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Abstract

If two translation systems differ differ in perfor-
mance on a test set, can we trust that this indicates
a difference in true system quality? To answer this
question, we describe bootstrap resampling meth-
ods to compute statistical significance of test results,
and validate them on the concrete example of the
BLEU score. Even for small test sizes of only 300
sentences, our methods may give us assurances that
test result differences are real.

1 Introduction

Recently, the field of machine translation has been
changed by the emergence both of effective statisti-
cal methods to automatically train machine transla-
tion systems from translated text sources (so-called
parallel corpora) and of reliable automatic evalua-
tion methods.

Machine translation systems can now be built and
evaluated from black box tools and parallel corpora,
with no human involvement at all.

The evaluation of machine translation systems
has changed dramatically in the last few years. In-
stead of reporting human judgment of translation
quality, researchers now rely on automatic mea-
sures, most notably the BLEU score, which mea-
sures n-gram overlap with reference translations.
Since it has been shown that the BLEU score cor-
relates with human judgment, an improvement in
BLEU is taken as evidence for improvement in trans-
lation quality.

Building the tools for any translation system in-
volves many iterations of changes and performance
testing. Itis important to have a method at hand that
gives us assurances that the observed increase in the
test score on a test set reflects true improvement in
system quality.

In other words, we need to be able to gauge, if the
increase in score is statistically significant. Since
complex metrics such as BLEU do not lend them-
selves to an analytical technique for assessing statis-
tical significance, we propose bootstrap resampling

methods.

We also provide empirical evidence that the esti-
mated significance levels are accurate by comparing
different systems on a large number of test sets of
various sizes.

In this paper, after providing some background,
we will examine some properties of the widely used
BLEU metric, discuss experimental design, intro-
duce bootstrap resampling methods for statistical
significance estimation and report on experimental
results that demonstrate the accuracy of the meth-
ods.

2 Background
2.1 Statistical Machine Translation

Statistical machine translation was introduced by
work at IBM [Brown et al., 1990, 1993]. Currently,
the most successful such systems employ so-called
phrase-based methods that translate input text by
translating sequences of words at a time [Och, 2002;
Zens et al., 2002; Koehn et al., 2003; Vogel et al.,
2003; Tillmann, 2003]

Phrase-based machine translation systems make
use of a language model trained for the target lan-
guage and a translation model trained from a paral-
lel corpus. The translation model is typically bro-
ken down into several components, e.g., reordering
model, phrase translation model, and word transla-
tion model.

2.2 Automatic Evaluation

To adequately evaluate the quality of any transla-
tion is difficult, since it is not entirely clear what the
focus of the evaluation should be. Surely, a good
translation has to adequately capture the meaning
of the foreign original. However, pinning down all
the nuances is hard, and often differences in empha-
sis are introduced based on the interpretation of the
translator. At the same time, it is desirable to have
fluent output that can be read easily. These two
goals, adequacy and fluency, are the main criteria
in machine translation evaluation.



System 1-gram | 4-gram | %BLEU
Spanish 62.6% | 14.7% 28.9%
Portuguese | 60.9% | 13.4% 27.4%
Danish 60.8% | 13.3% 26.9%
Greek 59.4% | 12.1% 25.3%
German 58.3% 9.8% 22.6%
Finnish 56.1% 7.8% 20.2%

Table 1: Translation quality of three systems, mea-
sured by the BLEU score and n-gram precision

Human judges may be asked to evaluate the ad-
equacy and fluency of translation output, but this
is a laborious and expensive task. Papineni et al.
[2002] addressed the evaluation problem by intro-
ducing an automatic scoring metric, called BLEU,
which allowed the automatic calculation of transla-
tion quality. The system output is compared against
a reference translation of the same source text.

2.3 BLEU: A Closer Look

Formally, the BLEU metric is computed as follows.
Given the precision p,, of n-grams of size up to
N (usually N = 4), the length of the test set in
words (c) and the length of the reference translation
in words (r),
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The effectiveness of the BLEU metric has been
demonstrated by showing that it correlates with hu-
man judgment.

