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Abstract

We describe experiments carried out with adaptive
language and translation models in the context of an
interactive computer-assisted translation program.
We developed cache-based language models which
were then extended to the bilingual case for a cache-
based translation model. We present the improve-
ments we obtained in two contexts: in a theoretical
setting, we achieved a drop in perplexity for the new
models and, in a more practical situation simulat-
ing a user working with the system, we showed that
fewer keystrokes would be needed to enter a trans-
lation.

1 Introduction

Cache-based language models were introduced by
Kuhn and de Mori (1990) for the dynamic adap-
tation of speech language models. These models,
inspired by the memory caches on modern com-
puter architectures, are motivated by the principle
of locality which states that a program tends to re-
peatedly use memory cells that are physically close.
Similarly, when speaking or writing, humans tend
to use the same words and phrase constructs from
paragraph to paragraph and from sentence to sen-
tence. This leads us to believe that, when processing
a document, the part of a document that is already
processed (e.g. for speech recognition, translation
or text prediction) gives us very useful information
for future processing in the same document or in
other related documents.

A cache-based language model is a language
model to which is added a smaller model trained
only on the history of the document being pro-
cessed. The history is usually the lastN words or
sentences seen in the document.

Kuhn and de Mori (1990) obtained a drop in per-
plexity of nearly 68% when adding an unigram POS
(part-of-speech) cache on a 3g-gram model. Martin
and al. (1997) obtained a drop of nearly 21% when
adding a bigram cache to a trigram model. Clarkson
and Robertson (1997) also obtained similar results

with an exponentially decaying unigram cache.
The major problem with these theoretical results

is that they assume the correctness of the material
entering the cache. In practice, this assumption does
not always hold, and so a cache can sometimes do
more harm than good.

1.1 Interactive translation context

Over the last few years, an interactive machine
translation (IMT) system (Foster et al., 2002) has
been developed which, as the translator is typing,
suggests word and phrase completions that the user
can accept or ignore. The system uses a transla-
tion engine to propose the words or phrases which
it judges the most probable to be immediately typed.
This engine includes a translation model (TM) and
a language model (LM) used jointly to produce pro-
posals that are appropriate translations of source
words and plausible completions of the current text
in the target language. The translator remains in
control of the translation because what is typed by
the user is taken as a constraint to which the model
must continually adapt its completions. Experi-
ments have shown that the use of this system can
save about 50% of the keystrokes needed for enter-
ing a translation. As the translation and language
models are built only once, before the user starts to
work with the system, the translator is often forced
to repeatedly correct similar suggestions from the
system.

The interactive nature of this setup made us be-
lieve that it is a good prospect for dynamic adaptive
modeling. If the dynamic nature of the system can
be disadvantageous for static language and transla-
tion models, it is an incomparable advantage for a
cache based approach because human correction in-
tervenesbeforewords go in the cache. As the trans-
lator is using the system to correctly enter his trans-
lation progressively, we can expect the theoretical
results presented in the literature to be obtainable in
practice in the IMT context.

The first advantage of dynamic adaptation would
be to help the translation engine make better predic-



tions, but it has a furtherpsychologicaladvantage:
as the translator works and potentially corrects the
proposals of the engine, the user would feel that the
software is learning from its errors.

The next section describes the models currently
embedded within our IMT prototype. Section 3 de-
scribes the cache-based adaptation we performed on
the target language model. In section 4, we present
the different types of adaptations we performed on
the translation model. Section 5 then puts the results
in the context of our IMT application. Section 6 dis-
cusses the implications of our experiments and sug-
gests some improvements that could be made to the
system.

2 Current IMT models
The word-based translation model embedded within
the IMT system has been designed by Foster (2000).
It is a Maximum Entropy/Minimum Divergence
(MEMD) translation model (Berger et al., 1996),
which mimics the parameters of the IBM model 2
(Brown et al., 1993) within a log-linear setting.

The resulting model (named MDI2B) is of the
following form, whereh is the current target text,
s the source sentence being translated,s a particular
word in s andw the next word to be predicted:

p(w|h, s) =
q(w|h) exp(

∑
s∈s αsw + βAB)

Z(h, s)
(1)

Theq distribution represents the prior knowledge
that we have about the true distribution and is mod-
eled by an interpolated trigram in this study. The
α coefficients are the familiar transfer or lexical pa-
rameters, and theβ ones can be understood as their
position dependent correction.Z is a normalizing
factor, the sum of the numerator for everyw in the
target vocabulary.

