
Learning Nonstructural Distance Metric
by Minimum Cluster Distortions

Daichi Mochihashi, Genichiro Kikui
ATR Spoken Language Translation

research laboratories
Hikaridai 2-2-2, Keihanna Science City

Kyoto 619-0288, Japan
daichi.mochihashi@atr.jp
genichiro.kikui@atr.jp

Kenji Kita
Center for Advanced Information

Technology, Tokushima University
Minamijosanjima 2-1

Tokushima 770-8506, Japan
kita@is.tokushima-u.ac.jp

Abstract

Much natural language processing still depends on
the Euclidean (cosine) distance function between
two feature vectors, but this has severe problems
with regard to feature weightings and feature cor-
relations. To answer these problems, we propose an
optimal metric distance that can be used as an alter-
native to the cosine distance, thus accommodating
the two problems at the same time. This metric is
optimal in the sense of global quadratic minimiza-
tion, and can be obtained from the clusters in the
training data in a supervised fashion.

We confirmed the effect of the proposed metric
distance by a synonymous sentence retrieval task,
document retrieval task and the K-means clustering
of general vectorial data. The results showed con-
stant improvement over the baseline method of Eu-
clid and tf.idf, and were especially prominent for
the sentence retrieval task, showing a 33% increase
in the 11-point average precision.

1 Introduction

Natural language processing involves many kinds of
linguistic expressions, such as sentences, phrases,
documents and the collection of documents. Com-
paring these expressions based on semantic proxim-
ity is a fundamental task and has many applications.
Generally, two basic approaches exist to compare
two expressions: (a) structural and (b) nonstruc-
tural. Structural approaches make use of syntactic
parsing or dependency analysis to make a rigorous
comparison; nonstructural approaches use vector
representation and provide a rough but fast compar-
ison that is required for search/retrieval from a vast
amount of corpora. While structural approaches
have recently become available in a kernel-based
sophisticated treatment (Collins and Duffy, 2001;
Suzuki et al., 2003), here we concentrate on non-
structural comparison. This is not only because non-
structural comparison constitutes an integral part
in structural methods (that is, even in hierarchi-
cal methods the leaf comparison is still atomic),

but because it is frequently embedded in many ap-
plications where structural parsings are not avail-
able or computationally too expensive. For exam-
ple, information retrieval has long used the ‘bag
of words’ approach (Baeza-Yates and Ribeiro-Neto,
1999; Schütze, 1992) mainly due to a lack of scal-
able segmentation algorithms and the huge amount
of data involved. While segmentation algorithms,
such as TEXTTILING (Hearst, 1994) and its recent
successors using the inter-paragraph similarity ma-
trix (Choi, 2000), all themselves use nonstructural
cosine similarity as a measure of semantic proxim-
ity between paragraphs.

However, the distance function so far has been
largely defined and used ad hoc, usually by a tf.idf
weighting scheme (Salton and Yang, 1973) and a
simple cosine similarity, equivalently, an Euclidean
dot product. In this paper, we propose an optimal
distance function that is parameterized by a global
metric matrix. This metric is optimal in the sense of
global quadratic minimization, and can be learned
from the given clusters in the training data. These
clusters are often attributable with many forms, such
as paragraphs, documents or document collections,
as long as the items in the training data are not com-
pletely independent.

This paper is organized as follows. In section 2
we describe the issue of traditional Euclidean dis-
tances, and section 3 places it into general perspec-
tive with related works in machine learning. Section
4 introduces the proposed metric, and section 5 vali-
dates its effect on the task of sentence retrieval, doc-
ument retrieval and the K-means clustering. Sec-
tions 6 and 7 present discussions and the conclusion.

