
Spelling correction as an iterative process
that exploits the collective knowledge of web users

Silviu Cucerzan and Eric Brill
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{silviu,brill}@microsoft.com

Abstract

Logs of user queries to an internet search engine pro-
vide a large amount of implicit and explicit informa-
tion about language. In this paper, we investigate
their use in spelling correction of search queries, a
task which poses many additional challenges beyond
the traditional spelling correction problem. We pre-
sent an approach that uses an iterative transformation
of the input query strings into other strings that corre-
spond to more and more likely queries according to
statistics extracted from internet search query logs.

1 Introduction

The task of general purpose spelling correction has
a long history (e.g. Damerau, 1964; Rieseman and
Hanson, 1974; McIlroy, 1982), traditionally focus-
ing on resolving typographical errors such as in-
sertions, deletions, substitutions, and
transpositions of letters that result in unknown
words (i.e. words not found in a trusted lexicon of
the language). Typical word processing spell
checkers compute for each unknown word a small
set of in-lexicon alternatives to be proposed as
possible corrections, relying on information about
in-lexicon-word frequencies and about the most
common keyboard mistakes (such as typing m in-
stead of n) and phonetic/cognitive mistakes, both
at word level (e.g. the use of acceptible instead of
acceptable) and at character level (e.g. the misuse
of f instead of ph). Very few spell checkers attempt
to detect and correct word substitution errors,
which refer to the use of in-lexicon words in inap-
propriate contexts and can also be the result of
both typographical mistakes (such as typing coed
instead of cord) and cognitive mistakes (e.g. prin-
cipal and principle). Some research efforts to
tackle this problem have been made; for example
Heidorn et al. (1982) and Garside et al. (1987) de-
veloped systems that rely on syntactic patterns to
detect substitution errors, while Mays et al. (1991)
employed word co-occurrence evidence from a
large corpus to detect and correct such errors.
The former approaches were based on the imprac-
tical assumption that all possible syntactic uses
of all words (i.e. part-of-speech) are known, and

presented both recall and precision problems be-
cause many of the substitution errors are not syn-
tactically anomalous and many unusual syntactic
constructions do not contain errors. The latter ap-
proach had very limited success under the assump-
tions that each sentence contains at most one
misspelled word, each misspelling is the result of a
single point change (insertion, deletion, substitu-
tion, or transposition), and the defect rate (the rela-
tive number of errors in the text) is known. A
different body of work (e.g. Golding, 1995; Gold-
ing and Roth, 1996; Mangu and Brill, 1997) fo-
cused on resolving a limited number of cognitive
substitution errors, in the framework of context
sensitive spelling correction (CSSC). Although
promising results were obtained (92-95% accu-
racy), the scope of this work was very limited as it
only addressed known sets of commonly confused
words, such as {peace, piece}).

1.1 Spell Checking of Search Engine Queries

The task of web-query spelling correction ad-
dressed in this work has many similarities to tradi-
tional spelling correction but also poses additional
challenges. Both the frequency and severity of
spelling errors for search queries are significantly
greater than in word processing. Roughly 10-15%
of the queries sent to search engines contain errors.
Typically, the validity of a query cannot be de-
cided by lexicon look-up or by checking its gram-
maticality. Because web queries are very short (on
average, less than 3 words), techniques that use a
multitude of features based on relatively wide con-
text windows, such as those investigated in CSSC,
are difficult to apply. Rather than being well-
formed sentences, most queries consist of one con-
cept or an enumeration of concepts, many times
containing legitimate words that are not found in
any traditional lexicon.

 Just defining what a valid web query is represents
a difficult enterprise. We clearly cannot use only a
static trusted lexicon, as many new names and
concepts (such as aznar, blog, naboo, nimh, nsync,
and shrek) become popular every day and it would

be extremely difficult if not impossible to maintain
a high-coverage lexicon. In addition, employing
very large lexicons can result in more errors sur-
facing as word substitutions, which are very diffi-
cult to detect, rather than as unknown words.

