
Learning Hebrew Roots: Machine Learning with Linguistic Constraints

Ezra Daya
Dept. of Computer Science

University of Haifa
31905 Haifa

Israel
edaya@cs.haifa.ac.il

Dan Roth
Dept. of Computer Science

University of Illinois
Urbana, IL 61801

USA
danr@cs.uiuc.edu

Shuly Wintner
Dept. of Computer Science

University of Haifa
31905 Haifa

Israel
shuly@cs.haifa.ac.il

Abstract

The morphology of Semitic languages is unique in
the sense that the major word-formation mechanism
is an inherently non-concatenative process ofinter-
digitation, whereby two morphemes, aroot and a
pattern, are interwoven. Identifying the root of a
given word in a Semitic language is an important
task, in some cases a crucial part of morphological
analysis. It is also a non-trivial task, which many
humans find challenging. We present a machine
learning approach to the problem of extracting roots
of Hebrew words. Given the large number of po-
tential roots (thousands), we address the problem as
one of combining several classifiers, each predict-
ing the value of one of the root’s consonants. We
show that when these predictors are combined by
enforcing some fairly simple linguistics constraints,
high accuracy, which compares favorably with hu-
man performance on this task, can be achieved.

1 Introduction

The standard account of word-formation processes
in Semitic languages describes words as combina-
tions of two morphemes: aroot and apattern.1 The
root consists of consonants only, by default three
(although longer roots are known), calledradicals.
The pattern is a combination of vowels and, possi-
bly, consonants too, with ‘slots’ into which the root
consonants can be inserted. Words are created by
interdigitating roots into patterns: the first radical is
inserted into the first consonantal slot of the pattern,
the second radical fills the second slot and the third
fills the last slot. See Shimron (2003) for a survey.

Identifying the root of a given word is an im-
portant task. Although existing morphological an-
alyzers for Hebrew only provide a lexeme (which
is a combination of a root and a pattern), for other
Semitic languages, notably Arabic, the root is an
essential part of any morphological analysis sim-

1An additional morpheme,vocalization, is used to abstract
the pattern further; for the present purposes, this distinction is
irrelevant.

ply because traditional dictionaries are organized by
root, rather than by lexeme. Furthermore, roots are
known to carry some meaning, albeit vague. We be-
lieve that this information can be useful for compu-
tational applications and are currently experiment-
ing with the benefits of using root and pattern infor-
mation for automating the construction of a Word-
Net for Hebrew.

We present a machine learning approach, aug-
mented by limited linguistic knowledge, to the prob-
lem of identifying the roots of Hebrew words. To
the best of our knowledge, this is the first appli-
cation of machine learning to this problem. While
there exist programs which can extract the root of
words in Arabic (Beesley, 1998a; Beesley, 1998b)
and Hebrew (Choueka, 1990), they are all depen-
dent on labor intensive construction of large-scale
lexicons which are components of full-scale mor-
phological analyzers. Note that Tim Bockwalter’s
Arabic morphological analyzer2 only uses “word
stems – rather than root and pattern morphemes – to
identify lexical items. (The information on root and
pattern morphemes could be added to each stem en-
try if this were desired.)” The challenge of our work
is to automate this process, avoiding the bottleneck
of having to laboriously list the root and pattern of
each lexeme in the language, and thereby gain in-
sights that can be used for more detailed morpho-
logical analysis of Semitic languages.

As we show in section 2, identifying roots is a
non-trivial problem even for humans, due to the
complex nature of Hebrew derivational and inflec-
tional morphology and the peculiarities of the He-
brew orthography. From a machine learning per-
spective, this is an interesting test case of interac-
tions among different yet interdependent classifiers.
After presenting the data in section 3, we discuss a
simple, baseline, learning approach (section 4) and
then propose two methods for combining the results
of interdependent classifiers (section 5), one which
is purely statistical and one which incorporates lin-

2http://www.qamus.org/morphology.htm

guistic constraints, demonstrating the improvement
of the hybrid approach. We conclude with sugges-
tions for future research.