Our baseline model used an interpolated trigram
of the following form as theq distribution:

p(w|h) = λ1(wi−2wi−1)× ptri(wi|wi−2wi−1)
+ λ2(wi−2wi−1)× pbi(wi|wi−1)
+ λ3(wi−2wi−1)× puni(wi)
+ λ4(wi−2wi−1)× 1

|V |+1

where λ1(wi−2wi−1) + λ2(wi−2wi−1) +
λ3(wi−2wi−1) + λ4(wi−2wi−1) = 1 and |V | + 1
is the size of the event space (including a special
unknownword).

As mentioned above, the MDI2B model is closely
related to the IBM2 model (Brown et al., 1988). It
contains two classes of features: word pair features

and positional features. The word pair feature func-
tions are defined as follows:

fst(w,h, s) =
{

1 if s∈ s andt = w
0 otherwise

This function ison if the predicted word ist ands
is in the current source sentence. Each featurefst

has a corresponding weightαst (for brevity, this is
defined to be 0 in equation 1 if the pairs, t is not
included in the model).

The positional feature functions are defined as
follows:

fA,B(w, i, s) =
J∑

j=1

δ[(i, j, J) ∈ A ∧ (sj , w) ∈ B ∧ j = ̂sj ]

whereδ[X] is 1 if X is true, otherwise 0; and̂sj

is the position of the occurrence ofsj that isclos-
est to i according to an IBM2 model.A is a class
that groups positional (i, j, J) configurations having
similar IBM2 alignment probabilities, in order to re-
duce data sparseness.B is a class of word pairs
having similar weightsαst. Its purpose is to simu-
late the way IBM2 alignment probabilities modulate
IBM1 word-pair probabilities, by allowing the value
of the positional feature weight to depend on the
magnitudeof the corresponding word-pair weight.
As with the word pair features, eachfA,B has a cor-
responding weightβAB.

Since feature selection is applied at training time
in order to improve speed, avoid overfitting, and
keep the model compact, the summation in the ex-
ponential term in (1) is only carried out over the set
of activepairs maintained by the model and not over
all pairs as might be inferred from the formulation.

To give an example of how the model works, if
the source sentence isthe fruit I am eating is a ba-
nanaand we are predicting the wordbananefollow-
ing the target words:Le fruit que je mange est une,
the active pairs involvingbananawould be (fruit,
banana) and (banane, banana) since, of all the pairs
(s, t) they would be the only ones kept by the fea-
ture selection algorithm1. The probability ofbanane
would therefore depend on the weights of those two
pairs, along with position weights which capture the
relative proximity of the words involved.

3 Language model adaptation
We implemented a first monolingual dynamic adap-
tation of this model by inserting a cache compo-
nent in its reference distribution, thus only affect-
ing theq distribution. We obtained similar results

1See (Foster, 2000) for the description of this algorithm.



as for classical ngram models: the unigram cache
model proved to be less efficient than the bigram
one, and the trigram cache suffered from sparsity.
We also tested a model where we interpolated the
three cache models to gain information from each
of the unigram, bigram, and trigram cache mod-
els. For completeness, this generalized model is de-
scribed in equation 2 under the usual constraints that∑

i λi(h) = 1 for all h.

p(w|h) = λ1(h)× ptri(wi|wi−2wi−1)
+ λ2(h)× pbi(wi|wi−1)
+ λ3(h)× puni(wi)
+ λ4(h)× 1

|V |+1

+ λ5(h)× ptric(wi|wi−2wi−1)
+ λ6(h)× pbic(wi|wi−1)
+ λ7(h)× punic(wi)

(2)

Those models were trained from splits of the
Canadian Hansard corpus. The base ngram model
was estimated with a 30M word split of the corpus.
The weighting coefficients of both the base trigram
and the cache models were estimated with an EM
algorithm trained with 1M words.

We tested our models, translating from English
to French, on two corpora of different types: the
first onehansard is a document taken from the
same large corpus that was used for training (the
testing and training corpora were exclusive splits).
The second onesniper , which describes the job
of a sniper, is from another domain characterized
by lexical and phrasal constructions very different
from those used to estimate the probabilities of our
models.

Table 1 shows the perplexity on thehansard
and thesniper corpora. Preliminary experiments
led us to two sizes of cache which seemed promis-
ing: 2000 and 5000 corresponding to the last 2000
and 5000 words seen during the processing of a doc-
ument. TheBI column gives the results of the bi-
gram cache model and the1+2+3gives the results
of the interpolated cache model which included the
unigram, bigram and trigram cache.

