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Abstract

The focus of research in text classification has ex-
panded from simple topic identification to more
challenging tasks such as opinion/modality identi-
fication. Unfortunately, the latter goals exceed the
ability of the traditional bag-of-word representation
approach, and a richer, more structural representa-
tion is required. Accordingly, learning algorithms
must be created that can handle the structures ob-
served in texts. In this paper, we propose a Boosting
algorithm that captures sub-structures embedded in
texts. The proposal consists of i) decision stumps
that use subtrees as features and ii) the Boosting al-
gorithm which employs the subtree-based decision
stumps as weak learners. We also discuss the rela-
tion between our algorithm and SVMs with tree ker-
nel. Two experiments on opinion/modality classifi-
cation confirm that subtree features are important.

1 Introduction

Text classification plays an important role in orga-
nizing the online texts available on the World Wide
Web, Internet news, and E-mails. Until recently, a
number of machine learning algorithms have been
applied to this problem and have been proven suc-
cessful in many domains (Sebastiani, 2002).

In the traditional text classification tasks, one has
to identify predefined text “topics”, such as politics,
finance, sports or entertainment. For learning algo-
rithms to identify these topics, a text is usually rep-
resented as a bag-of-words, where a text is regarded
as a multi-set (i.e., a bag) of words and the word or-
der or syntactic relations appearing in the original
text is ignored. Even though the bag-of-words rep-
resentation is naive and does not convey the mean-
ing of the original text, reasonable accuracy can be
obtained. This is because each word occurring in
the text is highly relevant to the predefined “topics”
to be identified.

∗At present, NTT Communication Science Laboratories,
2-4, Hikaridai, Seika-cho, Soraku, Kyoto, 619-0237 Japan
taku@cslab.kecl.ntt.co.jp

Given that a number of successes have been re-
ported in the field of traditional text classification,
the focus of recent research has expanded from sim-
ple topic identification to more challenging tasks
such as opinion/modality identification. Example
includes categorization of customer E-mails and re-
views by types of claims, modalities or subjectiv-
ities (Turney, 2002; Wiebe, 2000). For the lat-
ter, the traditional bag-of-words representation is
not sufficient, and a richer, structural representa-
tion is required. A straightforward way to ex-
tend the traditional bag-of-words representation is
to heuristically add new types of features to the
original bag-of-words features, such as fixed-length
n-grams (e.g., word bi-gram or tri-gram) or fixed-
length syntactic relations (e.g., modifier-head rela-
tions). These ad-hoc solutions might give us rea-
sonable performance, however, they are highly task-
dependent and require careful design to create the
“optimal” feature set for each task.

Generally speaking, by using text processing sys-
tems, a text can be converted into a semi-structured
text annotated with parts-of-speech, base-phrase in-
formation or syntactic relations. This information
is useful in identifying opinions or modalities con-
tained in the text. We think that it is more useful to
propose a learning algorithm that can automatically
capture relevant structural information observed in
text, rather than to heuristically add this informa-
tion as new features. From these points of view, this
paper proposes a classification algorithm that cap-
tures sub-structures embedded in text. To simplify
the problem, we first assume that a text to be classi-
fied is represented as a labeled ordered tree, which
is a general data structure and a simple abstraction
of text. Note that word sequence, base-phrase anno-
tation, dependency tree and an XML document can
be modeled as a labeled ordered tree.

The algorithm proposed here has the following
characteristics: i) It performs learning and classifi-
cation using structural information of text. ii) It uses
a set of all subtrees (bag-of-subtrees) for the feature
set without any constraints. iii) Even though the size



of the candidate feature set becomes quite large, it
automaticallyselects a compact and relevant feature
set based on Boosting.

