
Mixing Weak Learners in Semantic Parsing

Rodney D. Nielsen
Dept of Computer Science

University of Colorado, UCB-430
Boulder, CO 80309-0430

USA
Rodney.Nielsen@Colorado.edu

Sameer Pradhan
Center for Spoken Language Research

University of Colorado
Boulder, CO 80303

USA
Sameer.Pradhan@Colorado.edu

Abstract
We apply a novel variant of Random Forests
(Breiman, 2001) to the shallow semantic parsing
problem and show extremely promising results.
The final system has a semantic role classification
accuracy of 88.3% using PropBank gold-standard
parses. These results are better than all others
published except those of the Support Vector Ma-
chine (SVM) approach implemented by Pradhan
et al. (2003) and Random Forests have numerous
advantages over SVMs including simplicity, faster
training and classification, easier multi-class classi-
fication, and easier problem-specific customization.
We also present new features which result in a 1.1%
gain in classification accuracy and describe a tech-
nique that results in a 97% reduction in the feature
space with no significant degradation in accuracy.

1 Introduction
Shallow semantic parsing is the process of finding
sentence constituents that play a semantic role rela-
tive to a target predicate and then labeling those con-
stituents according to their respective roles. Speci-
fying an event’s agent, patient, location, time of oc-
currence, etc, can be useful for NLP tasks such as
information extraction (c.f., Surdeanu et al., 2003),
dialog understanding, question answering, text sum-
marization, and machine translation. Example 1 de-
picts a semantic parse.

(1) [Agent She] [P bought] [Patient the vase]
[Locative in Egypt]

We expand on previous semantic parsing work
(Gildea and Jurafsky, 2002; Pradhan et al., 2003;
Surdeanu et al., 2003) by presenting a novel algo-
rithm worthy of further exploration, describing a
technique to drastically reduce feature space size,
and presenting statistically significant new features.
The accuracy of the final system is 88.3% on the
classification task using the PropBank (Kingsbury
et al., 2002) corpus. This is just 0.6% off the best
accuracy reported in the literature.

The classification algorithm used here is a vari-
ant of Random Forests (RFs) (Breiman, 2001).
This was motivated by Breiman’s empirical stud-
ies of numerous datasets showing that RFs often
have lower generalize error than AdaBoost (Fre-
und and Schapire, 1997), are less sensitive to noise
in the training data, and learn well from weak in-
puts, while taking much less time to train. RFs
are also simpler to understand and implement than
SVMs, leading to, among other things, easier in-
terpretation of feature importance and interactions
(c.f., Breiman, 2004), easier multi-class classifica-
tion (requiring only a single training session versus
one for each class), and easier problem-specific cus-
tomization (e.g., by introducing prior knowledge).
The algorithm described here is considerably differ-
ent from those in (Breiman, 2001). It was signifi-
cantly revised to better handle high dimensional cat-
egorical inputs and as a result provides much better
accuracy on the shallow semantic parsing problem.

The experiments reported here focus on the clas-
sification task – given a parsed constituent known
to play a semantic role relative to a given predicate,
decide which role is the appropriate one to assign
to that constituent. Gold-standard sentence parses
for test and training are taken from the PropBank
dataset. We report results on two feature sets from
the literature and a new feature set described here.

In section 2, we describe the data used in the ex-
periments. Section 3 details the classification algo-
rithm. Section 4 presents the experimental results
and describes each experiment’s feature set. Sec-
tion 5 provides a discussion and thoughts on future
work.

2 The Data
The classifiers were trained on data derived from
the PropBank corpus (Kingsbury et al., 2002). The
same observations and features are used as de-
scribed by (Pradhan et al., 2003). They acquired
the original data from the July 15, 2002 release
of PropBank, which the University of Pennsylva-
nia created by manually labeling the constituents

