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Abstract 

We propose to score phrase translation 
pairs for statistical machine translation 
using term weight based models.  These 
models employ tf.idf to encode the 
weights of content and non-content words 
in phrase translation pairs.  The transla-
tion probability is then modeled by simi-
larity functions defined in a vector space.  
Two similarity functions are compared.  
Using these models in a statistical ma-
chine translation task shows significant 
improvements. 

1 Introduction 

Words can be classified as content and func-
tional words.  Content words like verbs and 
proper nouns are more informative than function 
words like "to'' and "the''.  In machine translation, 
intuitively, the informative content words should 
be emphasized more for better adequacy of the 
translation quality.  However, the standard statis-
tical translation approach does not take account 
how informative and thereby, how important a 
word is, in its translation model.  One reason is 
the difficulty to measure how informative a word 
is. Another problem is to integrate it naturally 
into the existing statistical machine translation 
framework, which typically is built on word 
alignment models, like the well-known IBM 
alignment models (Brown et al 1993).  

In recent years there has been a strong ten-
dency to incorporate phrasal translation into sta-
tistical machine translation.  It directly translates 
an n-gram from the source language into an m-
gram in the target language.  The advantages are 
obvious:  It has built-in local context modeling, 
and provides reliable local word reordering.  It 

has multi-word translations, and models a word’s 
conditional fertility given a local context.  It cap-
tures idiomatic phrase translations and can be 
easily enriched with bilingual dictionaries. In 
addition, it can compensate for the segmentation 
errors made during preprocessing, i.e. word seg-
mentation errors of Chinese.  The advantage of 
using phrase-based translation in a statistical 
framework has been shown in many studies such 
as (Koehn et al. 2003; Vogel et al. 2003; Zens et 
al. 2002; Marcu and Wong, 2002).  However, the 
phrase translation pairs are typically extracted 
from a parallel corpus based on the Viterbi align-
ment of some word alignment models.  The leads 
to the question what probability should be as-
signed to those phrase translations.  Different 
approaches have been suggested as using relative 
frequencies (Zens et al. 2002), calculate prob-
abilities based on a statistical word-to-word dic-
tionary (Vogel et al. 2003) or use a linear 
interpolation of these scores (Koehn et al. 2003).  

In this paper we investigate a different ap-
proach with takes the information content of 
words better into account.  Term weighting based 
vector models are proposed to encode the transla-
tion quality.  The advantage is that term weights, 
such as tf.idf, are useful to model the informa-
tiveness of words.  Highly informative content 
words usually have high tf.idf scores.  In informa-
tion retrieval this has been successfully applied to 
capture the relevance of a document to a query, 
by representing both query and documents as 
term weight vectors and use for example the 
cosine distance to calculate the similarity be-
tween query vector and document vector.  The 
idea now is to consider the source phrase as a 
“query”, and the different target phrases ex-
tracted from the bilingual corpus as translation 
candidates as a relevant “documents”.  The co-
sine distance is then a natural choice to model the 
translation probability.  



Our approach is to apply term weighting 
schemes to transform source and target phrases 
into term vectors.  Usually content words in both 
source and target languages will be emphasized 
by large term weights.  Thus, good phrase trans-
lation pairs will share similar contours, or, to ex-
press it in a different way, will be close to each 
other in the term weight vector space.  A similar-
ity function is then defined to approximate trans-
lation probability in the vector space. 

The paper is structured as follows:  in Section 
2, our phrase-based statistical machine translation 
system is introduced; in Section 3, a phrase trans-
lation score function based on word translation 
probabilities is explained, as this will be used as a 
baseline system;  in Section 4, a vector model 
based on tf.idf is proposed together with two 
similarity functions;  in Section 5, length regu-
larization and smoothing schemes are explained 
briefly;  in Section 6, the translation experiments 
are presented; and Section 7 concludes with a 
discussion.  

2 Phrase-based Machine Translation 

In this section, the phrase-based machine transla-
tion system used in the experiments is briefly 
described: the phrase based translation models 
and the decoding algorithm, which allows for 
local word reordering.  