Let us highlight two properties of the BLEU met-
ric: the reliance on higher n-grams and the brevity
penalty BP. First, look at Table 1. Six different sys-
tems are compared here (we will get later into the
nature of these systems). While the unigram pre-
cision of the three systems hovers around 60%, the
difference in 4-gram precision is much larger. The
Finnish system has only roughly half (7.8%) of the
4-gram precision of the Spanish system (14.7%).
This is the cause for the relative large distance in
overall BLEU (28.9% vs. 20.2%)*. Higher n-grams
(and we could go beyond 4), measure not only syn-
tactic cohesion and semantic adequacy of the out-
put, but also give discriminatory power to the met-
ric.

The other property worth noting is the strong in-
fluence of the brevity penalty. Since BLEU is a preci-
sion based method, the brevity penalty assures that a

1We use in this paper the %BL EU notation: aBLEU score of
0.289 isreported as 28.9% BLEU
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Figure 1: Effect of output length on BLEU and GT™
score: brevity penalty in BLEU causes score to drop
dramatically with shorter output

system does not only translate fragments of the test
set of which it is confident, resulting in high preci-
sion.

Is has become common practice to include a word
penalty component in statistical machine translation
system that gives bias to either longer or shorter out-
put. This is especially relevant for the BLEU score
that harshly penalizes translation output that is too
short.

To illustrate this point, see Figure 1. BLEU scores
for both Spanish and Portuguese system drop off
when a large word penalty is introduced into the
translation model, forcing shorter output. This is
not the case for a similar metric, GTM, an n-gram
precision/recall metric proposed by Melamed et al.
[2003] that does not have an explicit brevity penalty.

The BLEU metric also works with multiple refer-
ence translations. However, we often do not have
the luxury of having multiple translations of the
same source material. Fortunately, it has not been
shown so far that having only a single reference
translation causes serious problems.

While BLEU has become the most popular met-
ric for machine translation evaluation, some of its
short-comings have become apparent: It does not
work on single sentences, since 4-gram precision is
often 0. It is also hard to interpret. What a BLEU
score of 28.9% means is not intuitive and depends,
e.g., on the number of reference translation used.
Some researchers have recently used relative human
BLEU scores, by comparing machine BLEU scores
with high quality human translation scores. How-
ever, the resulting numbers are unrealistically high.

3 Experimental Design

In this section, we describe the experimental frame-
work of our work. We also report on a number of
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Figure 2: BLEU score of the Spanish-English system
on 100 blocks of 300 sentences each

preliminary experiments that give us some intuition
on variance of test scores on different test sets.

3.1 System and Corpus

We carry out experiments using a phrase-based sta-
tistical machine translation system [Koehn et al.,
2003; Koehn, 2004]. We train this system on the
Europarl corpus, a parallel corpus in 11 European
languages of 20-30 million words per language
[Koehn, 2002].

Since the focus of this paper is the comparison of
the performance of different systems, we need a set
of translation systems. Here, we resort to a trick:
Instead of comparing different machine translation
methods trained on the same training data, we train
the same machine translation method on different
parallel copora: language pairs with English as the
target language and any of the 10 other languages as
the source language.

Then, we assemble a test set that is sentence
aligned across all 11 languages. During evalua-
tion, the, say, Spanish-English and Danish-English
system each translate a sentence that correspond to
the same English reference translation. Hence, we
can compare how well the English output of the
Spanish-English translation system matches the ref-
erence sentence vs. how well the English output of
the Portuguese-English matches the reference sen-
tence.

We would like to stress that comparing perfor-
mance of a method that translates text from differ-
ent languages instead of using different translation
methods on the same input text is irrelevant for the
purpose of this paper. We are comparing output of
different systems in either case. As an alternative,
we may also use a single language pair and different
systems, say, by using different parameter settings.
But we feel that this would leave us with many ar-
bitrary choices that we would like to avoid for the
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Figure 3: BLEU score on 100 broad samples of 300
sentences: smaller variance in test results

sake of clarity of our argument.

3.2 Selecting a Test Set

We already reported some BLEU scores earlier.
These were computed on a 30,000 sentence test set
(about 900,000 words). Such a huge test set is very
uncommon?, since translating such a large amount
of text is computationally very expensive. It may
take hours or even days, which does not contribute
to a fast turn-around system development process.
Therefore, we would like to be able to work with
smaller test sets.

