A Distributional Analysisof a L exicalized Statistical Parsing M odel

Daniel M. Bikel
Department of Computer and Information Science
University of Pennsylvania
3330 Walnut Street
Philadelphia, PA 19104
dbikel@cis.upenn.edu

Abstract

This paper presents some of the first data visualiza-
tions and analysis of distributions for a lexicalized
statistical parsing model, in order to better under-
stand their nature. In the course of this analysis,
we have paid particular attention to parameters that
include bilexical dependencies. The prevailing view
has been that such statistics are very informative but
suffer greatly from sparse data problems. By using a
parser to constrain-parse its own output, and by hy-
pothesizing and testing for distributional similarity
with back-off distributions, we have evidence that
finally explains that (a) bilexical statistics are actu-
ally getting used quite often but that (b) the distri-
butions are so similar to those that do not include
head words as to be nearly indistinguishable inso-
far as making parse decisions. Finally, our analysis
has provided for the first time an effective way to
do parameter selection for a generative lexicalized
statistical parsing model.

1 Introduction

Lexicalized statistical parsing models, such as those
built by Black et al. (1992a), Magerman (1994),
Collins (1999) and Charniak (2000), have been
enormously successful, but they also have an enor-
mous complexity. Their success has often been
attributed to their sensitivity to individual lexical
items, and it is precisely this incorporation of lexical
items into features or parameter schemata that gives
rise to their complexity. In order to help determine
which features are helpful, the somewhat crude-but-
effective method has been to compare a model’s
overall parsing performance with and without a fea-
ture. Often, it has seemed that features that are
derived from linguistic principles result in higher-
performing models (cf. (Collins, 1999)). While
this may be true, it is clearly inappropriate to high-
light ex post facto the linguistically-motivated fea-
tures and rationalize their inclusion and state how
effective they are. A rigorous analysis of features or
parameters in relation to the entire model is called

for. Accordingly, this work aims to provide a thor-
ough analysis of the nature of the parameters in a
Collins-style parsing model, with particular focus
on the two parameter classes that generate lexical-
ized modifying nonterminals, for these are where
all a sentence’s words are generated except for the
head word of the entire sentence; also, these two
parameter classes have by far the most parameters
and suffer the most from sparse data problems. In
spite of using a Collins-style model as the basis for
analysis, throughout this paper, we will attempt to
present information that is widely applicable be-
cause it pertains to properties of the widely-used
Treebank (Marcus et al., 1993) and lexicalized pars-
ing models in general.

This work also sheds light on the much-discussed
“bilexical dependencies” of statistical parsing mod-
els. Beginning with the seminal work at IBM (Black
etal., 1991; Black et al., 1992b; Black et al., 1992a),
and continuing with such lexicalist approaches as
(Eisner, 1996), these features have been lauded for
their ability to approximate a word’s semantics as
a means to override syntactic preferences with se-
mantic ones (Collins, 1999; Eisner, 2000). How-
ever, the work of Gildea (2001) showed that, with
an approximate reimplementation of Collins’ Model
1, removing all parameters that involved dependen-
cies between a modifier word and its head resulted
in a surprisingly small decrease in overall parse ac-
curacy. The prevailing assumption was then that
such bilexical statistics were not useful for mak-
ing syntactic decisions, although it was not entirely
clear why. Subsequently, we replicated Gildea’s
experiment with a complete emulation of Model
2 and presented additional evidence that bilexical
statistics were barely getting used during decod-
ing (Bikel, 2004), appearing to confirm the origi-
nal result. However, the present work will show
that such statistics do get frequently used for the
highest-probability parses, but that when a Collins-
style model generates modifier words, the bilexical
parameters are so similar to their back-off distribu-
tions as to provide almost no extra predictive infor-

mation.

