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Abstract

In this paper, we introduce TextRank – a graph-based
ranking model for text processing, and show how this
model can be successfully used in natural language
applications. In particular, we propose two innova-
tive unsupervised methods for keyword and sentence
extraction, and show that the results obtained com-
pare favorably with previously published results on
established benchmarks.

1 Introduction

Graph-based ranking algorithms like Kleinberg’s
HITS algorithm (Kleinberg, 1999) or Google’s
PageRank (Brin and Page, 1998) have been success-
fully used in citation analysis, social networks, and
the analysis of the link-structure of the World Wide
Web. Arguably, these algorithms can be singled out
as key elements of the paradigm-shift triggered in
the field of Web search technology, by providing a
Web page ranking mechanism that relies on the col-
lective knowledge of Web architects rather than in-
dividual content analysis of Web pages. In short, a
graph-based ranking algorithm is a way of deciding
on the importance of a vertex within a graph, by tak-
ing into account global information recursively com-
puted from the entire graph, rather than relying only
on local vertex-specific information.

Applying a similar line of thinking to lexical
or semantic graphs extracted from natural language
documents, results in a graph-based ranking model
that can be applied to a variety of natural language
processing applications, where knowledge drawn
from an entire text is used in making local rank-
ing/selection decisions. Such text-oriented ranking
methods can be applied to tasks ranging from auto-
mated extraction of keyphrases, to extractive summa-
rization and word sense disambiguation (Mihalcea et
al., 2004).

In this paper, we introduce the TextRank graph-
based ranking model for graphs extracted from nat-
ural language texts. We investigate and evaluate the
application of TextRank to two language processing
tasks consisting of unsupervised keyword and sen-

tence extraction, and show that the results obtained
with TextRank are competitive with state-of-the-art
systems developed in these areas.

2 The TextRank Model

Graph-based ranking algorithms are essentially a
way of deciding the importance of a vertex within
a graph, based on global information recursively
drawn from the entire graph. The basic idea im-
plemented by a graph-based ranking model is that
of “voting” or “recommendation”. When one ver-
tex links to another one, it is basically casting a vote
for that other vertex. The higher the number of votes
that are cast for a vertex, the higher the importance
of the vertex. Moreover, the importance of the vertex
casting the vote determines how important the vote
itself is, and this information is also taken into ac-
count by the ranking model. Hence, the score asso-
ciated with a vertex is determined based on the votes
that are cast for it, and the score of the vertices cast-
ing these votes.

Formally, let �������
	���
 be a directed graph with
the set of vertices � and set of edges � , where � is a
subset of ����� . For a given vertex ��� , let ����������
 be
the set of vertices that point to it (predecessors), and
let ��������� � 
 be the set of vertices that vertex � � points
to (successors). The score of a vertex � � is defined as
follows (Brin and Page, 1998):
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where L is a damping factor that can be set between
0 and 1, which has the role of integrating into the
model the probability of jumping from a given vertex
to another random vertex in the graph. In the context
of Web surfing, this graph-based ranking algorithm
implements the “random surfer model”, where a user
clicks on links at random with a probability L , and
jumps to a completely new page with probability MON
L . The factor L is usually set to 0.85 (Brin and Page,
1998), and this is the value we are also using in our
implementation.



Starting from arbitrary values assigned to each
node in the graph, the computation iterates until con-
vergence below a given threshold is achieved 1. After
running the algorithm, a score is associated with each
vertex, which represents the “importance” of the ver-
tex within the graph. Notice that the final values
obtained after TextRank runs to completion are not
affected by the choice of the initial value, only the
number of iterations to convergence may be differ-
ent.

It is important to notice that although the TextRank
applications described in this paper rely on an al-
gorithm derived from Google’s PageRank (Brin and
Page, 1998), other graph-based ranking algorithms
such as e.g. HITS (Kleinberg, 1999) or Positional
Function (Herings et al., 2001) can be easily inte-
grated into the TextRank model (Mihalcea, 2004).

2.1 Undirected Graphs

Although traditionally applied on directed graphs, a
recursive graph-based ranking algorithm can be also
applied to undirected graphs, in which case the out-
degree of a vertex is equal to the in-degree of the ver-
tex. For loosely connected graphs, with the number
of edges proportional with the number of vertices,
undirected graphs tend to have more gradual conver-
gence curves.