S

NP VP

She bought

NP PP

the vase in Egypt
Arg0 Predicate Arg1 ArgM-Loc

Figure 1: Syntactic parse of the sentence in (2)

of the Penn TreeBank gold-standard parses (Marcus
et al., 1994). Predicate usages (at present, strictly
verbs) are hand annotated with 22 possible seman-
tic roles plus the null role to indicate grammatical
constituents that are not arguments of the predicate.
The argument labels can have different meanings
depending on their target predicate, but the anno-
tation method attempted to assign consistent mean-
ings to labels, especially when associated with sim-
ilar verbs. There are seven core roles or arguments,
labeledARG0-5 andARG9. ARG0 usually corre-
sponds to the semantic agent andARG1 to the entity
most affected by the action. In addition to the core
arguments, there are 15 adjunctive arguments, such
asARGM-LOC which identifies locatives. Thus our
previous example, “She bought the vase in Egypt”,
would be parsed as shown in example 2. Figure
1 shows the associated syntactic parse without the
parts of speech.

(2) [Arg0 She] [P bought] [Arg1 the vase]
[ArgM-Loc in Egypt]

Development tuning is based on PropBank sec-
tion 00 and final results are reported for section 23.
We trained and tested on the same subset of obser-
vations as did Pradhan et al. (2003). They indicated
that a small number of sentences (less than 1%)
were discarded due to manual tagging errors in the
original PropBank labeling process, (e.g., an empty
role tag). This one percent reduction applies to all
sections of the corpus (training, development and
test). They removed an additional 2% of the train-
ing data due to issues involving the named entity
tagger splitting corpus tokens into multiple words.
However, where these issues occurred in tagging the
section 23 test sentences, they were manually cor-
rected. The size of the dataset is shown in Table 1.

3 The Algorithm
3.1 Random Forests
Breiman (2001) defines a random forest as “a clas-
sifier consisting of a collection of tree structured
classifiers{h(x,Θk), k=1, ...} where the{Θk} are
independently identically distributed random [train-
ing] vectors and each tree casts a unit vote for

Section # sent # words # preds # args
training 28 651 50 129
development 1.2 28 2.2 5.7
test 1.5 33 2.7 7.0

Table 1: Number of sentences, words, marked pred-
icates, and labeled arguments in thousands

the most popular class at inputx.” Thus Bagging
(Breiman, 1996) is a form of Random Forest, where
each tree is grown based on the selection, with re-
placement, ofN random training examples, where
N is the number of total examples in the training
set.

Breiman (2001) describes two new subclasses of
Random Forests, Forest-RI and Forest-RC. In each,
he combines Bagging, using the CART methodol-
ogy to create trees, with random feature selection
(Amit and Geman, 1997) at each node in the tree.
That is, at each node he selects a different random
subset of the input features and considers only these
in establishing the decision at that node.

The big idea behind Random Forests is that by in-
jecting randomness into the individual trees via ran-
dom feature selection, the correlation between their
classification results is minimized. A lower correla-
tion combined with reasonably good classification
accuracy for individual trees leads to a much higher
accuracy for the composite forest. In fact, Breiman
shows that a theoretical upper bound can be estab-
lished for the generalization error in terms of the
strength of the forest,s, and the mean value of the
classification correlation from individual trees,ρ̄.
The strength,s, is the expected margin over the in-
put space, where the margin of an ensemble classi-
fier is defined as the difference between the fraction
of the ensemble members that vote for the correct
class versus the fraction voting for the most popular
alternative class. See (Breiman, 2001) for a detailed
description ofs andρ̄ and how they are calculated.
The upper bound on the generalization error is given
by the following equation:

E∗ ≤ ρ̄
(1 − s2)

s2
(1)

Breiman found that Forest-RI and Forest-RC
compare favorably to AdaBoost in general, are far
less sensitive to noise in the training data, and can
learn well using weak inputs.

3.2 Feature Issues

Before describing the variant of Random Forests we
use here, it is helpful to discuss a couple of impor-

tant issues related to the input features. In the exper-
iments here, the true input features to the algorithm
are all categorical. Breiman’s approach to handling
categorical inputs is as follows. He modifies their
selection probability such that they areV -1 times as
likely as a numeric input to be selected for evalu-
ation at each node, whereV is the number of val-
ues the categorical feature can take. Then when a
categorical input is selected he randomly chooses a
subset of the category values and converts the input
into a binary-valued feature whose value is one if
the training observation’s corresponding input value
is in the chosen subset and zero otherwise.

