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Abstract

In this paper, we explore the use of Random Forests
(RFs) (Amit and Geman, 1997; Breiman, 2001) in
language modeling, the problem of predicting the
next word based on words already seen before. The
goal in this work is to develop a new language mod-
eling approach based on randomly grown Decision
Trees (DTs) and apply it to automatic speech recog-
nition. We study our RF approach in the context
of n-gram type language modeling. Unlike regu-
lar n-gram language models, RF language models
have the potential to generalize well to unseen data,
even when a complicated history is used. We show
that our RF language models are superior to regular
n-gram language models in reducing both the per-
plexity (PPL) and word error rate (WER) in a large
vocabulary speech recognition system.

1 Introduction

In many systems dealing with natural speech or lan-
guage, such as Automatic Speech Recognition and
Statistical Machine Translation, a language model
is a crucial component for searching in the often
prohibitively large hypothesis space. Most state-of-
the-art systems use n-gram language models, which
are simple and effective most of the time. Many
smoothing techniques that improve language model
probability estimation have been proposed and stud-
ied in the n-gram literature (Chen and Goodman,
1998). There has also been work in exploring Deci-
sion Tree (DT) language models (Bahl et al., 1989;
Potamianos and Jelinek, 1998), which attempt to
cluster similar histories together to achieve better
probability estimation. However, the results were
not promising (Potamianos and Jelinek, 1998): in
a fair comparison, decision tree language models
failed to improve upon the baseline n-gram models
with the same order n.

The aim of DT language models is to alleviate
the data sparseness problem encountered in n-gram
language models. However, the cause of the neg-
ative results is exactly the same: data sparseness,

coupled with the fact that the DT construction al-
gorithms decide on tree splits solely on the basis
of seen data (Potamianos and Jelinek, 1998). Al-
though various smoothing techniques were studied
in the context of DT language models, none of them
resulted in significant improvements over n-gram
models.

Recently, a neural network based language mod-
eling approach has been applied to trigram lan-
guage models to deal with the curse of dimension-
ality (Bengio et al., 2001; Schwenk and Gauvain,
2002). Significant improvements in both perplex-
ity (PPL) and word error rate (WER) over backoff
smoothing were reported after interpolating the neu-
ral network models with the baseline backoff mod-
els. However, the neural network models rely on
interpolation with n-gram models, and use n-gram
models exclusively for low frequency words. We
believe improvements in n-gram models should also
improve the performance of neural network models.

We propose a new Random Forest (RF) approach
for language modeling. The idea of using RFs for
language modeling comes from the recent success
of RFs in classification and regression (Amit and
Geman, 1997; Breiman, 2001; Ho, 1998). By defi-
nition, RFs are collections of Decision Trees (DTs)
that have been constructed randomly. Therefore, we
also propose a new DT language model which can
be randomized to construct RFs efficiently. Once
constructed, the RFs function as a randomized his-
tory clustering which can help in dealing with the
data sparseness problem. Although they do not per-
form well on unseen test data individually, the col-
lective contribution of all DTs makes the RFs gen-
eralize well to unseen data. We show that our RF
approach for n-gram language modeling can result
in a significant improvement in both PPL and WER
in a large vocabulary speech recognition system.

The paper is organized as follows: In Section 2,
we review the basics about language modeling and
smoothing. In Section 3, we briefly review DT
based language models and describe our new DT
and RF approach for language modeling. In Sec-



tion 4, we show the performance of our RF based
language models as measured by both PPL and
WER. After some discussion and analysis, we fi-
nally summarize our work and propose some future
directions in Section 5.

2 Basic Language Modeling

The purpose of a language model is to estimate the
probability of a word string. Let W denote a string
of N words, that is, W = w1, ws,...,wy. Then,
by the chain rule of probability, we have

P(W):P(wl)XHZN:2 P(wi\wl,...,wi_l). (1)

In order to estimate the probabilities
P(w;|wy,...,w;—1), we need a training corpus
consisting of a large number of words. However,
in any practical natural language system with even
a moderate vocabulary size, it is clear that as ¢
increases the accuracy of the estimated probabilities
collapses. Therefore, histories w1,...,w;_1 for
word w; are usually grouped into equivalence
classes. The most widely used language models,
n-gram language models, use the identities of the

last n — 1 words as equivalence classes. In an
n-gram model, we then have
P(W):P(wl)XH?LQ P(wi‘wzirlwl)s (2)

where we have used w;”, ., to denote the word se-
quence w;—p41y. .., Wi—1-

The maximum likelihood (ML) estimate of
P(wi|wg:711+1) is

. C(wh_ )
P(wi|w;_;+1):M (3)

Cwipyy)
where C(w!_, ) is the number of times the string
Wi—n+t1,---,w; IS Seen in the training data.