2 Issues with Euclidean distances
When we address nonstructural matching, linguis-
tic expressions are often modeled by a feature vec-
tor ~x ∈ R

n, with its elements x1 . . . xn correspond-
ing to the number of occurrences of i’th feature. If
features are simply words, this is called a ‘bag of
words’; but in general, features are not restricted to
this kind, and we will use the general term “feature”



in the rest of the paper.
To measure the distance between two vectors

~u,~v, a dot product or Euclidean distance

d(~u,~v)2 = (~u − ~v)T (~u − ~v) (1)

=
∑n

i=1(ui − vi)
2

(where T denotes a transposition) has been em-
ployed so far 1, with a heuristic feature weighting
such as tf.idf in a preprocessing stage.

However, there are two main problems with this
distance:

(1) The correlation between features is ignored.
(2) Feature weighting is inevitably arbitrary.

Problem (1) is especially important in languages,
because linguistic features (e.g., words) generally
have strong correlations between them, such as col-
locations or typical constructions. But this correla-
tion cannot be considered in a simple dot product.
While it is possible to address this with a specific
kernel function, such as polynomials (Müller et al.,
2001), this is not available for many problems, such
as information retrieval or question answering, that
do not fit classifications or cannot be easily “kernel-
ized”. Problem (2) is a more subtle but inherent one:
while tf.idf often works properly in practice, there
are several options, especially in tf such as logs or
square roots, but we have no principle with which
to choose from. Further, it has no theoretical basis
that gives any optimality as a distance function.

3 Related Works
The issues above of feature correlations and fea-
ture weightings can be summarized as a problem of
defining an appropriate metric in the feature space,
based on the distribution of data. This problem has
recently been highlighted in the field of machine
learning research. (Xing et al., 2002) has an ob-
jective that is quite similar to that of this paper, and
gives a metric matrix that resembles ours based on
sample pairs of “similar points” as training data.
(Bach and Jordan, 2004) and (Schultz and Joachims,
2004) seek to answer the same problem with an ad-
ditional scenario of spectral clustering and relative
comparisons in Support Vector Machines, respec-
tively. In this aspect, our work is a straight succes-
sor of (Xing et al., 2002) where its general usage
in vector space is preserved. We offer a discussion
on the similarity to our method and our advantages

1When we normalize the length of the vectors |~u| = |~v| = 1
as commonly adopted, (~u − ~v)T (~u − ~v) = |~u|2 + |~v|2 − 2~u ·
~v ∝ −~u · ~v = − cos(~u,~v) ; therefore, this includes a cosine
similarity (Manning and Sch ütze, 1999).

in section 6. Finally, we note that the Fisher ker-
nel of (Jaakkola and Haussler, 1999) has the same
concept that gives an appropriate similarity of two
data through the Fisher information matrix obtained
from the empirical distribution of data. However, it
is often approximated by a unit matrix because of
its heavy computational demand.

In the field of information retrieval, (Jiang and
Berry, 1998) proposes a Riemannian SVD (R-SVD)
from the viewpoint of relevance feedback. This
work is close in spirit to our work, but is not aimed
at defining a permanent distance function and does
not utilize cluster structures existent in the training
data.

4 Defining an Optimal Metric
To solve the problems in section 2, we note the func-
tion that synonymous clusters play. There are many
levels of (more or less) synonymous clusters in lin-
guistic data: phrases, sentences, paragraphs, docu-
ments, and, in a web environment, the site that con-
tains the document. These kinds of clusters can of-
ten be attributed to linguistic expressions because
they nest in general so that each expression has a
parent cluster.

Since these clusters are synonymous, we can ex-
pect the vectors in each cluster to concentrate in the
ideal feature space. Based on this property, we can
introduce an optimal weighting and correlation in a
supervised fashion. We will describe this method
below.

4.1 The Basic Idea

As stated above, vectors in the same cluster must
have a small distance between each other in the ideal
geometry. When we measure an L2-distance be-
tween ~u and ~v by a Mahalanobis distance param-
eterized by M :

dM (~u,~v)2 = (~u − ~v)T M(~u − ~v) (2)

=
∑n

i=1

∑n
j=1 mij(ui − vi)(uj − vj),

where symmetric metric matrix M gives both cor-
responding feature weights and feature correlations.
When we take M = I (unit matrix), we recover the
original Euclidean distance (1).