 One alternative investigated in this work is to ex-
ploit the continuously evolving expertise of mil-
lions of people that use web search engines, as
collected in search query logs (seen as histograms
over the queries received by a search engine). In
some sense, we could say that the validity of a
word can be inferred from its frequency in what
people are querying for, similarly to Wittgen-
stein’s (1968) observation that “the meaning of a
word is its use in the language”. Such an approach
has its own caveats. For example, it would be er-
roneous to simply extract from web-query logs all
the queries whose frequencies are above a certain
value and consider them valid. Misspelled queries
such as britny spears are much more popular than
correctly spelled queries such as bayesian nets and
amd processors. Our challenge is to try to utilize
query logs to learn what queries are valid, and to
build a model for valid query probabilities, despite
the fact that a large percentage of the logged que-
ries are misspelled and there is no trivial way to
determine the valid from invalid queries.

2 Problem Formulation. Prior Work

Comprehensive reviews of the spelling correction
literature were provided by Peterson (1980),
Kukich (1992), and Jurafsky and Martin (2000). In
this section, we survey a few lexicon-based spell-
ing correction approaches by using a series of for-
mal definitions of the task and presenting concrete
examples showing the strengths and the limits cor-
responding to each situation. We iteratively rede-
fine the problem, starting from an approach purely
based on a trusted lexicon and ending up with an
approach in which the role of the trusted lexicon is
greatly diminished. While doing so, we also make
concrete forward steps in our attempt to provide a
definition of valid web queries.

 Let Σ be the alphabet of a language and *Σ⊂L a
broad-coverage lexicon of the language. The sim-
plest and historically the first definition of lexicon-
based spelling correction (Damerau, 1964) is:

Given an unknown word Lw *Σ∈ , find Lw ∈'
such that),(min)',(vwdistwwdist

Lv∈
= .

i.e. for any out-of-lexicon word in a text, find the
closest word form(s) in the available lexicon and
hypothesize it as the correct spelling alternative.
dist can be any string-based function; for exam-

ple, it can be the ratio between the number of let-
ters two words do not have in common and the
number of letters they share.1 The two most used
classes of distances in spelling correction are edit
distances, as proposed by Damerau (1964) and
Levenshtein (1965), and correlation matrix dis-
tances (Cherkassky et al., 1974). In our study, we
use a modified version of the Damerau-Lev-
enshtein edit distance, as presented in Section 3.

 One flaw of the preceding formulation is that it
does not take into account the frequency of words
in a language. A simple solution to this problem is
to compute the probability of words in the target
language as maximum likelihood estimates (MLE)
over a large corpus and reformulate the general
spelling-correction problem as follows:

Given Lw *Σ∈ , find Lw ∈' such that
δ≤)',(wwdist and)(max)'(

),(:
vPwP

vwdistLv δ≤∈
= .

 In this formulation, all in-lexicon words that are
within some “reasonable” distance δ of the un-
known word are considered as good candidates,
the correction being chosen based on its prior
probability in the language. While there is an im-
plicit conditioning on the original spelling because
of the domain on which the best correction is
searched, this objective function only uses the
prior probability of words in the language and not
the actual distances between each candidate and
the input word

 One solution that allows using a probabilistic edit
distance is to condition the probability of a correc-
tion on the original spelling)|(wvP :

Given Lw *Σ∈ , find Lw ∈' such that
δ≤)',(wwdist and)|(max)|'(

),(:
wvPwwP

vwdistLv δ≤∈
= .

 In a noisy channel model framework, as em-
ployed for spelling correction by Kernigham et al.
(1990), the objective function can be written by
using Bayesian inversion as the product between
the prior probability of words in a language)(vP
(the language model), and the likelihood of mis-
spelling a word v as w,)|(vwP (which models the
noisy channel and will be called the error model).