2.1 Language Maodd Smoothing

An n-gram model when n = 3 is called a trigram
model. For avocabulary of size |V| = 10*, there are
|V|> = 10'2 trigram probabilities to be estimated.
For any training data of a manageable size, many of
the probabilities will be zero if the ML estimate is
used.

In order to solve this problem, many smoothing
techniques have been studied (see (Chen and Good-
man, 1998) and the references therein). Smooth-
ing adjusts the ML estimates to produce more ac-
curate probabilities and to assign nonzero prob-
abilies to any word string. Details about vari-
ous smoothing techniques will not be presented in
this paper, but we will outline a particular way

of smoothing, namely, interpolated Kneser-Ney
smoothing (Kneser and Ney, 1995), for later refer-
ence.

The interpolated Kneser-Ney smoothing assumes
the following form:

i—1 _mam(C(wZ-'7 1)—D,0)
P (wilw;Z, 1) = c Tt
(Wi pt1) 4

i—1 i—1
+)‘(w§7n+1)PKN (wl ‘w§7n+2)

where D is a discounting constant and A(w_; . ;)
is the interpolation weight for the lower order prob-
abilities ((n — 1)-gram). The discount constant is
often estimated using leave-one-out, leading to the
approximation D = mT?nz' where n; is the num-
ber of n-grams with count one and n is the number
of n-grams with count two. To ensure that the prob-
abilities sum to one, we have

; 1
Ewi:C(w%_n_i_l)>0

i—1
c(wi—n+1)

AwiZp )=

The lower order probabilities in interpolated
Kneser-Ney smoothing can be estimated as (assum-
ing ML estimation):

Py C(wh 1

. . :C(w!_ )>0
PKN(wi‘wg—iH—?):E Wi—n+1 w, vn+1 - (5)
wi_n+1,wi:c(w;1_n+1)>0

Note that the lower order probabilities are usually
smoothed using recursions similar to Equation 4.

2.2 Language Modd Evalution

A commonly used task-independent quality mea-
sure for a given language model is related to the
cross entropy of the underlying model and was in-
troduced under the name of perplexity (PPL) (Je-
linek, 1997):

PPL=exp(—1/N . log [P(w;|wi™)]), (6)

where w1, . .., wy is the test text that consists of N
words.

For different tasks, there are different task-
dependent quality measures of language models.
For example, in an automatic speech recognition
system, the performance is usually measured by
word error rate (WER).

3 Decision Tree and Random Forest
L anguage M odeling

Although Random Forests (RFs) (Amit and Geman,
1997; Breiman, 2001; Ho, 1998) are quite success-
ful in classification and regression tasks, to the best
of our knowledge, there has been no research in us-
ing RFs for language modeling. By definition, an



RF is a collection of randomly constructed Deci-
sion Trees (DTs) (Breiman et al., 1984). Therefore,
in order to use RFs for language modeling, we first
need to construct DT language models.

3.1 Decision Tree Language Modeling

In an n-gram language model, a word sequence
Wi—n+1,---,wi—1 IS called a history for predicting
w;. A DT language model uses a decision tree to
classify all histories into equivalence classes and
each history in the same equivalence class shares
the same distribution over the predicted words. The
idea of DTs has been very appealing in language
modeling because it provides a natural way to deal
with the data sparseness problem. Based on statis-
tics from some training data, a DT is usually grown
until certain criteria are satisfied. Heldout data can
be used as part of the stopping criterion to determine
the size of a DT.

There have been studies of DT language mod-
els in the literature. Most of the studies focused
on improving n-gram language models by adopt-
ing various smoothing techniques in growing and
using DTs (Bahl et al., 1989; Potamianos and Je-
linek, 1998). However, the results were not satisfac-
tory. DT language models performed similarly to
traditional n-gram models and only slightly better
when combined with n-gram models through lin-
ear interpolation. Furthermore, no study has been
done taking advantage of the “best” stand-alone
smoothing technique, namely, interpolated Kneser-
Ney smoothing (Chen and Goodman, 1998).