The trade-off between fast testing and having
meaningful results is at the very heart of this paper:
The statistical significance tests we propose give us
the means to assess the significance of test results.

Let us start with the following experiment: We
break up the test set into 100 blocks of 300 con-
secutive sentences each, translate each block, and
compute the BLEU score for each block. We plot in
Figure 2 the BLEU scores for each of the 100 blocks
for the Spanish system.

The BLEU scores for the 100 blocks vary from
21% to 37%. Many factors influence why some sen-
tences are easier to translate than others: unknown
words, sentence length, degree of syntactic and se-
mantic divergence, and how the input and reference
translation were generated — in case of Europarl
they may be both translations from a third language.

3.3 Broad Sampling

Factors that influence translation difficulty may be
clustered. For instance, the original language, or the
topic and style (and hence vocabulary) usually stays
the same over many sentences in sequence. When
we collect only 300 sentences in sequence, certain

2The annual DARPA/NIST evaluations use test sets of size
1000-2000 sentences with 4 reference translations
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Figure 4: Difference in BLEU between Spanish and
Danish system on 100 broad samples

factors may very strongly affect some samples, but
not others.

Therefore, better test sets of 300 sentences may
be constructed by sampling these sentences from
different parts of the corpus. In an effort to collect
better test sets, we now place into test set n the sen-
tences n,n + 100,n + 200, ...,n + 29900. Let us
call this a broad sample.

Again, we measure translation quality on each
of these 100 broad samples. Figure 3 shows that
the BLEU scores are now closer together — ranging
from 27% to 31%.

3.4 Comparison of Translation Performance

Obtaining a BLEU score for a translation system on
a given test set is not very meaningful by itself. We
want to use the metric to compare different transla-
tion systems.

In a third preliminary experiment, we compared
for each of the 300 broad samples, the BLEU score
for the Spanish system against the BLEU score for
the Danish system.

Results are in Figure 4. The Spanish system is
better by up to 4%. In only one sample, sample no.
10, the Danish system outperforms the Spanish sys-
tem by 0.07%.

Let us stress in conclusion at this point that —
when working with small test sets — it is impor-
tant to obtain a representative sample, as much as
this is possible. Translation quality of neighboring
sentences correlates positively, therefore we want to
chose test sentences from different parts of a larger
set.

4  Statistical Significance

The purpose of experimental testing is to assess the
true translation quality of a system on text from a
certain domain. However, even with the qualifier
“from a certain domain”, this is an abstract concept,

since it has to be computed on all possible sentences
in that domain. In practice, we will always just be
able to measure the performance of the system on a
specific sample. From this test result, we would like
to conclude what the true translation performance
is.

Statistical significance is an estimate of the de-
gree, to which the true translation quality lies within
a confidence interval around the measurement on
the test sets. A commonly used level of reliability
of the result is 95%, also written as p = 0.05, called
p-level.

Let us explore this notion on a simpler metric of
translation quality than BLEU. A common metric in
older machine translation papers is a score from 1 to
5 for each sentence, or even simpler: a human judge
deemed a translation either as correct or wrong.

If, say, 100 sentence translations are evaluated,
and 30 are found correct, what can we say about
the true translation quality of the system? Our best
guess is 30%, but that may be a few percent off.
How much off, is the question to be answered by
statistical significance tests.

Given a set of n sentences, we can compute the
sample mean and variance of the individual sen-
tence scores x;:

_ 1 &
& = ni1z(xi_i)2 @)

What we are really interested in, however is the
true mean p. Let us assume that the sentence scores
are distributed according to the normal distribution.
This implies that a sentence score is independent
from other sentence scores.

Since we do not know the true mean g and vari-
ance o2, we can not model the distribution of sen-
tence scores with the normal distribution. However,
we can use Student’s t-distribution, which approxi-
mates the normal distribution for large n.

See Figure 5 for an illustration: Given the sam-
ple mean z and sample variance s?, we estimate
the probability distribution for true translation qual-
ity. We are now interested in a confidence inter-
val [Z — d,Z + d] around the mean sentence score.
The true translation quality (or the true mean p lies
within in the confidence interval with a probability
q.