Equation (2) can be rewritten as (3) because M is
symmetric:

dM (~u,~v)2 = (M1/2(~u−~v))T (M1/2(~u−~v)). (3)

Therefore, this distance amounts to a Euclidean dis-
tance in M 1/2-mapped space (Xing et al., 2002).

Note that this distance is global, and different
from the ordinary Mahalanobis distance in pattern



recognition (for example, (Duda et al., 2000)) that is
defined for each cluster one by one, using a cluster-
specific covariance matrix. That type of distance
cannot be generalized to new kinds of data; there-
fore, it has been used for local classifications. What
we want is a global distance metric that is generally
useful, not a measure for classification to predefined
clusters. In this respect, (Xing et al., 2002) shares
the same objective as ours.

Therefore, we require an optimization over all the
clusters in the training data. Generally, data in the
clusters are distributed as in figure 1(a), comprising
ellipsoidal forms that have high (co)variances for
some dimensions and low (co)variances for other di-
mensions. Further, the cluster is not usually aligned
to the axes of coordinates. When we find a global
metric matrix M that minimizes the cluster distor-
tions, namely, one that reduces high variances and
expands low variances for the data to make a spher-
ical form as good as possible in the M 1/2-mapped
space (figure 1(b)), we can expect it to capture nec-
essary and unnecessary variations and correlations
on the features, combining information from many
clusters to produce a more reliable metric that is not
locally optimal. We will find this optimal M below.

xn
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x2
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variance

High
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(a) Original space

x1

x2

xn

(b) Mapped space

Figure 1: Geometry of feature space.

4.2 Global optimization over clusters

Suppose that each data (for example, sentences or
documents) is a vector ~s ∈ R

n, and the whole cor-
pus can be divided into N clusters, X1 . . . XN . That
is, each vector has a dimension n, and the number of
clusters is N . For each cluster Xi, cluster centroid
ci is calculated as ~ci = 1/|Xi|

∑

~s∈Xi
~s , where |X|

denotes the number of data in X . When necessary,
each element in ~sj or ~ci is referenced as sjk or cik

(k = 1 . . . n).

The basic idea above is formulated as follows.
We seek the metric matrix M that minimizes the
distance between each data ~sj and the cluster cen-
troid ~ci, dM (~sj ,~ci) for all clusters X1 . . . XN .
Mathematically, this is formulated as a quadratic

minimization problem

M = arg min
M

N
∑

i=1

∑

~sj∈Xi

dM (~sj,~ci)
2

= arg min
M

N
∑

i=1

∑

~sj∈Xi

(~sj − ~ci)
T M(~sj − ~ci) (4)

under a scale constraint (| · | means determinant)

|M | = 1. (5)

Scale constraint (5) is necessary for excluding a
degenerate solution M = O. 1 is an arbitrary con-
stant: when we replace 1 by c, c2M becomes a new
solution. This minimization problem is an exten-
sion to the method of MindReader (Ishikawa et al.,
1998) to multiple clusters, and has a unique solution
below.
Theorem The matrix that solves the minimization
problem (4,5) is

M = |A|1/nA−1, (6)

where A = [akl] is defined by

akl =
N

∑

i=1

∑

sj∈Xi

(sjl − cil)(sjk − cik) . (7)

Proof: See Appendix A.
When A is singular, we can use as A−1 a Moore-

Penrose matrix pseudoinverse A+. Generally, A
consists of linguistic features and is very sparse, and
often singular. Therefore, A+ is nearly always nec-
essary for the above computation. For details, see
Appendix B.

