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Abstract
Starting from first principles, we re-visit the
statistical approach and study two forms of
the Bayes decision rule: the common rule for
minimizing the number of string errors and a
novel rule for minimizing the number of symbols
errors. The Bayes decision rule for minimizing
the number of string errors is widely used, e.g.
in speech recognition, POS tagging and machine
translation, but its justification is rarely questioned.
To minimize the number of symbol errors as is
more suitable for a task like POS tagging, we show
that another form of the Bayes decision rule can
be derived. The major purpose of this paper is to
show that the form of the Bayes decision rule should
not be taken for granted (as it is done in virtually
all statistical NLP work), but should be adapted
to the error measure being used. We present first
experimental results for POS tagging tasks.

1 Introduction
Meanwhile, the statistical approach to natural
language processing (NLP) tasks like speech
recognition, POS tagging and machine translation
has found widespread use. There are three
ingredients to any statistical approach to NLP,
namely the Bayes decision rule, the probability
models (like trigram model, HMM, ...) and the
training criterion (like maximum likelihood, mutual
information, ...).

The topic of this paper is to re-consider the form
of the Bayes decision rule. In virtually all NLP
tasks, the specific form of the Bayes decision rule
is never questioned, and the decision rule is adapted
from speech recognition. In speech recognition, the
typical decision rule is to maximize thesentence
probability over all possible sentences. However,
this decision rule is optimal for thesentenceerror
rate and not for theword error rate. This difference
is rarely studied in the literature.

As a specific NLP task, we will consider part-
of-speech (POS) tagging. However, the problem
addressed comes up inany NLP task which is
tackled by thestatistical approachand which makes

use of a Bayes decision rule. Other prominent
examples are speech recognition and machine
translation. The advantage of the POS tagging
task is that it will be easier to handle from the
mathematical point of view and will result in closed-
form solutions for the decision rules. From this
point-of-view, the POS tagging task serves as a
good opportunity to illustrate the key concepts of
the statistical approach to NLP.

Related Work: For the task of POS tagging,
statistical approaches were proposed already in the
60’s and 70’s (Stolz et al., 1965; Bahl and Mercer,
1976), before they started to find widespread use
in the 80’s (Beale, 1985; DeRose, 1989; Church,
1989).

To the best of our knowledge, the ’standard’
version of the Bayes decision rule, which minimizes
the number of string errors, is used in virtually all
approaches to POS tagging and other NLP tasks.
There are only two research groups that do not take
this type of decision rule for granted:

(Merialdo, 1994): In the context of POS tagging,
the author introduces a method that he calls
maximum likelihood tagging. The spirit of this
method is similar to that of this work. However, this
method is mentioned as an aside and its implications
for the Bayes decision rule and the statistical
approach are not addressed. Part of this work
goes back to (Bahl et al., 1974) who considered
a problem in coding theory.

(Goel and Byrne, 2003): The error measure
considered by the authors is the word error rate in
speech recognition, i.e. the edit distance. Due to
the mathematical complexity of this error measure,
the authors resort to numeric approximations
to compute the Bayes risk (see next section).
Since this approach does not results in explicit
closed-form equations and involves many numeric
approximations, it is not easy to draw conclusions
from this work.



2 Bayes Decision Rule for Minimum Error
Rate

2.1 The Bayes Posterior Risk
Knowing that any task in NLP tasks is a difficult
one, we want to keep the number of wrong
decisions as small as possible. This point-of-view
has been used already for more than 40 years in
pattern classification as the starting point for many
techniques in pattern classification. To classify an
observation vectory into one out of several classes
c, we resort to the so-called statistical decision
theory and try to minimize the averagerisk or loss
in taking a decision. The result is known asBayes
decision rule(Chapter 2 in (Duda and Hart, 1973)):

y → ĉ = arg min
c

{

∑

c̃

Pr(c|y) · L[c, c̃]

}

whereL[c, c̃] is the so-called loss function or error
measure, i.e. the loss we incur in making decisionc
when the true class is̃c.

