTsubmodel to improvethedecoding efficiency
of machinetranslation.

To this end,we propose a methodthat expands
all of thesubmodels into a composition model,re-
ducing theambiguity of theexpandedmodelby the
statisticsof hypotheseswhile decoding. First, we
explain the translation model (Brown et al., 1993;
Knight and Al-Onaizan, 1998) that we used as a
basefor our decoding research. Second, our pro-
posed methodis introduced. Finally, experimental
results show that our proposedmethod drastically
improvesdecodingefficiency.

2 IBM Model
For our decoding research, we assumethe IBM-
stylemodeling for translationproposedin Brown et
al. (1993). In this model, translation from Japanese
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paper, we useword trigram for a languagemodel
andIBM model3 for a translation model.

The translation model is represented as follows
considering all possible wordalignments.
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TheIBM modelonly assumesa one-to-many word
alignment,wherea Japaneseword
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sition connectsto the English word � in the 	�� -th
position.

TheIBM model3 usesthefollowing
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" 4 the a number of
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words connecting to � 4 ,
and it is called fertility. Note, however, that "%$
is the number of words connecting to null words.9 � " � � 4 � is conditional probability where English
word � 4 connects to " words in

�
. 9 � " � � 4 � is

called fertility probability.
; � � � � � 4 � is conditional

probability whereEnglish word � 4 is translatedto
Japaneseword

� � andcalledtranslationprobability.> � �A� B �=@6� � � is conditional probability wheretheEn-
glish word in the B -th position connectsto the the
Japaneseword in the � -th position oncondition that
the length of the English sentence � andJapanese
sentence

�
are

@
and � , respectively.

> � ��� B �=@C� � �
is called distortion probability. In our experiment,
we usedtheIBM model3 while assuming constant
distortion probability for simplicity.

3 WFST CascadeModel
WFSTis a finite-state device in which output sym-
bols andoutput weightsaredefinedaswell as in-
put symbols. Usingcomposition (PereiraandRiley,
1997), we canobtainthecombinedWFST D :FE D +by connecting eachoutput of D : to an input of D + .If we assumethat eachsubmodel of Equation(1) is
represented by aWFST, aconventionaldecodercan
be consideredto composesubmodels dynamically.

kaku:each/
t(kaku|each)

tekisuto:text/
t(tekisuto|text)ha:NULL/

t(ha|NULL)

Figure2: T Model

NULL:ε/1-p0

ε:ε/p0

each:each/1.0

tex:text/1.0

Figure3: NULL Model

Themain ideaof theproposedapproachis to com-
putethecompositionbeforehand.

Figure1 shows the translation processmodeled
by a WFST cascade. This WFST cascademodel
(Knight andAl-Onaizan, 1998)representstheIBM
model 3 described in the previous section. Any
possible permutationsof theJapanesesentenceare
inputed to the cascade. First, T model(D ) trans-
latestheJapaneseword to anEnglishword. NULL
model( G ) deletes special word NULL. Fertility
model( H ) merges the samecontinuous words into
oneword. At eachstage, theprobability represented
by the weight of a WFST is accumulated. Finally,
the weight of language model( I ) is accumulated.
If WFST J represents all permutations of the input
sentence,decoding canbeconsideredto searchfor
thebestpathof J E D E G E H E I . Therefore,com-
puting D E G E H E I in advance canimprove the
efficiency of thedecoder.

For D , G , and H , we adopt therepresentation of
Knight andAl-Onaizan(1998). For I , weadopt the
representation of Mohri et al. (2002). Figures 2–
5 showexamples of submodel representation with
WFSTs. K � � � in Figure5 stands for a back-off pa-
rameter. Conditional branchesare representedby
nondeterministic pathsin theWFST.