In the above formulations, unknown words are
corrected in isolation. This is a rather major flaw
because context is extremely important for spelling
correction, as illustrated in the following example:

power crd � power cord
video crd � video card

1 Note that the function does not have to be symmetric; thus,
the notation dist(w,w′) is used with a loose sense.

 The misspelled word crd should be corrected to
two different words depending on its contexts.2

 A formulation of the spelling correction problem
that takes into account context is the following:

Given a string *Σ∈s , rl wccs = , with Lw *Σ∈

and
*, Lcc rl ∈ , find Lw ∈' such that δ≤)',(wwdist

and)|(max)|'(
),(:

rl
vwdistLv

rl wccvPwccwP
δ≤∈

= .

 Spaces and other word delimiters are ignored in
this formulation and the subsequent formulations
for simplicity, although text tokenization repre-
sents an important part of the spelling-correction
process, as discussed in Sections 5 and 6.

 The task definitions enumerated up to this point
(on which most traditional spelling correction sys-
tems are based) ignore word substitution errors. In
the case of web searches, it is extremely important
to provide correction suggestions for valid words
when they are more meaningful as a search query
than the original query, for example:

golf war � gulf war
sap opera � soap opera

 This problem is partially addressed by the task of
CSSC, which can be formalized as follows:

Given a set of confusable valid word forms
in a language },...,,{ 21 nwwwW = and a string

ril cwcs = , choose Ww j ∈ such that

)|(max)|(
..1

rilk
nk

rilj cwcwPcwcwP
=

= .

 In the CSSC literature, the sets of confusables are
presumed known, but they could also be built for
each in-lexicon word w as all words 'w with

δ≤)',(wwdist , similarly to the approach investi-
gated by Mays et al. (1991), in which they chose a

1=δ and employed an edit distance with all point
changes having the same cost 1.

 The generalized problem of phrasal spelling cor-
rection can then be formulated as follows:

Given *Σ∈s , find *' Ls ∈ such that δ≤)',(ssdist

and)|(max)|'(
),(:*

stPssP
tsdistLt δ≤∈

= .

 Typically, a correction is desirable when *Ls ∉
(i.e. at least one of the component words is un-
known) but, as shown above, there are frequent
cases (e.g. golf war) when sequences of valid
words should be changed to other word sequences.
Note that word boundaries are hidden in this latter

2 To simplify the exposition, we only consider two highly
probable corrections, but other valid alternatives exist, e.g.
video cd.

formulation, making it more general and allowing
it to cover two other important spelling error
classes, concatenation and splitting, e.g.:

power point slides � powerpoint slides
chat inspanich � chat in spanish

 Yet, it still does not account for another important
class of cases in web query correction which is
represented by out-of-lexicon words that are valid

in certain contexts (therefore,
*' Ls ∉), for example:

amd processors � amd processors (no change)

 The above phrase represents a legitimate query,
despite the fact that it may contain unknown words
when employing a traditional English lexicon.

 Some even more interesting cases not handled by
traditional spellers and also not covered by the
latter formulation are those in which in-lexicon
words should be changed to out-of-lexicon words,
as in the following examples, where two valid
words must be concatenated into an out of lexicon
word:

gun dam planet � gundam planet
limp biz kit � limp bizkit

 These observations lead to an even more general
formulation of the spelling-correction problem:

Given *Σ∈s , find *' Σ∈s such that δ≤)',(ssdist

and)|(max)|'(
),(:*

stPssP
tsdistt δ≤Σ∈

= .

 For the first time, the formulation no longer
makes explicit use of a lexicon of the language.3 In
some sense, the actual language in which the web
queries are expressed becomes less important than
the query-log data from which the string probabili-
ties are estimated. This probability model can be
seen as a substitute for a measure of the meaning-
fulness of strings as web-queries. For example, an
implausible random noun phrase in any of the tra-
ditional corpora such as sad tomatoes is meaning-
ful in the context of web search (being the name of
a somewhat popular music band).

3 The Error Model. String Edit Functions

All formulations of the spelling correction task
given in the previous section used a string distance
function and a threshold to restrict the space in
which alternative spellings are searched. Various
previous work has addressed the problem of
choosing appropriate functions (e.g. Kernigham et
al. 1990, Brill and Moore, 2002; Toutanova and
Moore, 2003).