This paper is organized as follows. First, we
describe the details of our Boosting algorithm in
which the subtree-based decision stumps are ap-
plied as weak learners. Second, we show an imple-
mentation issue related to constructing an efficient
learning algorithm. We also discuss the relation be-
tween our algorithm and SVMs (Boser et al., 1992)
with tree kernel (Collins and Duffy, 2002; Kashima
and Koyanagi, 2002). Two experiments on the opin-
ion and modality classification tasks are employed
to confirm that subtree features are important.

2 Classifier for Trees
We first assume that a text to be classified is repre-
sented as a labeled ordered tree. The focused prob-
lem can be formalized as a general problem, called
thetree classification problem.

The tree classification problem is to induce a
mappingf(x) : X → {±1}, from given training
examplesT = {〈xi, yi〉}Li=1, wherexi ∈ X is a
labeled ordered tree andyi ∈ {±1} is a class label
associated with each training data (we focus here
on the problem of binary classification.). The im-
portant characteristic is that the input examplexi is
represented not as a numerical feature vector (bag-
of-words) but a labeled ordered tree.

2.1 Preliminaries
Let us introduce a labeled ordered tree (or simply
tree), its definition and notations, first.

Definition 1 Labeled ordered tree (Tree)
A labeled ordered tree is a tree where each node
is associated with a label and is ordered among its
siblings, that is, there are a first child, second child,
third child, etc.

Definition 2 Subtree
Let t and u be labeled ordered trees. We say that
t matchesu, or t is a subtree ofu (t ⊆ u), if
there exists a one-to-one functionψ from nodes in
t to u, satisfying the conditions: (1)ψ preserves the
parent-daughter relation, (2)ψ preserves the sib-
ling relation, (3)ψ preserves the labels.

We denote the number of nodes int as|t|. Figure 1
shows an example of a labeled ordered tree and its
subtree and non-subtree.

2.2 Decision Stumps

Decision stumps are simple classifiers, where the
final decision is made by only a single hypothesis
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Figure 1: Labeled ordered tree and subtree relation

or feature. Boostexter (Schapire and Singer, 2000)
uses word-based decision stumps for topic-based
text classification. To classify trees, we here extend
the decision stump definition as follows.

Definition 3 Decision Stumps for Trees
Let t and x be labeled ordered trees, andy be a
class label (y ∈ {±1}), a decision stump classifier
for trees is given by

h〈t,y〉(x) def=
{

y t ⊆ x
−y otherwise.

The parameter for classification is the tuple〈t, y〉,
hereafter referred to as therule of the decision
stumps.

The decision stumps are trained to find rule〈t̂, ŷ〉
that minimizes the error rate for the given training
dataT = {〈xi, yi〉}Li=1:

〈t̂, ŷ〉 = argmin
t∈F,y∈{±1}

1
2L

L∑

i=1

(1− yih〈t,y〉(xi)),(1)

whereF is a set of candidate trees or afeature set
(i.e.,F =

⋃L
i=1{t|t ⊆ xi}).

The gain function for rule〈t, y〉 is defined as

gain(〈t, y〉) def=
L∑

i=1

yih〈t,y〉(xi). (2)

Using the gain, the search problem given in (1)
becomes equivalent to the following problem:

〈t̂, ŷ〉 = argmax
t∈F ,y∈{±1}

gain(〈t, y〉).

In this paper, we will use gain instead of error rate
for clarity.

2.3 Applying Boosting
The decision stumps classifiers for trees are too in-
accurate to be applied to real applications, since
the final decision relies on the existence of a sin-
gle tree. However, accuracies can beboostedby
the Boosting algorithm (Freund and Schapire, 1996;
Schapire and Singer, 2000). Boosting repeatedly
calls a givenweak learnerto finally produce hy-
pothesisf , which is a linear combination ofK hy-
potheses produced by the prior weak learners, i,e.:
f(x) = sgn(

∑K
k=1 αkh〈tk,yk〉(x)).