4.3 Generalization
While we assumed through the above construction
that each cluster is equally important, this is not
the case in general. For example, clusters with a
small number of data may be considered weak, and
in the hierarchical clustering situation, a “grand-
mother” cluster may be weaker. If we have con-
fidences ξ1 . . . ξN for the strength of clustering for
each cluster X1 . . . XN , this information can be in-
corporated into (4) by a set of normalized cluster
weights ξ∗i :

M = arg min
M

N
∑

i=1

ξ∗i
∑

~sj∈Xi

(~sj − ~ci)
T M(~sj − ~ci),

where ξ∗i = ξi/
∑N

j=1 ξj , and we obtain a respec-
tively weighted solution in (7). Further, we note that
when N = 1, this metric recovers the ordinary Ma-
halanobis distance in pattern recognition. However,
we used equal weights for the experiments below
because the number of data in each cluster was ap-
proximately equal.



5 Experiments
We evaluated our metric distance on the three tasks
of synonymous sentence retrieval, document re-
trieval, and the K-means clustering of general vec-
torial data. After calculating M on the training data
of clusters, we applied it to the test data to see how
well its clusters could be recovered. As a measure of
cluster recovery, we use 11-point average precision
and R-precision for the distribution of items of the
same cluster in each retrieval result. Here, R equals
the cardinality of the cluster; therefore, R-precision
shows the precision of cluster recovery.

5.1 Synonymous sentence retrieval

5.1.1 Sentence cluster corpus
We used a paraphrasing corpus of travel conversa-
tions (Sugaya et al., 2002) for sentence retrieval.
This corpus consists of 33,723,164 Japanese trans-
lations, each of which corresponds to one of the
original English sentences. By way of this cor-
respondence, Japanese sentences are divided into
10,610 clusters. Therefore, each cluster consists
of Japanese sentences that are possible translations
from the same English seed sentence that the clus-
ter has. From this corpus, we constructed 10 sets
of data. Each set contains random selection of 200
training clusters and 50 test clusters, and each clus-
ter contains a maximum of 100 sentences 2. Ex-
periments were conducted on these 10 datasets for
each level of dimensionality reduction (see below)
to produce average statistics.

5.1.2 Features and dimensionality reduction
As a feature of a sentence, we adopted unigrams of
all words and bigrams of functional words from the
part-of-speech tags, because the sequence of func-
tional words is important in the conversational cor-
pus.

While the lexicon is limited for travel conversa-
tions, the number of features exceeds several thou-
sand or more. This may be prohibitive for the calcu-
lation of the metric matrix, therefore, we addition-
ally compressed the features with SVD, the same
method used in Latent Semantic Indexing (Deer-
wester et al., 1990).

5.1.3 Sentence retrieval results
Qualitative result Figure 5 (last page) shows a sam-
ple retrieval result. A sentence with (*) mark at
the end is the correct answer, that is, a sentence
from the same original cluster as the query. We can
see that the results with the metric distance contain

2When the number of data in the cluster exceeds this limit,
100 sentences are randomly sampled. All sampling are made
without replacement.

less noise than a standard Euclid baseline with tf.idf
weighting, achieving a high-precision retrieval. Al-
though the high rate of dimensionality reduction in
figure 6 shows degradation due to the dimension
contamination, the effect of metric distance is still
apparent despite bad conditions.
Quantitative result Figure 2 shows the averaged
precision-recall curves of retrieval and figure 3
shows 11-point average precisions, for each rate
of dimensionality reduction. Clearly, our method
achieves higher precision than the standard method,
and does not degrade much with feature compres-
sions unless we reduce the dimension too much, i.e.,
to < 5%.
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Figure 2: Precision-recall of sentence retrieval.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on

Dimension Reduction(%)

Metric distance +idf
Euclidean distance +idf

Figure 3: 11-point average precision.