The results show that our models improve the
base static model by 5% on documents supposedly
well knownby the models and by more that 52%
on documents that areunknownto the model. Sec-
tion 5 puts these results in the perspective of our
actual IMT system. Note that he addition of a cache
component to a language model involves negligible
extra training time.

Taille BI ∆ 1+2+3 ∆
base hansard =17.6584
2000 16.937 -4.1% 16.840 -4.6%
5000 16.903 -4.3% 16.777 -5.0%
base sniper =135.808
2000 73.936 -45.6% 67.780 -50.1%
5000 70.514 -48.1% 64.204 -52.7%

Table 1: Perplexities of the MDI2B model with a
cache component included in the reference distribu-
tion on thehansard andsniper corpora.

4 Translation model adaptation
With those excellent results in mind, we extended
the idea of dynamic adaptation to the bilingual case
which, to our knowledge, has never been tried be-
fore.

We developed a model called MDI2BCache
which is a MDI2B model to which we added a cache
component based on word pairs. Recall that, when
predicting a wordw at a certain point in a document,
the probability depends on the weights of the pairs
(s, w) for each active words in the current source
sentence. As the prediction of the words of the doc-
ument goes on, our model keeps in a cache each
active pair used for the prediction of each word. In
the example above, if the translator accepts the word
banane, then the two pairs (fruit, banana) and (ba-
nane, banana) will be added to the cache.

We added a new feature to the MEMD model to
take into account the presence of a certain pair in
the recent history of the processed document:

fcache st(w,h, s) =


1 if


s ∈ s,
t = w,
(s, t) ∈ cache
αst > p

0 otherwise

We added a threshold valuep to the feature func-
tion because while analyzing the pair weights, we
discovered that low weight pairs are usually pairs of
utility words such as conjunctions and punctuation.
We also came to the conclusion that they are not the
kind of words we want to have in the cache, since
their presence in a sentence implies little about their
presence in the next.

The resulting model is of the form:

p(w|h, s) =
q(w|h)exp(

∑
s∈s αsw + βAB + γsw)
Z(h, s)

Thus, everyfcache sw has a corresponding weight
γsw for the calculation of the probability ofw.



Size 0.3 ∆ 0.5 ∆ 0.7 ∆
base One feature weight, no Viterbi orig perp=17.6584
1000 17.5676 -0.51% 17.5756 -0.47% 17.5983 -0.34%
2000 17.5698 -0.50% 17.5766 -0.46% 17.5976 -0.34%
5000 17.5743 -0.48% 17.5776 -0.46% 17.5965 -0.35%

10000 17.5777 -0.46% 17.5791 -0.45% 17.5962 -0.35%
base One feature weight per pair, no Viterbi orig perp=17.6584
1000 17.5817 -0.43% 17.5858 -0.41% 17.6065 -0.29%
2000 17.5933 -0.37% 17.5918 -0.38% 17.6061 -0.30%
5000 17.5849 -0.42% 17.5874 -0.40% 17.6076 -0.29%

10000 17.5890 -0.39% 17.5891 -0.39% 17.6069 -0.29%
base One feature weight, Viterbi orig perp=17.6584
1000 17.5602 -0.56% 17.5697 -0.50% 17.5940 -0.36%
2000 17.5676 -0.51% 17.5695 -0.50% 17.5896 -0.39%
5000 17.5614 -0.55% 17.5687 -0.51% 17.5925 -0.37%

10000 17.5650 -0.53% 17.5687 -0.51% 17.5906 -0.38%

Table 2: MDI2BCache test perplexities. One feature weight, Viterbi alignment version.

4.1 Number of cache features
We implemented two versions of the model, one in
which we estimated only one cache feature weight
for the whole model and another in which we esti-
mated one cache feature weight for every word pair
in the model.

The first model is simpler and is easier to esti-
mate. The assumption is made that every pair in the
model has the same tendency to repeat itself.

The second model doubles the number of word-
pair parameters compared to MDI2B, and thus leads
to a linear increase in training time. Extra training
time is negligible in the first model.

4.2 Word alignment
One of the main difficulties of automatic MT is de-
termining which source word(s) translate to which
target word(s). It is very difficult to do this task
automatically, in part because it is also very diffi-
cult manually. If a pair of sentences are given to
10 translators for alignment, the results would likely
not be identical in all cases. As it is nearly impossi-
ble to determine such an alignment, most translation
models consider every source word to have an effect
on the translation of every target word.