In the following, we will consider two specific
forms of the loss function or error measureL[c, c̃].
The first will be the measure for string errors,
which is the typical loss function used in virtually
all statistical approaches. The second is the
measure for symbol errors, which is the more
appropriate measure for POS tagging and also
speech recognition with no insertion and deletion
errors (such as isolated word recognition).

2.2 String Error
For POS tagging, the starting point is the observed
sequence of wordsy = wN

1 = w1...wN , i.e. the
sequence of words for which the POS tag sequence
hasc = gN

1 = g1...gN has to be determined.
The first error measure we consider is the string

error: the error is equal to zero only if the POS
symbols of the two strings are identical at each
position. In this case, the loss function is:

L[gN
1 , g̃N

1 ] = 1 −
N
∏

n=1

δ(gn, g̃n)

with the Kronecker deltaδ(c, c̃). In other words,
the errors are counted at the string level and not
at the level of single symbols. Inserting this cost
function into the Bayes risk (see Section 2.1), we
immediately obtain the following form ofBayes
decision rule for minimum string error:

wN
1 → ĝN

1 = arg max
gN

1

{

Pr(gN
1 |wN

1 )
}

= arg max
gN

1

{

Pr(gN
1 , wN

1 )
}

This is the starting point for virtually all statistical
approaches in NLP like speech recognition and
machine translation. However, this decision rule is
only optimal when we considerstring errors, e.g.
sentence error rate in POS tagging and in speech
recognition. In practice, however, the empirical
errors are counted at thesymbol level. Apart
from (Goel and Byrne, 2003), this inconsistency of
decision rule and error measure is never addressed
in the literature.

2.3 Symbol Error
Instead of thestringerror rate, we can also consider
the error rate ofsingle POS tag symbols(Bahl et
al., 1974; Merialdo, 1994).

This error measure is defined by the loss function:

L[gN
1 , g̃N

1 ] =
N

∑

n=1

[1 − δ(gn, g̃n)]

This loss function has to be inserted into the Bayes
decision rule in Section 2.1. The computation of the
expected loss, i.e. the averaging over all classesc̃ =
g̃N
1 , can be performed in a closed form. We omit

the details of the straightforward calculations and
state only the result. It turns out that we will need
the marginal (and posterior) probability distribution
Prm(g|wN

1 ) at positionsm = 1, ..., N :

Prm(g|wN
1 ) :=

∑

gN

1
: gm=g

Pr(gN
1 |wN

1 )

where the sum is carried out over all POS tag strings
gN
1 with gm = g, i.e. the taggm at positionm is

fixed atgm = g. The question of how to perform
this summation efficiently will be considered later
after we have introduced the model distributions.

Thus we have obtained theBayes decision rule
for minimum symbol errorat positionm = 1, ..., N :

(wN
1 ,m) → ĝm = arg max

g

{

Prm(g|wN
1 )

}

= arg max
g

{

Prm(g,wN
1 )

}

By construction this decision rule has the special
property that it does not put direct emphasis on
local coherency of the POS tags produced. In other
words, this decision rule may produce a POS tag
string which is linguistically less likely.

3 The Modelling Approaches to POS
Tagging

The derivation of the Bayes decision rule assumes
that the probability distributionPr(gN

1 , wN
1 ) (or

Pr(gN
1 |wN

1 )) is known. Unfortunately, this is not
the case in practice. Therefore, the usual approach



is to approximate the true but unknown distribution
by amodel distributionp(gN

1 , wN
1 ) (or p(gN

1 |wN
1 )).

We will review two popular modelling approaches,
namely the generative model and the direct model,
and consider the associated Bayes decision rules for
both minimum string error and minimum symbol
error.