In many machine learning approaches, a categor-
ical feature havingV different values would be con-
verted toV (orV -1) separate binary-valued features
(e.g., this is the case with SVMs). Here, we process
them as categorical features, but conceptually think
of them as separate binary-valued features. In an
attempt to minimize confusion, we will refer to the
categorical input features simply asinputsor asin-
put features, the equivalent set of binary-valued fea-
tures as thebinary-valued features, and the features
that are randomly composed in the tree building pro-
cess (via random category value subset selection) as
composed features.

3.3 Algorithm Description

Take any tree building algorithm (e.g., C5.0 (Quin-
lan, 2002)) and modify it such that instead of exam-
ining all of the input features at each node, it con-
siders only a random subset of those features. Con-
struct a large number of trees using all of the train-
ing data (we build 128 trees in each experiment). Fi-
nally, allow the trees to individually cast unit votes
for each test observation. The majority vote deter-
mines the classification and ties are broken in favor
of the class that occurs most frequently in the train-
ing set.

Our implementation is the most similar to Forest-
RI, but has several differences, some significant.
These differences involve not using Bagging, the
use of a single forest rather than two competing
forests, the assumed size ofV̂i (the number of rele-
vant values for inputi), the probability of selecting
individual inputs, how composed features are cre-
ated, and the underlying tree building algorithm. We
delineate each of these differences in the following
paragraphs.

Forest-RI combines random feature selection
with Bagging. Surprisingly, we found that, in our
experiments, the use of Bagging was actually hurt-
ing the classification accuracy of the forests and so
we removed this feature from the algorithm. This

means that we use all training observations to con-
struct each tree in the forest. This is somewhat
counter-intuitive given that it should increase cor-
relation in the outputs of the trees. However, the
strength of the forest is based in part on the accu-
racy of its trees, which will increase when utilizing
more training data. We also hypothesize that, given
the feature sets here, the correlation isn’t affected
significantly by the removal of Bagging. The rea-
son for this is the massive number of binary-valued
features in the problem (577,710 in just the baseline
feature set). Given this fact, using random feature
selection alone might result in substantially uncor-
related trees. As seen in equation 1 and shown em-
pirically in (Breiman, 2001), the lack of correlation
produced by random feature selection directly im-
proves the error bound.

Forest-RI involves growing two forests and se-
lecting the one most likely to provide the best re-
sults. These two forests are constructed using dif-
ferent values forF , the number of random features
evaluated at each node. The choice of which forest
is more likely to provide the best results is based on
estimates using the observations not included in the
training data (the out-of-bag observations). Since
we did not use Bagging, all of our observations are
used in the training of each tree and we could not
take this approach. Additionally, it is not clear that
this provided better results in (Breiman, 2001) and
preliminary experiments (not reported here) suggest
that it might be more effective to simply find a good
value forF .

To create composed features, we randomly select
a number of the input’s category values,C, given by
the following equation:

C = 1, V̂ ≤ 4

C = ⌊1.5 + log2 V̂ ⌋, V̂ > 4
(2)

whereV̂ is the number of category values still po-
tentially relevant. Random category value selec-
tion is consistent with Breiman’s work, as noted in
section 3.2. This random selection method should
act to further reduce the correlation between trees
and Breiman notes that it gets around the problem
caused by categorical inputs with large numbers of
values. However, he leaves the number of values
chosen unspecified. There is also no indication of
what to do as the categorical input becomes more
sparse near the leaves of the tree (e.g., if the algo-
rithm sends every constituent whose head word is in
a setΦ down the right branch of the node, what ef-
fect does this have on future random value selection
in each branch). This is the role of̂V in the above
equation.