2.1 Translation Model 

The phrase-based statistical translation systems 
use not only word-to-word translation, extracted 
from bilingual data, but also phrase-to phrase 
translations. . Different types of extraction ap-
proaches have been described in the literature: 
syntax-based, word-alignment-based, and genu-
ine phrase alignment models.  The syntax-based 
approach has the advantage to model the gram-
mar structures using models of more or less 
structural richness, such as the syntax-based 
alignment model in (Yamada and Knight, 2001) 
or the Bilingual Bracketing in (Wu, 1997).  Popu-
lar word-alignment-based approaches usually 
rely on initial word alignments from the IBM and 
HMM alignment models (Och and Ney, 2000), 
from which the phrase pairs are then extracted.  
(Marcu and Wong 2002) and (Zhang et al. 2003) 
do not rely on word alignment but model directly 
the phrase alignment. 

Because all statistical machine translation sys-
tems search for a globally optimal translation 
using the language and translation model, a trans-
lation probability has to be assigned to each 
phrase translation pair.  This score should be 
meaningful in that better translations have a 
higher probability assigned to them, and balanced 
with respect to word translations.  Bad phrase 
translations should not win over better word for 
word translations, only because they are phrases. 

Our focus here is not phrase extraction, but 
how to estimate a reasonable probability (or 
score) to better represent the translation quality 
of the extracted phrase pairs.  One major problem 
is that most phrase pairs are seen only several 
times, even in a very large corpus.  A reliable and 
effective estimation approach is explained in sec-
tion 3, and the proposed models are introduced in 
section 4.   

In our system, a collection of phrase transla-
tions is called a transducer.  Different phrase ex-
traction methods result in different transducers.  
A manual dictionary can be added to the system 
as just another transducer.  Typically, one source 
phrase is aligned with several candidate target 
phrases, with a score attached to each candidate 
representing the translation quality.  

2.2 Decoding Algorithm 

Given a set of transducers as the translation 
model (i.e. phrase translation pairs together with 
the scores of their translation quality), decoding 
is divided into several steps. 

The first step is to build a lattice by applying 
the transducers to the input source sentence.  We 
start from a lattice, which has as its only path the 
source sentence.  Then for each word or sequence 
of words in the source sentence for which we 
have an entry in the transducer new edges are 
generated and inserted into the lattice, spanning 
over the source phrase.  One new edge is created 
for each translation candidate, and the translation 
score is assigned to this edge.  The resulting lat-
tice has then all the information available from 
the translation model. 

The second step is search for a best path 
through this lattice, but not only based on the 
translation model scores but applying also the 
language model.  We start with an initial special 
sentence begin hypothesis at the first node in the 



lattice.  Hypotheses are then expanded over the 
edges, applying the language model to the partial 
translations attached to the edges.  The following 
algorithm summarizes the decoding process 
when not considering word reordering:  
 
Current node n, previous node n’; edge e 
Language model state L, L’ 
Hypothesis h, h’ 
Foreach node n in the lattice 
  Foreach incoming edge e in n 
      phrase = word sequence at e 
      n’     = FromNode(e) 
      foreach L in n’ 
         foreach h with LMstate L 
           LMcost = 0.0 
           foreach word w in phrase 
             LMcost += -log p(w|L) 
             L’ = NewState(L,w) 
             L  = L’ 
           end 
           Cost= LMcost+TMcost(e) 
           TotalCost=TotalCost(h)+Cost 
          h’ = (L,e,h,TotalCost) 
          store h’in Hypotheses(n,L) 

 
The updated hypothesis h’ at the current node 
stores the pointer to the previous hypothesis and 
the edge (labeled with the target phrase) over 
which it was expanded.  Thus, at the final step, 
one can trace back to get the path associated with 
the minimum cost, i.e. the best hypothesis. 

Other operators such as local word reordering 
are incorporated into this dynamic programming 
search (Vogel, 2003). 

3 Phrase Pair Translation Probability  

As stated in the previous section, one of the 
major problems is how to assign a reasonable 
probability for the extracted phrase pair to repre-
sent the translation quality. 