2 Motivation

A parsing model coupled with a decoder (an al-
gorithm to search the space of possible trees for a
given terminal sequence) is largely an engineering
effort. In the end, the performance of the parser
with respect to its evaluation criteria—typically ac-
curacy, and perhaps also speed—are all that matter.
Consequently, the engineer must understand what
the model is doing only to the point that it helps
make the model perform better. Given the some-
what crude method of determining a feature’s ben-
efit by testing a model with and without the fea-
ture, a researcher can argue for the efficacy of that
feature without truly understanding its effect on the
model. For example, while adding a particular fea-
ture may improve parse accuracy, the reason may
have little to do with the nature of the feature and
everything to do with its canceling other features
that were theretofore hurting performance. In any
case, since this is engineering, the rationalization
for a feature is far less important than the model’s
overall performance increase.

On the other hand, science would demand that,
at some point, we analyze the multitude of features
in a state-of-the-art lexicalized statistical parsing
model. Such analysis is warranted for two reasons:
replicability and progress. The first is a basic tenet
of most sciences: without proper understanding of
what has been done, the relevant experiment(s) can-
not be replicated and therefore verified. The sec-
ond has to do with the idea that, when a discipline
matures, it can be difficult to determine what new
features can provide the most gain (or any gain, for
that matter). A thorough analysis of the various dis-
tributions being estimated in a parsing model allows
researchers to discover what is being learned most
and least well. Understanding what is learned most
well can shed light on the types of features or depen-
dencies that are most efficacious, pointing the way
to new features of that type. Understanding what is
learned least well defines the space in which to look
for those new features.

3 Frequencies
3.1 Definitions and notation

In this paper we will refer to any estimated dis-
tribution as a parameter that has been instantiated
from a parameter class. For example, in an n-
gram language model, p(w;|wi_1) is a parameter
class, whereas the estimated distribution p(-|the)
is a particular parameter from this class, consisting

of estimates of every word that can follow the word
“the”.

For this work, we used the model described in
(Bikel, 2002; Bikel, 2004). Our emulation of
Collins” Model 2 (hereafter referred to simply as
“the model™) has eleven parameter classes, each of
which employs up to three back-off levels, where
back-off level 0 is just the “un-backed-off” maximal
context history.1 In other words, a smoothed prob-
ability estimate is the interpolation of up to three
different unsmoothed estimates. The notation and
description for each of these parameter classes is
shown in Table 1.

3.2 Basic frequencies

Before looking at the number of parameters in the
model, it is important to bear in mind the amount
of data on which the model is trained and on which
actual parameters will be induced from parameter
classes. The standard training set for English con-
sists of Sections 02-21 of the Penn Treebank, which
in turn consist of 39,832 sentences with a total of
950,028 word tokens (not including null elements).
There are 44,113 unique words (again, not includ-
ing null elements), 10,437 of which occur 6 times
or more.2 The trees consist of 904,748 brackets
with 28 basic nonterminal labels, to which func-
tion tags such as -TMP and indices are added in
the data to form 1184 observed nonterminals, not
including preterminals. After tree transformations,
the model maps these 1184 nonterminals down to
just 43. There are 42 unique part of speech tags that
serve as preterminals in the trees; the model prunes
away three of these (7, “ and .).

Induced from these training data, the model con-
tains 727,930 parameters; thus, there are nearly as
many parameters as there are brackets or word to-
kens. From a history-based grammar perspective,
there are 727,930 types of history contexts from
which futures are generated. However, 401,447 of
these are singletons. The average count for a history
context is approximately 35.56, while the average
diversity is approximately 1.72. The model contains
1,252,280 unsmoothed maximum-likelihood proba-
bility estimates (727,930-1.72 ~ 1, 252, 280). Even
when a given future was not seen with a particu-
lar history, it is possible that one of its associated

1Collins” model splits out the Py and Py, classes into left-
and right-specific versions, and has two additional classes for
dealing with coordinating conjunctions and inter-phrasal punc-
tuation. Our emulation of Collins” model incorporates the in-
formation of these specialized parameter classes into the exist-
ing Py and Py, parameters.