3 A trusted lexicon may still be used in the estimation of the
language model probability for the computation of)|(stP .

 The choice of distance function d and threshold δ
could be extremely important for the accuracy of a
speller. At one extreme, the use of a too restrictive
function/threshold combination can result in not
finding the best correction for a given query. For
example, using the vanilla Damerau-Levenshtein
edit distance (defined as the minimum number of
point changes required to transform a string into
another, where a point change is one of the follow-
ing operations: insertion of a letter, deletion of a
letter, and substitution of one letter with another
letter) and a threshold 1=δ , the correction donadl
duck � donald duck would not be possible. At the
other extreme, the use of a less limiting function
might have as consequence suggesting very
unlikely corrections. For example, using the same
classical Levenshtein distance and 2=δ would
allow the correction of the string donadl duck, but
will also lead to bad corrections such as log wood
� dog food (based on the frequency of the queries,
as incorporated in)(sP). Nonetheless, large dis-

tance corrections are still desirable in a diversity of
situations, for example:

platnuin rings � platinum rings
ditroitigers � detroit tigers

 The system described in this paper makes use of a
modified context-dependent weighted Damerau-
Levenshtein edit function which allows insertion,
deletion, substitution, immediate transposition, and
long-distance movement of letters as point
changes, for which the weights were interactively
refined using statistics from query logs.

4 The Language Model. Exploiting Large
Web Query Logs

A misspelling such as ditroitigers is far from the
correct alternative and thus, it might be extremely
difficult to find its correct spelling based solely on
edit distance. Nonetheless, the correct alternative
could be reached by allowing intermediate valid
correction steps, such as ditroitigers � detroitti-
gers � detroit tigers. But what makes detroittigers
a valid correction step? Recall that the last formu-
lation of spelling correction in Section 3 did not
explicitly use a lexicon of the language. Rather,
any string that appears in the query log used for
training can be considered a valid correction and
can be suggested as an alternative to the current
web query based on the relative frequency of the
query and the alternative spelling. Thus, a spell
checker built according to this formulation could
suggest the correction detroittigers because this

alternative occurs frequently enough in the em-
ployed query log. However, detroittigers itself
could be corrected to detroit tigers if presented as
a stand-alone query to this spell checker, based on
similar query-log frequency facts, which naturally
leads to the idea of an iterative correction ap-
proach.

albert einstein 4834
albert einstien 525
albert einstine 149
albert einsten 27
albert einsteins 25
albert einstain 11
albert einstin 10
albert eintein 9
albeart einstein 6
aolbert einstein 6
alber einstein 4
albert einseint 3
albert einsteirn 3
albert einsterin 3
albert eintien 3
alberto einstein 3
albrecht einstein 3
alvert einstein 3

Table 1. Counts of different (mis)spellings of Albert
Einstein’s name in a web query log.

 Essential to such an approach are three typical
properties of the query logs (e.g. see Table 1):

• words in the query logs are misspelled in vari-
ous ways, from relatively easy-to-correct mis-
spellings to very-difficult-to-correct ones, that
make the user’s intent almost impossible to
recognize;

• the less malign (difficult to correct) a misspell-
ing is the more frequent it is;

• the correct spellings tend to be more frequent
than misspellings.

 In this context, the spelling correction problem
can be given the following iterative formulation:

Given a string *
0 Σ∈s , find a sequence

*
21 ,..., Σ∈nsss such that δ≤+),(1ii ssdist ,

)|(max)|(
),(:

1 * i
tsdistt

ii stPssP
i δ≤Σ∈

+ = , 1..0 −∈∀ ni ,

and)|(max)|(
),(:* n

tsdistt
nn stPssP

n δ≤Σ∈
= .