2 Linguistic background

In this section we refer to Hebrew only, although
much of the description is valid for other Semitic
languages as well. As an example of root-and-
pattern morphology, consider the Hebrew roots
g.d.l, k.t.b and r.$.m and the patternshaCCaCa,
hitCaCCut and miCCaC, where the ‘C’s indicate
the slots. When the roots combine with these pat-
terns the resulting lexemes arehagdala, hitgadlut,
migdal, haktaba, hitkatbut, miktab, har$ama, hi-
tramut, miram, respectively. After the root com-
bines with the pattern, some morpho-phonological
alternations take place, which may be non-trivial:
for example, thehitCaCCutpattern triggers assimi-
lation when the first consonant of the root ist or d:
thus,d.r.$+hitCaCCutyields hiddar$ut. The same
pattern triggers metathesis when the first radical is
s or $: s.d.r+hitCaCCutyieldshistadrutrather than
the expected*hitsadrut. Semi-vowels such asw or
y in the root are frequently combined with the vow-
els of the pattern, so thatq.w.m+haCCaCayields
haqama, etc. Frequently, root consonants such asw
or y are altogether missing from the resulting form.

These matters are complicated further due to two
sources: first, the standard Hebrew orthography
leaves most of the vowels unspecified. It does not
explicatea ande vowels, does not distinguish be-
tween o and u vowels and leaves many of thei
vowels unspecified. Furthermore, the single letter
w is used both for the vowelso andu and for the
consonantv, whereasi is similarly used both for
the vowelsi and for the consonanty. On top of
that, the script dictates that many particles, includ-
ing four of the most frequent prepositions, the def-
inite article, the coordinating conjunction and some
subordinating conjunctions all attach to the words
which immediately follow them. Thus, a form such
asmhgr can be read as a lexeme (“immigrant”), as
m-hgr “from Hagar”or even asm-h-gr “from the
foreigner”. Note that there is no deterministic way
to tell whether the firstm of the form is part of the
pattern, the root or a prefixing particle (the preposi-
tion m “from”).

The Hebrew script has 22 letters, all of which
can be considered consonants. The number of
tri-consonantal roots is thus theoretically bounded
by 223, although several phonological constraints
limit this number to a much smaller value. For
example, while roots whose second and third radi-
cals are identical abound in Semitic languages, roots

whose first and second radicals are identical are ex-
tremely rare (see McCarthy (1981) for a theoreti-
cal explanation). To estimate the number of roots
in Hebrew we compiled a list of roots from two
sources: a dictionary (Even-Shoshan, 1993) and the
verb paradigm tables of Zdaqa (1974). The union of
these yields a list of 2152 roots.3

While most Hebrew roots are regular, many be-
long toweak paradigms, which means that root con-
sonants undergo changes in some patterns. Exam-
ples includei or n as the first root consonant,w or
i as the second,i as the third and roots whose sec-
ond and third consonants are identical. For example,
consider the patternhCCCh. Regular roots such as
p.s.qyield forms such ashpsqh. However, the irreg-
ular rootsn.p.l, i.c.g, q.w.mandg.n.n in this pattern
yield the seemingly similar formshplh, hcgh, hqmh
andhgnh, respectively. Note that in the first and sec-
ond examples, the first radical (n or i) is missing, in
the third the second radical (w) is omitted and in
the last example one of the two identical radicals is
omitted. Consequently, a form such ashC1C2h can
have any of the rootsn.C1.C2, C1.w.C2, C1.i.C2,
C1.C2.C2 and even, in some cases,i.C1.C2.

While the Hebrew script is highly ambiguous,
ambiguity is somewhat reduced for the task we con-
sider here, as many of the possible lexemes of a
given form share the same root. Still, in order to cor-
rectly identify the root of a given word, context must
be taken into consideration. For example, the form
$mnh has more than a dozen readings, including
the adjective “fat” (feminine singular), which has
the root$.m.n, and the verb “count”, whose root is
m.n.i, preceded by a subordinating conjunction. In
the experiments we describe below we ignore con-
text completely, so our results are handicapped by
design.

3 Data and methodology
We take a machine learning approach to the prob-
lem of determining the root of a given word. For
training and testing, a Hebrew linguist manually
tagged a corpus of 15,000 words (a set of newspa-
per articles). Of these, only 9752 were annotated;
the reason for the gap is that some Hebrew words,
mainly borrowed but also some frequent words such
as prepositions, do not have roots; we further elim-
inated 168 roots with more than three consonants
and were left with 5242 annotated word types, ex-
hibiting 1043 different roots. Table 1 shows the dis-
tribution of word types according to root ambiguity.