Most of the phrase pairs are seen only once or 
twice in the training data.  This is especially true 
for longer phrases.  Therefore, phrase pair co-
occurrence counts collected from the training 
corpus are not reliable and have little discrimina-
tive power.  In (Vogel et al. 2003) a different es-
timation approach was proposed.  Similar as in 
the IBM models, it is assumed that each source 
word si in the source phrase ),,( 21 Issss L

v =  is 
aligned to every target word tj in the target phrase 

),,( 21 Jtttt L
v
=  with probability )|Pr( ij st .  The 

total phrase translation probability is then calcu-
lated according to the following generative 
model:  
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This is essentially the lexical probability as 

calculated in the IBM1 alignment model, without 
considering position alignment probabilities.  
Any statistical translation can be used in (1) to 
calculate the phrase translation probability.  
However, in our experiment we typically see now 
significant difference in translation results when 
using lexicons trained from different alignment 
models. 

Also Equation (1) was confirmed to be robust 
and effective in parallel sentence mining from a 
very large and noisy comparable corpus (Zhao 
and Vogel, 2002).  

Equation (1) does not explicitly discriminate 
content words from non-content words.  As non-
content words such as high frequency functional 
words tend to occur in nearly every parallel sen-
tence pair, they co-occur with most of the source 
words in the vocabulary with non-trivial transla-
tion probabilities.  This noise propagates via (1) 
into the phrase translations probabilities, increas-
ing the chance that non-optimal phrase transla-
tion candidates get high probabilities and better 
translations are often not in the top ranks.  

We propose a vector model to better distin-
guish between content words and non-content 
words with the goal to emphasize content words 
in the translation.  This model will be used to 
rescore the phrase translation pairs, and to get a 
normalized score representing the translation 
probability.  

4 Vector Model for Phrase Translation 
Probability 

Term weighting models such as tf.idf are ap-
plied successfully in information retrieval.  The 
duality of term frequency (tf) and inverse docu-
ment frequency (idf), document space and collec-
tion space respectively, can smoothly predict the 
probability of terms being informative (Roelleke, 
2003).  Naturally, tf.idf is suitable to model con-
tent words as these words in general have large 
tf.idf weights. 



4.1 Phrase Pair as Bag-of-Words 

Our translation model: (transducer, as defined 
in 2.1), is a collection of phrase translation pairs 
together with scores representing the translation 
quality.  Each phrase translation pair, which can 
be represented as a triple },{ pts

vv→ , is now con-
verted into a “Bag-of-Words” D consisting of a 
collection of both source and target words ap-
pearing in the phrase pair, as shown in (2):  

},,,,,{},{ 2121 JI tttsssDpts LL
vv =⇒→  (2) 

 
Given each phrase pair as one document, the 

whole transducer is a collection of such docu-
ments.  We can calculate tf.idf for each is  and jt , 
and represent source and target phrases by vec-
tors of svv  and tvv   as in Equation (3):  

},,,{
21 Issss wwwv L

v =  

},,,{
21 Jtttt wwwv L

v =  
(3) 

where
isw and

jtw are tf.idf for is or jt respectively.  
This vector representation can be justified by 

word co-occurrence considerations.  As the 
phrase translation pairs are extracted from paral-
lel sentences, the source words is  and target 
words jt  in the source and target phrases must 
co-occur in the training data.  The co-occurring 
words should share similar term frequency and 
document frequency statistics.  Therefore, the 
vectors  svv and tvv  have similar term weight con-
tours corresponding to the co-occurring word 
pairs.  So the vector representations of a phrase 
translation pair can reflect the translation quality.  
In addition, the content words and non-content 
words are modeled explicitly by using term 
weights.  An over-simplified example would be 
that a rare word in the source language usually 
translates into a rare word in the target language. 

4.2 Term Weighting Schemes 

Given the transducer, it is straightforward to 
calculate term weights for source and target 
words.  There are several versions of tf.idf.  The 
smooth ones are preferred, because phrase trans-
lation pairs are rare events collected from train-
ing data.  

The idf model selected is as in Equation (4): 

)
5.0

5.0log(
+
+−

=
df

dfNidf  (4)

where N is the total number of documents in the 
transducer, i.e. the total number of translation 
pairs, and df is the document frequency, i.e. in 
how many phrase pairs a given word occurs.  The 
constant of 0.5 acts as smoothing. 

Because most of the phrases are short, such as 
2 to 8 words, the term frequency in the bag of 
words representation is usually 1, and some times 
2.  This, in general, does not bring much dis-
crimination in representing translation quality.  
The following version of tf is chosen, so that 
longer target phrases with more words than aver-
age will be slightly down-weighted: 

)(/)(5.15.0
'

vavglenvlentf
tftf vv⋅++

=  (5)

where tf is the term frequency, )(vlen v  is the 
length in words of the phrase vv , and )(vavglen v  is 
the average length of source or target phrase cal-
culated from the transducer.  Again, the values of 
0.5 and 1.5 are constants used in IR tasks acting 
as smoothing.  