A weak learner is built at each iterationk
with different distributions or weightsd(k) =
(d(k)
i , . . . , d

(k)
L ), (where

∑N
i=1 d

(k)
i = 1, d(k)

i ≥ 0).
The weights are calculated in such a way that hard
examples are focused on more than easier examples.

To use the decision stumps as the weak learner of
Boosting, we redefine the gain function (2) as fol-
lows:

gain(〈t, y〉) def=
L∑

i=1

yidih〈t,y〉(xi). (3)

There exist many Boosting algorithm variants,
however, the original and the best known algorithm
is AdaBoost (Freund and Schapire, 1996). We here
use Arc-GV (Breiman, 1999) instead of AdaBoost,
since Arc-GV asymptotically maximizes themargin
and shows faster convergence to the optimal solu-
tion than AdaBoost.

3 Efficient Computation
In this section, we introduce an efficient and prac-
tical algorithm to find the optimal rule〈t̂, ŷ〉 from
given training data. This problem is formally de-
fined as follows.

Problem 1 Find Optimal Rule
Let T = {〈x1, y1, d1〉, . . . , 〈xL, yL, dL〉} be train-
ing data, where,xi is a labeled ordered tree,
yi ∈ {±1} is a class label associated withxi
and di (

∑L
i=1 di = 1, di ≥ 0) is a normal-

ized weight assigned toxi. Given T , find the
optimal rule 〈t̂, ŷ〉 that maximizes the gain, i.e.,
〈t̂, ŷ〉 = argmaxt∈F ,y∈{±1} diyih〈t,y〉, whereF =⋃L
i=1{t|t ⊆ xi}.
The most naive and exhaustive method, in which

we first enumerateall subtreesF and then calcu-
late the gains for all subtrees, is usually impractical,
since the number of subtrees is exponential to its
size. We thus adopt an alternative strategy to avoid
such exhaustive enumeration.

The method to find the optimal rule is modeled as
a variant of the branch-and-bound algorithm, and is
summarized in the following strategies:

1. Define a canonical search space in which a
whole set of subtrees of a set of trees can be
enumerated.

2. Find the optimal rule by traversing this search
space.

3. Prune search space by proposing a criterion
with respect to the upper bound of thegain.

We will describe these steps more precisely in the
following subsections.

3.1 Efficient Enumeration of Trees

Abe and Zaki independently proposed an efficient
method,rightmost-extension, to enumerate all sub-
trees from a given tree (Abe et al., 2002; Zaki,
2002). First, the algorithm starts with a set of trees
consisting of single nodes, and then expands a given
tree of size(k − 1) by attaching a new node to this
tree to obtain trees of sizek. However, it would
be inefficient to expand nodes at arbitrary positions
of the tree, as duplicated enumeration is inevitable.
The algorithm, rightmost extension, avoids such du-
plicated enumerations by restricting the position of
attachment. We here give the definition of rightmost
extension to describe this restriction in detail.

Definition 4 Rightmost Extension (Abe et al., 2002;
Zaki, 2002)
Let t andt′ be labeled ordered trees. We sayt′ is a
rightmost extension oft, if and only ift andt′ satisfy
the following three conditions:
(1) t′ is created by adding a single node tot, (i.e.,
t ⊂ t′ and|t|+ 1 = |t′|).
(2) A node is added to a node existing on the unique
path from the root to the rightmost leaf (rightmost-
path) int.
(3) A node is added as the rightmost sibling.

Consider Figure 2, which illustrates example treet
with the labels drawn from the setL = {a, b, c}.
For the sake of convenience, each node in this figure
has its original number (depth-first enumeration).
The rightmost-path of the treet is (a(c(b))), and
occurs at positions1, 4 and6 respectively. The set
of rightmost extended trees is then enumerated by
simply adding a single node to a node on the right-
most path. Since there are three nodes on the right-
most path and the size of the label set is 3(= |L|),
a total of 9 trees are enumerated from the original
treet. Note that rightmost extension preserves the
prefix ordering of nodes int (i.e., nodes at posi-
tions1..|t| are preserved). By repeating the process
of rightmost-extension recursively, we can create a
search space in which all trees drawn from the setL
are enumerated. Figure 3 shows a snapshot of such
a search space.