3Only tri-consonantal roots are counted. Ornan (2003) men-
tions 3407 roots, whereas the number of roots in Arabic is esti-
mated to be 10,000 (Darwish, 2002).

Number of roots 1 2 3 4
Number of words 4886 335 18 3

Table 1: Root ambiguity in the corpus

Table 2 provides the distribution of the roots of
the 5242 word types in our corpus according to root
type, whereCi is the i-th radical (note that some
roots may belong to more than one group).

Paradigm Number Percentage
C1 = i 414 7.90%
C1 = w 28 0.53%
C1 = n 419 7.99%
C2 = i 297 5.66%
C2 = w 517 9.86%
C3 = h 18 0.19%
C3 = i 677 12.92%
C2 = C3 445 8.49%
Regular 3061 58.41%

Table 2: Distribution of root paradigms

As assurance for statistical reliability, in all the
experiments discussed in the sequel (unless other-
wise mentioned) we performed 10-fold cross valida-
tion runs a for every classification task during evalu-
ation. We also divided the test corpus into two sets:
a development set of 4800 words and aheld-out set
of 442 words. Only the development set was used
for parameter tuning. A givenexample is a word
type with all its (manually tagged) possible roots.
In the experiments we describe below, our system
produces one or more rootcandidates for each ex-
ample. For each example, we definetp as the num-
ber of candidates correctly produced by the system;
fp as the number of candidates which are not cor-
rect roots; andfn as the number of correct roots the
system did not produce. As usual, we definerecall
as tp

tp+fp andprecision as tp
tp+fn ; we then compute

f -measure for each example (withα = 0.5) and
(macro-) average to obtain the system’s overallf -
measure.

To estimate the difficulty of this task, we asked
six human subjects to perform it. Subjects were
asked to identify all the possible roots of all the
words in a list of 200 words (without context), ran-
domly chosen from the test corpus. All subjects
were computer science graduates, native Hebrew
speakers with no linguistic background. The aver-
age precision of humans on this task is 83.52%, and
with recall at 80.27%,f -measure is 81.86%. Two

main reasons for the low performance of humans
are the lack of context and the ambiguity of some of
the weak paradigms.

4 A machine learning approach
To establish a baseline, we first performed two ex-
periments with simple, baseline classifiers. In all the
experiments described in this paper we use SNoW
(Roth, 1998) as the learning environment, withwin-
now as the update rule (usingperceptron yielded
comparable results). SNoW is a multi-class clas-
sifier that is specifically tailored for learning in do-
mains in which the potential number of information
sources (features) taking part in decisions is very
large, of which NLP is a principal example. It works
by learning a sparse network of linear functions
over a pre-defined or incrementally learned feature
space. SNoW has already been used successfully
as the learning vehicle in a large collection of nat-
ural language related tasks, including POS tagging,
shallow parsing, information extraction tasks, etc.,
and compared favorably with other classifiers (Roth,
1998; Punyakanok and Roth, 2001; Florian, 2002).
Typically, SNoW is used as a classifier, and predicts
using a winner-take-all mechanism over the activa-
tion values of the target classes. However, in addi-
tion to the prediction, it provides a reliable confi-
dence level in the prediction, which enables its use
in an inference algorithm that combines predictors
to produce a coherent inference.

4.1 Feature types
All the experiments we describe in this work share
the same features and differ only in the target clas-
sifiers. The features that are used to characterize a
word are both grammatical and statistical:

• Location of letters (e.g., the third letter of the
word isb). We limit word length to 20, thus
obtaining 440 features of this type (recall the
the size of the alphabet is 22).

• Bigrams of letters, independently of their loca-
tion (e.g., the substringgd occurs in the word).
This yields 484 features.

• Prefixes (e.g., the word is prefixed byk$h
“when the”). We have 292 features of this type,
corresponding to 17 prefixes and sequences
thereof.

• Suffixes (e.g., the word ends withim, a plural
suffix). There are 26 such features.