Thus after a transducer is extracted from a par-
allel corpus, tf and df are counted from the collec-
tion of the “bag-of-words'' phrase alignment 
representations.  For each word in the phrase pair 
translation its tf.idf weight is assigned and the 
source and target phrase are transformed into 
vectors as shown in Equation (3).  These vectors 
reserve the translation quality information and 
also model the content and non-content words by 
the term weighting model of tf.idf. 

4.3 Vector Space Alignment 

Given the vector representations in Equation 
(3), a similarity between the two vectors can not 
directly be calculated.  The dimensions I and J 
are not guaranteed to be the same.  The goal is to 
transform the source vector into a vector having 
the same dimensions as the target vector, i.e. to 
map the source vector into the space of the target 
vector, so that a similarity distance can be calcu-
lated.  Using the same reasoning as used to moti-
vate Equation (1), it is assumed that every source 
word is  contributes some probability mass to 
each target word jt .  That is to say, given a term 
weight for jt , all source term weights are aligned 
to it with some probability.  So we can calculate 



a transformed vector from the source vectors by 
calculating weights jt

aw  using a translation lexi-
con )|Pr( st  as in Equation (6): 

∑
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Now the target vector and the mapped vector 

avv  have the same dimensions as shown in (7):  
},,,{ 21 Jt
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4.4 Similarity Functions 

As explained in section 4.1, intuitively, if sv  
and t

v  is a good translation pair, then the corre-
sponding vectors of avv  and tvv  should be similar 
to each other in the vector space.   

Cosine distance 

The standard cosine distance is defined as the 
inner product of the two vectors avv  and tvv  nor-
malized by their norms.  Based on Equation (6), 
it is easy to derive the similarity as follows:  
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(8)

where I and J are the length of the source and 
target phrases; 

isw  and 
jtw  are term weights for 

source word and target words;  jt
aw  is the trans-

formed weight mapped from all source words to 
the target dimension at word jt .   

BM25 distance 

TREC tests show that bm25 (Robertson and 
Walker, 1997) is one of the best-known distance 
schemes.  This distance metric is given in Equa-
tion (9). The constants of 31 ,, kbk are set to be 1, 1 
and 1000 respectively.  
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where avg(l) is the average target phrase length 
in words given the same source phrase. 

Our experiments confirmed the bm25 distance 
is slightly better than the cosine distance, though 
the difference is not really significant.  One ad-
vantage of bm25 distance is that the set of free 
parameters 31 ,, kbk can be tuned to get better per-
formance e.g. via n-fold cross validation.  

4.5 Integrated Translation Score 

Our goal is to rescore the phrase translation 
pairs by using additional evidence of the transla-
tion quality in the vector space.   

The vector based scores (8) & (9) provide a 
distinct view of the translation quality in the vec-
tor space.  Equation (1) provides a evidence of 
the translation quality based on the word align-
ment probability, and can be assumed to be dif-
ferent from the evidences in vector space.  Thus, 
a natural way of integrating them together is a 
geometric interpolation shown in (10) or equiva-
lently a linear interpolation in the log domain.  

)|(Pr),( 1
int tsstdd vec

vvvv ββ −⋅=  (10)
where ),( stdvec

vv is the score from the cosine or 
bm25 vector distance, normalized within [0, 1], 
like a probability. 

0.1),( =∑
t

vec std
v

vv   

The parameter β can be tuned using held-out 
data.  In our cross validation experiments 5.0=β  
gave the best performance in most cases.  There-
fore, Equation (10) can be simplified into: 

)|Pr(),(int tsstdd vec
vvvv

⋅=  (11)
 
The phrase translation score functions in (1) 

and (11) are non-symmetric.  This is because the 
statistical lexicon Pr(s|t) is non-symmetric.  One 
can easily re-write all the distances by using 
Pr(t|s).  But in our experiments this reverse di-
rection of using Pr(t|s) gives trivially difference.  
So in all the experimental results reported in this 
paper, the distances defined in (1) and (11) are 
used. 