3.2 Upper bound of gain

Rightmost extension defines a canonical search
space in which one can enumerate all subtrees from
a given set of trees. We here consider an upper
bound of the gain that allows subspace pruning in
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Figure 2: Rightmost extension

Figure 3: Recursion using rightmost extension

this canonical search space. The following theo-
rem, an extension of Morhishita (Morhishita, 2002),
gives a convenient way of computing a tight upper
bound ongain(〈t′, y〉) for any super-treet′ of t.

Theorem 1 Upper bound of the gain:µ(t)
For any t′ ⊇ t andy ∈ {±1}, the gain of 〈t′, y〉 is

bounded byµ(t) (i.e., gain(〈t′y〉) ≤ µ(t)), whereµ(t)
is given by

µ(t) def= max
(

2
∑

{i|yi=+1,t⊆xi}
di −

L∑

i=1

yi · di,

2
∑

{i|yi=−1,t⊆xi}
di +

L∑

i=1

yi · di
)
.

Proof 1

gain(〈t′, y〉) =
L∑

i=1

diyih〈t′,y〉(xi)

=
L∑

i=1

diyi · y · (2I(t′ ⊆ xi)− 1)

If we focus on the casey = +1, then

gain(〈t′,+1〉) = 2
∑

{i|t′⊆xi}
yidi −

L∑

i=1

yi · di

≤ 2
∑

{i|yi=+1,t′⊆xi}
di −

L∑

i=1

yi · di

≤ 2
∑

{i|yi=+1,t⊆xi}
di −

L∑

i=1

yi · di,

since|{i|yi = +1, t′ ⊆ xi}| ≤ |{i|yi = +1, t ⊆ xi}|
for anyt′ ⊇ t. Similarly,

gain(〈t′,−1〉) ≤ 2
∑

{i|yi=−1,t⊆xi}
di +

L∑

i=1

yi · di

Thus, for anyt′ ⊇ t andy ∈ {±1},

gain(〈t′, y〉) ≤ µ(t) 2

We can efficiently prune the search space spanned
by right most extension using the upper bound of
gain u(t). During the traverse of the subtree lat-
tice built by the recursive process of rightmost ex-
tension, we always maintain the temporally subop-
timal gainτ among all gains calculated previously.
If µ(t) < τ , the gain of any super-treet′ ⊇ t is no
greater thanτ , and therefore we can safely prune
the search space spanned from the subtreet. If
µ(t) ≥ τ , in contrast, we cannot prune this space,
since there might exist a super-treet′ ⊇ t such
that gain(t′) ≥ τ . We can also prune the space
with respect to the expanded single nodes. Even
if µ(t) ≥ τ and a nodes is attached to the treet,
we can ignore the space spanned from the treet′ if
µ(s) < τ , since no super-tree ofs can yield optimal
gain.

Figure 4 presents a pseudo code of the algorithm
Find Optimal Rule . The two pruning are marked
with (1) and (2) respectively.

4 Relation to SVMs with Tree Kernel

Recent studies (Breiman, 1999; Schapire et al.,
1997; R̈atsch et al., 2001) have shown that both
Boosting and SVMs (Boser et al., 1992) have a
similar strategy; constructing an optimal hypothe-
sis that maximizes thesmallest marginbetween the
positive and negative examples. We here describe
a connection between our Boosting algorithm and
SVMs with tree kernel (Collins and Duffy, 2002;
Kashima and Koyanagi, 2002).

Tree kernel is one of the convolution kernels, and
implicitly maps the example represented in a la-
beled ordered tree into all subtree spaces. The im-
plicit mapping defined by tree kernel is given as:
Φ(x)=(I(t1 ⊆ x), . . . , I(t|F| ⊆ x)), wheretj∈F ,
x ∈ X andI(·) is the indicator function1.