4.2 Direct prediction
In the first of the two experiments, referred to as
Experiment A, we trained a classifier to learn roots

as a single unit. The two obvious drawbacks of
this approach are the large set of targets and the
sparseness of the training data. Of course, defin-
ing a multi-class classification task with 2152 tar-
gets, when only half of them are manifested in the
training corpus, does not leave much hope for ever
learning to identify the missing targets.

In Experiment A, the macro-average precision of
ten-fold cross validation runs of this classification
problem is 45.72%; recall is 44.37%, yielding an
f -score of 45.03%. In order to demonstrate the in-
adequacy of this method, we repeated the same ex-
periment with a different organization of the train-
ing data. We chose 30 roots and collected all their
occurrences in the corpus into a test file. We then
trained the classifier on the remainder of the corpus
and tested on the test file. As expected, the accuracy
was close to 0%,

4.3 Decoupling the problem

In the second experiment, referred to as Experi-
ment B, we separated the problem into three dif-
ferent tasks. We trained three classifiers to learn
each of the root consonants in isolation and then
combined the results in the straight-forward way
(a conjunction of the decisions of the three classi-
fiers). This is still a multi-class classification but
the number of targets in every classification task is
only 22 (the number of letters in the Hebrew al-
phabet) and data sparseness is no longer a problem.
As we show below, each classifier achieves much
better generalization, but the clear limitation of this
method is that it completely ignores interdependen-
cies between different targets: the decision on the
first radical is completely independent of the deci-
sion on the second and the third.

We observed a difference between recognizing
the first and third radicals and recognizing the sec-
ond one, as can be seen in table 3. These results cor-
respond well to our linguistic intuitions: the most
difficult cases for humans are those in which the
second radical isw or i, and those where the second
and the third consonants are identical. Combining
the three classifiers using logical conjunction yields
anf -measure of 52.84%. Here, repeating the same
experiment with the organization of the corpus such
that testing is done on unseen roots yielded 18.1%
accuracy.

To demonstrate the difficulty of the problem, we
conducted yet another experiment. Here, we trained
the system as above but we tested it on different
words whose roots were known to be in the training
set. The results of experiment A here were 46.35%,
whereas experiment B was accurate in 57.66% of

C1 C2 C3 root
Precision: 82.25 72.29 81.85 53.60
Recall: 80.13 70.00 80.51 52.09
f -measure: 81.17 71.13 81.18 52.84

Table 3: Accuracy of SNoW’s identifying the cor-
rect radical

the cases. Evidently, even when testing only on
previously seen roots, both naı̈ve methods are un-
successful (although method A here outperforms
method B).

5 Combining interdependent classifiers

Evidently, simple combination of the results of the
three classifiers leaves much room for improve-
ment. Therefore we explore other ways for com-
bining these results. We can rely on the fact that
SNoW provides insight into the decisions of the
classifiers – it lists not only the selected target, but
rather all candidates, with an associated confidence
measure. Apparently, the correct radical is chosen
among SNoW’s top-n candidates with high accu-
racy, as the data in table 3 reveal.

This observation calls for a different way of com-
bining the results of the classifiers which takes into
account not only the first candidate but also others,
along with their confidence scores.

5.1 HMM combination

We considered several ways, e.g., via HMMs, of ap-
pealing to the sequential nature of the task (C1 fol-
lowed byC2, followed byC3). Not surprisingly, di-
rect applications of HMMs are too weak to provide
satisfactory results, as suggested by the following
discussion. The approach we eventually opted for
combines the predictive power of a classifier to es-
timate more accurate state probabilities.

Given the sequential nature of the data and the
fact that our classifier returns a distribution over
the possible outcomes for each radical, a natural
approach is to combine SNoW’s outcomes via a
Markovian approach. Variations of this approach
are used in the context of several NLP problems,
including POS tagging (Schütze and Singer, 1994),
shallow parsing (Punyakanok and Roth, 2001) and
named entity recognition (Tjong Kim Sang and
De Meulder, 2003).