Note the relationship between the degree of sta-
tistical significance and the confidence interval: The
degree of statistical significance is indicated by the
fraction of the area under the curve that is shaded.
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Figure 5: With probability ¢ = 0.95 (shaded area),
the number of correct translations lies in an interval
[z — d,z + d] around the mean sentence score

The confidence interval is indicated by the bound-
aries on the x-axis.

The functional mapping between a confidence in-
terval [z — d,Z + d] and the probability ¢ can be
obtained by integrating over the distribution. How-
ever, in case of Student’s t-distribution, the solution
to this does not exist in closed form, but we can use
numerical methods.

The size of the confidence interval can be com-
puted by

S
d=t N (5)

The factor ¢ depends on the desired p-level of sta-
tistical significance and the sample size. See Table 2
for typical values.

We described the standard method to compute
statistical significance for some machine translation
evaluation metrics. Unfortunately, this method to
compute confidence intervals does not work for the
BLEU metric, since the BLEU metric is not the mean
of single sentence scores.

5 Bootstrap Resampling

Recall that we want to answer the following ques-
tion: Given a test result of m BLEU, we want to
compute with a confidence ¢ (or p-level p =1 — ¢)
that the true BLEU score lies in an interval [m —
d,m+d|.

Instead of using an analytical method to compute
confidence intervals for the BLEU score, we resort to
a randomized method, called bootstrap resampling.
Bootstrap resampling has a long tradition in the field
of statistics, refer to Efron and Tibshirani [1994] for
a general introduction and Press et al. [2002] for a
typical implementation.

Some recent papers on statistical machine trans-
lation hint on the use of bootstrap resampling for

Significance Test Sample Size

Level 100 300 600 00

99% 2.6259 | 2.5923 | 2.5841 | 2.5759
95% 1.9849 | 1.9679 | 1.9639 | 1.9600
90% 1.6602 | 1.6499 | 1.6474 | 1.6449

Table 2: Values for ¢ for different sizes and signifi-
cance levels (Formula 5)

assessing statistical significance of test results [Ger-
mann, 2003; Och, 2003; Kumar and Byrne, 2004],
but do not lay out their methodology.

The intuition behind bootstrap resampling goes
as follows: Assume that we can only test transla-
tion performance on a test set of n = 300 sen-
tences. These 300 sentences are randomly drawn
from the world. Given a test set, we can compute a
BLEU score. Then, we draw a second test set of 300
sentences, and compute its BLEU score. If we do
this repeatedly, we get a number of different BLEU
scores, not unlike the BLEU scores displayed in Fig-
ure 3.

If we do this for a large number s of test sets (say
1000 times), we can sort the corresponding BLEU
scores. If we drop the top 2.5% and bottom 2.5% of
BLEU scores, we have the remaining 95% of BLEU
scores in an interval [a, b]. The law of large numbers
dictates, that with an increasingly large number s of
BLEU scores, the interval [a, b] approaches the 95%
confidence interval for scores of test sets of size 300.

Of course, having to translate and score sets of
300 sentences repeatedly, does not save anything in
terms of computational translation cost and the need
for a large set of potential sentences. We therefore,
take the following leap: Instead of the selected the
300 sentences in each test set from an infinite set of
test sentences, we draw them from the same set of
300 sentences with replacement.

Let us clearly state this assumption:

Assumption: Estimating the confi-
dence interval from a large number of test
sets with n test sentences drawn from a set
of n test sentences with replacement is as
good as estimating the confidence interval
for test sets size n from a large number of
test sets with n test sentences drawn from
an infinite set of test sentences.

The benefit of this assumption is clear: We only
have to translate n (say, 300) sentences. We will
now provide empirical evidence that we can make
this assumption.

Figure 6 reports on an experiment with the
Spanish-English system. It displays the 95% con-
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Figure 6: Bootstrapped 95% confidence intervals of

true BLEU on 100 broad samples of 300 sentences:

Assuming the 30,000 sentence BLEU as true score,

three mistakes (3%) are made: on test set no. 10,

81, and 88

fidence intervals computed for 100 test sets of 300
sentences. For each of the 100 test sets, we compute
the confidence interval as described before: We re-
peatedly (1000 times) generate BLEU scores on test
sets of 300 sentences drawn from this one test set of
300 sentences.