Figure 1 plots the convergence curves for a ran-
domly generated graph with 250 vertices and 250
edges, for a convergence threshold of 0.0001. As the
connectivity of the graph increases (i.e. larger num-
ber of edges), convergence is usually achieved after
fewer iterations, and the convergence curves for di-
rected and undirected graphs practically overlap.

2.2 Weighted Graphs

In the context of Web surfing, it is unusual for a
page to include multiple or partial links to another
page, and hence the original PageRank definition for
graph-based ranking is assuming unweighted graphs.

However, in our model the graphs are build from
natural language texts, and may include multiple or
partial links between the units (vertices) that are ex-
tracted from text. It may be therefore useful to in-
dicate and incorporate into the model the “strength”
of the connection between two vertices � � and ��� as
a weight � � � added to the corresponding edge that
connects the two vertices.

1Convergence is achieved when the error rate for any vertex
in the graph falls below a given threshold. The error rate of a
vertex

" $
is defined as the difference between the “real” score of

the vertex
�K #"%$?&

and the score computed at iteration � ,
���  #"%$#&

.
Since the real score is not known apriori, this error rate is ap-
proximated with the difference between the scores computed at
two successive iterations:
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Figure 1: Convergence curves for graph-based
ranking: directed/undirected, weighted/unweighted
graph, 250 vertices, 250 edges.

Consequently, we introduce a new formula for
graph-based ranking that takes into account edge
weights when computing the score associated with
a vertex in the graph. Notice that a similar formula
can be defined to integrate vertex weights.
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Figure 1 plots the convergence curves for the same
sample graph from section 2.1, with random weights
in the interval 0–10 added to the edges. While the fi-
nal vertex scores (and therefore rankings) differ sig-
nificantly as compared to their unweighted alterna-
tives, the number of iterations to convergence and the
shape of the convergence curves is almost identical
for weighted and unweighted graphs.

2.3 Text as a Graph

To enable the application of graph-based ranking
algorithms to natural language texts, we have to
build a graph that represents the text, and intercon-
nects words or other text entities with meaningful
relations. Depending on the application at hand,
text units of various sizes and characteristics can be
added as vertices in the graph, e.g. words, colloca-
tions, entire sentences, or others. Similarly, it is the
application that dictates the type of relations that are
used to draw connections between any two such ver-
tices, e.g. lexical or semantic relations, contextual
overlap, etc.

Regardless of the type and characteristics of the el-
ements added to the graph, the application of graph-
based ranking algorithms to natural language texts
consists of the following main steps:



1. Identify text units that best define the task at hand,
and add them as vertices in the graph.

2. Identify relations that connect such text units, and
use these relations to draw edges between vertices
in the graph. Edges can be directed or undirected,
weighted or unweighted.

3. Iterate the graph-based ranking algorithm until con-
vergence.

4. Sort vertices based on their final score. Use the val-
ues attached to each vertex for ranking/selection de-
cisions.

In the following, we investigate and evaluate the
application of TextRank to two natural language pro-
cessing tasks involving ranking of text units: (1) A
keyword extraction task, consisting of the selection
of keyphrases representative for a given text; and (2)
A sentence extraction task, consisting of the identi-
fication of the most “important” sentences in a text,
which can be used to build extractive summaries.

3 Keyword Extraction
The task of a keyword extraction application is to au-
tomatically identify in a text a set of terms that best
describe the document. Such keywords may consti-
tute useful entries for building an automatic index for
a document collection, can be used to classify a text,
or may serve as a concise summary for a given doc-
ument. Moreover, a system for automatic identifica-
tion of important terms in a text can be used for the
problem of terminology extraction, and construction
of domain-specific dictionaries.

The simplest possible approach is perhaps to use
a frequency criterion to select the “important” key-
words in a document. However, this method was
generally found to lead to poor results, and conse-
quently other methods were explored. The state-of-
the-art in this area is currently represented by super-
vised learning methods, where a system is trained to
recognize keywords in a text, based on lexical and
syntactic features. This approach was first suggested
in (Turney, 1999), where parametrized heuristic rules
are combined with a genetic algorithm into a sys-
tem for keyphrase extraction - GenEx - that automat-
ically identifies keywords in a document. A different
learning algorithm was used in (Frank et al., 1999),
where a Naive Bayes learning scheme is applied on
the document collection, with improved results ob-
served on the same data set as used in (Turney, 1999).
Neither Turney nor Frank report on the recall of
their systems, but only on precision: a 29.0% preci-
sion is achieved with GenEx (Turney, 1999) for five
keyphrases extracted per document, and 18.3% pre-
cision achieved with Kea (Frank et al., 1999) for fif-
teen keyphrases per document.