Formally, we assume that the confidence supplied
by the classifier is the probability of a state (radical,
c) given the observationo (the word),P (c|o). This
information can be used in the HMM framework by

applying Bayes rule to compute

P (o|c) =
P (c|o)P (o)

P (c)
,

whereP (o) and P (c) are the probabilities of ob-
serving o and being atc, respectively. That is,
instead of estimating the observation probability
P (o|c) directly from training data, we compute
it from the classifiers’ output. Omitting details
(see Punyakanok and Roth (2001)), we can now
combine the predictions of the classifiers by finding
the most likely root for a given observation, as

r = argmaxP (c1c2c3|o, θ)

whereθ is a Markov model that, in this case, can
be easily learned from the supervised data. Clearly,
given the short root and the relatively small number
of values ofci that are supported by the outcomes
of SNoW, there is no need to use dynamic program-
ming here and a direct computation is possible.

However, perhaps not surprisingly given the dif-
ficulty of the problem, this model turns out to be too
simplistic. In fact, performance deteriorated. We
conjecture that the static probabilities (the model)
are too biased and cause the system to abandon good
choices obtained from SNoW in favor of worse can-
didates whose global behavior is better.

For example, the root&.b.d was correctly gen-
erated by SNoW as the best candidate for the word
&obdim, but sinceP (C3 = b|C2 = b), which is
0.1, is higher thanP (C3 = d|C2 = b), which is
0.04, the root&.b.b was produced instead. Note that
in the above example the root&.b.b cannot possibly
be the correct root of&obdim since no pattern in
Hebrew contains the letterd, which must therefore
be part of the root. It is this kind of observations that
motivate the addition of linguistic knowledge as a
vehicle for combining the results of the classifiers.
An alternative approach, which we intend to investi-
gate in the future, is the introduction of higher-level
classifiers which take into account interactions be-
tween the radicals (Punyakanok and Roth, 2001).

5.2 Adding linguistic constraints

The experiments discussed in section 4 are com-
pletely devoid of linguistic knowledge. In partic-
ular, experiment B inherently assumes that any se-
quence of three consonants can be the root of a
given word. This is obviously not the case: with
very few exceptions, all radicals must be present in
any inflected form (in fact, onlyw, i, n and in an ex-
ceptional casel can be deleted when roots combine
with patterns). We therefore trained the classifiers

to consider as targets only letters that occurred in
the observed word, plusw, i, n and l, rather than
any of the alphabet letters. The average number of
targets is now 7.2 for the first radical, 5.7 for the
second and 5.2 for the third (compared to 22 each in
the previous setup).

In this model, known as thesequential model
(Even-Zohar and Roth, 2001), SNoW’s perfor-
mance improved slightly, as can be seen in table 4
(compare to table 3). Combining the results in
the straight-forward way yields anf -measure of
58.89%, a small improvement over the 52.84% per-
formance of the basic method. This new result
should be considered baseline. In what follows we
always employ the sequential model for training and
testing the classifiers, using the same constraints.
However, we employ more linguistic knowledge for
a more sophisticated combination of the classifiers.

C1 C2 C3 root
Precision: 83.06 72.52 83.88 59.83
Recall: 80.88 70.20 82.50 57.98
f -measure: 81.96 71.34 83.18 58.89

Table 4: Accuracy of SNoW’s identifying the cor-
rect radical, sequential model

5.3 Combining classifiers using linguistic
knowledge

SNoW provides a ranking on all possible roots. We
now describe the use of linguistic constraints to re-
rank this list. We implemented a function which
uses knowledge pertaining to word-formation pro-
cesses in Hebrew in order to estimate the likeli-
hood of a given candidate being the root of a given
word. The function practically classifies the can-
didate roots into one of three classes: good candi-
dates, which are likely to be the root of the word;
bad candidates, which are highly unlikely; and av-
erage cases.

The decision of the function is based on the ob-
servation that when a root is regular it either occurs
in a word consecutively or with a singlew or i be-
tween any two of its radicals. The scoring func-
tion checks, given a root and a word, whether this
is the case. Furthermore, the suffix of the word, af-
ter matching the root, must be a valid Hebrew suffix
(there is only a small number of such suffixes in He-
brew). If both conditions hold, the scoring function
returns a high value. Then, the function checks if
the root is an unlikely candidate for the given word.
For example, if the root is regular its consonants

must occur in the word in the same order they occur
in the root. If this is not the case, the function re-
turns a low value. We also make use in this function
of our pre-compiled list of roots. A root candidate
which does not occur in the list is assigned the low
score. In all other cases, a middle value is returned.