5.2 Document retrieval

As a method of tackling clusters of texts, the text
classification task has recently made great advances
with a Naı̈ve Bayes or SVM classifiers (for exam-
ple, (Joachims, 1998)). However, they all aim at
classifying texts into a few predefined clusters, and
cannot deal with a document that fits neither of the
clusters. For example, when we regard a website as
a cluster of documents, the possible clusters are nu-
merous and constantly increasing, which precludes
classificatory approaches. For these circumstances,
document clustering or retrieval will benefit from a
global distance metric that exploits the multitude of
cluster structures themselves.

5.2.1 Newsgroup text dataset
For this purpose, we used the 20-Newsgroup dataset
(Lang, 1995). This is a standard text classification
dataset that has a relatively large number of classes,



20. Among the 20 newsgroups, we selected 16 clus-
ters of training data and 4 clusters of test data, and
performed 5-fold cross validation. The maximum
number of documents per cluster is 100, and when
it exceeds this limit, we made a random sampling of
100 documents as the sentence retrieval experiment.

Because our proposed metric is calculated from
the distribution of vectors in high-dimensional fea-
ture space, it becomes inappropriate if the norm
of the vectors (largely proportional to document
length) differs much from document to document.
3 Therefore, we used subsampling/oversampling to
form a median length (130 words) on training docu-
ments. Further, we preprocessed them with tf.idf as
a baseline method.

5.2.2 Results
Table 1 shows R-precision and 11-point average
precision. Since the test data contains 4 clusters,
the baselines of precision are 0.25. We can see from
both results that metric distance produces a better
retrieval over the tf.idf and dot product. However,
refinements in precision are certain (average p =
0.0243) but subtle.

This can be thought of as the effect of the dimen-
sionality reduction performed. We first decompose
data matrix X by SVD: X = USV −1 and build
a k-dimensional compressed representation Xk =
VkX; where Vk denotes a k-largest submatrix of V .
From the equation (3), this means a Euclidean dis-
tance of M 1/2Xk = M1/2VkX . Therefore, Vk may
subsume the effect of M in a preprocessing stage.
Close inspection of table 1 shows this effect as a
tradeoff between M and Vk. To make the most of
metric distance, we should consider metric induc-
tion and dimensionality reduction simultaneously,
or reconsider the problem in kernel Hilbert space.

Dim. R-precision 11-pt Avr. Prec.
Red. Metric Euclid Metric Euclid
0.5% 0.421 0.399 0.476 0.455

1% 0.388 0.368 0.450 0.430
2% 0.359 0.343 0.425 0.409
3% 0.344 0.330 0.411 0.399
4% 0.335 0.323 0.402 0.392
5% 0.329 0.318 0.397 0.388

10% 0.316 0.307 0.379 0.376
20% 0.343 0.297 0.397 0.365

Table 1: Newsgroup text retrieval results.
3Normalizing documents to unit length effectively maps

them to a high-dimensional hypersphere; this proved to pro-
duce an unsatisfactory result. Defining metrics that work on
a hypersphere like spherical K-means (Dhillon and Modha,
2001) requires further research.

5.3 K-means clustering and general vectorial
data

Metric distance can also be used for clustering or
general vectorial data. Figure 4 shows the K-means
clustering result of applying our metric distance to
some of the UCI Machine Learning datasets (Blake
and Merz, 1998). K-means clustering was con-
ducted 100 times with a random start, where K
equals the known number of classes in the data 4.
Clustering precision was measured as an average
probability that a randomly picked pair of data will
conform to the true clustering (Xing et al., 2002).

We also conducted the same clustering for doc-
uments of the 20-Newsgroup dataset to get a small
increase in precision like the document retrieval ex-
periment in section 5.2.
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Figure 4: K-means clustering of UCI Machine
Learning dataset results. The horizontal axis shows
compressed dimensions (rightmost is original). The
right bar shows clustering precision using Metric
distance, and the left bar shows that using Euclidean
distance.