More recently, (Hulth, 2003) applies a super-
vised learning system to keyword extraction from ab-

stracts, using a combination of lexical and syntactic
features, proved to improve significantly over previ-
ously published results. As Hulth suggests, keyword
extraction from abstracts is more widely applicable
than from full texts, since many documents on the
Internet are not available as full-texts, but only as
abstracts. In her work, Hulth experiments with the
approach proposed in (Turney, 1999), and a new ap-
proach that integrates part of speech information into
the learning process, and shows that the accuracy of
the system is almost doubled by adding linguistic
knowledge to the term representation.

In this section, we report on our experiments in
keyword extraction using TextRank, and show that
the graph-based ranking model outperforms the best
published results in this problem. Similar to (Hulth,
2003), we are evaluating our algorithm on keyword
extraction from abstracts, mainly for the purpose of
allowing for a direct comparison with the results she
reports with her keyphrase extraction system. Notice
that the size of the text is not a limitation imposed
by our system, and similar results are expected with
TextRank applied on full-texts.

3.1 TextRank for Keyword Extraction

The expected end result for this application is a set of
words or phrases that are representative for a given
natural language text. The units to be ranked are
therefore sequences of one or more lexical units ex-
tracted from text, and these represent the vertices that
are added to the text graph. Any relation that can
be defined between two lexical units is a potentially
useful connection (edge) that can be added between
two such vertices. We are using a co-occurrence re-
lation, controlled by the distance between word oc-
currences: two vertices are connected if their corre-
sponding lexical units co-occur within a window of
maximum � words, where � can be set anywhere
from 2 to 10 words. Co-occurrence links express
relations between syntactic elements, and similar to
the semantic links found useful for the task of word
sense disambiguation (Mihalcea et al., 2004), they
represent cohesion indicators for a given text.

The vertices added to the graph can be restricted
with syntactic filters, which select only lexical units
of a certain part of speech. One can for instance con-
sider only nouns and verbs for addition to the graph,
and consequently draw potential edges based only on
relations that can be established between nouns and
verbs. We experimented with various syntactic fil-
ters, including: all open class words, nouns and verbs
only, etc., with best results observed for nouns and
adjectives only, as detailed in section 3.2.

The TextRank keyword extraction algorithm is
fully unsupervised, and proceeds as follows. First,



Compatibility of systems of linear constraints over the set of natural numbers. 
Criteria of compatibility of a system of linear Diophantine equations, strict
inequations, and nonstrict inequations are considered. Upper bounds for
components of a minimal set of solutions and algorithms of construction of
minimal generating sets of solutions for all types of systems are given. 
These criteria and the corresponding algorithms for constructing a minimal
supporting set of solutions can be used in solving all the considered  types
systems and systems of mixed types.
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Keywords assigned by TextRank:

Keywords assigned by human annotators:

linear constraints; linear diophantine equations; natural numbers; nonstrict
inequations; strict inequations; upper bounds

strict inequations; set of natural numbers; strict inequations; upper bounds
linear constraints; linear diophantine equations; minimal generating sets;  non−

Figure 2: Sample graph build for keyphrase extrac-
tion from an Inspec abstract

the text is tokenized, and annotated with part of
speech tags – a preprocessing step required to enable
the application of syntactic filters. To avoid exces-
sive growth of the graph size by adding all possible
combinations of sequences consisting of more than
one lexical unit (ngrams), we consider only single
words as candidates for addition to the graph, with
multi-word keywords being eventually reconstructed
in the post-processing phase.

Next, all lexical units that pass the syntactic filter
are added to the graph, and an edge is added between
those lexical units that co-occur within a window of

� words. After the graph is constructed (undirected
unweighted graph), the score associated with each
vertex is set to an initial value of 1, and the ranking
algorithm described in section 2 is run on the graph
for several iterations until it converges – usually for
20-30 iterations, at a threshold of 0.0001.