 An example of correction that can be made by
iteratively applying the base spell checker is:

anol scwartegger � arnold schwarzenegger

Misspelled query: anol scwartegger
First iteration: arnold schwartnegger
Second iteration: arnold schwarznegger
Third iteration: arnold schwarzenegger
Fourth iteration: no further correction

 Up to this point, we underspecified the notion of
string in the task formulations given. One possibil-
ity is to consider whole queries as the strings to be
corrected and iteratively search for better logged
queries according to the agreement between their
relative frequencies and the character error model.
This is equivalent to identifying all queries in the
query log that are misspellings of other queries and
for any new query, find a correction sequence of
logged queries. While such an approach exploits
the vast information available in web-query logs, it
only covers exact matches of the queries that ap-
pear in these logs and provides a low coverage of
infrequent queries. For example, a query such as
britnet spear inconcert could not be corrected if
the correction britney spears in concert does not
appear in the employed query log, although the
substring britnet spear could be corrected to brit-
ney spears.

 To address the shortcomings of such an approach,
we propose a system based on the following for-
mulation, which uses query substrings:

Given *
0 Σ∈s , find a sequence *

21 ,..., Σ∈nsss ,
such that for each 1..0 −∈ ni there exist the de-

compositions ii l
ii

l
iii wwwws 1,1

1
1,11i0,

1
0, ...s ,... +++ == ,

where k
hjw , are words or groups of words such that

δ≤+),(1,10,
k
i

k
i wwdist , ilkni ..1 ,1..0 ∈∀−∈∀ and

)|(max)|(
**),(:

1 i
tsdistt

ii stPssP
i δ≤Σ∈

+ = , 1..0 −∈∀ ni ,

and)|(max)|(
**),(:

n
tsdistt

nn stPssP
n δ≤Σ∈

= .

Note that the length of the string decomposition
may vary from one iteration to the next one, for
example:

 In the implementation evaluated in this paper, we
allowed decompositions of query strings into

words and word bigrams. The tokenization process
uses space and punctuation delimiters in addition
to the information provided about multi-word
compounds (e.g. add-on and back-up) by a trusted
English lexicon with approximately 200k entries.
By using the tokenization process described above,
we extracted word unigram and bigram statistics
from query logs to be used as the system’s lan-
guage model.

5 Query Correction

An input query is tokenized using the same space
and word-delimiter information in addition to the
available lexical information as used for process-
ing the query log. For each token, a set of alterna-
tives is computed using the weighted Levenshtein
distance function described in Section 3 and two
different thresholds for in-lexicon and out-of-
lexicon tokens

 Matches are searched in the space of word uni-
grams and bigrams extracted from query logs in
addition to the trusted lexicon. Unigrams and bi-
grams are stored in the same data structure on
which the search for correction alternatives is
done. Because of this, the proposed system han-
dles concatenation and splitting of words in ex-
actly the same manner as it handles
transformations of words to other words.

 Once the sets of all possible alternatives are com-
puted for each word form in the query, a modified
Viterbi search (in which the transition probabilities
are computed using bigram and unigram query-log
statistics and output probabilities are replaced with
inverse distances between words) is employed to
find the best possible alternative string to the input
query under the following constraint: no two adja-
cent in-vocabulary words are allowed to change
simultaneously. This constraint prevents changes
such as log wood � dog food. An algorithmic con-
sequence of this constraint is that there is no need
to search all the possible paths in the trellis, which
makes the modified search procedure much faster,
as described further. We assume that the list of
alternatives for each word is randomly ordered but
the input word is on the first position of the list
when the word is in the trusted lexicon. In this
case, the searched paths form what we call fringes.
Figure 1 presents an example of a trellis in which
w1, w2 and w3 are in-lexicon word forms. Observe
that instead of computing the cost of k1�k2 possible
paths between the alternatives corresponding to w1
and w2, we only need to compute the cost of k1+k2
paths.

31 =l

42 =l

20 =l 0s britenetspear inconcert

1s britneyspears in concert

2s britney spears in concert

3s britney spears in concert

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

unk
now

n w
or

d

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

unk
now

n w
or

d

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

unk
now

n w
or

d

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

unk
now

n w
or

d

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

Figure 1. Example of trellis of the modified Viterbi search

 Because we use word-bigram statistics, stop
words such as prepositions and conjunctions may
interfere negatively with the best path search. For
example, in correcting a query such as platunum
and rigs, the language model based on word bi-
grams would not provide a good context for the
word form rigs.