6 Discussion

In this paper, we proposed an optimal distance met-
ric based on the idea of minimum cluster distortion
in training data. Although vector distances have fre-
quently been used in natural language processing,
this is a rather neglected but recently highlighted
problem. Unlike recently proposed methods with
spectral methods or SVMs, our method assumes no
such additional scenarios and can be considered as

4Because of the small size of the dataset, we did not apply
cross-validation as in other experiments.



a straight successor to (Xing et al., 2002)’s work.
Their work has the same perspective as ours, and
they calculate a metric matrix A that is similar to
ours based on a set S of vector pairs (~xi, ~xj) that can
be regarded as similar. They report that the effec-
tiveness of A increases as the number of the training
pairs S increases; this requires O(n2) sample points
from n training data, and must be optimized by a
computationally expensive Newton-Raphson itera-
tion. On the other hand, our method uses only linear
algebra, and can induce an ideal metric using all the
training data at the same time. We believe this met-
ric can be useful for many vector-based language
processing methods that have used cosine similar-
ity.

There remains some future directions for re-
search. First, as we stated in section 4.3, the effect
of a cluster weighted generalized metric must be in-
vestigated and optimal weighting must be induced.
Second, as noted in section 5.2.1, the dimensional-
ity reduction required for linguistic data may con-
strain the performance of the metric distance. To
alleviate this problem, simultaneous dimensionality
reduction and metric induction may be necessary, or
the same idea in a kernel-based approach is worth
considering. The latter obviates the problem of di-
mensionality, while it restricts the usage to a situa-
tion where the kernel-based approach is available.

7 Conclusion

We proposed a global metric distance that is use-
ful for clustering or retrieval where Euclidean dis-
tance has been used. This distance is optimal in the
sense of quadratic minimization over all the clus-
ters in the training data. Experiments on sentence
retrieval, document retrieval and K-means cluster-
ing all showed improvements over Euclidean dis-
tance, with a significant refinement with tight train-
ing clusters in sentence retrieval.
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Appendix A.
Derivation of the metric matrix

Here we prove theorem 1, namely deriving M that
satisfies the condition

min
M

n
∑

i=1

∑

~sj∈Xi

(~sj − ~ci)
T M(~sj − ~ci) , (8)

under the constraint

|M | = 1. (9)

Expanding (8), we get

∑

i

∑

~sj

[

n
∑

k=1

n
∑

l=1

(sjk − cik)mkl(sjl − cil)

]

, (10)

and from (9), for all k

n
∑

l=1

(−1)k+lmkl|Mkl| = 1 .

Therefore

n
∑

k=1

n
∑

l=1

(−1)k+lmkl|Mkl| = n, (11)

where Mkl denotes an adjugate matrix of mkl.
Therefore, we come to minimize (10) under the

constraint (11).

By introducing the Lagrange multiplier λ, we de-
fine

L =
N

∑

i=1

∑

~sj

[

∑

k

∑

l

(sjk − cik)mkl(sjl − cil)

]

−λ

[

∑

k

∑

l

(−1)k+lmkl|Mkl| − n

]

.

Differentiating by mkl and setting to zero, we obtain

∂L

∂mkl
=

∑

i

∑

~sj

(sjk − cik)(sjl − cil)

− λ(−1)k+l|Mkl| = 0

⇔ |Mkl| =

∑

i

∑

~sj
(sjk − cik)(sjl − cil)

λ(−1)k+l
. (12)

Let us define M−1 = [m−1

kl ]. Then,

m−1

kl =
(−1)k+l|Mkl|

|M |

= (−1)k+l|Mkl| (... (9))

=

∑

i

∑

~sj
(sjk − cik)(sjl − cil)

λ
(13)

(... (12))

Therefore, when we define

A = [akl] (14)

as
akl =

N
∑

i=1

∑

~sj∈Xi

(sjl − cil)(sjk − cik) , (15)

from (13),

A = λM−1

... |A| = λn|M−1| = λn

... λ = |A|1/n ,

where A is defined by (14), (15).