The main reason why DT language models
are not successful is that algorithms constructing
DTs suffer certain fundamental flaws by nature:
training data fragmentation and the absence of a
theoretically-founded stopping criterion. The data
fragmentation problem is severe in DT language
modeling because the number of histories is very
large (Jelinek, 1997). Furthermore, DT growing al-
gorithms are greedy and early termination can oc-
cur.

3.1.1 Our DT Growing Algorithm

In recognition of the success of Kneser-Ney (KN)
back-off for n-gram language modeling (Kneser
and Ney, 1995; Chen and Goodman, 1998), we use
a new DT growing procedure to take advantage of
KN smoothing. At the same time, we also want to
deal with the early termination problem. In our pro-
cedure, training data is used to grow a DT until the
maximum possible depth, heldout data is then used
to prune the DT similarly as in CART (Breiman et
al., 1984), and KN smoothing is used in the pruning.

A DT is grown through a sequence of node split-

ting. A node consists of a set of histories and a node
splitting splits the set of histories into two subsets
based on statistics from the training data. Initially,
we put all histories into one node, that is, into the
root and the only leaf of a DT. At each stage, one
of the leaves of the DT is chosen for splitting. New
nodes are marked as leaves of the tree. Since our
splitting criterion is to maximize the log-likelihood
of the training data, each split uses only statistics
(from training data) associated with the node under
consideration. Smoothing is not needed in the split-
ting and we can use a fast exchange algorithm (Mar-
tin et al., 1998) to accomplish the task. This can
save the computation time relative to the Chou al-
gorithm (Chou, 1991) described in Jelinek,1998 (Je-
linek, 1997).

Let us assume that we have a DT node p under
consideration for splitting. Denote by h(p) the set of
all histories seen in the training data that can reach
node p. In the context of n-gram type of modeling,
there are n — 1 items in each history. A position
in the history is the distance between a word in the
history and the predicted word. We only consider
splits that concern a particular position in the his-
tory. Given a position 7 in the history, we can define
Bi(v) to be the set of histories belonging to p, such
that they all have word v at position ¢. It is clear
that h(p) = U, B;(v) for every position ¢ in the his-
tory. For every 4, our algorithm uses 3;(-) as basic
elements to construct two subsets, £; and R;%, to
form the basis of a possible split. Therefore, a node
contains two questions about a history: (1) Is the
history in £;? and (2) Is the history in R;? If a his-
tory has an answer “yes” to (1), it will proceed to the
left child of the node. Similarly, if it has an answer
“yes” to (2), it will proceed to the right child. If the
answers to both questions are “no”, the history will
not proceed further.

For simplicity, we omit the subscript 4 in later dis-
cussion since we always consider one position at a
time. Initially, we split h(p) into two non-empty
disjoint subsets, £ and R, using the elements 3(-).
Let us denote the log-likelihood of the training data
associated with p under the split as L(L). If we use
the ML estimates for probabilities, we will have

L(L) =X, [C(w,ﬁ)log CC(,“E’L’:? +C(w,R)log C((‘?’;g) ]

=3 [C(w,L)logC(w,L£)+C(w,R)logC(w,R)]  (7)
—C(L)logC(L)—C(R)logC(R)

where C(w, -) is the count of word w following all
histories in (-) and C(-) is the corresponding total

1L; UR: = h(p) and £; N R; = ¢, the empty set.



count. Note that only counts are involved in Equa-
tion 7, an efficient data structure can be used to store
them for the computation. Then, we try to find the
best subsets £* and R* by tentatively moving ele-
ments in £ to R and vice versa. Suppose 3(v) € £
is the element we want to move. The log-likelihood
after we move S(v) from £ to R can be calculated
using Equation 7 with the following changes:

C(w,L) = C(w,L)—C(w,B(v))

C(w,R) —C(w,R)+C(w,B(v))
C(L) =C(£)-C(B(v))
C(R) —=C(R)+C(B(v))

(8)

If a tentative move results in an increase in log-
likelihood, we will accept the move and modify the
counts. Otherwise, the element stays where it was.
The subsets £ and R are updated after each move.
The algorithm runs until no move can increase the
log-likelihood. The final subsets will be £* and R*
and we save the total log-likelihood increase. After
all positions in the history are examined, we choose
the one with the largest increase in log-likelihood
for splitting the node. The exchange algorithm is
different from the Chou algorithm (Chou, 1991) in
the following two aspects: First, unlike the Chou
algorithm, we directly use the log-likelihood of the
training data as our objective function. Second, the
statistics of the two clusters £ and R are updated af-
ter each move, whereas in the Chou algorithm, the
statistics remain the same until the elements 3(-) are
seperated. However, as the Chou algorithm, the ex-
change algorithm is also greedy and it is not guar-
anteed to find the optimal split.