3.1 Generative Model: Trigram Model
We replace the true but unknownjoint distribution
Pr(gN

1 , wN
1 ) by a model-based probability distribu-

tion p(gN
1 , wN

1 ):

Pr(gN
1 , wN

1 ) → p(gN
1 , wN

1 ) = p(gN
1 ) · p(wN

1 |gN
1 )

We apply the so-calledchain ruleto factorize each
of the distributionsp(gN

1 ) and p(wN
1 |gN

1 ) into a
product ofconditional probabilitiesusing specific
dependence assumptions:

p(gN
1 , wN

1 ) =
N
∏

n=1

[

p(gn|g
n−1
n−2) · p(wn|gn)

]

with suitable definitions for the casen = 1.
Here, the specific dependence assumptions are that
the conditional probabilities can be represented
by a POS trigram modelp(gn|g

n−1
n−2) and a word

membership modelp(wn|gn). Thus we obtain
a probability model whose structure fits into
the mathematical framework of so-calledHidden
Markov Model (HMM). Therefore, this approach is
often also referred to as HMM-based POS tagging.
However, this terminology is misleading: The POS
tag sequence is observable whereas in the Hidden
Markov Model the state sequence is always hidden
and cannot be observed. In the experiments, we will
use a 7-gram POS model. It is clear how to extend
the equations from the trigram case to the 7-gram
case.

3.1.1 String Error
Using the above model distribution, we directly
obtain the decision rule for minimum string error:

wN
1 → ĝN

1 = arg max
gN

1

{

p(gN
1 , wN

1 )
}

Since the model distribution is a basically a second-
order model (or trigram model), there is an efficient
algorithm for finding the most probable POS tag
string. This is achieved by a suitable dynamic
programming algorithm, which is often referred to
as Viterbi algorithm in the literature.

3.1.2 Symbol Error
To apply the Bayes decision rule for minimum
symbol error rate, we first compute the marginal

probabilitypm(g,wN
1 ):

pm(g,wN
1 ) =

∑

gN

1
: gm=g

p(gN
1 , wN

1 )

=
∑

gN

1
: gm=g

∏

n

[

p(gn|g
n−1
n−2) · p(wn|gn)

]

Again, since the model is a second-order model,
the sum over all possible POS tag stringsgN

1

(with gm = g) can be computed efficiently
using a suitable extension of the forward-backward
algorithm (Bahl et al., 1974).

Thus we obtain the decision rule for minimum
symbol error at positionsm = 1, ..., N :

(wN
1 ,m) → ĝm = arg max

g

{

pm(g,wN
1 )

}

Here, after the the marginal probabilitypm(g,wN
1 )

has been computed, the task of finding the most
probable POS tag at positionm is computationally
easy. Instead, the lion’s share for the computational
effort is required to compute the marginal probabil-
ity pm(g,wN

1 ).

3.2 Direct Model: Maximum Entropy
We replace the true but unknownposterior distri-
bution Pr(gN

1 |wN
1 ) by a model-based probability

distributionp(gN
1 |wN

1 ):

Pr(gN
1 |wN

1 ) → p(gN
1 |wN

1 )

and apply the chain rule:

p(gN
1 |wN

1 ) =
N
∏

n=1

p(gn|g
n−1
1 , wN

1 )

=
N
∏

n=1

p(gn|g
n−1
n−2 , w

n+2
n−2)

As for the generative model, we have made specific
assumptions: There is a second-order dependence
for the tagsgn

1 , and the dependence on the words
wN

1 is limited to a windowwn+2
n−2 around position

n. The resulting model is still rather complex
and requires further specifications. The typical
procedure is to resort tolog-linear modelling, which
is also referred to asmaximum entropy modelling
(Ratnaparkhi, 1996; Berger et al., 1996).

3.2.1 String Error
For the minimum string error, we obtain the
decision rule:

wN
1 → ĝN

1 = arg max
gN

1

{

p(gN
1 |wN

1 )
}



Since this is still a second-order model, we can use
dynamic programming to compute the most likely
POS string.

3.2.2 Symbol Error
For the minimum symbol error, the marginal
(and posterior) probabilitypm(g|wN

1 ) has to be
computed:

pm(g|wN
1 ) =

∑

gN

1
: gm=g

Pr(gN
1 |wN

1 )

=
∑

gN

1
: gm=g

∏

n

p(gn|g
n−1
n−2 , w

n+2
n−2)

which, due to the specific structure of the model
p(gn|g

n−1
n−2 , w

n+2
n−2), can be calculated efficiently

using only a forward algorithm (without a
’backward’ part).