The actual values that the function returns were
chosen empirically by counting the number of oc-
currences of each class in the training data. For ex-
ample, “good” candidates make up 74.26% of the
data, hence the value the function returns for “good”
roots is set to 0.7426. Similarly, the middle value is
set to 0.2416 and the low – to 0.0155.

As an example, considerhipltm, whose root is
n.p.l (note that the firstn is missing in this form).
Here, the correct candidate will be assigned the mid-
dle score whilep.l.t andl.t.m will score high.

In addition to the scoring function we imple-
mented a simple edit distance function which re-
turns, for a given root and a given word, the inverse
of the edit distance between the two. For exam-
ple, for hipltm, the (correct) rootn.p.l scores1/4
whereasp.l.t scores1/3.

We then run SNoW on the test data and rank the
results of the three classifiersglobally, where the
order is determined by the product of the three dif-
ferent classifiers. This induces an order onroots,
which are combinations of the decisions of three
independent classifiers. Each candidate root is as-
signed three scores: the product of the confidence
measures of the three classifiers; the result of the
scoring function; and the inverse edit distance be-
tween the candidate and the observed word. We
rank the candidates according to the product of
the three scores (i.e., we give each score an equal
weight in the final ranking).

In order to determine which of the candidates to
produce for each example, we experimented with
two methods. First, the system produced the top-i
candidates for a fixed value ofi. The results on the
development set are given in table 5.

i = 1 2 3 4
Precision 82.02 46.17 32.81 25.19
Recall 79.10 87.83 92.93 94.91
f -measure 80.53 60.52 48.50 39.81

Table 5: Performance of the system when producing
top-i candidates.

Obviously, since most words have only one root,
precision drops dramatically when the system pro-
duces more than one candidate. This calls for a bet-
ter threshold, facilitating a non-fixed number of out-

puts for each example. We observed that in the “dif-
ficult” examples, the top ranking candidates are as-
signed close scores, whereas in the easier cases, the
top candidate is usually scored much higher than the
next one. We therefore decided to produce all those
candidates whose scores are not much lower than
the score of the top ranking candidate. The drop
in the score,δ, was determined empirically on the
development set. The results are listed in table 6,
whereδ varies from 0.1 to 1 (δ is actually computed
on the log of the actual score, to avoid underflow).

These results show that choosingδ = 0.4 pro-
duces the highestf -measure. With this value for
δ, results for the held-out data are presented in ta-
ble 7. The results clearly demonstrate the added
benefit of the linguistic knowledge. In fact, our re-
sults are slightly better than average human perfor-
mance, which we recall as well. Interestingly, even
when testing the system on a set of roots which do
not occur in the training corpus (see section 4), we
obtain anf -score of 65.60%. This result demon-
strates the robustness of our method.

Held-out data Humans
Precision: 80.90 83.52
Recall: 88.16 80.27
f -measure: 84.38 81.86

Table 7: Results: performance of the system on
held-out data.

It must be noted that the scoring function alone
is not a function for extracting roots from Hebrew
words. First, it only scores a given root candidate
against a given word, rather than yield a root given a
word. While we could have used it exhaustively on
all possible roots in this case, in a general setting of
a number of classifiers the number of classes might
be too high for this solution to be practical. Sec-
ond, the function only produces three different val-
ues; when given a number of candidate roots it may
return more than one root with the highest score. In
the extreme case, when called with all223 potential
roots, it returns on the average more than 11 can-
didates which score highest (and hence are ranked
equally).

Similarly, the additional linguistic knowledge is
not merelyeliminating illegitimate roots from the
ranking produced by SNoW. Using the linguistic
constraints encoded in the scoring function only
to eliminate roots, while maintaining the ranking
proposed by SNoW, yields much lower accuracy.
Clearly, our linguistically motivated scoring does
more than elimination, and actuallyre-ranks the

δ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision 81.81 80.97 79.9378.86 77.31 75.48 73.71 71.80 69.98 67.90
Recall 81.06 82.74 84.0385.52 86.49 87.61 88.72 89.70 90.59 91.45
f -measure 81.43 81.85 81.9382.06 81.64 81.10 80.52 79.76 78.96 77.93

Table 6: Performance of the system, producing candidates scoring no more thanδ below the top score.

roots. It is only thecombination of the classifiers
with the linguistically motivated scoring function
which boosts the performance on this task.