 To avoid this type of problems, stop words and
their most likely misspelling are given a special
treatment. The search is done by first ignoring
them, as in Figure 1, where w4 is presumed to be
such a word. Once a best path is found by ignoring
stop words, the best alternatives for the skipped
stop words (or their misspellings) are computed in
a second Viterbi search with fringes in which the
extremities are fixed, as presented in Figure 2.

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

1

1
2

1
1

1

1ka

a

a

w

�

2

2
2

2
1

2

2ka

a

a

w

�

3

3
2

3
1

3

3ka

a

a

w

�

4

4
2

4
1

4

4ka

a

a

w

�

5

5
2

5
1

5

5ka

a

a

w

�

6

6
2

6
1

6

6ka

a

a

w

�

7

7
2

7
1

7

7ka

a

a

w

�

sto
p w

ord

Figure 2. Modified Viterbi search – stop-word treatment

 The approach of search with fringes coupled with
an iterative correction process is both very effi-
cient and very effective. In each iteration, the
search space is much reduced. Changes such as log
wood � dog food are avoided because they can not
be made in one iteration and there are no interme-

diate corrections conditionally more probable than
the left-hand-side query (log wood) and less prob-
able than the right-hand-side query (dog food).
 An iterative process is prone to other types of
problems. Short queries can be iteratively trans-
formed into other un-related queries; therefore,
changing such queries is restricted additionally in
our system. Another restriction we imposed is to
not allow changes of in-lexicon words in the first
iteration, so that easy-to-fix unknown-word errors
are handled before any word substitution error.

6 Evaluation

For this work, we are concerned primarily with
recall because providing good suggestions for mis-
spelled queries can be viewed as more important
than abstaining to provide alternative query sug-
gestions for valid queries as long as these sugges-
tions are reasonable (for example, suggesting
cowboy ropes for cowboy robes may not have ma-
jor cost to a user). A real system would have a
component that decides whether to surface a spell-
ing suggestion based on where we want to be on
the ROC curve, thus negotiating between precision
and recall.

 One problem with evaluating a spell checker de-
signed to correct search queries is that evaluation
data is hard to get. Even if the system were used
by a search engine and click-through information
were available, such information would provide
only a crude measure of precision and would not
allow us to measure recall, by capturing only cases
in which the corrections proposed by that particu-
lar speller are clicked on by the users.

 We performed two different evaluations of the
proposed system.4 The first evaluation was done
on a test set comprising 1044 unique randomly
sampled queries from a daily query log, which
were annotated by two annotators. Their inter-
agreement rate was 91.3%. 864 of these queries
were considered valid by both annotators; for the
other 180, the annotators provided spelling correc-
tions. The overall agreement of our system with
the annotators was 81.8%. The system suggested
131 alternative queries for the valid set, counted as
false positives, and 156 alternative queries for the
misspelled set. Table 2 shows the accuracy ob-
tained by the proposed system and results from an
ablation study where we disabled various compo-
nents of the system, to measure their influence on
performance.

4 The test data sets can be downloaded from
http://research.microsoft.com/~silviu/Work

 All queries Valid Misspelled
Nr. queries 1044 864 180

Full system 81.8 84.8 67.2
No lexicon 70.3 72.2 61.1

No query log 77.0 82.1 52.8
All edits equal 80.4 83.3 66.1
Unigrams only 54.7 57.4 41.7
1 iteration only 80.9 88.0 47.2
2 iterations only 81.3 84.4 66.7

No fringes 80.6 83.3 67.2

Table 2. Accuracy of various instantiations of the system

 By completely removing the trusted lexicon, the
accuracy of the system on misspelled queries
(61.1%) was higher than in the case of only using
a trusted lexicon and no query log data (52.8%). It
can also be observed that the language model built
using query logs is by far more important than the
channel model employed: using a poorer character
error model by setting all edit weights equal did
not have a major impact on performance (66.1%
recall), while using a poorer language model that
only employs unigram statistics from the query
logs crippled the system (41.7% recall). Another
interesting aspect is related to the number of itera-
tions. Because the first iteration is more conserva-
tive than the following iterations, using only one
iteration led to fewer false positives but also to a
much lower recall (47.2%). Two iterations were
sufficient to correct most of the misspelled queries
that the full system could correct. While fringes
did not have a major impact on recall, they helped
avoid false positives (and had a major impact on
speed).