2We mention this statistic because Collins’ thesis experi-
ments were performed with an unknown word threshold of 6.

| Notation | Description | No. of back-off levels |
Py Generates unlexicalized head child given lexicalized parent 3
Psubcat, Generates subcat bag on left side of head child 3
Psubcatg Generates subcat bag on right side of head child 3
Pm (Pmaps) Generates partially-lexicalized modifying nonterminal (with NPB parent) 3
Pwm, (Pwm,nps) | Generates head word of modifying nonterminal (with NPB parent) 3
Porioryr Priors for nonterminal conditioning on its head word and part of speech 2
P prior e Priors for head word/part of speech pairs (unconditional probabilities) 0
Propy: Generates partially-lexicalized child of +TOP+" 1
Prop, Generates the head word for children of +TOP+" 2

Table 1: All eleven parameter classes in our emulation of Collins’ Model 2. A partially-lexicalized nonter-
minal is a nonterminal label and its head word’s part of speech (such as NP (NN)). "The hidden nonterminal
+TOP+ is added during training to be the parent of every observed tree.

PP(IN/with)

IN(IN/with) {NP-A} NP-A(NN/...)

Figure 1: A frequent Py, history context, illustrated
as a tree fragment. The ... represents the future that
is to be generated given this history.

back-off contexts was seen with that future, leading
to a non-zero smoothed estimate. The total num-
ber of possible non-zero smoothed estimates in the
model is 562,596,053. Table 2 contains count and
diversity statistics for the two parameter classes on
which we will focus much of our attention, Py, and
Pwm, . Note how the maximal-context back-off lev-
els (level 0) for both parameter classes have rela-
tively little training: on average, raw estimates are
obtained with history counts of only 10.3 and 4.4 in
the Py and Py, classes, respectively. Conversely,
observe how drastically the average number of tran-
sitions N increases as we remove dependence on the
head word going from back-off level 0 to 1.

3.3 Exploratory data analysis: a common
distribution

To begin to get a handle on these distributions, par-
ticularly the relatively poorly-trained and/or high-
entropy distributions of the Py, class, it is useful to
perform some exploratory data analysis. Figure 1
illustrates the 25th-most-frequent Py, history con-
text as a tree fragment. In the top-down model, the
following elements have been generated:

e a parent nonterminal PP(IN/with) (a PP
headed by the word with with the part-of-
speech tag IN)

e the parent’s head child IN

e aright subcat bag containing NP-A (a single NP
argument must be generated somewhere on the

1
09
0.8
0.7
0.6
05
04
03
0.2
0.1

0

cummulative density

0 500 1000 1500 2000 2500 3000 3500
rank

Figure 2: Cumulative density function for the Py,
history context illustrated in Figure 1.

right side of the head child)
o a partially-lexicalized right-modifying nonter-
minal

At this point in the process, a Py, parameter condi-
tioning on all of this context will be used to estimate
the probability of the head word of the NP-A(NN),
completing the lexicalization of that nonterminal. If
a candidate head word was seen in training in this
configuration, then it will be generated conditioning
on the full context that crucially includes the head
word with; otherwise, the model will back off to a
history context that does not include the head word.

In Figure 2, we plot the cumulative density func-
tion of this history context. We note that of the
3258 words with non-zero probability in this con-
text, 95% of the probability mass is covered by the
1596 most likely words.

In order to get a better visualization of the proba-
bility distribution, we plotted smoothed probability
estimates versus the training-data frequencies of the
words being generated. Figure 3(a) shows smoothed
estimates that make use of the full context (i.e., in-
clude the head word with) wherever possible, and
Figure 3(b) shows smoothed estimates that do not
use the head word. Note how the plot in Figure 3(b)
appears remarkably similar to the “true” distribu-

Back-off Pwm Pwm,,_

level c d n c d n
0 10.268| 1.437| 7.145 4.413] 1.949] 2.264
1 558.047| 3.643| 153.2 60.19 8.454| 7.120
2 1169.6 | 5.067| 230.8 21132.1 | 3706 | 57.02

Table 2: Average counts and diversities of histories of the Py and Py, parameter classes. T and d are
average history count and diversity, respectively. n =

context to some future.