This difficulty shows up in our cache-based
model. When adding word pairs to the cache, we
ideally would like to add only word pairs that were
really in a translation relation in the given sentence.

This is why we also implemented a version of our
model in which a word alignment is first carried out
in order to select good pairs to be added to the cache.
For this purpose, we computed a Viterbi alignment
based on an IBM model 2. This results in a subset of

thegoodactive pairs to be added to the cache. The
Viterbi algorithm gives us a higher confidence level
that the pair of words added to the cache were really
in a translation relation. But it can also lead to word
pairs not added to the cache that should have been
added.

4.3 Results

Table 2 shows the results of the different configura-
tions of the MDI2BCache model. For every config-
uration we trained and tested on splits of the Cana-
dian Hansard with threshold values of 0.3, 0.5, and
0.7 and cache sizes of 1000, 2000, 5000, and 10000.
The top of the table is the version of the model with
only one feature weight without Viterbi alignment.
The middle of the table is the version with one fea-
ture weight per word pair without Viterbi alignment.
Finally, the bottom is for the version with only one
feature weight and a Viterbi alignment made prior
to adding pairs to the cache.

Threshold values of 0.3, 0.5, and 0.7 led to 75%,
50%, and 25% of the pairs considered for addition
to the cache respectively. The results show that the
threshold values of 0.5 and 0.7 are removing too
many pairs. The best results are obtained with a
threshold of 0.3 in all tests. Since the number of
pairs kept in the model appears to vary in proportion
to the threshold value, we did not consider it neces-
sary to use an automatic search algorithm to find an
optimal threshold value. The gain in performance
would have been negligible.

The results also show that having one feature
weight per word pair leads to lower results. This
can be explained by the fact that it is much more



Size 0.3 ∆ 0.5 ∆
base MDI2B=135.808
1000 132.865 -2.17% 132.751 -2.25%
2000 132.771 -2.23% 132.752 -2.25%
5000 132.733 -2.26% 132.628 -2.34%

10000 132.997 -2.07% 132.674 -2.31%

Table 3: MDI2BCache test perplexities. One fea-
ture weight, Viterbi alignment version. Sniper test

difficult to estimate a weight for every pair that one
weight for all pairs. Since we use only thousands of
words in the cache, the training process suffers from
a poor data representation.

The Viterbi alignment seems to be helping the
models. The best results are obtained with the ver-
sion of our model with Viterbi alignment. However,
this gives only a 0.56% percent drop in perplexity.

We then tested our best configuration on the
sniper corpus. Table 3 shows the results. We
dropped threshold value 0.7 and tested only the
model with only one feature weight and a Viterbi
alignment.

Results show that our bilingual cache model
shows improvement (four times higher) in drop of
perplexity when used on documents very different
from the training corpus. In general, results give
lower perplexity than our base model showing that
the bilingual cache is helpful to the model, but the
results are not as good as that the ones obtained in
the unilingual case. Section 6 discusses these results
further.

5 Evaluation of IMT
As stated earlier, drops in perplexity are theoreti-
cal results that have been obtained previously in the
case of unilingual dynamic adaptation but for which
a corresponding level of practical success was rarely
attained because of the cache correctness problem.
To show that the interactive nature of our assisted-
translation application can really benefit from dy-
namic adaptation, we tested our models in a more
realistic translation context. This test consists of
simulating a translator using the IMT system as it
proposes words and phrases and accepting, correct-
ing or rejecting the proposals by trying to reproduce
a given target translation (Foster et al., 2002). The
metric used is the percentage of keystrokes saved
by the use of the system instead of having to type
directly all the target text.

For these simulations, we used only a 10K word
split of the hansard and of thesniper cor-
pus. The reason is that the IMT application poten-

Taille BI ∆ 1+2+3 ∆
base hansard =27.435
2000 27.784 +1.3% 27.719 +1.0%
5000 27.837 +1.5% 27.821 +1.4%
base sniper =9.686
2000 11.404 +15.1% 11.294 +14.2%
5000 11.498 +15.8% 11.623 +16.7%

Table 4: Saved keystrokes raises for the MDI2B
model with cache component in the reference dis-
tribution on thehansard andsniper corpora.