81.2
81.6

81.880.7

69.468.9
67.2

66.1
65

70

75

80

85

1 month 2 months 3 months 4 months

All queries

Mispelled queries

Figure 3. Accuracy and recall as functions of the number of
 monthly query logs used to train the language model

 Figure 3 shows the performance of the full system
as a function of the number of monthly query logs
employed. While both the total accuracy and the
recall increased when using 2 months of data in-
stead of 1 month, by using more query log data (3
and 4 month), the recall (or accuracy on mis-
spelled queries) still improves but at the expense
of having more false positives for valid queries,
which leads to an overall slightly smaller accuracy.

 A post-analysis of the results showed that the sys-
tem suggested in many cases reasonable correc-
tions but different from the gold standard ones.
Many false positives could be considered reason-
able suggestions, although it is not clear whether
they would have been helpful to the users (e.g.
2002 kawasaki ninja zx6e � 2002 kawasaki ninja
zx6r was counted as an error, although the sugges-
tion represents a more popular motorcycle model).
In the case of misspelled queries in which the
user’s intent was not clear, the suggestion made by
the system could be considered valid despite the
fact that it disagreed with the annotators’ choice
(e.g. gogle � google instead of the gold standard
correction goggle).

 To address the problems generated by the fact that
the annotators could only guess the user intent, we
performed a second evaluation, on a set of queries
randomly extracted from query log data, by sam-
pling pairs of successive queries),(21 qq sent by
the same users in which the queries differ from
one another by an un-weighted edit distance of at
most 1+(len(1q)+len(2q))/10 (i.e. allow a point
change for every 5 letters). We then presented the
list to human annotators who had the option to re-
ject a pair, choose one of the queries as a valid cor-
rection of the other, or propose a correction for
both when none of them were valid but the in-
tended valid query was easy to guess from the se-
quence, as in example 3 below:

(audio flie, audio file) � audio file
(bueavista, buena vista) � buena vista

(carrabean nooms, carrabean rooms) � caribbean rooms

 Table 3 shows the performance obtained by dif-
ferent instantiations of the system on this set.

Full system 73.1
No lexicon 59.2

No query log 44.9
All edits equal 69.9
Unigrams only 43.0
1 iteration only 45.5
2 iterations only 68.2

No fringes 71.0

Table 3. Accuracy of the proposed system on a set which
 contains misspelled queries that the users had reformulated

 The main system disagreed 99 times with the gold
standard, in 80 of these cases suggesting a differ-
ent correction. 40 of the corrections were not ap-
propriate (e.g. porat was corrected by our system
to pirate instead of port in chinese porat also
called xiamen), 15 were functionally equivalent

corrections given our target search engine (e.g.
audio flie � audio files instead of audio file), 17
were different valid suggestions (e.g. bellsouth
lphone isting � bellsouth phone listings instead of
bellsouth telephone listing), while 8 represented
gold standard errors (e.g. the speller correctly sug-
gested brandy sniffters � brandy snifters instead
of brandy sniffers). Out of 19 cases in which the
system did not make a suggestion, 13 were genu-
ine errors (e.g. paul waskiewiscz with the correct
spelling paul waskiewicz), 4 were cases in which
the original input was correct, although different
from the user’s intent (e.g. cooed instead of coed)
and 2 were gold standard errors (e.g. commandos 3
walkthrough had the wrong correction commando
3 walkthrough, as this query refers to a popular
videogame called “commandos 3”).