4 Ambiguity Reduction
If we candeterminize a fully-expanded WFST, we
can achieve the best performanceof the decoder.



kaku tekisuto SGMLdeko-do ka sareruha

each text encoded in SGMLNULL encoded encoded

T Model (T)

NULL Model (N)

Fertility Model (F)

Language Model (L)

each text encoded in SGMLencoded encoded

each text is in SGMLencoded

each text is in SGMLencoded

Figure1: Translationwith WFSTCascadeModel
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Figure4: Fertility Model

However, the composed WFST for machine trans-
lation is not obviously determinizable. The word-
to-word translation modelD strongly contributes to
WFST’s ambiguity while the L transition of other
submodels alsocontributesto ambiguity. Mohri et
al. (2002) proposeda techniquethat added special
symbols allowing the WFST to be determinizable.
Determinization using this technique, however, is
not expected to achieve efficient decoding in ma-
chine translation because the WFSTs of machine
translation areinherently ambiguous.

To overcome this problem, we propose a novel
WFSToptimizationapproachthatusesdecodingin-
formation. First, our methodmergesWFST states
by consideringthestatisticsof hypotheseswhile de-
coding. After merging the states, redundantedges

whosebeginning states, endstates, input symbols,
andoutput symbolsarethe samearealsoreduced.
IBM modelsconsider all possiblealignmentswhile
a decoder searches for only the most appropriate
alignment. Therefore, there are many redundant
states in the full -expansion WFST from the view-
point of decoding.

We adopted a standard decoding algorithm in
the speech recognition field, wherethe forward is
beam-searchandthebackward is MON search. Since
beam-searchis adoptedin theforward pass,theob-
tained results arenot optimal but suboptimal. All
input permutations arerepresentedby a finite-state
acceptor (Figure6), whereeachstatecorrespondsto
input positionsthatarealreadyread. In theforward
search, hypotheses aremaintainedfor eachstateof
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Figure5: TrigramLanguageModel

thefinite-stateacceptor.
The WFST states that alwaysappear together in

thesamehypothesislist of theforward beam-search
should be equated if the states contribute to cor-
rect translation. Let P be a full-expansion WFST
modeland QR� �=S beaWFSTthatrepresentsthecor-
rect translation of an input sentence

�
. For each�

, the states of P that always appear together in
thesamehypothesislist in thecourseof decoding

�
with P E QR� �=S aremergedin our method. Simply
merging statesof P mayincreasemodelerrors, butQR� �=S corrects theerrorscaused by merging states.

Unlike ordinary FSA minimization, statesare
merged without considering their successor states.
If the weight represents probability, thesum of the
weightsof output transitions may not be 1.0 after
merging states,andthenthecondition of probability
maybedestroyed. Sincethedecoderdoesnot sum
up all possible paths but searchesfor the mostap-
propriatepaths, this kind of statemerging doesnot
poseaseriousproblemin practice.

In the following experiment, we measured the
association between states by " + in Gale and
Church (1991). " + is a T + -like statistic that is
boundedbetween 0 and1. If the " + of two states
is higher than the specifiedthreshold, these two
states are merged. The definition of " + is as fol-
lows, where 	 �U� 
 ��V � V : � V +

�
, K �U� 
 ��V � V : �  W	 ,X �Y� 
 ��V � V +

�  Z	 , and
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is the total number of hypothesis lists.
� 
 ��V � V �
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Figure6: FSA for All Input Permutations

Merging the beginning andendstatesof a tran-
sition whoseinput is L ( L transition for short) may
cause a problemwhendecoding. In our implemen-
tation,weight is basically minus

@6b � probability, and
its lowerbound is 0 in theory. However, thereexists
negative L transition that originatedfrom theback-
off valueof n-gram. If we mergethebeginning and
end states of the negative L transition, the search
processwill not stopdueto thenegative L loop. To
avoid thisproblem,weroundedthenegative weight
to 0 if thenegative L loopappearsduring merging.

In thepreliminaryexperiment,a weight-pushing
operation (Mohri andRiley, 2001) wasalsoeffec-
tive for deleting negative L transition of our full -
expansionmodels. However, pushingcausesanim-
balanceof weightsamongpathsif theWFSTis not
deterministic. As aresult of this imbalance,wecan-
not compare pathcosts whenpruning. In fact, our
preliminary experiment showed that pushed full -
expansion WFST doesnot work well. Therefore,
we adopted a simplermethod to dealwith a nega-
tive L loopasdescribedabove.