0.3 ∆
base hansard =27.4358
1000 27.557 +0.44%
2000 27.531 +0.35%
5000 27.488 +0.18%
10000 27.468 +0.12%
base sniper =9.686
1000 9.896 +2.17%
2000 10.023 +3.48%
5000 9.983 +3.07%
10000 9.957 +2.80%

Table 5: Saved keystrokes raises for the
MDI2BCache model with only one feature
weight and Viterbi alignment on thehansard and
sniper corpora.

tially proposes new completions after every charac-
ter typed by the user. For a 10K word document, it
needs to search about 1 million times for high prob-
ability words and phrases. This leads to relatively
long simulation times, even though predictions are
made at real time speeds.

Table 4 shows the results obtained with the
MDI2B model to which we added a cache compo-
nent for the reference interpolated trigram distribu-
tion.

We can see that the saved keystroke percentages
are proportional to the perplexity drops reported in
section 3. The use of our models raises the saved
keystrokes by nearly 1.5% in the case ofwell known
documents and by nearly 17% in the case of very
different documents. These are very interesting re-
sults for a potential professional use of TransType.

Table 5 shows an increase in the number of saved
keystrokes: 0.44% on thehansard and 3.5% on
the sniper corpora. Once again, the results are
not as impressive as the ones obtained for the mono-
lingual dynamic adaptation case.



6 Discussion

The results presented in section 3 on language
model adaptation confirmed what had been reported
in the literature: adding a cache component to a lan-
guage model leads to a drop in perplexity. More-
over, we were able to demonstrate that using a
cache-based language model inside a translation
model leads to better performance for the whole
translation model. We obtained drops in perplexity
of 5% on a corpus of the same type as the training
corpus and of 50% on a different one. These theo-
retical results lead to very good practical results. We
were able to increase the saved keystroke percent-
age by 1.5% on the similar corpus as the training
and by nearly 17% on the different corpus. These
results confirm our hypothesis that dynamic adapta-
tion with cache-based language model can be useful
in the context of IMT, particularly for new types of
texts.

Results presented in section 4 on translation
model adaptation show that our approach has led
to drops in perplexity although not as high as we
would have hoped. To understand these disappoint-
ing results, we analyzed the content of the cache for
different configurations of our MDI2BCache model.

base 0.3 viterbi + 0.3
(is,qu’) (to,afin) (offence,crime)
(.,sa) (was,a) (was,ét́e)

(this,,) (UNK,UNK) (very,très)
(all,toutes) (piece,législative) (today,aujourd’hui)
(have,du) (this,ce) (jobs,emploi)
(the,pour) (per,100) (concern,inquiétude)
(on,du) (that,soient) (skin,peau)
(of,un) (,,,) (there,y)

(we,nous) (?,il ) (government,le)
(the,du) (any,tout) (an,un)

18 68 86

Table 6: Cache sampling of different configurations
of MDI2BCache model.

Table 6 shows the results of our sampling. We
tested three model configurations. The first one, in
the first column, was the base MDI2BCache model
which adds all active pairs to the cache. The second
configuration, in the second column, was a thresh-
old value of 0.3 that brings about 75% of the pairs
being added to the cache. The last configuration was
a model with threshold value of 0.3 and a Viterbi
alignment made prior to the addition of pairs in the
cache. The three model configuration were with
only one feature weight. For all three configura-
tions, we took a sample of 10 pairs (shown in table

6) and a sample of 100 pairs. With the second sam-
ple, we manually analyzed each pair and counted
the number of pairs (shown in the last row of the ta-
ble) we believed were useful for the model (words
that are occasionally translations of one another).

The results obtained in section 4 seem to agree
with the current analysis. From left to right in the ta-
ble, the pairs seem to contain more information and
to be more appropriate additions to the cache. The
configuration with Viterbi alignment which contains
86 good pairs clearly seems to be the configuration
with the most interesting pairs.

The problem with such a cache-based translation
model seem to be similar to the balance between
precision and recall in information retrieval. On one
hand, we want to add in the cache every word pair
in which the two words are in translation relation in
the text. We further want to addonly the pairs in
which the two words are really in translation rela-
tion in the text. It seems that with our base model,
we add most of the good pairs, but also a lot of bad
ones. With the Viterbi alignment and a threshold
value of 0.3, most of the pairs added are good ones,
but we are probably missing a number of other ap-
propriate ones. This comes back to the task of word
alignment, which is a very difficult task for comput-
ers (Mihalcea and Pedersen, 2003).

Moreover, we would want to add in the cache
only those words for which more than one transla-
tion is possible. For example, the pair (today, au-
jourd’hui), though it is a very useful pair for the
base model, is unlikely to help when added to the
cache. The reason is simple: they are two words
that are always translations of one another, so the
model will have no problem predicting them. This
ideal of precision and recall and of useful pairs in
the cache is obtained by our model with threshold
of 0.3, a Viterbi alignment and a cache size of 1000.