01
001 | o
0.001 |

0.0001

1e-05 +

1 10 100 1000

word frequency

1e-06

smoothed probability estimate

10000

(@) prob. vs. word freq., back-off level 1

% is the average number of transitions from a history

0.1

0.01

0.001

0.0001 -

1e-05

1e-06

smoothed probability estimate

100 1000 10000 100000

word frequency

1 10

(b) prob. vs. word freq., back-off level 2

Figure 3: Probability versus word frequency for head words of NP-A(NN) in the PP construction.

tion of 3(a). 3(b) looks like a slightly “compressed”
version of 3(b) (in the vertical dimension), but the
shape of the two distributions appears to be roughly
the same. This observation will be confirmed and
quantified by the experiments of §5.3

4 Entropies

A good measure of the discriminative efficacy of a
parameter is its entropy. Table 3 shows the aver-
age entropy of all distributions for each parameter
class.* By far the highest average entropy is for the
Pwm, parameter class.

Having computed the entropy for every distri-
bution in every parameter class, we can actually
plot a “meta-distribution” of entropies for a pa-
rameter class, as shown in Figure 4. As an ex-
ample of one of the data points of Figure 4, con-
sider the history context explored in the previous
section. While it may be one of the most fre-
quent, it also has the highest entropy at 9.141

3The astute reader will further note that the plots in Figure
3 both look bizarrely truncated with respect to low-frequency
words. This is simply due to the fact that all words below a
fixed frequency are generated as the +UNKNOWN+ word.

4The decoder makes use of two additional parameter classes
that jointly estimate the prior probability of a lexicalized non-
terminal; however, these two parameter classes are not part of
the generative model.

P 0.2516 || Propy, | 2.517
Pacar, | 0.02342]| Prop, | 2.853
Psibcaty | 0.2147
Pwm 1.121
Pw, 3.923
Table 3: Average entropies for each parameter class.

entropy

O RPN WA O N ®O

0 50000 100000 150000 200000 250000

rank

Figure 4: Entropy distribution for the Py, parame-
ters.

bits, as shown by Table 4. This value not only
confirms but quantifies the long-held intuition that
PP-attachment requires more than just the local
phrasal context; it is, e.g., precisely why the PP-
specific features of (Collins, 2000) were likely to
be very helpful, as cases such as these are among
the most difficult that the model must discrimi-
nate. In fact, of the top 50 of the highest-entropy

Back-off Pwm Pwm,
level min max avg median | min max avg median
0 3.080E-10 4.351 1128 0.931 | 4.655E-8 9.141 3.904 3.806
1 4.905e-7 4254 0910 0.667 | 2.531E-6 9.120 4.179 4.224
2 8.410E-4 3501 0.754 0.520 | 0.002 8.517 3.182 2.451
Overall | 3.080E-10 4.351 1.121 0.917 | 4.655E-8 9.141 3.922 3.849

Table 4: Entropy distribution statistics for Py and Py,

60.00%

49.38%
50.00% —

40.00% —

30.00% —

15.86%
10.55%

5.08% 4,56%
2.88% 2.67% 2.58% 2.34% 2.16% 1.95%

Y O e e e O s
& K N S S x & & <K S &
| S S Se Q S & S <

Figure 5: Total modifier word—generation entropy
broken down by parent-head-modifier triple.

distributions from Py, 25 involve the config-
uration PP --> IN(IN/<prep>) NP-A(NN/...),
where <prep> is some preposition whose tag is IN.
Somewhat disturbingly, these are also some of the
most frequent constructions.