5 Length Regularization  

Phrase pair extraction does not work perfectly 
and sometimes a short source phrase is aligned to 
a long target phrase or vice versa.  Length regu-
larization can be applied to penalize too long or 
too short candidate translations.  Similar to the 
sentence alignment work in (Gale and Church, 
1991), the phrase length ratio is assumed to be a 
Gaussian distribution as given in Equation (12):  

)))(/)((5.0exp(),( 2

2

σ
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⋅−∝
sltlstl
vv

vv  (12)

where l(t) is the target sentence  length.  Mean µ  
and variance σ  can be estimated using a parallel 
corpus using a Maximum Likelihood criteria. 
The regularized score is the product of (11) and 
(12).  

6 Experiments  

Experiments were carried out on the so-called 
large data track Chinese-English TIDES transla-
tion task, using the June 2002 test data.  The 
training data used to train the statistical lexicon 
and to extract the phrase translation pairs was 
selected from a 120 million word parallel corpus 
in such a way as to cover the phrases in test sen-
tences.  The restricted training corpus contained 
then approximately 10 million words..  A trigram 
model was built on 20 million words of general 
newswire text, using the SRILM toolkit (Stolcke, 
2002).  Decoding was carried out as described in 
section 2.2.  The test data consists of 878 Chinese 
sentences or 24,337 words after word segmenta-
tion.  There are four human translations per Chi-
nese sentence as references.  Both NIST score 
and Bleu score (in percentage) are reported for 
adequacy and fluency aspects of the translation 
quality. 

6.1 Transducers 

Four transducers were used in our experi-
ments: LDC, BiBr, HMM, and ISA.  

LDC was built from the LDC Chinese-English 
dictionary in two steps: first, morphological 
variations are created.  For nouns and noun 
phrases plural forms and entries with definite and 
indefinite determiners were generated.  For verbs 
additional word forms with -s -ed and -ing were 
generated, and the infinitive form with 'to'.  Sec-

ond, a large monolingual English corpus was 
used to filter out the new word forms.  If they did 
not appear in the corpus, the new entries were not 
added to the transducer (Vogel, 2004). 

BiBr extracts sub-tree mappings from Bilin-
gual Bracketing alignments (Wu, 1997);  HMM 
extracts partial path mappings from the Viterbi 
path in the Hidden Markov Model alignments 
(Vogel et. al., 1996).  ISA is an integrated seg-
mentation and alignment for phrases (Zhang et.al, 
2003), which is an extension of (Marcu and 
Wong, 2002).  

 LDC BiBr HMM ISA 
)(KN  425K 137K 349K 263K 

)/( srctgt llavg  1.80 1.11 1.09 1.20 
Table-1 statistics of transducers 

 
Table-1 shows some statistics of the four 

transducers extracted for the translation task. N  
is the total number of phrase pairs in the trans-
ducer.  LDC is the largest one having 425K en-
tries, as the other transducers are restricted to 
‘useful’ entries, i.e. those translation pairs where 
the source phrase matches a sequence of words in 
one of the test sentence.  Notice that the LDC 
dictionary has a large number of long transla-
tions, leading to a high source to target length 
ratio. 

6.2 Cosine vs BM25 
The normalized cosine and bm25 distances de-

fined in (8) and (9) respectively, are plugged into 
(11) to calculate the translation probabilities.  
Initial experiments are reported on the LDC 
transducer, which gives already a good transla-
tion, and therefore allows for fast and yet mean-
ingful experimentation.  

Four baselines (Uniform, Base-m1, Base-m4, 
and Base-m4S) are presented in Table-2.   
 

NIST Bleu 
Uniform 6.69 13.82 
Base-m1 7.08 14.84 
Base-m4 7.04 14.91 

Base-m4S 6.91 14.44 
cosine 7.17 15.30 
bm25 7.19 15.51 

bm25-len 7.21 15.64 
Table-2 Comparisons of different score functions 

 



In the first uniform probabilities are assigned 
to each phrase pair in the transducer.  The second 
one (Base-m1) is using Equation (1) with a statis-
tical lexicon trained using IBM Model-1, and 
Base-m4 is using the lexicon from IBM Model-4.  
Base-m4S is using IBM Model-4, but we skipped 
194 high frequency English stop words in the 
calculation of Equation (1). 