5 Experiments
5.1 Effect of Full Expansion

To clarify the effectiveness of a full -expansion ap-
proach,wecomparedthecomputational costswhile
using the samedecoder with both dynamiccom-
position and static composition, a full-expansion
modelin other words. In theforward beam-search,
any hypothesiswhoseprobability is lowerthan

0dcd0de
of thetopof thehypothesislist is pruned. In thisex-
periment, permutation is restricted, andwordscan
bemoved6positionsatmost.Thetranslationmodel
wastrained by GIZA++ (OchandNey, 2003), and
the trigram was trained by the CMU-Cambridge
StatisticalLanguageModeling Toolkit v2 (Clarkson
andRosenfeld,1997).

For the experiment, we used a Japanese-to-
Englishbilingualcorpusconsistingof examplesen-
tences for a rule-basedmachine translation sys-
tem. Eachlanguagesentenceis alignedin thecor-
pus. The total number of sentencepairsis 20,204.
We used17,678pairs for training and2,526pairs



for the test. The average length of Japanesesen-
tenceswas8.4words,andthatof English sentences
was6.7 words. TheJapanesevocabularyconsisted
of 15,510 words, and the English vocabulary was
11,806 words.Table1 shows thesizeof theWFSTs
usedin the experiment. In these WFSTs, special
symbols thatexpressbeginningandendof sentence
areaddedto the WFSTsdescribed in the previous
section. The NIST score(Doddington, 2002) and
BLEU Score(Papineni et al., 2002) were usedto
measure translationaccuracy.

Table2 shows theexperimentalresults. Thefull -
expansionmodelprovidedtranslationsmorethan10
timesfasterthanconventionaldynamiccomposition
submodels without degrading accuracy. However,
theNIST scoresareslightly different. In thecourse
of composition, somepaths thatdo not reach thefi-
nalstatesareproduced. In thefull-expansion model
thesepaths aretrimmed.Thesetrimmedpaths may
causeaslight differencein NIST scores.

5.2 Effect of Ambiguity Reduction

To showtheeffectof ambiguity reduction, wecom-
paredthetranslationresults of threedifferent mod-
els.Model f is thefull-expansion modeldescribed
above. Model Q is a reducedmodelby using our
proposedmethodwith a 0.9 " + threshold. ModelQRg is a reducedmodelwith thestatisticsof thede-
coder without using the correct translation WFST.
In other words, QRg reducesthe states of the full -
expansion model more roughly than Q . The " +
threshold for QRg is set to 0.85 so that the size of
theproducedWFSTis almostthesameas Q . Table
3 shows themodelsize.To obtain decoderstatistics
for calculating " + , all of the sentencepairs in the
training setwereused. Whenobtaining the statis-
tics,any hypothesiswhoseprobability is lower than0dcd0de $�h i

of thetopof thehypothesislist is prunedin
theforwardbeam-search.

The translation experiment was conducted by
successively changing the beamwidth of the for-
ward search. Figures 7 and 8 show the results of
the translation experiments,revealing thatour pro-
posed modelcanreduce the decoding time by ap-
proximatelyhalf. This modelcanreduce decoding
time to a muchgreater extentthantheroughreduc-
tion model,indicatingthatourstatemerging criteria
arevalid.

6 Conclusions

We proposeda methodto compilestatistical mod-
elsto achieveefficientdecoding in amachine trans-
lation system. In our method,eachstatistical sub-
modelis representedby aWFST, andall submodels

arecomposedbeforehand. To reduce theambiguity
of the composed WFST, the statesaremerged ac-
cording to thestatisticsof hypotheses while decod-
ing. As a result, we reduced decoding time to ap-
proximately

0dc g e of dynamiccomposition of sub-
models, which correspondsto theconventional ap-
proach.

In this paper, we applied the state merging
methodto a fully -expandedWFSTandshowedthe
effectivenessof this approach. However, the state
merging method itself is general and independent
of the fully -expanded WFST. We can apply this
methodto eachsubmodel of machinetranslation.
More generally, we can apply it to all WFST-like
models, includingHMMs.
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