The final hypothesis of SVMs with tree kernel
can be given by

f(x) = sgn(w · Φ(x)− b)
= sgn(

∑

t∈F
wt · I(t ⊆ x)− b). (4)

Similarly, the final hypothesis of our boosting al-
gorithm can be reformulated as a linear classifier:

1Strictly speaking, tree kernel uses the cardinality of each
substructure. However, it makes little difference since a given
tree is often sparse in NLP and the cardinality of substructures
will be approximated by their existence.



Algorithm: Find Optimal Rule
argument: T = {〈x1, y1, d1〉 . . . , 〈xL, yL, dL〉}

(xi a tree,yi ∈ {±1} is a class, and
di (
∑L

i=1 di = 1, di ≥ 0) is a weight)
returns: Optimal rule〈t̂, ŷ〉
begin

τ = 0 // suboptimal value

function project (t)
if µ(t) ≤ τ then return . . . (1)
y′ = argmaxy∈{±1} gain(〈t, y〉)
if gain(〈t, y′〉) > τ then
〈t̂, ŷ〉 = 〈t, y′〉
τ = gain(〈t̂, ŷ〉) // suboptimal solution

end

foreach t′ ∈ {set of trees that are
rightmost extension oft }

s =single node added by RME
if µ(s) ≤ τ then continue. . . (2)
project(t′)

end
end

// for each single node
foreach t′ ∈ {t|t ∈ ∪Li=1{t|t ⊆ xi)}, |t| = 1}

project (t′)
end

return 〈t̂, ŷ〉
end

Figure 4: Algorithm: Find Optimal Rule

f(x) = sgn(
K∑

k=1

αkh〈tk,yk〉(x))

= sgn(
K∑

k=1

αk · yk(2I(tk ⊆ x)− 1))

= sgn(
∑

t∈F
wt · I(t ⊆ x)− b), (5)

where
b =

K∑

k=1

ykαk, wt =
∑

{k|t=tk}
2 · yk · αk.

We can thus see that both algorithms are essentially
the same in terms of their feature space. The dif-
ference between them is the metric of margin; the
margin of Boosting is measured inl1-norm, while,
that of SVMs is measured inl2-norm. The question
one might ask is how the difference is expressed in
practice. The difference between them can be ex-
plained bysparseness.

It is well known that the solution or separating
hyperplane of SVMs is expressed as a linear com-
bination of the training examples using some coeffi-
cientsλ, (i.e.,w =

∑L
i=1 λiΦ(xi)). Maximizingl2-

norm margin gives a sparse solution in theexample
space, (i.e., most ofλi becomes0). Examples that
have non-zero coefficient are calledsupport vectors
that form the final solution. Boosting, in contrast,
performs the computation explicitly in the feature
space. The concept behind Boosting is that only a
few hypotheses are needed to express the final so-
lution. Thel1-norm margin allows us to realize this
property. Boosting thus finds a sparse solution in
thefeature space.

The accuracies of these two methods depends on
the given training data. However, we argue that
Boosting has the followingpractical advantages.
First, sparse hypotheses allow us to build an effi-
cient classification algorithm. The complexity of
SVMs with tree kernel isO(L′|N1||N2|), whereN1

andN2 are trees, andL′ is the number of support
vectors, which is too heavy to realize real applica-
tions. Boosting, in contrast, runs faster, since the
complexity depends only on the small number of de-
cision stumps. Second, sparse hypotheses are use-
ful in practice as they provide “transparent” models
with which we can analyze how the model performs
or what kind of features are useful. It is difficult to
give such analysis with kernel methods, since they
define the feature space implicitly.

5 Experiments

5.1 Experimental Setting

We conducted two experiments in sentence classifi-
cation.