One disadvantage of our bilingual adaptive model
is the way it handles unknown words. In the cache-
based language model, the unknown words were
dealt with normally, i.e. they were added to the
cache and given a certain probability afterwards.
So, if an unknown word was seen in a certain sen-
tence and then later on, it would receive a proba-
bility mass of its own but not the one given to any
unknown word. By having its own probability mass
due to its presence in the cache, such previously un-
known word can be predicted by the model. In the
case of our MDI2BCache model, because we have
not yet implemented an algorithm for guessing the
translations of unknown words, they are simply rep-
resented within the model as UNK words, which
means that the model never learns them.



The results obtained with thesniper corpus
shows us that dynamic adaptation is also more help-
ful for documents that are littleknownto the model
in the bilingual context. The results are four times
better on thesniper corpus than on the Hansard
testing corpus.

Once again for the bilingual case, the practical
test results in the number of saved keystrokes agree
with the theoretical results of drops in perplexity.
This result shows that bilingual dynamic adaptation
also can be implemented in a practical context and
obtain results similar to the theoretical results.

All things considered, we believe that a cache-
based translation model shows a great potential
for bilingual adaptation and that greater perplexity
drops and keystroke savings could be obtained by
either reengineering the model or by improving the
MDI2BCache model.

6.1 Key improvements to the model

Following the analysis of the results obtained by our
model, we have pointed out some key improvements
that the model would need in order to get better re-
sults. In this list we focus on ways of improving
adaptation strategies for the current model, omitting
other obvious enhancements such as adding phrase
translations.

Unknown word processing Learning new words
would be a very important feature to add to
the model and would lead to better results. We
did not incorporate the processing of unknown
words in the MDI2BCache because the struc-
ture of model did not lend itself to this addi-
tion. Especially with documents such as the
sniper corpus, we believe that this could
be a key improvement for a dynamic adaptive
model.

Better alignment As mentioned before, the ulti-
mate goal for our cache is that it contains only
the pairs present in theperfectalignment. Bet-
ter performance from the alignment would lead
to pairs in the cache closer to this ideal. In this
study we computed Viterbi alignments from an
IBM model 2, because it is very efficient to
compute and also because for training MDI2B,
we do use the IBM model 2. We could consider
also more advanced word alignment models
(Och and Ney, 2000; Lin and Cherry, 2003;
Moore, 2001). To keep the alignment model
simple, we could still use an IBM model 2, but
with the compositionality constraint that has
been shown to give better word alignment than
the Viterbi one (Simard and Langlais, 2003).

Feature weights We implemented two versions of
our model: one with only one feature weight
and another with one feature weight for each
word pair. The second model suffered from
poor data representation and our training algo-
rithm wasn’t able to estimate good cache fea-
ture weights. We think that creating classes
of word pairs, such as it was done for posi-
tional alignment features, would lead to better
results. It would enable the model to take into
account the tendency that a pair has to repeat
itself in a document.

Relative weighting Another key improvement is
that changes to word-pair weights should be
relative to each source word. For example,
if (house, maison) is a pair in the cache, we
would like to favourmaisonover possible al-
ternatives such aschambreas a translation of
house. In the existing model this is done by
boosting the weight on (house,maison), which
has the undesirable side-effect of makingmai-
sonmore important in the model than transla-
tions of other source words in the current sen-
tence which have not appeared in the cache.
One way of eliminating this behaviour would
be to learn negative weights on alternatives like
(house,chambre) which do not appear in the
cache.

We believe these improvements would better show
the potential of bilingual dynamic adaptation.

7 Conclusion

We have presented dynamic adaptive translation
models using cache-based implementations. We
have shown that monolingual dynamic adaptive
models exhibit good theoretical performance in a
bilingual translation context. We observed that
these theoretical results carry over to practical gains
in the context of an IMT application.

We have developed bilingual dynamic adaptation
through a cache-based translation model. Our re-
sults show the potential of bilingual dynamic adap-
tation. We have given explanations about why the
results obtained are not as high as hoped and pre-
sented some key improvements that should be made
to our model or should be taken into account in the
development of a new model.

We believe that this study reveals the potential for
adaptive interactive machine translation system and
we hope to read similar reports for other implemen-
tations of the same interactive scenarioe.g. (Och et
al., 2003).
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