Appendix B.
Moore-Penrose Matrix Pseudoinverse
The Moore-Penrose matrix pseudoinverse A+ of A
is a unique matrix that has a property of normal in-
verse in that x = A+y is a shortest length least
squares solution to Ax = y even if A is singular
(Weisstein, 2004).

A+ can be calculated simply by a MATLAB
function pinv. Or alternatively (Ishikawa et al.,
1998), we can decompose A as

A = UΣUT ,

where U is an orthonormal n × n matrix and Σ =
diag(σ1, . . . , σR, 0, . . . , 0) (R = rank(A)). Then,
A+ is calculated as

A+ = UΣ+UT ,

where Σ+ = diag(1/σ1, . . . , 1/σR, 0, . . . , 0).
Therefore,

M = (σ1σ2 · · · σR)1/RA+.

Query: “
���������
	��
���

”
(‘How much is the total?’)

Metric distance:
distance synonymous sentence
0.2712 ��������������������� *
0.3444 �! 
"#�������%$%�
0.3444 &�'%(
"��)���*�#$��
0.369 +%,� -"��)���*�#$��
0.4377 �����������*�/.
�102$�� *
0.4479 �����������*�/.
�102$����/����� *
0.4505 3�4
���������%$%� *
0.4558 �����������65%7�8902$�� *
0.4602 �����������65%7�8902$����/����� *
0.4682 �����������65%7�:2���/�%�;� *
0.4729 �������������20!$�� *
0.4851 �������������20!$����/�%�;� *

Euclidean distance:
distance synonymous sentence
0.1732 3�4
���������%$%� *
1.781 �����%<��)���*�#$�� *
1.902 =%>�?�@�A/��$��
1.966 �! 
"#�������%$%�
1.966 &�'%(
"��)���*�#$��
1.974 +%,� -"��)���*�#$��
1.983 3�4
�%<��)���*�#$�� *
2.283 B�C/7!D�EF��$��
2.505 B�C/7!G�HF��$��
2.65 <JI%K��%$��
2.729 L%M
��N�O%P
�9Q)�;RFS1�
2.749 =%>�?�@�A/��$�T

(* denotes the right answers.)

Figure 5: Sentence retrieval example.

Query: “ UFV�WYX6Z�[]\_^ �9`�a
�
�_b�c-d�� ”
(‘I’d like some fruit for dessert.’)

Metric distance:
distance synonymous sentence
0.3531 e/f�g�h1$ji;5��lk/7%�����/�����
0.3709 mJn
ojp!q��*Q�r�s�h��tk
01$�� *
0.596 e/f�g�h1$ji;5��lku01v�C��
0.6104 w%x�h!$yi;5z�{kF01$��
0.621 w%x�h!$yi;5z�{kF01$��������;�
0.6255 <1|�}%g�h!$ji�5��tk
01$��
0.6295 w%x�h!$yi;5z�{kF0!v/C%���/�����
0.6343 <1|�}%g�h!$ji�5��tk
0!v/C%�
0.6685 w%x�h!$yi;5z�{k�7��%��$��
0.7966 mJn
ojp{5%"~r�s]h]�{k/7%����$�� *

Euclidean distance:
distance synonymous sentence
1.036 e/f�g�h1$ji;5��lk/7%�����/�����
1.421 �z��"JC
h�4��
59�uC��
���*��7%�����������
1.491 �J�2�F��o/h!�#K#���{k/7%�����������
1.499 �J�2�F��o/h!���)�tk�7��%���/�%�;�
1.535 ��h��tk�7������������
1.622 �%��h�4��-56�
C��
���*��7������/�#���
1.622 �%��h�4��-56�
C��
���*��7������/�#���
: :
2.787 mJn
ojp!q��*Q����2r�s�h��tk/7%����������� *
2.854 �2�/��h��-���{59�%���;RFSF�97%�����������

Figure 6: High rate of dimensionality reduction.