We use the 1000 BLEU scores to estimate the con-
fidence interval. We drop the top 25 and bottom 25
BLEU scores, so that the displayed interval ranges
from the 26th best BLEU score to the 975th best.
For the first test set, we obtain a confidence interval
of [26.5,30.7], for the second test set a confidence
interval of [27.5,33.0], and so on.

We do not know the true BLEU score for this sys-
tem, which has to be computed on a near-infinite
number of test sentences. But the BLEU score com-
puted on 30,000 test sentences is as good as any
(assuming 30,000 is close to infinite). It is, as you
recall from Table 1, 28.9%. For all but three test
set, this near-true test score lies within the esti-
mated confidence interval. Loosely speaking, the
95% confidence level is actually 97% correct.

6 Paired Bootstrap Resampling

As stated earlier, the value of scoring metrics comes
from being able to compare the quality of different
translation systems.

Typically, we want to compare two systems. We
translate the same test set with the two systems, and
measure the translation quality using an evaluation
metric. One system will fare better than the other,
with some difference in score.

Can we conclude that the better scoring system is
truly better? If the differences in score are small, we
intuitively have some doubt.
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Figure 7: Paired bootstrap resampling results on

100 broad samples of 300 sentences: For 65 sam-

ples we make a 95% statistically significant conclu-

sion that the Spanish system is better than the Dan-

ish (dots above the 95% line

We would like measure the reliability of the con-
clusion that one system is better than the other, or
in other words, that the difference in test scores is
statistical significant.

As in the previous section, we use a bootstrap re-
sampling method for this: Given a small collection
of translated sentences, we repeatedly (say, 1000
times) create new virtual test sets by drawing sen-
tences with replacement from the collection. For
each set, we compute the evaluation metric score
for both systems. We note, which system performs
better. If, say, one system outperforms the other sys-
tem 95% of the time, we draw the conclusion that it
is better with 95% statistical significance. We call
this method paired bootstrap resampling, since we
compare a pair of systems.

We carry out experiments using this method us-
ing the BLEU score to compare the Spanish-English
system with the Danish-English system. Results are
displayed in Figure 7. We estimate statistical signif-
icance for 100 different test sets with 300 sentences
each (the same broad samples used in previous ex-
periments). For 65 samples we draw the conclusion
the Spanish system is better than the Danish with at
least 95% statistical significance.

Recall that the BLEU score difference on the huge
30,000 sentence test set is 2.0% (refer to Table 1).
In this particular case, a small 300 sentence test set
is often sufficient to detect the superiority of one of
the systems with statistical significance.

If the true difference in translation performance is
closer, we are less likely to draw conclusions from
such a small test set. See Figure 8, which compares
the Portuguese and the Danish system. Their BLEU
score difference on the huge 30,000 sentence test set
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Figure 8: Paired bootstrap resampling results on
100 broad samples of 300 sentences: For 12 sam-
ples we make a 95% statistically significant conclu-
sion that the Portuguese system is better than the
Danish, and 1 conclusion to the opposite

is only 0.5%. Using paired bootstrap resampling,
we drawn 13 conclusions: 12 correct conclusions
that the Portuguese system is better, and one wrong
conclusion that the Danish system is better.

That we draw one wrong conclusion, is unfortu-
nate, but should not come as a surprise, when we
talk about 95% statistical singificance levels. At this
level, 1 conclusion in 20 is expected to be wrong.

7 Validation Experiments

We introduced two methods using bootstrap resam-
pling. One method estimates bounds for the true
performance level of a system. The other method,
paired bootstrap resampling, estimates how confi-
dently we can draw the conclusion from a test result
that one system outperforms another.

We would now like to provide experimental evi-
dence that these estimates are indeed correct at the
specified level of statistical significance.

7.1 95% Statistical Significance

We carried out a large number of experiments to
estimate statistical significance for system compar-
isons. We compared 9 different pairs of systems,
with different test set sizes. Detailed results can be
found in Table 3.