A value is potentially relevant if it is not known
to have been effectively removed by a previous de-
cision. The decision at a given node typically sends
all of the observations whose input is in the se-
lected category value subset down one branch, and
the remaining observations are sent down the other
(boolean compositions would result in exceptions).
The list of relevant category values for a given in-
put is immediately updated when the decision has
obvious consequences (e.g., the values inΦ are re-
moved from the list of relevant values used by the
left branch in the previous example and the list for
the right branch is set toΦ). However, a decision
based on one input can also affect the remaining rel-
evant category values of other inputs (e.g., suppose
that at the node in our previous example, all prepo-
sitional phrase (PP) constituents had the head word
with andwith was a member ofΦ, then the phrase
type PP would no longer be relevant to decisions
in the left branch, since all associated observations
were sent down the right branch). Rather than up-
date all of these lists at each node (a computation-
ally expensive proposition), we only determine the
unique category values when there are fewer than
1000 observations left on the path, or the number of
observations has been cut to less than half what it
was the last time unique values were determined. In
early experimentation, this reduced the accuracy by
about 0.4% relative to calculating the remaining cat-
egory values after each decision. So when speed is
not important, one should take the former approach.

Breiman indicates that, when several of the in-
puts are categorical, in order to increase strength
enough to obtain a good accuracy rate the number
of inputs evaluated at each node must be increased
to two-three times⌊1 + log2 M⌋ (whereM is the
number of inputs). It is not clear whether the input
selection process is with or without replacement.
Some of the inputs in the semantic parsing prob-
lem have five orders of magnitude more category
values than others. Given this issue, if the selec-
tion is without replacement, it leads to evaluating
features composed from each of our seven baseline
inputs (figure 2) at each node. This would likely
increase correlation, since those inputs with a very
small number of category values will almost always
be the most informative near the root of the tree and
would be consistently used for the upper most deci-
sions in the tree. On the other hand, if selection is
with replacement, then using the Forest-RI method
for calculating the input selection probability will
result in those inputs with few category values al-
most never being chosen. For example, the baseline
feature set has 577710 equivalent binary-valued fea-

tures by the Forest-RI definition, including two true
binary inputs. The probability of one of these two
inputsnot being chosen in a given random draw ac-
cording to the Forest-RI method is 577709/577710
(see section 3.2 above). WithM=7 inputs, generat-
ing 3⌊1 + log2 M⌋ = 9 random composed features
results in these two binary inputs having a selection
probability of1− (577709/577710)9, or 0.000016.

Our compromise is first to useC and V̂ from
equation 2 to calculate a baseline number ofcom-
posablefeatures for each inputi. This quantity is
the total number of potentially relevant category val-
ues divided by the number used to create a com-
posed feature:

fi =
V̂i

Ci

(3)

Second, given the large number of composable fea-
turesfi, we also evaluate a larger number,F , of
random features at each node in the tree:

F = max(⌈
√

f⌉, min(f, ⌊1.5 + 3 log2(f)⌋)) (4)

wheref is the sum offi over all inputs. Finally,
selection and feature composition is done with re-
placement. The final feature selection process has at
least two significant effects we find positive. First,
the number of composable features reflects the fact
that several category values are considered simul-
taneously, effectively splitting onCi binary-valued
features. This has the effect of reducing the selec-
tion probability of many-valued inputs and increas-
ing the probability of selecting inputs with fewer
category values. Using the baseline feature set as
an example, the probability of evaluating one of the
binary-valued inputs at the root of the tree increases
from 0.000016 to 0.0058. Second, as category val-
ues are used they are periodically removed from the
set under consideration, reducing the correspond-
ing size ofVi, and the input selection probabilities
are then adjusted accordingly. This has the effect
of continuously raising the selection probability for
those inputs that have not yet been utilized.

Finally, we use ID3 to grow trees rather than
CART, which is the tree algorithm Forest-RI uses.
We don’t believe this should have any significant
effect on the final results. The choice was purely
based on already having an implementation of ID3.
From a set of possible split decisions, ID3 chooses
the decision which leads to the minimum weighted
average entropy among the training observations as-
signed to each branch, as determined by class labels
(Quinlan, 1986; Mitchell, 1997).

These algorithm enhancements are appropriate
for any task with high dimensional categorical in-
puts, which includes many NLP applications.