Once a final score is obtained for each vertex in the
graph, vertices are sorted in reversed order of their
score, and the top � vertices in the ranking are re-
tained for post-processing. While � may be set to
any fixed value, usually ranging from 5 to 20 key-
words (e.g. (Turney, 1999) limits the number of key-
words extracted with his GenEx system to five), we
are using a more flexible approach, which decides

the number of keywords based on the size of the text.
For the data used in our experiments, which consists
of relatively short abstracts, � is set to a third of the
number of vertices in the graph.

During post-processing, all lexical units selected
as potential keywords by the TextRank algorithm are
marked in the text, and sequences of adjacent key-
words are collapsed into a multi-word keyword. For
instance, in the text Matlab code for plotting ambi-
guity functions, if both Matlab and code are selected
as potential keywords by TextRank, since they are
adjacent, they are collapsed into one single keyword
Matlab code.

Figure 2 shows a sample graph built for an abstract
from our test collection. While the size of the ab-
stracts ranges from 50 to 350 words, with an average
size of 120 words, we have deliberately selected a
very small abstract for the purpose of illustration. For
this example, the lexical units found to have higher
“importance” by the TextRank algorithm are (with
the TextRank score indicated in parenthesis): num-
bers (1.46), inequations (1.45), linear (1.29), dio-
phantine (1.28), upper (0.99), bounds (0.99), strict
(0.77). Notice that this ranking is different than the
one rendered by simple word frequencies. For the
same text, a frequency approach provides the fol-
lowing top-ranked lexical units: systems (4), types
(3), solutions (3), minimal (3), linear (2), inequations
(2), algorithms (2). All other lexical units have a fre-
quency of 1, and therefore cannot be ranked, but only
listed.

3.2 Evaluation

The data set used in the experiments is a collection
of 500 abstracts from the Inspec database, and the
corresponding manually assigned keywords. This is
the same test data set as used in the keyword ex-
traction experiments reported in (Hulth, 2003). The
Inspec abstracts are from journal papers from Com-
puter Science and Information Technology. Each
abstract comes with two sets of keywords assigned
by professional indexers: controlled keywords, re-
stricted to a given thesaurus, and uncontrolled key-
words, freely assigned by the indexers. We follow
the evaluation approach from (Hulth, 2003), and use
the uncontrolled set of keywords.

In her experiments, Hulth is using a total of 2000
abstracts, divided into 1000 for training, 500 for de-
velopment, and 500 for test2. Since our approach
is completely unsupervised, no training/development
data is required, and we are only using the test docu-

2Many thanks to Anette Hulth for allowing us to run our al-
gorithm on the data set used in her keyword extraction exper-
iments, and for making available the training/test/development
data split.



Assigned Correct
Method Total Mean Total Mean Precision Recall F-measure

TextRank
Undirected, Co-occ.window=2 6,784 13.7 2,116 4.2 31.2 43.1 36.2
Undirected, Co-occ.window=3 6,715 13.4 1,897 3.8 28.2 38.6 32.6
Undirected, Co-occ.window=5 6,558 13.1 1,851 3.7 28.2 37.7 32.2
Undirected, Co-occ.window=10 6,570 13.1 1,846 3.7 28.1 37.6 32.2
Directed, forward, Co-occ.window=2 6,662 13.3 2,081 4.1 31.2 42.3 35.9
Directed, backward, Co-occ.window=2 6,636 13.3 2,082 4.1 31.2 42.3 35.9

Hulth (2003)
Ngram with tag 7,815 15.6 1,973 3.9 25.2 51.7 33.9
NP-chunks with tag 4,788 9.6 1,421 2.8 29.7 37.2 33.0
Pattern with tag 7,012 14.0 1,523 3.1 21.7 39.9 28.1

Table 1: Results for automatic keyword extraction using TextRank or supervised learning (Hulth, 2003)

ments for evaluation purposes.
The results are evaluated using precision, recall,

and F-measure. Notice that the maximum recall that
can be achieved on this collection is less than 100%,
since indexers were not limited to keyword extrac-
tion – as our system is – but they were also allowed
to perform keyword generation, which eventually re-
sults in keywords that do not explicitly appear in the
text.