The test set sizes vary from 100 sentences to 3000
sentences. As described earlier, the systems trans-
late aligned test sentences from different source lan-
guages into English. First, we want to answer the
questions: How often can we draw conclusions with
95% statistical significance? How often are we cor-
rect?

Even for small test sets of size 300 sentences
(about 9000 words), we can reliably draw the right
conclusion, if the true BLEU score difference is at

Significance Level | Conclusions | Correct

100% 1042 100%
99%-99.9% 738 100%
98%-98.9% 245 99%
95%-97.9% 394 98%
90%-94.9% 363 95%
80%-89.9% 520 88%
70%-79.9% 324 77%
60%-69.9% 253 2%
50%-59.9% 261 52%

Table 4: Validation of the statistical significance es-
timations: Number of conclusions drawn at a certain
level and accuracy of the conclusions.

least 2-3%. Note that we make no general state-
ments about relation of test set size and statistical
significance BLEU score differences, this particular
finding is specific to our test scenario and depends
highly on how similar the systems are.

Only one conclusion is wrong for test sets of
size 300 — the already mentioned conclusion that
the Danish system outperforms the Portuguese sys-
tem. For test sets with only 100 sentences, we ob-
server more false conclusions, which suggests that
this might be too small for a test set.

7.2 Other Significance Levels

While the 95% statistical significance level is the
most commonly used for historical reasons, we
want to validate as well the accuracy of the boot-
strap resampling method at different statistical sig-
nificance levels.

Table 4 displays our findings. For each con-
clusion, we check into what statistical significance
range it falls, e.g., 90-94.9%). Then, we check for
all conclusions with an interval, how many are cor-
rect, i.e., consistent with the conclusion drawn from
the much larger 30,000 sentence test set.

The numbers suggest, that the method is fairly ac-
curate and errs on the side of caution. For instance,
when we conclude a statistical significance level of
90%-94.9%, we are actually drawing the right con-
clusion 95% of the time.

8 Summary and Outlook

Having a trusted experimental framework is essen-
tial for drawing conclusions on the effects of system
changes. For instance: do not test on train, do not
use the same test set repeatedly, etc. We stressed
the importance of assembling test sets from differ-
ent parts of a larger pool of sentences (Figure 2 vs.
Figure 3).

We discussed some properties of the widely used
BLEU score, especially the effect of the brevity



System BLEU Sample Size (Sentences)

Comparison Difference 100 300 600 | 3000
Spanish better than Portuguese 1.5% 33%/1% 60% 84% | 100%
Spanish better than Danish 2.0% 31% 65% 96% | 100%
Portuguese better than Danish 0.5% 7%/2% | 12%/1% | 10% | 30%
Portuguese better than Greek 2.1% 38% 68% 92% | 100%
Danish better than Greek 1.6% 24% 48% 74% | 100%
Danish better than German 4.3% 85% 100% | 100% | 100%
Greek better than German 2.7% 65% 97% 100% | 100%
Greek better than Finnish 5.1% 97% 100% | 100% | 100%
German better than Finnish 2.4% 53% 91% 100% | 100%

Table 3: The table displays how often a conclusion with 95% statistical significance is made for different
system comparisons and different sample sizes. 12%/1% means 12% correct and 1% wrong conclusions.
30,000 test sentences are divided into 300, 100, 50, and 10 samples, each the size of 100, 300, 600, and

3000 sentences respectively.

penalty and the role of larger n-grams.

One important element of a solid experimental
framework is a statistical significance test that al-
lows us to judge, if a change in score that comes
from a change in the system, truly reflects a change
in overall translation quality.

We applied bootstrap resampling to machine
translation evaluation and described methods to
compute statistical significance intervals and levels
for machine translation evaluation metrics. We de-
scribed how to compute statistical significance in-
tervals for metrics such as BLEU for small test sets,
using bootstrap resampling methods. We provided
empirical evidence that the computed intervals are
accurate.

Aided by the proposed methods, we hope that
it becomes common practice in published machine
translation research to report on the statistical sig-
nificance of test results.
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