• PHS review classification (PHS)
The goal of this task is to classify reviews (in
Japanese) for PHS2 as positive reviews or neg-
ative reviews. A total of 5,741 sentences were
collected from a Web-based discussion BBS
on PHS, in which users are directed to submit
positive reviews separately from negative re-
views. The unit of classification is a sentence.
The categories to be identified are “positive” or
“negative” with the numbers 2,679 and 3,062
respectively.

• Modality identification (MOD )
This task is to classify sentences (in Japanese)
by modality. A total of 1,710 sentences from a
Japanese newspaper were manually annotated

2PHS (Personal Handyphone System) is a cell phone sys-
tem developed in Japan in 1989.



according to Tamura’s taxonomy (Tamura and
Wada, 1996). The unit of classification is a
sentence. The categories to be identified are
“opinion”, “assertion” or “description” with
the numbers 159, 540, and 1,011 respectively.

To employ learning and classification, we have to
represent a given sentence as a labeled ordered tree.
In this paper, we use the following three representa-
tion forms.

• bag-of-words (bow), baseline
Ignoring structural information embedded in
text, we simply represent a text as a set
of words. This is exactly the same setting
as Boostexter. Word boundaries are identi-
fied using a Japanese morphological analyzer,
ChaSen3.

• Dependency (dep)
We represent a text in a word-based depen-
dency tree. We first use CaboCha4 to obtain a
chunk-based dependency tree of the text. The
chunk approximately corresponds to the base-
phrase in English. By identifying the head
word in the chunk, a chunk-based dependency
tree is converted into a word-based dependency
tree.

• N-gram (ngram)
It is the word-based dependency tree that as-
sumes that each word simply modifies the next
word. Any subtree of this structure becomes a
word n-gram.

We compared the performance of our Boosting al-
gorithm and support vector machines (SVMs) with
bag-of-words kernel and tree kernel according to
their F-measure in 5-fold cross validation. Although
there exist some extensions for tree kernel (Kashima
and Koyanagi, 2002), we use the original tree ker-
nel by Collins (Collins and Duffy, 2002), where all
subtrees of a tree are used as distinct features. This
setting yields a fair comparison in terms of feature
space. To extend a binary classifier to a multi-class
classifier, we use the one-vs-rest method. Hyperpa-
rameters, such as number of iterationsK in Boost-
ing and soft-margin parameterC in SVMs were se-
lected by using cross-validation. We implemented
SVMs with tree kernel based on TinySVM5 with
custom kernels incorporated therein.

3http://chasen.naist.jp/
4http://chasen.naist.jp/˜ taku/software/cabocha/
5http://chasen.naist.jp/˜ taku/software/tinysvm

5.2 Results and Discussion

Table 1 summarizes the results of PHS and MOD
tasks. To examine the statistical significance of the
results, we employed a McNemar’s paired test, a
variant of the sign test, on the labeling disagree-
ments. This table also includes the results of sig-
nificance tests.

5.2.1 Effects of structural information

In all tasks and categories, our subtree-based Boost-
ing algorithm (dep/ngram) performs better than the
baseline method (bow). This result supports our first
intuition that structural information within texts is
important when classifying a text by opinions or
modalities, not by topics. We also find that there
are no significant differences in accuracy between
dependency and n-gram (in all cases,p > 0.2).

5.2.2 Comparison with Tree Kernel

When using the bag-of-words feature, no signifi-
cant differences in accuracy are observed between
Boosting and SVMs. When structural information
is used in training and classification, Boosting per-
forms slightly better than SVMs with tree kernel.
The differences are significant when we use de-
pendency features in the MOD task. SVMs show
worse performance depending on tasks and cate-
gories, (e.g., 24.2 F-measure in the smallest cate-
gory “opinion” in the MOD task).