Table-2 shows that the translation score de-
fined by Equation (1) is much better than a uni-
form model, as expected.  Base-m4 is slightly 
worse than Base-m1.on NIST score, but slightly 
better using the Bleu metric.  Both differences 
are not statistically significant.  The result for 
Base-m4S shows that skipping English stop 
words in Equation (1) gives a disadvantage.  One 
reason is that skipping ignores too much non-
trivial statistics from parallel corpus especially 
for short phrases.  These high frequency words 
actually account already for more than 40% of 
the tokens in the corpus.  

Using the vector model, both with the cosine 
cosd  and the bm25 25bmd  distance, is significantly 

better than Base-m1 and Base-m4 models, which 
confirms our intuition of the vector model as an 
additional useful evidence for translation quality. 
The length regularization (12) helps only slightly 
for LDC.  Since bm25’s parameters could be 
tuned for potentially better performance, we se-
lected bm25 with length regularization as the 
model tested in further experiments.  

A full-loaded system is tested using the 
LM020 with and without word-reordering in de-
coding.  The results are presented in Table-3.  

Table-3 shows consistent improvements on all 
configurations: the individual transducers, com-
binations of transducers, and different decoder 
settings of word-reordering. Because each phrase 
pair is treated as a “bag-of-words”, the grammar 
structure is not well represented in the vector 
model.  Thus our model is more tuned towards 

the adequacy aspect, corresponding to NIST 
score improvement. 

Because the transducers of BiBr, HMM, and 
ISA are extracted from the same training data, 
they have significant overlaps with each other.  
This is why we observe only small improvements 
when adding more transducers.   

The final NIST score of the full system is 8.24, 
and the Bleu score is 22.37.  This corresponds to 
3.1% and 11.8% relative improvements over the 
baseline.  These improvements are statistically 
significant according to a previous study (Zhang 
et.al., 2004), which shows that a 2% improve-
ment in NIST score and a 5% improvement in 
Bleu score is significant for our translation sys-
tem on the June 2002 test data. 

6.3 Mean Reciprocal Rank 

To further investigate the effects of the rescor-
ing function in (11), Mean Reciprocal Rank 
(MRR) experiments were carried out.  MRR for a 
labeled set is the mean of the reciprocal rank of 
the individual phrase pair, at which the best can-
didate translation is found (Kantor and Voorhees, 
1996).  

Totally 9,641 phrase pairs were selected con-
taining 216 distinct source phrases.  Each source 
phrase was labeled with its best translation can-
didate without ambiguity.  The rank of the la-
beled candidate is calculated according to 
translation scores. The results are shown in Ta-
ble-4. 

 baseline cosine bm25 
MRR 0.40 0.58 0.75 

Table-4 Mean Reciprocal Rank 
 

The rescore functions improve the MRR from 
0.40 to 0.58 using cosine distance, and to 0.75 
using bm25.  This confirms our intuitions that 
good translation candidates move up in the rank 
after the rescoring.  

Decoder settings without word reordering with word reordering 
baseline bm25 baseline bm25 Scores (%) NIST Bleu NIST Bleu NIST Bleu NIST Bleu 

LDC 7.08 14.84 7.21 15.64 7.13 15.10 7.26 15.98 
LDC+ISA 7.73 19.60 7.99 19.58 7.86 20.80 8.13 20.93 
LDC+ISA+HMM 7.86 19.08 8.14 20.70 7.95 19.84 8.19 21.60 
LDC+ISA+HMM+BiBr 7.87 19.23 8.14 21.48 7.99 20.01 8.24 22.37 

Table-3 Translation using bm25 rescore function with different decoder settings 
 



7 Conclusion and Discussion  

In this work, we proposed a way of using term 
weight based models in a vector space as addi-
tional evidences for translation quality, and inte-
grated the model into an existing phrase-based 
statistical machine translation system.  The mod-
el shows significant improvements when using it 
to score a manual dictionary as well as when us-
ing different phrase transducers or a combination 
of all available translation information.  Addi-
tional experiments also confirmed the effective-
ness of the proposed model in terms of of 
improved Mean Reciprocal Rank of good transla-
tions. 

Our future work is to explore alternatives such 
as the reranking work in (Collins, 2002) and in-
clude more knowledge such as syntax informa-
tion in rescoring the phrase translation pairs.  
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