Thus we obtain the decision rule for minimum
symbol error at positionsm = 1, ..., N :

(wN
1 ,m) → ĝm = arg max

g

{

pm(g|wN
1 )

}

As in the case of the generative model, the
computational effort is to compute the posterior
probability pm(g|wN

1 ) rather than to find the most
probable tag at positionm.

4 The Training Procedure
So far, we have said nothing about how we train
the free parameters of the model distributions. We
use fairly conventional training procedures that we
mention only for the sake of completeness.

4.1 Generative Model
We consider the trigram-based model. The free
parameters here are the entries of the POS trigram
distributionp(g|g′′, g′) and of the word membership
distributionp(w|g). These unknown parameters are
computed from alabelled training corpus, i.e. a
collection of sentences where for each word the
associated POS tag is given.

In principle, the free parameters of the models
are estimated as relative frequencies. For the test
data, we have to allow for both POS trigrams (orn-
grams) and (single) words that were not seen in the
training data. This problem is tackled by applying
smoothingmethods that were originally designed
for language modelling in speech recognition (Ney
et al., 1997).

4.2 Direct Model
For the maximum entropy model, the free param-
eters are the so-calledλi or feature parameters
(Berger et al., 1996; Ratnaparkhi, 1996). The
training criterion is to optimize the logarithm

of the model probabilitiesp(gn|g
n−2
n−1 , w

n+2
n−2) over

all positions n in the training corpus. The
corresponding algorithm is referred to as GIS
algorithm (Berger et al., 1996). As usual
with maximum entropy models, the problem of
smoothing does not seem to be critical and is not
addressed explicitly.

5 Experimental Results
Of course, there have already been many papers
about POS tagging using statistical methods. The
goal of the experiments is to compare the two
decision rules and to analyze the differences in
performance. As the results for the WSJ corpus will
show, both the trigram method and the maximum
entropy method have an tagging error rate of 3.0%
to 3.5% and are thus comparable to the best results
reported in the literature, e.g. (Ratnaparkhi, 1996).

5.1 Task and Corpus
The experiments are performed on the Wall Street
Journal (WSJ) English corpus and on the Münster
Tagging Project (MTP) German corpus.

The POS tagging part of The WSJ corpus
(Table 1) was compiled by the University of
Pennsylvania and consists of about one million
English words with manually annotated POS tags.

Text POS
Train Sentences 43508

Words+PMs 1061772
Singletons 21522 0
Word Vocabulary 46806 45
PM Vocabulary 25 9

Test Sentences 4478
Words+PMs 111220
OOVs 2879 0

Table 1: WSJ corpus statistics.

The MTP corpus (Table 2) was compiled at the
University of Münster and contains tagged German
words from articles of the newspapersDie Zeit
andFrankfurter Allgemeine Zeitung(Kinscher and
Steiner, 1995).

For the corpus statistics, it is helpful to
distinguish between the true words and the
punctuation marks (see Table 1 and Table 2). This
distinction is made for both the text and the POS
corpus. In addition, the tables show the vocabulary
size (number of different tokens) for the words and
for the punctuation marks.

Punctuation marks (PMs) are all tokens which
do not contain letters or digits. The total number
of running tokens is indicated as Words+PMs.
Singletons are the tokens which occur only once in



Text POS
Train Sentences 19845

Words+PMs 349699
Singletons 32678 11
Word Vocabulary 51491 68
PM Vocabulary 27 5

Test Sentences 2206
Words+PMs 39052
OOVs 3584 2

Table 2: MTP corpus statistics.

the training data. Out-of-Vocabulary words (OOVs)
are the words in the test data that did not not occur
in the training corpus.

5.2 POS Tagging Results
The tagging experiments were performed for both
types of models, each of them with both types of
the decision rules. The generative model is based on
the approach described in (Sündermann and Ney,
2003). Here the optimal value of then-gram order
is determined from the corpus statistics and has a
maximum ofn = 7. The experiments for the direct
model were performed using the maximum entropy
tagger described in (Ratnaparkhi, 1996).