PREDICATE: the lemma of the predicate whose
arguments are to be classified – the infinitive form
of marked verbs in the corpus
CONSTITUENTPHRASE TYPE: the syntactic type
assigned to the constituent/argument being classi-
fied
HEAD WORD (HW): the head word of the target
constituent
PARSETREEPATH (PATH): the sequence of parse
tree constituent labels from the argument to its
predicate
POSITION: a binary value indicating whether the
target argument precedes or follows its predicate
VOICE: a binary value indicating whether the
predicate was used in an active or passive phrase
SUB-CATEGORIZATION: the parse tree expansion
of the predicate’s grandparent constituent

Figure 2: Baseline feature set of experiment 1, see
(Gildea and Jurafsky, 2002) for details

4 The Experiments
Four experiments are reported: the first uses the
baseline features of Gildea and Jurafsky (2002); the
second is composed of features proposed by Prad-
han et al. (2003) and Surdeanu et al. (2003); the
third experiment evaluates a new feature set; and the
final experiment addresses a method of reducing the
feature space. The experiments all focus strictly on
the classification task – given a syntactic constituent
known to be an argument of a given predicate, de-
cide which argument role is the appropriate one to
assign to the constituent.

4.1 Experiment 1: Baseline Feature Set

The first experiment compares the random for-
est classifier to three other classifiers, a statisti-
cal Bayesian approach with backoff (Gildea and
Palmer, 2002), a decision tree classifier (Surdeanu
et al., 2003), and a Support Vector Machine (SVM)
(Pradhan et al., 2003). The baseline feature set uti-
lized in this experiment is described in Figure 2 (see
(Gildea and Jurafsky, 2002) for details).

Surdeanu et al. omit the
SUB-CATEGORIZATION feature, but add a
binary-valued feature that indicates the governing
category of noun-phrase argument constituents.
This feature takes on the value S or VP depending
on which constituent type (sentence or verb phase
respectively) eventually dominates the argument in
the parse tree. This generally indicates grammatical
subjects versus objects, respectively. They also
used the predicate with its case and morphology
intact, in addition to using its lemma. Surdeanu
et al. indicate that, due to memory limitations on

Classifier Accuracy
Bayesian (Gildea and Palmer, 2002) 82.8
Decision Tree (Surdeanu et al., 2003) 78.8
SVM (Pradhan et al., 2003) 87.1
First Tree 78.3
Random Forest 84.6

Table 2: Results of baseline feature set experiment

their hardware, they trained on only 75 KB of the
PropBank argument constituents – about 60% of
the annotated data.

Table 2 shows the results of experiment 1, com-
paring the classifier accuracies as trained on the
baseline feature set. Using a difference of two pro-
portions test as described in (Dietterich, 1998), the
accuracy differences are all statistically significant
at p=0.01. The Random Forest approach outper-
forms the Bayesian method and the Decision Tree
method. However, it does not perform as well as the
SVM classifier. Interestingly, the classification ac-
curacy of the first tree in the Random Forest, given
in row four, is almost as high as that of the C5 deci-
sion trees (Quinlan, 2002) of Surdeanu et al.

4.2 Experiment 2: Extended Feature Set

The second experiment compares the random for-
est classifier to the boosted decision tree and the
SVM using all of the features reported by Pradhan
et al. The additional features used in this experi-
ment are listed in Figure 3 (see sources for further
details). In addition to the extra features noted in the
previous experiment, Surdeanu et al. report on four
more features, not included here (content word part
of speech (CW PoS)1, CW named entity class, and
two phrasal verb collocation features).

Table 3 shows the results of experiment 2, com-
paring the classifier accuracies using the full feature
sets reported in each source. Surdeanu et al. also ap-
plied boosting in this experiment and chose the out-
come of the boosting iteration that performed best.
Using the difference of two proportions test, the ac-
curacy differences are all statistically significant at
p=0.01. The Random Forest approach outperforms
the Boosted Decision Tree method by 3.5%, but
trails the SVM classifier by 2.3%. In analyzing the
performance on individual argument classes using
McNemar’s test, Random Forest performs signifi-
cantly better onARG0 (p=0.001) then the SVM, and
the SVM has significantly better results onARG1
(p=0.001). The large number of degrees of freedom

1We also tested the CW PoS, but it did not improve the de-
velopment results and was omitted.