3.1.2 PruningaDT

After a DT is fully grown, we use heldout data to
prune it. Pruning is done in such a way that we
maximize the likelihood of the heldout data, where
smoothing is applied similarly to the interpolated
KN smoothing:

Ppr(w; ‘qDDT(wf:;_H))

:max(C(wi,<I>DT(w§:711+1))7D,0) )
C@pr i) 1)

+X(®pT (Wf:i+1 ) Pr v (wi \ij:iH_g)

where @ (+) is one of the DT nodes the history can
be mapped to and Py (w;|w}",, ) is from Equa-
tion 5. Note that although some histories share the
same equivalence classification in a DT, they may
use different lower order probabilities if their lower
order histories w!, . , are different.

During pruning, We first compute the potential

of each node in the DT where the potential of a

node is the possible gain in heldout data likelihood
by growing that node into a sub-tree. If the po-
tential of a node is negative, we prune the sub-tree
rooted in that node and make the node a leaf. This
pruning is similar to the pruning strategy used in
CART (Breiman et al., 1984).

After a DT is grown, we only use all the leaf
nodes as equivalence classes of histories. If a new
history is encountered, it is very likely that we
will not be able to place it at a leaf node in the
DT. In this case, we simply use Py (w;|w}”, )
to get the probabilities.  This is equivalent to
C(w;, @pr(w]_,,;)) = 0 for all w; in Equation 9
and therefore A\(® pr(w!Z) ;) = 1.

3.2 Constructing a Random Forest

Our DT growing algorithm in Section 3.1.1 is still
based on a greedy approach. As a result, it is not
guaranteed to construct the optimal DT. It is also ex-
pected that the DT will not be optimal for test data
because the DT growing and pruning are based only
on training and heldout data. In this section, we in-
troduce our RF approach to deal with these prob-
lems.

There are two ways to randomize the DT growing
algorithm. First, if we consider all positions in the
history at each possible split and choose the best to
split, the DT growing algorithm is deterministic. In-
stead, we randomly choose a subset of positions for
consideration at each possible split. This allows us
to choose a split that is not optimal locally, but may
lead to an overall better DT. Second, the initializa-
tion in the exchange algorithm for node splitting is
also random. We randomly and independently put
each element 3(-) into £ or R by the outcome of a
Bernoulli trial with a success probability of 0.5. The
DTs grown randomly are different equivalence clas-
sifications of the histories and may capture different
characteristics of the training and heldout data.

For each of the n-1 positions of the history in
an n-gram model, we have a Bernoulli trial with
a probability » for success. The n-1 trials are as-
sumed to be independent of each other. The po-
sitions corresponding to successful trials are then
passed to the exchange algorithm which will choose
the best among them for splitting a node. It can be
shown that the probability that the actual best posi-
tion (among all n-1 positions) will be chosen is

Q(T): 1_(1_Tr)n—1 .

It is interesting to see that

lim, 0 Q(r)=711,

lim, 1 Q(r)=1.



The probability = is a global value that we use for all
nodes. By choosing r, we can control the random-
ness of the node splitting algorithm, which in turn
will control the randomness of the DT. In general,
the smaller the probability » is, the more random
the resulting DTs are.

After a non-empty subset of positions are ran-
domly selected, we try to split the node according
to each of the chosen position. For each of the po-
sitions, we randomly initialize the exchange algo-
rithm as mentioned earlier.

Another way to construct RFs is to first sample
the training data and then grow one DT for each
random sample of the data (Amit and Geman, 1997;
Breiman, 2001; Ho, 1998). Sampling the training
data will leave some of the data out, so each sample
could become more sparse. Since we always face
the data sparseness problem in language modeling,
we did not use this approach in our experiments.
However, we keep this approach as a possible di-
rection in our future research.