5.4 Error analysis
Looking at the questionnaires filled in by our sub-
jects (section 3), it is obvious that humans have
problems identifying the correct roots in two gen-
eral cases: when the root paradigm is weak (i.e.,
when the root is irregular) and when the word can be
read in more than way and the subject chooses only
one (presumably, the most prominent one). Our sys-
tem suffers from similar problems: first, its perfor-
mance on the regular paradigms is far superior to its
overall performance; second, it sometimes cannot
distinguish between several roots which are in prin-
ciple possible, but only one of which happens to be
the correct one.

To demonstrate the first point, we evaluated the
performance of the system on a different organiza-
tion of the data. We tested separately words whose
roots are all regular, vs. words all of whose roots are
irregular. We also tested words which have at least
one regular root (mixed). The results are presented
in table 8, and clearly demonstrate the difficulty of
the system on the weak paradigms, compared to al-
most 95% on the easier, regular roots.

Regular Irregular Mixed
Number of words 2598 2019 2781
Precision: 92.79 60.02 92.54
Recall: 96.92 73.45 94.28
f -measure: 94.81 66.06 93.40

Table 8: Error analysis: performance of the system
on different cases.

A more refined analysis reveals differences be-
tween the various weak paradigms. Table 9 listsf -
measure for words whose roots are irregular, classi-
fied by paradigm. As can be seen, the system has
great difficulty in the cases ofC2 = C3 andC3 = i.

Finally, we took a closer look at some of the er-
rors, and in particular at cases where the system pro-
duces several roots where fewer (usually only one)
are correct. Such cases include, for example, the

Paradigm f -measure
C1 = i 70.57
C1 = n 71.97
C2 = i/w 76.33
C3 = i 58.00
C2 = C3 47.42

Table 9: Error analysis: the weak paradigms

word hkwtrt (“the title”), whose root is the regu-
lar k.t.r; but the system produces, in addition, also
w.t.r, mistaking thek to be a prefix. This is the kind
of errors which are most difficult to cope with.

However, in many cases the system’s errors are
relatively easy to overcome. Consider, for example,
the wordhmtndbim(“the volunteers”) whose root is
the irregularn.d.b. Our system produces as many as
five possible roots for this word:n.d.b, i.t.d, d.w.b,
i.h.d, i.d.d. Clearly some of these could be elimi-
nated. For example,i.t.d should not be produced,
because if this were the root, nothing could explain
the presence of theb in the word; i.h.d should be
excluded because of the location of theh. Similar
phenomena abound in the errors the system makes;
they indicate that a more careful design of the scor-
ing function can yield still better results, and this is
the direction we intend to pursue in the future.

6 Conclusions

We have shown that combining machine learning
with limited linguistic knowledge can produce state-
of-the-art results on a difficult morphological task,
the identification of roots of Hebrew words. Our
best result, over 80% precision, was obtained using
simple classifiers for each of the root’s consonants,
and then combining the outputs of the classifiers us-
ing a linguistically motivated, yet extremely coarse
and simplistic, scoring function. This result is com-
parable to average human performance on this task.

This work can be improved in a variety of ways.
We intend to spend more effort on feature engineer-
ing. As is well-known from other learning tasks,
fine-tuning of the feature set can produce additional
accuracy; we expect this to be the case in this task,
too. In particular, introducing features that capture

contextual information is likely to improve the re-
sults. Similarly, our scoring function is simplistic
and we believe that it can be improved. We also in-
tend to improve the edit-distance function such that
the cost of replacing characters reflect phonological
and orthographic constraints (Kruskal, 1999).

In another track, there are various other ways in
which different inter-related classifiers can be com-
bined. Here we only used a simple multiplica-
tion of the three classifiers’ confidence measures,
which is then combined with the linguistically mo-
tivated functions. We intend to investigate more so-
phisticated methods for this combination, including
higher-order machine learning techniques.