For comparison purposes, we are using the results
of the state-of-the-art keyword extraction system re-
ported in (Hulth, 2003). Shortly, her system consists
of a supervised learning scheme that attempts to learn
how to best extract keywords from a document, by
looking at a set of four features that are determined
for each “candidate” keyword: (1) within-document
frequency, (2) collection frequency, (3) relative po-
sition of the first occurrence, (4) sequence of part of
speech tags. These features are extracted from both
training and test data for all “candidate” keywords,
where a candidate keyword can be: Ngrams (uni-
grams, bigrams, or trigrams extracted from the ab-
stracts), NP-chunks (noun phrases), patterns (a set of
part of speech patterns detected from the keywords
attached to the training abstracts). The learning sys-
tem is a rule induction system with bagging.

Our system consists of the TextRank approach de-
scribed in Section 3.1, with a co-occurrence window-
size set to two, three, five, or ten words. Table 1 lists
the results obtained with TextRank, and the best re-
sults reported in (Hulth, 2003). For each method,
the table lists the total number of keywords assigned,
the mean number of keywords per abstract, the total
number of correct keywords, as evaluated against the
set of keywords assigned by professional indexers,
and the mean number of correct keywords. The table
also lists precision, recall, and F-measure.

Discussion. TextRank achieves the highest preci-
sion and F-measure across all systems, although the
recall is not as high as in supervised methods – pos-

sibly due the limitation imposed by our approach on
the number of keywords selected, which is not made
in the supervised system3. A larger window does not
seem to help – on the contrary, the larger the win-
dow, the lower the precision, probably explained by
the fact that a relation between words that are further
apart is not strong enough to define a connection in
the text graph.

Experiments were performed with various syntac-
tic filters, including: all open class words, nouns and
adjectives, and nouns only, and the best performance
was achieved with the filter that selects nouns and ad-
jectives only. We have also experimented with a set-
ting where no part of speech information was added
to the text, and all words - except a predefined list
of stopwords - were added to the graph. The re-
sults with this setting were significantly lower than
the systems that consider part of speech information,
which corroborates with previous observations that
linguistic information helps the process of keyword
extraction (Hulth, 2003).

Experiments were also performed with directed
graphs, where a direction was set following the natu-
ral flow of the text, e.g. one candidate keyword “rec-
ommends” (and therefore has a directed arc to) the
candidate keyword that follows in the text, keeping
the restraint imposed by the co-occurrence relation.
We have also tried the reversed direction, where a
lexical unit points to a previous token in the text.
Table 1 includes the results obtained with directed
graphs for a co-occurrence window of 2. Regard-
less of the direction chosen for the arcs, results ob-
tained with directed graphs are worse than results ob-
tained with undirected graphs, which suggests that
despite a natural flow in running text, there is no nat-
ural “direction” that can be established between co-

3The fact that the supervised system does not have the ca-
pability to set a cutoff threshold on the number of keywords,
but it only makes a binary decision on each candidate word, has
the downside of not allowing for a precision-recall curve, which
prohibits a comparison of such curves for the two methods.



occurring words.
Overall, our TextRank system leads to an F-

measure higher than any of the previously proposed
systems. Notice that TextRank is completely unsu-
pervised, and unlike other supervised systems, it re-
lies exclusively on information drawn from the text
itself, which makes it easily portable to other text col-
lections, domains, and languages.

4 Sentence Extraction
The other TextRank application that we investigate
consists of sentence extraction for automatic sum-
marization. In a way, the problem of sentence extrac-
tion can be regarded as similar to keyword extraction,
since both applications aim at identifying sequences
that are more “representative” for the given text. In
keyword extraction, the candidate text units consist
of words or phrases, whereas in sentence extraction,
we deal with entire sentences. TextRank turns out to
be well suited for this type of applications, since it
allows for a ranking over text units that is recursively
computed based on information drawn from the en-
tire text.

4.1 TextRank for Sentence Extraction

To apply TextRank, we first need to build a graph as-
sociated with the text, where the graph vertices are
representative for the units to be ranked. For the task
of sentence extraction, the goal is to rank entire sen-
tences, and therefore a vertex is added to the graph
for each sentence in the text.