The randomized version of the DT growing algo-
rithm is run many times and finally we get a collec-
tion of randomly grown DTs. We call this collection
a Random Forest (RF). Since each DT is a smoothed
language model, we simply aggregate all DTs in our
RF to get the RF language model. Suppose we have
M randomly grown DTs, DTy, ..., DTyy. Inthe n-
gram case, the RF language model probabilities can
be computed as:

Prr(wilwiZy )= 37 X521 Por; (wil oy (Wi 41))
| o (10)
where ® pr, (w!_,., ) maps the history w!_.  toa
leaf node in DTj. If w:::vlz—l—l can not be mapped to a
leaf node in some DT, we back-off to the lower or-
der KN probability PKN(’wz'|w;:,,1l+2) as mentioned
at the end of the previous section.

It is worth to mention that the RF language model
in Equation 10 can be represented as a single com-
pact model, as long as all the random DTs use
the same lower order probability distribution for
smoothing. An n-gram language model can be seen
as a special DT language model and a DT language
model can also be seen as a special RF language
model, therefore, our RF language model is a more

general representation of language models.

4 Experiments

We will first show the performance of our RF lan-
guage models as measured by PPL. After analyzing
these results, we will present the performance when
the RF language models are used in a large vocabu-
lary speech recognition system.

4.1 Perplexity

We have used the UPenn Treebank portion of the
WSJ corpus to carry out our experiments. The
UPenn Treebank contains 24 sections of hand-
parsed sentences, for a total of about one million
words. We used section 00-20 (929,564 words) for
training our models, section 21-22 (73,760 words)
as heldout data for pruning the DTs, and section 23-
24 (82,430 words) to test our models. Before car-
rying out our experiments, we normalized the text
in the following ways: numbers in arabic form were
replaced by a single token “N”, punctuations were
removed, all words were mapped to lower case. The
word vocabulary contains 10k words including a
special token for unknown words. All of the ex-
perimental results in this section are based on this
corpus and setup.

The RF approach was applied to a trigram lan-
guage model. We built 100 DTs randomly as de-
scribed in the previous section and aggregated the
probabilities to get the final probabilities for words
in the test data. The global Bernoulli trial proba-
bility was set to 0.5. In fact, we found that this
probability was not critical: using different values
in our study gave similar results in PPL. Since we
can add any data to a DT to estimate the probabili-
ties once it is grown and pruned, we used both train-
ing and heldout data during testing, but only training
data for heldout data results. We denote this RF lan-
guage model as “RF-trigram”, as opposed to “KN-
trigram” for a baseline trigram with KN smoothing?
The baseline KN-trigram also used both training
and heldout data to get the PPL results on test data
and only training data for the heldout-data results.
We also generated one DT without randomizing the
node splitting, which we name “DT-trigram”. As we

Model heldout | test

KN-trigram | 160.1 | 145.0
DT-trigram | 158.6 | 163.3
RF-trigram | 126.8 | 129.7

Table 1: PPL for {KN, DT, RF}-trigram

can see from Table 1, DT-trigram obtained a slightly
lower PPL than KN-trigram on heldout data, but
was much worse on the test data. However, the RF-
trigram performed much better on both heldout and

2\We did not use the Modified Kneser-Ney smoothing (Chen
and Goodman, 1998). In fact, using the SRILM toolkit (Stol-
cke, 2002) with the Modified Kneser-Ney smoothing can re-
duce the PPL on test data to 143.9. Since we are not using
the Modified Kneser-Ney in our DT smoothing, we only report
KN-trigram results using Interpolated Kneser-Ney smoothing.



test data: our RF-trigram reduced the heldout data
PPL from 160.1 to 126.8, or by 20.8%, and the test
data PPL by 10.6%. Although we would expect im-
provements from the DT-trigram on the heldout data
since it is used to prune the fully grown DT, the ac-
tual gain using a single DT is quite small (0.9%).

We also interpolated the DT-trigram and RF-
trigram with the KN-trigram at different levels of
interpolation weight on the test data. It is inter-
esting to see from Table 2 that interpolating KN-
trigram with DT-trigram results in a small improve-
ment (1.9%) over the KN-trigram, when most of
the interpolation weight is on KN-trigram (A =
0.8). However, interpolating KN-trigram with RF-
trigram does not yield further improvements over
RF-trigram by itself. Therefore, the RF modeling
approach directly improves KN estimates by using
randomized history clustering.