The tagging error rates are showed in Table 3 and
Table 4. In addition to the overall tagging error rate
(Overall), the tables show the tagging error rates for
the Out-of-Vocabulary words (OOVs) and for the
punctuation marks (PMs).

For the generative model, both decision rules
yield similar results. For the direct model, the
overall tagging error rate increases on each of the
two tasks (from 3.0 % to 3.3 % on WSJ and from
5.4 % to 5.6 % on MTP) when we use the symbol
decision rule instead of the string decision rule. In
particular, for OOVs, the error rate goes up clearly.
Right now, we do not have a clear explanation
for this difference between the generative model
and the direct model. It might be related to the
’forward’ structure of the direct model as opposed to
the ’forward-backward’ structure of the generative
model. Anyway, the refined bootstrap method
(Bisani and Ney, 2004) has shown that differences
in the overall tagging error rate are statistically not
significant.

5.3 Examples
A detailed analysis of the tagging results showed
that for both models there are sentences where the
one decision rule is more efficient and sentences
where the other decision rule is better.

For the generative model, these differences seem
to occur at random, but for the direct model, some
distinct tendencies can be observed. For example,

WSJ Task Decision Overall OOVs PMs
Rule

Generative string 3.5 16.9 0
Model symbol 3.5 16.7 0
Direct string 3.0 15.4 0.08
Model symbol 3.3 16.6 0.1

Table 3: POS tagging error rates [%] for WSJ task.

MTP Task Decision Overall OOVs PMs
Rule

Generative string 5.4 13.4 3.6
Model symbol 5.4 13.4 3.6
Direct string 5.4 12.7 3.8
Model symbol 5.6 13.4 3.7

Table 4: POS tagging error rates [%] for MTP task.

for the WSJ corpus, the string decision rule is
significantly better for the present and past tense of
verbs (VBP, VBN), and the symbol decision rule
is better for adverb (RB) and verb past participle
(VBN). Typical errors generated by the symbol
decision rule are tagging present tense as infinitive
(VB) and past tense as past participle (VBN), and
for string decision rule, adverbs are often tagged as
preposition (IN) or adjective (JJ) and past participle
as past tense (VBD).

For the German corpus, the string decision
rule better handles demonstrative determiners
(Rr) and subordinate conjunctions (Cs) whereas
symbol decision rule is better for definite articles
(Db). The symbol decision rule typically tags
the demonstrative determiner as definite article
(Db) and subordinate conjunctions as interrogative
adverbs (Bi), and the string decision rule tends to
assign the demonstrative determiner tag to definite
articles.

These typical errors for the symbol decision rule
are shown in Table 5, and for the string decision rule
in Table 6.

6 Conclusion
So far, the experimental tests have shown no
improvement when we use the Bayes decision rule
for minimizing the number of symbol errors rather
than the number of string errors. However, the
important result is that the new approach results in
comparable performance. More work is needed to
contrast the two approaches.

The main purpose of this paper has been to show
that, in addition to the widely used decision rule for
minimizing the string errors, it is possible to derive a
decision rule for minimizing the number of symbol



errors and to build up the associated mathematical
framework.

There are a number of open questions for future
work:

1) The error rates for the two decision rules are
comparable. Is that an experimental coincidence?
Are there situations for which we must expect a
significance difference between the two decision
rules? We speculate that the two decision rules
could alwayshave similar performance if the error
rates are small.

2) Ideally, the training criterion should be closely
related to the error measure used in the decision
rule. Right now, we have used the training criteria
that had been developed in the past and that had
been (more or less) designed for the string error rate
as error measure. Can we come up with a training
criterion tailored to the symbol error rate?