NAMED ENTITIES: seven binary-valued fea-
tures indicating whether specific named enti-
ties (PERSON, ORGANIZATION, DATE, TIME,
MONEY, LOCATION, and PERCENT) occurred
anywhere in the target constituent (Surdeanu et al.,
2003)
HW POS: the grammatical part of speech of the
target constituent’s head word (Surdeanu et al.,
2003)
CONTENT WORD (CW): “lexicalized feature that
selects an informative word from the constituent,
different from the head word”(Surdeanu et al.,
2003)
VERB CLUSTER: a generalization of the verb
predicate by clustering verbs into 64 classes
(Pradhan et al., 2003)
HALF PATH: the sequence of parse tree con-
stituent labels from the argument to the lowest
common ancestor of the predicate (Pradhan et al.,
2003)

Figure 3: Additional features in experiment 2

Classifier Accuracy
Boosted Decision Tree (Surdeanu et al.,
2003)

83.7

Random Forest (trained with CW) 87.2
SVM (Pradhan et al., 2003) 88.9
Random Forest (trained without CW) 86.6

Table 3: Results of experiment 2

prevent significance at p=0.1 for any other argu-
ments, but the SVM appears to perform much better
onARG2 andARG3.

4.3 Experiment 3: New Features
We evaluated several new features and report on the
most significant here, as described in figure 4.2 The
results are reported in table 4. The accuracy im-
provements relative to the results from experiment
2 are all statistically significant at p=0.001 (McNe-
mar’s test is used for all significance tests in this sec-
tion). Comparing the SVM results in experiment 2
to the best results here shows statistical significance

2Due to space, we cannot report all experiments; contact the
first author for more information. The other features we eval-
uated involved: the phrase type of the parent constituent, the
list of phrase types encompassing the sentence fragment be-
tween the target predicate and constituent, the prefix and suffix
of the cw and hw, animacy, high frequency words preceding
and following the predicate, and the morphological form of the
predicate. All of these improved accuracy on the development
set (some with statistical significance at p=0.01), but we sus-
pect the development baseline was at a low point, since these
features largely did not improve performance when combined
with CW Base and GP.

GOVERNING PREPOSITION (GP): if the con-
stituent’s parent is a PP, this is the associated
preposition (e.g., in “made of [Arg2 gallium ar-
senide]”, this feature is ‘of’, since the Arg2-NP is
governed by an ‘of’-based PP)
CW BASE: starting with the CW, convert it to its
singular form, remove any prefix, and convert dig-
its to ‘n’ (e.g., this results in the following CW→
CW Base mappings: accidents→ accident, non-
binding→ binding, repayments→ payment, and
1012→ nnnn)

Figure 4: Features in experiment 3

Feature Set Accuracy
Extended (see figures 2 & 3) 86.6
Extended + CW BASE 87.4
Extended + GOVERNING PREPOSITION 87.4
Extended + CW BASE & GP 88.3

Table 4: Results of experiment 2

only at p=0.1.
In analyzing the effect on individual argument

classes, seven have highχ2 values (ARG2-4,
ARGM-DIS (discourse), ARGM-LOC (locative),
ARGM-MNR (manner), andARGM-TMP (temporal)),
but given the large number of degrees of free-
dom, onlyARGM-TMP is significant (p=0.05). Ex-
ample section-00 sentence fragments including the
target predicate (P) and ARG2 role whose classi-
fication was corrected by theGP feature include
“[P banned] to [everyday visitors]”, “[P consid-
ered] as [an additional risk for the investor]”, and
“[P made] of [gallium arsenide]”. Comparing the
SVM results to the best results here, the Ran-
dom Forest performs significantly better on Arg0
(p=0.001), and the SVM is significantly better on
Arg1 (p=0.001). Again the degrees of freedom pre-
vent significance at p=0.1, but the Random Forest
outperforms the SVM with a fairly highχ2 value on
ARG4, ARGM-DIS, ARGM-LOC, andARGM-TMP.

4.4 Experiment 4: Dimensionality Reduction

We originally assumed we would be using binary-
valued features with sparse matrices, much like in
the SVM approach. Since many of the features have
a very large number of values (e.g., thePATH fea-
ture has over 540k values), we sought ways to re-
duce the number of equivalent binary-valued fea-
tures. This section reports on one of these meth-
ods, which should be of interest to others in resource
constrained environments.