The co-occurrence relation used for keyword ex-
traction cannot be applied here, since the text units in
consideration are significantly larger than one or few
words, and “co-occurrence” is not a meaningful rela-
tion for such large contexts. Instead, we are defining
a different relation, which determines a connection
between two sentences if there is a “similarity” re-
lation between them, where “similarity” is measured
as a function of their content overlap. Such a rela-
tion between two sentences can be seen as a process
of “recommendation”: a sentence that addresses cer-
tain concepts in a text, gives the reader a “recom-
mendation” to refer to other sentences in the text that
address the same concepts, and therefore a link can
be drawn between any two such sentences that share
common content.

The overlap of two sentences can be determined
simply as the number of common tokens between
the lexical representations of the two sentences, or
it can be run through syntactic filters, which only
count words of a certain syntactic category, e.g. all
open class words, nouns and verbs, etc. Moreover,
to avoid promoting long sentences, we are using a
normalization factor, and divide the content overlap

10: The storm was approaching from the southeast with sustained winds of 75 mph gusting
      to 92 mph.
11: "There is no need for alarm," Civil Defense Director Eugenio Cabral said in a television 
      alert shortly after midnight Saturday.
12: Cabral said residents of the province of Barahona should closely follow Gilbert’s movement.
13: An estimated 100,000 people live in the province, including 70,000 in the city of Barahona,
      about 125 miles west of Santo Domingo.
14. Tropical storm Gilbert formed in the eastern Carribean and strenghtened into a hurricaine
      Saturday night.
15: The National Hurricaine Center in Miami reported its position at 2 a.m. Sunday at latitude
      16.1 north, longitude 67.5 west, about 140 miles south of Ponce, Puerto Rico, and 200 miles
      southeast of Santo Domingo.
16: The National Weather Service in San Juan, Puerto Rico, said Gilbert was moving westard
      at 15 mph with a "broad area of cloudiness and heavy weather" rotating around the center 
      of the storm.
17. The weather service issued a flash flood watch for Puerto Rico and the Virgin Islands until
       at least 6 p.m. Sunday.
18: Strong winds associated with the Gilbert brought coastal flooding, strong southeast winds,
      and up to 12 feet to Puerto Rico’s south coast.
19: There were no reports on casualties.
20: San Juan, on the north coast, had heavy rains and gusts Saturday, but they subsided during 
      the night.
21: On Saturday, Hurricane Florence was downgraded to a tropical storm, and its remnants 
      pushed inland from the U.S. Gulf Coast. 
22: Residents returned home, happy to find little damage from 90 mph winds and sheets of rain.
23: Florence, the sixth named storm of the 1988 Atlantic storm season, was the second hurricane.
24: The first, Debby, reached minimal hurricane strength briefly before hitting the Mexican coast
      last month.

8: Santo Domingo, Dominican Republic (AP)
9: Hurricaine Gilbert Swept towrd the Dominican Republic Sunday, and the Civil Defense

    alerted its heavily populated south coast to prepare for high winds, heavy rains, and high seas.

4: BC−Hurricaine Gilbert, 0348
3: BC−HurricaineGilbert, 09−11 339

5: Hurricaine Gilbert heads toward Dominican Coast
6: By Ruddy Gonzalez
7: Associated Press Writer
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Hurricane Gilbert swept toward the Dominican Republic Sunday, and the Civil  De−
fense alerted its heavily populated south coast to prepare for high winds, heavy rains
and high seas. The National Hurricane Center in Miami reported its position at 2 a.m.
Sunday at latitude 16.1 north, longitude 67.5 west, about 140 miles south of Ponce, 
Puerto Rico, and 200 miles southeast of Santo Domingo. The National Weather Service 
in San Juan, Puerto Rico, said Gilbert was moving westward at 15 mph with a "broad
area of cloudiness and heavy weather" rotating around the center of the storm. Strong
winds associated with Gilbert brought coastal flooding, strong southeast winds and up
to 12 feet to Puerto Rico’s south coast.

TextRank extractive summary

Hurricane Gilbert is moving toward the Dominican Republic, where the residents of
the south coast, especially the Barahona Province, have been alerted to prepare for

Carribean and became a hurricane on Saturday night. By 2 a.m. Sunday it was about
200 miles southeast of Santo Domingo and moving westward at 15 mph with winds
of 75 mph. Flooding is expected in Puerto Rico and in the Virgin Islands. The second
hurricane of the season, Florence, is now over the southern United States and down−
graded to a tropical storm.