A | DT-trigram | RF-trigram
0.0 163.3 129.7
0.2 152.4 129.9
0.4 146.7 131.0
0.6 143.4 133.3
0.8 142.2 137.0
1.0 145.0 145.0

Table 2: Interpolating KN-trigram with {DT,RF}-
trigram for test data

4.2 Analysis

Our final model given by Equation 10 can be
thought of as performing randomized history clus-
tering in which each history is clustered into M dif-
ferent equivalence classes with equal probability. In
order to analyze why this RF approach can improve
the PPL on test data, we split the events (an event
is a predicted word with its history) in test data into
two categories: seen events and unseen events. For
KN-trigram, seen events are those that appear in
the training or heldout data at least once. For DT-
trigram, a seen event is one whose predicted word is
seen following the equivalence class of the history.
For RF-trigram, we define seen events as those that
are seen events in at least one DT among the random
collection of DTs.

It can be seen in Table 3 that the DT-trigram re-
duced the number of unseen events in the test data
from 54.4% of the total events to 41.9%, but it in-
creased the overall PPL. This is due to the fact that
we used heldout data for pruning. On the other
hand, the RF-trigram reduced the number of unseen
events greatly: from 54.4% of the total events to
only 8.3%. Although the PPL of remaining unseen

Model seen unseen
%total | PPL | %total | PPL
KN-trigram | 45.6% | 19.7 | 54.4% | 773.1
DT-trigram | 58.1% | 26.2 | 41.9% | 2069.7
RF-trigram | 91.7% | 75.6 | 8.3% | 49814

Table 3: PPL of seen and unseen test events

events is much higher, the overall PPL is still im-
proved. The randomized history clustering in the
RF-trigram makes it possible to compute probabili-
ties of most test data events without relying on back-
off. Therefore, the RF-trigram can effectively in-
crease the probability of those events that will oth-
erwise be backoff to lower order statistics.

In order to reveal more about the cause of im-
provements, we also compared the KN-trigram and
RF-trigram on events that are seen in different num-
ber of DTs. In Table 4, we splitted events into
smaller groups according the the number of times
they are seen among the 100 DTs. For the events

seen times | %total | KN-trigram | RF-trigram

0 8.3% 37540 49814

1 3.0% 9146.2 10490

2 2.3% 5819.3 6161.4

3 1.9% 3317.6 3315.0

4 1.7% 2513.6 2451.2

5-9 6.1% 1243.6 1116.5
10-19 8.3% 456.0 363.5
20-29 5.7% 201.1 144.5
30-39 4.6% 123.9 83.0
40-49 4.0% 83.4 52.8
50-59 3.4% 63.5 36.3
60-69 2.5% 46.6 255
70-79 1.6% 40.5 20.6
80-89 0.7% 57.1 21.6
90-99 0.3% 130.8 39.9
100 45.7% 19.8 19.6
all 100% 145.0 129.7

Table 4: Test events analyzed by number of times
seen in 100 DTs

that are seen in all 100 DTs, the RF-trigram per-
forms similarly as the KN-trigram since those are
mostly seen for the KN-trigram as well. Interest-
ingly, for those events that are unseen for the KN-
trigram, the more times they are seen in the DTs,
the more improvement in PPL there are. Unseen
events in the KN-trigram depend on the lower order
probabilities penalized by the interpolation weight,
therefore, a seen event has a much higher proba-



bility. This is also true for each DT. According to
Equation 10, the more times an event is seen in
the DTs, the more high probabilities it gets from
the DTs, therefore, the higher the final aggregated
probability is. In fact, we can see from Table 4 that
the PPL starts to improve when the events are seen
in 3 DTs. The RF-trigram effectively makes most
of the events seen more than 3 times in the DTs,
thus assigns them higher probabilities than the KN-
trigram.