3) In speech recognition and machine translation,
more complicated error measures such as the edit
distance and the BLEU measure are used. Is it
possible to derive closed-form Bayes decision rules
(or suitable analytic approximations) for these error
measures? What are the implications?
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VBP→ VB
reference ... investors/NNS already/RBhave/VBPsharply/RB scaled/VBN ...
string ... investors/NNS already/RBhave/VBPsharply/RB scaled/VBN ...
symbol ... investors/NNS already/RBhave/VB sharply/RB scaled/VBN ...
reference We/PRP basically/RBthink/VBPthat/IN ...
string We/PRP basically/RBthink/VBPthat/IN ...
symbol We/PRP basically/RBthink/VB that/IN ...
VBD → VBN
reference ... plant-expansion/JJ program/NNstarted/VBDthis/DT year/NN ...
string ... plant-expansion/NN program/NNstarted/VBDthis/DT year/NN ...
symbol ... plant-expansion/NN program/NNstarted/VBN this/DT year/NN ...
reference ... countries/NNS have/VBP in/IN recent/JJ years/NNSmade/VBDagreements/NNS ...
string ... countries/NNS have/VBP in/IN recent/JJ years/NNSmade/VBDagreements/NNS ...
symbol ... countries/NNS have/VBP in/IN recent/JJ years/NNSmade/VBNagreements/NNS ...
Rr→ Db
reference Das/Db Sandmännchen/Ne ,/Fidas/Rruns/Rp der/Db NDR/Ab präsentiert/Vf ...
string Das/Db Sandmännchen/Ng ,/Fidas/Rruns/Rp der/Db NDR/Ab präsentiert/Vf ...
symbol Das/Db Sandmännchen/Ng ,/Fidas/Dbuns/Rp der/Db NDR/Ab präsentiert/Vf ...
reference ... für/Po Leute/Ng ,/Fidie/Rrglauben/Vf ...
string ... für/Po Leute/Ng ,/Fidie/Rrglauben/Vf ...
symbol ... für/Po Leute/Ng ,/Fidie/Db glauben/Vf ...
Cs→ Bi
reference Denke/Vf ich/Rp nach/Qv ,/Fiwarum/Csmir/Rp die/Db Geschichte/Ng gefällt/Vf ...
string Denke/Vf ich/Rp nach/Qv ,/Fiwarum/Csmir/Rp die/Db Geschichte/Ng gefällt/Vf ...
symbol Denke/Vf ich/Rp nach/Qv ,/Fiwarum/Bi mir/Rp die/Db Geschichte/Ng gefällt/Vf ...

Table 5: Examples of tagging errors for the symbol decision rule (direct model)

RB→ IN, JJ
reference The/DT negotiations/NNS allocate/VBPabout/RB15/CD %/NN ...
string The/DT negotiations/NNS allocate/VBPabout/IN 15/CD %/NN ...
symbol The/DT negotiations/NNS allocate/VBPabout/RB15/CD %/NN ...
reference ... will/MD lead/VB to/TO a/DTmuch/RBstronger/JJR performance/NN ...
string ... will/MD lead/VB to/TO a/DTmuch/JJ stronger/JJR performance/NN ...
symbol ... will/MD lead/VB to/TO a/DTmuch/RBstronger/JJR performance/NN ...
VBN → VBD
reference ... by/IN a/DT police/NN officer/NNnamed/VBNJohn/NNP Klute/NNP ...
string ... by/IN a/DT police/NN officer/NNnamed/VBDJohn/NNP Klute/NNP ...
symbol ... by/IN a/DT police/NN officer/NNnamed/VBNJohn/NNP Klute/NNP ...
Db→ Rr
reference er/Rp kam/Vf auf/Po die/Db Idee/Ng ,/Fidie/DbEmotionen/Ng zu/Qi kanalisieren/Vi ...
string er/Rp kam/Vf auf/Po die/Db Idee/Ng ,/Fidie/Rr Emotionen/Ng zu/Qi kanalisieren/Vi ...
symbol er/Rp kam/Vf auf/Po die/Db Idee/Ng ,/Fidie/DbEmotionen/Ng zu/Qi kanalisieren/Vi ...

Table 6: Examples of tagging errors for the string decision rule (direct model)