To gauge roughly the importance of these
high-frequency, high-entropy distributions, we per-
formed the following analysis. Assume for the mo-
ment that every word-generation decision is roughly
independent from all others (this is clearly not true,
given head-propagation). We can then compute the
total entropy of word-generation decisions for the
entire training corpus via

Hey, = . f(©)-H(©) (1)

ce PMW

where f(c) is the frequency of some history con-
text ¢ and H(c) is that context’s entropy. The to-
tal modifier word-generation entropy for the cor-
pus with the independence assumption is 3,903,224
bits. Of these, the total entropy for contexts of the
form PP — IN NP-A is 618,640 bits, representing
a sizable 15.9% of the total entropy, and the sin-
gle largest percentage of total entropy of any parent-
head-modifier triple (see Figure 5).

On the opposite end of the entropy spectrum,
there are tens of thousands of Py, parameters
with extremely low entropies, mostly having to do
with extremely low-diversity, low-entropy part-of-
speech tags, such as DT, CC, IN or WRB. Perhaps even

more interesting is the number of distributions with
identical entropies: of the 206,234 distributions,
there are only 92,065 unique entropy values. Dis-
tributions with the same entropy are all candidates
for removal from the model, because most of their
probability mass resides in the back-off distribution.
Many of these distributions are low- or one-count
history contexts, justifying the common practice of
removing transitions whose history count is below a
certain threshold. This practice could be made more
rigorous by relying on distributional similarity. Fi-
nally, we note that the most numerous low-entropy
distributions (that are not trivial) involve generating
right-modifier words of the head child of an SBAR
parent. The model is able to learn these construc-
tions extremely well, as one might expect.

5 Distributional similarity and bilexical
statistics

We now return to the issue of bilexical statis-
tics. As alluded to earlier, Gildea (2001) per-
formed an experiment with his partial reimplemen-
tation of Collins’ Model 1 in which he removed the
maximal-context back-oft level from Py, which
effectively removed all bilexical statistics from his
model. Gildea observed that this change resulted
in only a 0.5% drop in parsing performance. There
were two logical possibilities for this behavior: ei-
ther such statistics were not getting used due to
sparse data problems, or they were not informa-
tive for some reason. The prevailing view of the
NLP community had been that bilexical statistics
were sparse, and Gildea (2001) adopted this view
to explain his results. Subsequently, we duplicated
Gildea’s experiment with a complete emulation of
Collins’ Model 2, and found that when the decoder
requested a smoothed estimate involving a bigram
when testing on held-out data, it only received an
estimate that made use of bilexical statistics a mere
1.49% of the time (Bikel, 2004). The conclusion
was that the minuscule drop in performance from re-
moving bigrams must have been due to the fact that
they were barely able to be used. In other words, it
appeared that bigram coverage was not nearly good
enough for bigrams to have an impact on parsing

performance, seemingly confirming the prevailing
view.

But the 1.49% figure does not tell the whole story.
The parser pursues many incorrect and ultimately
low-scoring theories in its search (in this case, us-
ing probabilistic CKY). So rather than asking how
many times the decoder makes use of bigram statis-
tics on average, a better question is to ask how
many times the decoder can use bigram statistics
while pursuing the top-ranked theory. To answer
this question, we used our parser to constrain-parse
its own output. That is, having trained it on Sec-
tions 02-21, we used it to parse Section 00 of the
Penn Treebank (the canonical development test set)
and then re-parse that section using its own highest-
scoring trees (without lexicalization) as constraints,
so that it only pursued theories consistent with those
trees. As it happens, the number of times the de-
coder was able to use bigram statistics shot up to
28.8% overall, with a rate of 22.4% for NPB con-
stituents.