Finally, we plan to extend these results to more
complex cases of learning tasks with a large num-
ber of targets, in particular such tasks in which the
targets are structured. We are currently working on
similar experiments for Arabic root extraction. An-
other example is the case of morphological disam-
biguation in languages with non-trivial morphology,
which can be viewed as a POS tagging problem with
a large number of tags on which structure can be im-
posed using the various morphological and morpho-
syntactic features that morphological analyzers pro-
duce. We intend to investigate this problem for He-
brew in the future.

Acknowledgments
This work was supported by The Caesarea Edmond
Benjamin de Rothschild Foundation Institute for In-
terdisciplinary Applications of Computer Science.
Dan Roth is supported by NSF grants CAREER IIS-
9984168, ITR IIS-0085836, and ITR-IIS 00-85980.
We thank Meira Hess and Liron Ashkenazi for an-
notating the corpus and Alon Lavie and Ido Dagan
for useful comments.

References
Ken Beesley. 1998a. Arabic morphological analy-

sis on the internet. InProceedings of the 6th In-
ternational Conference and Exhibition on Multi-
lingual Computing, Cambridge, April.

Kenneth R. Beesley. 1998b. Arabic morphology
using only finite-state operations. In Michael
Rosner, editor,Proceedings of the Workshop
on Computational Approaches to Semitic lan-
guages, pages 50–57, Montreal, Quebec, August.
COLING-ACL’98.

Yaacov Choueka. 1990. MLIM - a system for full,
exact, on-line grammatical analysis of Modern
Hebrew. In Yehuda Eizenberg, editor,Proceed-
ings of the Annual Conference on Computers in
Education, page 63, Tel Aviv, April. In Hebrew.

Kareem Darwish. 2002. Building a shallow Arabic
morphological analyzer in one day. In Mike Ros-
ner and Shuly Wintner, editors,Computational
Approaches to Semitic Languages, an ACL’02
Workshop, pages 47–54, Philadelphia, PA, July.

Abraham Even-Shoshan. 1993.HaMillon HaX-
adash (The New Dictionary). Kiryat Sefer,
Jerusalem. In Hebrew.

Y. Even-Zohar and Dan Roth. 2001. A sequential
model for multi class classification. InEMNLP-
2001, the SIGDAT Conference on Empirical
Methods in Natural Language Processing, pages
10–19.

Radu Florian. 2002. Named entity recognition as a
house of cards: Classifier stacking. InProceed-
ings of CoNLL-2002, pages 175–178. Taiwan.

Joseph Kruskal. 1999. An overview of se-
quence comparison. In David Sankoff and Joseph
Kruskal, editors,Time Warps, String Edits and
Macromolecules: The Theory and Practice of Se-
quence Comparison, pages 1–44. CSLI Publica-
tions, Stanford, CA. Reprint, with a foreword by
John Nerbonne.

John J. McCarthy. 1981. A prosodic theory of non-
concatenative morphology.Linguistic Inquiry,
12(3):373–418.

Uzzi Ornan. 2003.The Final Word. University of
Haifa Press, Haifa, Israel. In Hebrew.

Vasin Punyakanok and Dan Roth. 2001. The use
of classifiers in sequential inference. InNIPS-
13; The 2000 Conference on Advances in Neural
Information Processing Systems 13, pages 995–
1001. MIT Press.

Dan Roth. 1998. Learning to resolve natural lan-
guage ambiguities: A unified approach. InPro-
ceedings of AAAI-98 and IAAI-98, pages 806–
813, Madison, Wisconsin.

H. Schütze and Y. Singer. 1994. Part-of-speech tag-
ging using a variable memory markov model. In
Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics.

Joseph Shimron, editor. 2003.Language Process-
ing and Acquisition in Languages of Semitic,
Root-Based, Morphology. Number 28 in Lan-
guage Acquisition and Language Disorders. John
Benjamins.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recog-
nition. In Walter Daelemans and Miles Osborne,
editors,Proceedings of CoNLL-2003, pages 142–
147. Edmonton, Canada.

Yizxaq Zdaqa. 1974.Luxot HaPoal (The Verb Ta-
bles). Kiryath Sepher, Jerusalem. In Hebrew.