Differences Gold std errors Format Diff. valid Real Errors

80+19 8+2 15+0 17+4 40+13

 The above table shows a synthesis of this error
analysis on the second evaluation set. The first
number in each column refers to a precision error
(i.e. the speller suggested something different than
the gold standard), while the second refers to a
recall error (i.e. no suggestion).

 As a result of this error analysis, we could argua-
bly consider that while the agreement with the
gold standard experiments are useful for measur-
ing the relative importance of components, they do
not give us an absolute measure of system useful-
ness/accuracy.

Agreement Correctness Precision Recall

73.1 85.5 88.4 85.4

 In the above table, we consider correctness as the
relative number of times the suggestion made by
the speller was correct or reasonable; precision
measures the number of correct suggestions in the
total number of spelling suggestions made by the
system; recall is computed as the relative number
of correct/reasonable suggestions made when such
suggestions were needed.

 As an additional verification and to confirm the
difficulty of the test queries, we sent a set of them
to Google and observed that Google speller’s
agreement with the gold standard was slightly
lower than our system’s agreement.

7 Conclusion

To our knowledge, this paper is the first to show a
successful attempt of using the collective knowl-
edge stored in search query logs for the spelling

correction task. We presented a technique to mine
this extremely informative but very noisy resource
that actually exploits the errors made by people as
a way to do effective query spelling correction. A
direction that we plan to investigate is the adapta-
tion of such a technique to the general purpose
spelling correction, by using statistics from both
query-logs and large office document collections.

Acknowledgements

We wish to thank Robert Ragno and Robert Roun-
thwaite for helpful comments and discussions.

References

Brill, E. and R. Moore. 2000. An improved error model for
noisy channel spelling correction. In Proceedings of the ACL
2000, pages 286-293.

Cherkassky, V., N. Vassilas, G.L. Brodt, R.A. Wagner, and
M.J. Fisher. 1974. The string to string correction problem. In
Journal of ACM, 21(1):168-178.

Damerau, F.J. 1964. A technique for computer detection and
correction of spelling errors. In Communications of ACM,
7(3):171-176.

Garside, R., G. Leech and G. Sampson. 1987. Computational
analysis of English: a corpus-based approach, Longman.

Golding, A.R. 1995. A Bayesian hybrid method for context-
sensitive spelling correction. In Proceedings of the Work-
shop on Very Large Corpora, pages 39-53.

Golding, A.R. and D. Roth. 1996. Applying winnow to con-
text-sensitive spelling correction. In Proceedings of ICML
1996, pages 182-190.

Heidorn, G.E., K. Jensen, L.A. Miller, R.J. Byrd and M.S.
Chodorow. 1982. The EPISTLE text-critiquing system. In
IBM Systems Journal, 21(3):305-326.

Jurafsky, D. and J.H. Martin. 2000. Speech and language
processing. Prentice-Hall.

Kernighan, M., K. Church, and W. Gale. 1990. A spelling
correction program based on a noisy channel model. In Pro-
ceedings of COLING 1990.

Kukich, K. 1992. Techniques for automatically correcting
words in a text. In Computing Surveys, 24(4):377-439.

Mays, E., F.J. Damerau and R.L. Mercer. 1991. Context-
based spelling correction. In Information Processing and
Management, 27(5):517-522.

Mangu, L. and E. Brill. 1997. Automatic rule acquisition for
spelling correction. In Proceedings of the ICML 1997, pages
734-741.

McIlroy, M.D. 1982. Development of a spelling list. In J-
IEEE-TRANS-COMM, 30(1);91-99.

Peterson, J.L. 1980. Computer programs for spelling correc-
tion: an experiment in program design. Springer-Verlag.

Rieseman, E.M. and A.R. Hanson. 1974. A contextual post-
processing system for error correction using binary n-grams.
In IEEE Transactions on Computers, 23(5):480-493.

Toutanova, K. and R. C. Moore. 2002. Pronunciation Model-
ing for Improved Spelling Correction. In Proceedings of the
ACL 2002.pages 141-151.

Wittgenstein, L. 1968. Philosophical Investigations. Basil
Blackwell, Oxford.