When a convolution kernel is applied to sparse
data, kernel dot products between almost the same
instances become much larger than those between
different instances. This is because the number of
common features between similar instances expo-
nentially increases with size. This sometimes leads
to overfitting in training , where a test instance very
close to an instance in training data is correctly clas-
sified, and other instances are classified as a de-
fault class. This problem can be tackled by several
heuristic approaches: i) employing a decay factor to
reduce the weights of large sub-structures (Collins
and Duffy, 2002; Kashima and Koyanagi, 2002).
ii) substituting kernel dot products for the Gaussian
function to smooth the original kernel dot products
(Haussler, 1999). These approaches may achieve
better accuracy, however, they yield neither the fast
classification nor the interpretable feature space tar-
geted by this paper. Moreover, we cannot give a fair
comparison in terms of the same feature space. The
selection of optimal hyperparameters, such as decay
factors in the first approach and smoothing parame-
ters in the second approach, is also left to as an open
question.



Table 1: Results of Experiments on PHS / MOD, F-measure, precision (%), and recall (%)
PHS MOD

opinion assertion description
Boosting bow 76.0 (76.1 / 75.9) 59.6 (59.4 / 60.0) 70.0 (70.4 / 69.9) 82.2 (81.0 / 83.5)

dep 78.7(79.1 / 78.4) 78.7* (90.2 / 70.0) 86.7* (88.0 / 85.6) 91.7* (91.1 / 92.4)
n-gram 79.3(79.8 / 78.5) 76.7* (87.2 / 68.6) 87.2 (86.9 / 87.4) 91.6 (91.0 / 92.2)

SVMs bow 76.8 (78.3 / 75.4) 57.2 (79.0 / 48.4) 71.3 (64.3 / 80.0) 82.1 (82.7 / 81.5)
dep 77.0 (80.7 / 73.6) 24.2 (95.7 / 13.8) 81.7 (86.7 / 77.2) 87.6 (86.1 / 89.2)

n-gram 78.9(80.4 / 77.5) 57.5 (98.0 / 40.9) 84.1 (90.1 / 78.9) 90.1 (88.2 / 92.0)
We employed a McNemar’s paired test on the labeling disagreements. Underlined results indicate that there is a significant differ-
ence (p < 0.01) against the baseline (bow). If there is a statistical difference (p < 0.01) between Boosting and SVMs with the
same feature representation (bow / dep / n-gram), better results are asterisked.

5.2.3 Merits of our algorithm
In the previous section, we described the merits of
our Boosting algorithm. We experimentally verified
these merits from the results of the PHS task.

As illustrated in section 4, our method can auto-
matically select relevant and compact features from
a number of feature candidates. In the PHS task,
a total 1,793 features (rules) were selected, while
the set sizes of distinct uni-gram, bi-gram and tri-
gram appearing in the data were 4,211, 24,206, and
43,658 respectively. Even though all subtrees are
used as feature candidates, Boosting selects a small
and highly relevant subset of features. When we
explicitly enumerate the subtrees used in tree ker-
nel, the number of active (non-zero) features might
amount to ten thousand or more.

Table 2 shows examples of extracted support fea-
tures (pairs of feature (tree)t and weightwt in (Eq.
5)) in the PHS task.

A. Features including the word “にくい (hard, dif-
ficult)”
In general, “にくい (hard, difficult)” is an ad-
jective expressing negative opinions. Most
of features including “にくい” are assigned
a negative weight (negative opinion). How-
ever, only one feature “切れに くい (hard to
cut off)” has a positive weight. This result
strongly reflects the domain knowledge, PHS
(cell phone reviews).

B. Features including the word “使う (use)”
“使う (use)” is a neutral expression for opin-
ion classifications. However, the weight varies
according to the surrounding context: 1) “使い
たい (want to use)” → positive, 2) “使いやす
い (be easy to use)” → positive, 3) “使いやす
かった (was easy to use)” (past form)→ neg-
ative, 4) “のほうが 使いやすい (... is easier
to use than ..)” (comparative)→ negative.