In this experiment, we preprocess the baseline in-

puts described in Figure 2 to reduce their number
of category values. Specifically, for each original
category value,vi ∈ V , we determine whether it
occurs in observations associated with one or more
than one semantic role label,R. If it is associated
with more than oneR, vi is left as is. Whenvi maps
to only a singleRj , we replacevi with an arbitrary
value,vk /∈ V , which is the same for all suchv oc-
curring strictly in association withRj . ThePATH
input starts with 540732 original feature values and
has only 1904 values after this process, whileHEAD
WORD is reduced from 33977 values to 13208 and
PHRASE TYPE is reduced from 62 to 44 values.
The process has no effect on the other baseline input
features. The total reduction in equivalent binary-
valued features is 97%. We also test the effect of
disregarding feature values during training if they
only occur once in the training data. This has a
more modest effect, reducingPATH to 156788 val-
ues andHEAD WORD to 29482 values, with no other
reductions. The total reduction in equivalent binary-
valued features is 67%.

Training on the baseline feature set, the net effect
of these two procedures was less than a 0.3% loss
of accuracy on the development set. The McNemar
test indicates this is not significant at p=0.1. In the
end, our implementation used categorical features,
rather than binary-valued features (e.g., rather than
use 577710 binary-valued features to represent the
baseline inputs, we use 7 features which might take
on a large number of values –PATH has 540732 val-
ues). In this case, the method does not result in as
significant a reduction in the memory requirements.
While we did not use this feature reduction in any
of the experiments reported previously, we see it as
being very beneficial to others whose implementa-
tion may be more resource constrained, particularly
those using a binary-valued feature representation.

The method also reduced training time by 17%
and should lead to much larger reductions for im-
plementations using binary-valued features. For ex-
ample, the worst case training time for SVMs is
quadratic in the number of features and this method
reduced the dimensionality to 3% of its original
size. Therefore, the method has the theoretical
potential to reduce training time by up to100(1-
0.032) = 99.91%. While it is unlikely to ap-
proach this in practice, it should provide signifi-
cant savings. This may be especially helpful during
model selection or feature evaluation, after which,
one could revert to the full dimensionality for fi-
nal training to improve classification accuracy. The
slight decrement in accuracy may also be overcome
by the ability to handle larger datasets.

5 Discussion and Future Research

The version of Random Forests described here out-
performs the Bayesian algorithm (Gildea and Juraf-
sky, 2002; Gildea and Palmer, 2002) by 1.8% on the
same feature set and outperforms the boosted deci-
sion tree classifier (Surdeanu et al., 2003) by 3.5%
on the extended feature set with 5 fewer features.
The SVM classifier (Pradhan et al., 2003) was 2.3%
better training on the same data, but only 0.6% bet-
ter than our best results.

The Random Forest (RF) approach has advan-
tages that might make it a better choice than an
SVM in certain circumstances. Conceptually, it
is simpler to understand and can be implemented
more easily. This also makes it easier to modify
the algorithm to evaluate new techniques. RFs al-
low one to more easily implement multi-class clas-
sifiers. The RFs here were implemented as a single
classifier, rather than as the 22 one-against-all clas-
sifiers required by the SVM approach. Since RFs
are not overly sensitive to noise in the training data
(Breiman, 2001), it might be the case that they will
narrow the performance gap when training is based
on automatically parsed sentences. Further research
is required in this area. Additionally, RFs have an
advantage in training time. It takes about 40% of
the SVM time (8 versus 20 hours) to train on the
extended feature set for the classification task and
we expect this time to be cut by up to a factor of 10
in porting from MatLab to C. Classification time is
generally faster for RFs as well, which is important
for real-time tasks.

In a class-by-class comparison, using the same
features, the RF performed significantly better than
the SVM on Arg0 roles, the same or slightly better
on 12 of the other 21 arguments, and slightly bet-
ter overall on the 14 adjunctive arguments (77.8%
versus 77.3% accuracy on 1882 observations). Re-
viewing performance on data not seen during train-
ing, both algorithms degraded to about 94% of their
accuracy on seen data.

The RF algorithm should be evaluated on the
identification task and on the combined identifica-
tion and classification task. This will provide addi-
tional comparative evidence to contrast it with the
SVM approach. Further research is also required to
determine how RFs generalize to new genres.