Tropical storm Gilbert in the eastern Carribean strenghtened into a hurricane Saturday
night. The National Hurricane Center in Miami reported its position at 2 a.m. Sunday to
be about 140 miles south of Puerto Rico and 200 miles southeast of Santo Domingo. It
is moving westward at 15 mph with a broad area of cloudiness and heavy weather with
sustained winds of 75 mph gusting to 92 mph. The Dominican Republic’s Civil Defense

in San Juan, Puerto Rico issued a flood watch for Puerto Rico and the Virgin Islands until
at least 6 p.m. Sunday.

alerted that country’s heavily populated south coast and the National Weather Service 

heavy rains, and high wind and seas. Tropical storm Gilbert formed in the eastern

Manual abstract I

Manual abstract II

Figure 3: Sample graph build for sentence extraction
from a newspaper article. Manually assigned sum-
maries and TextRank extractive summary are also
shown.



of two sentences with the length of each sentence.
Formally, given two sentences � � and � � , with a
sentence being represented by the set of � � words
that appear in the sentence: � � � � � � 	�� �� 	������ 	�� �� $ ,
the similarity of � � and ��� is defined as:

���
	��
��
��������K��� � 	�� � 
2� � ��� � � � ����� $�� � ����� 4� �!#"�$�% � � $ � &�' !#"�$�% � � 4 � &
Other sentence similarity measures, such as string

kernels, cosine similarity, longest common subse-
quence, etc. are also possible, and we are currently
evaluating their impact on the summarization perfor-
mance.

The resulting graph is highly connected, with a
weight associated with each edge, indicating the
strength of the connections established between var-
ious sentence pairs in the text. The text is therefore
represented as a weighted graph, and consequently
we are using the weighted graph-based ranking for-
mula introduced in Section 2.2.

After the ranking algorithm is run on the graph,
sentences are sorted in reversed order of their score,
and the top ranked sentences are selected for inclu-
sion in the summary.

Figure 3 shows a text sample, and the associated
weighted graph constructed for this text. The fig-
ure also shows sample weights attached to the edges
connected to vertex 94, and the final TextRank score
computed for each sentence. The sentences with the
highest rank are selected for inclusion in the abstract.
For this sample article, the sentences with id-s 9, 15,
16, 18 are extracted, resulting in a summary of about
100 words, which according to automatic evaluation
measures, is ranked the second among summaries
produced by 15 other systems (see Section 4.2 for
evaluation methodology).

4.2 Evaluation

We evaluate the TextRank sentence extraction algo-
rithm on a single-document summarization task, us-
ing 567 news articles provided during the Document
Understanding Evaluations 2002 (DUC, 2002). For
each article, TextRank generates an 100-words sum-
mary — the task undertaken by other systems partic-
ipating in this single document summarization task.

For evaluation, we are using the ROUGE evalu-
ation toolkit, which is a method based on Ngram
statistics, found to be highly correlated with hu-
man evaluations (Lin and Hovy, 2003). Two manu-
ally produced reference summaries are provided, and
used in the evaluation process5 .

4Weights are listed to the right or above the edge they cor-
respond to. Similar weights are computed for each edge in the
graph, but are not displayed due to space restrictions.

5ROUGE is available at http://www.isi.edu/˜cyl/ROUGE/.

Fifteen different systems participated in this task,
and we compare the performance of TextRank with
the top five performing systems, as well as with the
baseline proposed by the DUC evaluators – consist-
ing of a 100-word summary constructed by taking
the first sentences in each article. Table 2 shows the
results obtained on this data set of 567 news articles,
including the results for TextRank (shown in bold),
the baseline, and the results of the top five perform-
ing systems in the DUC 2002 single document sum-
marization task (DUC, 2002).

ROUGE score – Ngram(1,1)
stemmed

System basic stemmed no-stopwords
(a) (b) (c)

S27 0.4814 0.5011 0.4405
S31 0.4715 0.4914 0.4160
TextRank 0.4708 0.4904 0.4229
S28 0.4703 0.4890 0.4346
S21 0.4683 0.4869 0.4222
Baseline 0.4599 0.4779 0.4162
S29 0.4502 0.4681 0.4019

Table 2: Results for single document summarization:
TextRank, top 5 (out of 15) DUC 2002 systems, and
baseline. Evaluation takes into account (a) all words;
(b) stemmed words; (c) stemmed words, and no stop-
words.