There is no theoretical basis for choosing the
number of DTs needed for the RF model to work
well. We chose to grow 100 DTs arbitrarily. In Fig-
ure 1, we plot the PPL of the RF-trigram on held-
out and test data as a function of number of DTs.
It is clear that the PPL drops sharply at the begin-
ning and tapers off quite quickly. It is also worth
noting that for test data, the PPL of the RF-trigram
with less than 10 DTs is already better than the KN-
trigram.
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Figure 1: Aggregating DTs in the RF-trigram

4.3 N-best Re-scoring Results

To test our RF modeling approach in the context
of speech recognition, we evaluated the models in
the WSJ DARPA’93 HUBL test setup. The size of
the test set is 213 utterances, 3,446 words. The 20k
words open vocabulary and baseline 3-gram model
are the standard ones provided by NIST and LDC.
The lattices and N-best lists were generated using
the standard 3-gram model trained on 40M words
of WSJ text. The N-best size was at most 50 for
each utterance, and the average size was about 23.
We trained KN-trigram and RF-trigram using 20M
words and 40M words to see the effect of training
data size. In both cases, RF-trigram was made of
100 randomly grown DTs and the global Bernoulli
trial probability was set to 0.5. The results are re-
ported in Table 5.

Model A

00 [ 02 | 04 ] 06 | 0.8
KN (20M) | 14.0 | 13.6 | 13.3 | 13.2 | 13.1
RF (20M) | 12.9 | 12,9 | 13.0 | 13.0 | 12.7
KN (40M) | 13.0 - - - -
RF (40M) | 12.4 | 12.7 | 12.7 | 12.7 | 12.7

Table 5: N-best rescoring WER results

For the purpose of comparison, we interpolated
all models with the KN-trigram built from 40M
words at different levels of interpolation weight.
However, it is the A=0.0 column (X is the weight
on the KN-trigram trained from 40M words) that is
the most interesting. We can see that under both
conditions the RF approach improved upon the reg-
ular KN approach, for as much as 1.1% absolute
when 20M words were used to build trigram mod-
els. Standard p-test® shows that the improvements
are significant at p <0.001 and p <0.05 level re-
spectively.

However, we notice that the improvement in
WER using the trigram with 40M words is not as
much as the trigram with 20M words. A possible
reason is that with 40M words, the data sparseness
problem is not as severe and the performance of the
RF approach is limited. It could also be because our
test set is too small. We need a much larger test set
to investigate the effectiveness of our RF approach.

5 Conclusions and Future Work

We have developed a new RF approach for language
modeling that can significantly improve upon the
KN smoothing in both PPL and WER. The RF ap-
proach results in a random history clustering which
greatly reduces the number of unseen events com-
pared to the KN smoothing, even though the same
training data statistics are used. Therefore, this new
approach can generalize well on unseen test data.
Overall, we can achieve more than 10% PPL re-
duction and 0.6-1.1% absolute WER reduction over
the interpolated KN smoothing, without interpolat-
ing with it.

Based on our experimental results, we think that
the RF approach for language modeling is very
promising. It will be very interesting to see how
our approach performs in a longer history than the
trigram. Since our current RF models uses KN
smoothing exclusively in lower order probabilities,

3For the p-test, we used the standard SCLITE’s statisti-
cal system comparison program from NIST with the option
“mapsswe”, which means the test is the matched pairs sentence
segment word error test.



it may not be adequate when we apply it to higher
order n-gram models. One possible solution is to
use RF models for lower order probabilities as well.
Higher order RFs will be grown based on lower or-
der RFs which can be recursively grown.

Another interesting application of our new ap-
proach is parser based language models where rich
syntactic information is available (Chelba and Je-
linek, 2000; Charniak, 2001; Roark, 2001; Xu et
al., 2002). When we use RFs for those models,
there are potentially many different syntactic ques-
tions at each node split. For example, there can be
questions such as “Is there a Noun Phrase or Noun
among the previous n exposed heads?”, etc. Such
kinds of questions can be encoded and included in
the history. Since the length of the history could
be very large, a better smoothing method would be
very useful. Composite questions in the form of py-
lons (Bahl et al., 1989) can also be used.

As we mentioned at the end of Section 3.2, ran-
dom samples of the training data can also be used
for DT growing and has been proven to be useful
for classification problems (Amit and Geman, 1997;
Breiman, 2001; Ho, 1998). Randomly sampled data
can be used to grow DTs in a deterministic way to
construct RFs. We can also construct an RF for each
random data sample and then aggregate across RFs.

Our RF approach was developed for language
modeling, but the underlying methodology is quite
general. Any n-gram type of modeling should be
able to take advantage of the power of RFs. For ex-
ample, RFs could also be useful for POS tagging,
parsing, named entity recognition and other tasks in
natural language processing.
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