Another area for future research involves the es-
timation of class probabilities. MOB-ESP, a variant
of Random Forests which outputs class probability
estimates, has been shown to produce very good re-
sults (Nielsen, 2004). Preliminary experiments sug-
gest that using these probability estimates in con-
junction with an SVM classifier might be more ef-

fective than estimating probabilities based on the
example’s distance from the decision surface as in
(Platt, 2000). Class probabilities are useful for sev-
eral semantic parsing and more general NLP tasks,
such as selective use of labeled examples during
training (c.f., Pradhan et al., 2003) and N-best list
processing.

6 Conclusion
The results documented in these experiments are
very promising and mandate further research. The
final classification accuracy of the Random For-
est was 88.3%, just 0.6% behind the SVM results
(Pradhan et al., 2003) and 4.6% higher than the next
best results (Surdeanu et al., 2003) – results that
were based on a number of additional features.

We defined several modifications to the RF algo-
rithm that increased accuracy. These improvements
are important for any application with high dimen-
sional categorical inputs, which includes many NLP
tasks. We introduced new features which provided
a 1.1% improvement in accuracy over the best re-
sults using features from the literature. We also in-
troduced a technique to reduce the dimensionality
of the feature space, resulting in a reduction to just
3% of the original feature space size. This could
be an important enabler for handling larger datasets
and improving the efficiency of feature and model
selection.

Acknowledgements
We thank Dan Jurafsky for miscellaneous support
and for valuable feedback on a draft of this paper.
Thanks also go to the anonymous reviewers whose
feedback improved the paper.

References
Yali Amit and Donald Geman. 1997. Shape Quan-

tization and Recognition with Randomized Trees.
Neural Computation, 9:1545–1588.

Leo Breiman. 2001. Random Forests.Journal of
Machine Learning, 45(1):5–32.

Leo Breiman. 2004. Random Forests. http://stat-
www.berkeley.edu/users/breiman/RandomForests/

Leo Breiman. 1996. Bagging Predictors.Machine
Learning, 26(2):123–140.

Thomas G. Dietterich. 1998. Approximate statis-
tical tests for comparing supervised classifica-
tion learning algorithms.Neural Computation,
10(7):1895–1924.

Y. Freund and R. E. Schapire. 1997. A decision-
theoretic generalization of on-line learning and
an application to boosting.Journal of Computer
and Systems Sciences, 55(1):119–139.

Daniel Gildea and Daniel Jurafsky. 2002. Auto-
matic Labeling of Semantic Roles.Computa-
tional Linguistics, 28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The Ne-
cessity of Parsing for Predicate Argument Recog-
nition. Proceedings of ACL-02.

Paul Kingsbury, Martha Palmer, and Mitch Marcus.
2002. Adding semantic annotation to the Penn
Treebank.Proceedings of the HLT-02.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The Penn TreeBank: Annotating
predicate argument structure.

Tom M. Mitchell. 1997. Machine Learning.
McGraw-Hill, Boston, MA.

Rodney D. Nielsen. 2004. MOB-ESP and other Im-
provements in Probability Estimation.Proceed-
ings of the 20th Conference on Uncertainty in Ar-
tificial Intelligence.

John Platt. 2000. Probabilities for Support Vector
Machines. In A. Smola, P. Bartlett, B. Scolkopf,
and D. Schuurmans (Eds),Advances in Large
Margin Classifiers. MIT Press, Cambridge, MA.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler,
Wayne Ward, James H. Martin, Daniel Jurafsky.
2003. Shallow Semantic Parsing using Support
Vector Machines.University of Colorado Tech-
nical Report: TR-CSLR-2003-03.

J. R. Quinlan. 1986. Induction of decision trees.
Machine Learning, 1:81–106.

J. R. Quinlan. 2002. Data Mining Tools See5 and
C5.0. http://www.rulequest.com/see5-info.html.

Mihai Surdeanu, Sanda Harabagiu, John Williams
and Paul Aarseth. 2003. Using Predicate-
Argument Structures for Information Extraction.
Proceedings of ACL-03.