C. Features including the word “充電 (recharge)”
Features reflecting the domain knowledge are

Table 2: Examples of features in PHS dataset
keyword wt subtreet (support features)
A.にくい 0.0004切れるにくい (be hard to cut off)
(hard, -0.0006読むにくい (be hard to read)
difficult) -0.0007使うにくい (be hard to use)

-0.0017にくい (be hard to)
B.使う 0.0027使うたい (want to use)
(use) 0.0002使う (use)

0.0002使うてる (be in use)
0.0001使うやすい (be easy to use)

-0.0001使うやすいた (was easy to use)
-0.0007使うにくい (be hard to use)
-0.0019方が 使うやすい (is easier to use than)

C.充電 0.0028充電時間が 短い (recharging time is short)

(recharge) -0.0041充電時間が 長い (recharging time is long)

extracted: 1) “充電 時間が 短い (recharging
time is short)” → positive, 2) “充電 時間 が
長い (recharging time is long)” → negative.
These features are interesting, since we cannot
determine the correct label (positive/negative)
by using just the bag-of-words features, such
as “recharge”, “short” or “long” alone.

Table 3 illustrates an example of actual classifica-
tion. For the input sentence “液晶が大きくて,綺麗,
見やすい (The LCD is large, beautiful, and easy to
see.)”, the system outputs the features applied to this
classification along with their weightswt. This in-
formation allows us to analyze how the system clas-
sifies the input sentence in a category and what kind
of features are used in the classification. We can-
not perform these analyses with tree kernel, since it
defines their feature space implicitly.

The testing speed of our Boosting algorithm is
much higher than that of SVMs with tree kernel. In
the PHS task, the speeds of Boosting and SVMs are
0.531 sec./5,741 instances and 255.42 sec./5,741 in-
stances respectively6. We can say that Boosting is

6We ran these tests on a Linux PC with XEON 2.4Ghz dual
processors and 4.0Gbyte main memory.



Table 3: A running example
Input:液晶が大きくて綺麗,見やすい.

The LCD is large, beautiful and easy to see.
wt subtreet (support features)

0.00368 やすい (be easy to)
0.00352 綺麗 (beautiful)
0.00237 見るやすい (be easy to see)
0.00174 が 大きい (... is large)
0.00107 液晶が 大きい (The LCD is large)
0.00074 液晶が (The LCD is ...)
0.00058 液晶 (The LCD)
0.00027 て (a particle for coordination)
0.00036 見る (see)

-0.00001 大きい (large)
-0.00052 が (a nominative case marker)

about 480 times faster than SVMs with tree kernel.
Even though the potential size of search space

is huge, the pruning criterion proposed in this pa-
per effectively prunes the search space. The prun-
ing conditions in Fig.4 are fulfilled with more than
90% probabitity. The training speed of our method
is 1,384 sec./5,741 instances when we setK =
60, 000 (# of iterations for Boosting). It takes
only 0.023(=1,384/60,000)sec. to invoke the weak
learner, Find Optimal Rule.

6 Conclusions and Future Work
In this paper, we focused on an algorithm for the
classification of semi-structured text in which a sen-
tence is represented as a labeled ordered tree7. Our
proposal consists of i) decision stumps that use
subtrees as features and ii) Boosting algorithm in
which the subtree-based decision stumps are ap-
plied as weak learners. Two experiments on opin-
ion/modality classification tasks confirmed that sub-
tree features are important.

One natural extension is to adopt confidence rated
predictions to the subtree-based weak learners. This
extension is also found in BoosTexter and shows
better performance than binary-valued learners.

In our experiments, n-gram features showed com-
parable performance to dependency features. We
would like to apply our method to other applications
where instances are represented in atree and their
subtrees play an important role in classifications
(e.g., parse re-ranking (Collins and Duffy, 2002)
and information extraction).
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