So, bigram statistics are getting used; in fact, they
are getting used more than 19 times as often when
pursuing the highest-scoring theory as when pursu-
ing any theory on average. And yet there is no dis-
puting the fact that their use has a surprisingly small
effect on parsing performance. The exploratory data
analysis of §3.3 suggests an explanation for this per-
plexing behavior: the distributions that include the
head word versus those that do not are so similar
as to make almost no difference in terms of parse
accuracy.

5.1 Distributional similarity

A useful metric for measuring distributional simi-
larity, as explored by (Lee, 1999), is the Jensen-
Shannon divergence (Lin, 1991):

1
Is(plla) =5 [D(p[|avgpg) + D(al a"gp’q)gz)
where D is the Kullback-Leibler divergence
(Cover and Thomas, 1991) and where avg,, =

%(p(A) + g(A)) for an event A in the event space
of at least one of the two distributions. One inter-
pretation for the Jensen-Shannon divergence due to
Slonim et al. (2002) is that it is related to the log-
likelihood that “the two sample distributions orig-
inate by the most likely common source,” relating
the quantity to the “two-sample problem”.

In our case, we have p = p(y| X1, X2) and q =
p(y| X1), where y is a possible future and X1, xo are
elements of a history context, with q representing
a back-off distribution using less context. There-
fore, whereas the standard JS formulation is agnos-

min max avg. | median
JSp.1 | 2.729e-7 | 2.168 | 0.1148 | 0.09672
JS1.> | 0.001318 | 1.962 | 0.6929 | 0.6986
JSp.> | 0.001182 | 1.180 | 0.3774 | 0.3863

Table 5: Jensen-Shannon statistics for back-off pa-
rameters in Py,

tic with respect to its two distributions, and averages
them in part to ensure that the quantity is defined
over the entire space, we have the prior knowledge
that one history context is a superset of the other,
that (x;) is defined wherever (X1, X2) is. In this case,
then, we have a simpler, “one-sided” definition for
the Jensen-Shannon divergence, but generalized to
the multiple distributions that include an extra his-
tory component:

IS(pllg) =
> p(x2) - D (p(Y 10, %) Il Py 1 X2))
= Ex,D(p(yl| X1, X2) Il p(y|x1)) 3)

An interpretation in our case is that this is the ex-
pected number of bits x, gives you when trying to
predict y.> If we allow x; to represent an arbitrary
amount of context, then the Jensen-Shannon diver-
gence JSpa = JS(pyll pa) can be computed for
any two back-off levels, where a, b are back-off lev-
els s.t. b < a (meaning pyp is a distribution using
more context than pg). The actual value in bits of
the Jensen-Shannon divergence between two distri-
butions should be considered in relation to the num-
ber of bits of entropy of the more detailed distribu-
tion; that is, JSp., should be considered relative to
H(pp). Having explored entropy in 84, we will now
look at some summary statistics for JS divergence.

5.2 Results

We computed the quantity in Equation 3 for every
parameter in Py, that used maximal context (con-
tained a head word) and its associated parameter
that did not contain the head word. The results are
listed in Table 5. Note that, for this parameter class
with a median entropy of 3.8 bits, we have a median
JS divergence of only 0.097 bits. The distributions
are so similar that the 28.8% of the time that the de-
coder uses an estimate based on a bigram, it might
as well be using one that does not include the head
word.

50r, following from Slonim et al.’s interpretation, this quan-
tity is the (negative of the) log-likelihood that all distributions
that include an x, component come from a “common source”
that does not include this component.

< 40 words
800 823
Model LR LP LR LP
m3 n/a n/a | 88.6 | 88.7
m2-emu | 89.9 | 90.0 | 88.8 | 88.9
reduced | 90.0 | 90.2 | 88.7 | 88.9

all sentences
Model 800 823
m3 n/a n/a | 88.0 | 88.3
m2-emu | 88.8 | 89.0 | 88.2 | 88.3
reduced | 89.0 | 89.0 | 88.0 | 88.2

Table 6: Parsing results on Sections 00 and 23 with
Collins’ Model 3, our emulation of Collins’ Model
2 and the reduced version at a threshold of 0.06. LR
= labeled recall, LP = labeled precision.®

6 Distributional Similarity and Parameter
Selection

The analysis of the previous two sections provides
a window onto what types of parameters the pars-
ing model is learning most and least well, and onto
what parameters carry more and less useful infor-
mation. Having such a window holds the promise
of discovering new parameter types or features that
would lead to greater parsing accuracy; such is the
scientific, or at least, the forward-minded research
perspective.