Discussion. TextRank succeeds in identifying the
most important sentences in a text based on infor-
mation exclusively drawn from the text itself. Un-
like other supervised systems, which attempt to learn
what makes a good summary by training on collec-
tions of summaries built for other articles, TextRank
is fully unsupervised, and relies only on the given
text to derive an extractive summary, which repre-
sents a summarization model closer to what humans
are doing when producing an abstract for a given
document.

Notice that TextRank goes beyond the sentence
“connectivity” in a text. For instance, sentence 15 in
the example provided in Figure 3 would not be iden-
tified as “important” based on the number of connec-
tions it has with other vertices in the graph, but it is
identified as “important” by TextRank (and by hu-
mans – see the reference summaries displayed in the
same figure).

Another important aspect of TextRank is that it
gives a ranking over all sentences in a text – which
means that it can be easily adapted to extracting
very short summaries (headlines consisting of one

The evaluation is done using the Ngram(1,1) setting of ROUGE,
which was found to have the highest correlation with human
judgments, at a confidence level of 95%. Only the first 100
words in each summary are considered.



sentence), or longer more explicative summaries,
consisting of more than 100 words. We are also
investigating combinations of keyphrase and sen-
tence extraction techniques as a method for building
short/long summaries.

Finally, another advantage of TextRank over previ-
ously proposed methods for building extractive sum-
maries is the fact that it does not require training cor-
pora, which makes it easily adaptable to other lan-
guages or domains.

5 Why TextRank Works
Intuitively, TextRank works well because it does not
only rely on the local context of a text unit (vertex),
but rather it takes into account information recur-
sively drawn from the entire text (graph).

Through the graphs it builds on texts, TextRank
identifies connections between various entities in a
text, and implements the concept of recommenda-
tion. A text unit recommends other related text
units, and the strength of the recommendation is re-
cursively computed based on the importance of the
units making the recommendation. For instance, in
the keyphrase extraction application, co-occurring
words recommend each other as important, and it is
the common context that enables the identification of
connections between words in text. In the process of
identifying important sentences in a text, a sentence
recommends another sentence that addresses similar
concepts as being useful for the overall understand-
ing of the text. The sentences that are highly recom-
mended by other sentences in the text are likely to
be more informative for the given text, and will be
therefore given a higher score.

An analogy can be also drawn with PageRank’s
“random surfer model”, where a user surfs the Web
by following links from any given Web page. In the
context of text modeling, TextRank implements what
we refer to as “text surfing”, which relates to the con-
cept of text cohesion (Halliday and Hasan, 1976):
from a certain concept � in a text, we are likely to
“follow” links to connected concepts – that is, con-
cepts that have a relation with the current concept �
(be that a lexical or semantic relation). This also re-
lates to the “knitting” phenomenon (Hobbs, 1974):
facts associated with words are shared in different
parts of the discourse, and such relationships serve
to “knit the discourse together”.

Through its iterative mechanism, TextRank goes
beyond simple graph connectivity, and it is able to
score text units based also on the “importance” of
other text units they link to. The text units selected by
TextRank for a given application are the ones most
recommended by related text units in the text, with
preference given to the recommendations made by

most influential ones, i.e. the ones that are in turn
highly recommended by other related units. The un-
derlying hypothesis is that in a cohesive text frag-
ment, related text units tend to form a “Web” of con-
nections that approximates the model humans build
about a given context in the process of discourse un-
derstanding.

6 Conclusions
In this paper, we introduced TextRank – a graph-
based ranking model for text processing, and show
how it can be successfully used for natural language
applications. In particular, we proposed and eval-
uated two innovative unsupervised approaches for
keyword and sentence extraction, and showed that
the accuracy achieved by TextRank in these applica-
tions is competitive with that of previously proposed
state-of-the-art algorithms. An important aspect of
TextRank is that it does not require deep linguistic
knowledge, nor domain or language specific anno-
tated corpora, which makes it highly portable to other
domains, genres, or languages.
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