From a much more purely engineering perspec-
tive, one can also use the analysis of the previous
two sections to identify individual parameters that
carry little to no useful information and simply re-
move them from the model. Specifically, if py is
a particular distribution and ppy1 is its correspond-
ing back-off distribution, then one can remove all
parameters pp such that

JS(pollpo+1)
H(po)

where 0 < t < 1 is some threshold. Table 6 shows
the results of this experiment using a threshold of
0.06. To our knowledge, this is the first example
of detailed parameter selection in the context of a
generative lexicalized statistical parsing model. The
consequence is a significantly smaller model that
performs with no loss of accuracy compared to the
full model.®

Further insight is gained by looking at the per-
centage of parameters removed from each parame-
ter class. The results of (Bikel, 2004) suggested that
the power of Collins-style parsing models did not

<t

SNone of the differences between the Model 2-emulation
results and the reduced model results is statistically significant.

Py 135% || Prop, | 0.023%
Peowcat, | 0.67% || Py | 10.1%
Paca, | 1.8% || Pw, | 29.4%

Table 7: Percentage of parameters removed from
each parameter class for the 0.06-reduced model.

lie primarily with the use of bilexical dependencies
as was once thought, but in lexico-structural depen-
dencies, that is, predicting syntactic structures con-
ditioning on head words. The percentages of Table
7 provide even more concrete evidence of this as-
sertion, for whereas nearly a third of the Py, pa-
rameters were removed, a much smaller fraction of
parameters were removed from the Pgpcar, , Psubcatr
and Py classes that generate structure conditioning
on head words.

7 Discussion

Examining the lower-entropy Py, distributions re-
vealed that, in many cases, the model was not so
much learning how to disambiguate a given syn-
tactic/lexical choice, but simply not having much
to learn. For example, once a partially-lexicalized
nonterminal has been generated whose tag is fairly
specialized, such as IN, then the model has “painted
itself into a lexical corner”, as it were (the extreme
example is TO, a tag that can only be assigned to the
word to). This is an example of the “label bias”
problem, which has been the subject of recent dis-
cussion (Lafferty et al., 2001; Klein and Manning,
2002). Of course, just because there is “label bias”
does not necessarily mean there is a problem. If
the decoder pursues a theory to a nonterminal/part-
of-speech tag preterminal that has an extremely low
entropy distribution for possible head words, then
there is certainly a chance that it will get “stuck” in a
potentially bad theory. This is of particular concern
when a head word—uwhich the top-down model gen-
erates at its highest point in the tree—influences an
attachment decision. However, inspecting the low-
entropy word-generation histories of Py, revealed
that almost all such cases are when the model is
generating a preterminal, and are thus of little to no
consequence vis-a-vis syntactic disambiguation.

8 Conclusion and Future Work

With so many parameters, a lexicalized statistical
parsing model seems like an intractable behemoth.
However, as statisticians have long known, an ex-
cellent angle of attack for a mass of unruly data
is exploratory data analysis. This paper presents
some of the first data visualizations of parameters

in a parsing model, and follows up with a numerical
analysis of properties of those distributions. In the
course of this analysis, we have focused in on the
question of bilexical dependencies. By constrain-
parsing the parser’s own output, and by hypothe-
sizing and testing for distributional similarity, we
have presented evidence that finally explains that
(a) bilexical statistics are actually getting used with
great frequency in the parse theories that will ulti-
mately have the highest score, but (b) the distribu-
tions involving bilexical statistics are so similar to
their back-off counterparts as to make them nearly
indistinguishable insofar as making different parse
decisions. Finally, our analysis has provided for the
first time an effective way to do parameter selec-
tion with a generative lexicalized statistical parsing
model.

Of course, there is still much more analysis, hy-
pothesizing, testing and extrapolation to be done. A
thorough study of the highest-entropy distributions
should reveal new ways in which to use grammar
transforms or develop features to reduce the entropy
and increase parse accuracy. A closer look at the
low-entropy distributions may reveal additional re-
ductions in the size of the model, and, perhaps, a
way to incorporate hard constraints without disturb-
ing the more ambiguous parts of the model more
suited to machine learning than human engineering.

9 Acknowledgements

Thanks to Mitch Marcus, David Chiang and Ju-
lia Hockenmaier for their helpful comments on this
work. | would also like to thank Bob Moore for
asking some insightful questions that helped prompt
this line of research. Thanks also to Fernando
Pereira, with whom | had invaluable discussions
about distributional similarity. This work was sup-
ported in part by DARPA grant N66001-00-1-9815.

References

Daniel M. Bikel. 2002. Design of a multi-lingual,
parallel-processing statistical parsing engine. In Pro-
ceedings of HLT2002, San Diego, CA.

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing
model. Computational Linguistics. To appear.

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavens, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage of
English grammars. In Speech and Natural Language
Workshop, pages 306-311, Pacific Grove, California.
Morgan Kaufmann Publishers.

Ezra Black, Frederick Jelinek, John Lafferty, David
Magerman, Robert Mercer, and Salim Roukos.
1992a. Towards history-based grammars: Using

richer models for probabilistic parsing. In Proceed-
ings of the 5th DARPA Speech and Natural Language
Wbrkshop, Harriman, New York.

Ezra Black, John Lafferty, and Salim Roukos. 1992b.
Development and evaluation of a broad-coverage
probabilistic grammar of english-language computer
manuals. In Proceedings of the 30th ACL, pages 185-
192.

Eugene Charniak. 2000. A maximum entropy—inspired
parser. In Proceedings of the 1st NAACL, pages 132—
139, Seattle, Washington, April 29 to May 4.

Michael John Collins. 1999. Head-Driven Satistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In International Conference
on Machine Learning.

Thomas Cover and Joy A. Thomas. 1991. Elements of
Information Theory. John Wiley & Sons, Inc., New
York.

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Com
putational Linguistics (COLING-96), pages 340-345,
Copenhagen, August.

Jason Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. In Harry Bunt and An-
ton Nijholt, editors, Advances in Probabilistic and
Other Parsing Technologies, pages 29-62. Kluwer
Academic Publishers, October.

Daniel Gildea. 2001. Corpus variation and parser per-
formance. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing,
Pittsburgh, Pennsylvania.

Dan Klein and Christopher D. Manning. 2002. Condi-
tional structure versus conditional estimation in NLP
models. In Proceedings of the 2002 Conference on
Empirical Methodsfor Natural Language Processing.

John Lafferty, Fernando Pereira, and Andrew McCal-
lum. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML.

Lillian Lee. 1999. Measures of distributional similarity.
In Proceedings of the 37th ACL, pages 25-32.

Jianhua Lin. 1991. Divergence measures based on the
Shannon entropy. |EEE Transactions on Information
Theory, 37(1):145-151.

David Magerman. 1994. Natural Language Parsing as
Satigtical Pattern Recognition. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia, Pennsylvania.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19:313-330.

Noam Slonim, Nir Friedman, and Naftali Tishby.
2002. Unsupervised document classification using
sequential information maximization. Technical Re-
port 2002-19, Leibniz Center, The School of Com-
puter Science and Engineering, Hebrew University,
Jerusalem, Israel.

