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Abstract The classification algorithm used here is a vari-

ant of Random Forests (RFs) (Breiman, 2001).

We apply a novel variant of Random Forests® " : _ , Iy
(Breiman, 2001) to the shallow semantic parsingTh'S was motivated by Breiman’s empirical stud-

problem and show extremely promising results /€S Of numerous datasets showing that RFs often

The final system has a semantic role classificatioffave lower generalize error than AdaBoost (Fre-
accuracy of 88.3% using PropBank gold—standardmd and _thapwe, 1997), are less sensitive to noise
parses. These results are better than all othef§ the training data, and learn well from weak in-
published except those of the Support Vector MaPuts, while taking much less time to train. RFs
chine (SVM) approach implemented by Pradhar@re also smpler to understand and_lmplement than
et al. (2003) and Random Forests have numerousVMS, leading to, among other things, easier in-

advantages over SVMs including simplicity, fasterterpretati_on of feature importance_ and interac_ti_ons
training and classification, easier multi-class classi{C-/-» Bréiman, 2004), easier multi-class classifica-

fication, and easier problem-specific customizationion (réquiring only a single training session versus

We also present new features which result in a 1.196n€ for each class), and easier problem-specific cus-
gain in classification accuracy and describe a techiomization (e.g., by introducing prior knowledge).
nique that results in a 97% reduction in the feature! N€ @lgorithm described here is considerably differ-

space with no significant degradation in accuracy. €Nt from those in (Breiman, 2001). It was signifi-
cantly revised to better handle high dimensional cat-

1 Introduction egorical inputs and as a result provides much better

. L ... accuracy on the shallow semantic parsing problem.
Shallow semantic parsing is the process of finding The experiments reported here focus on the clas-

sentence constituents that play a semantic role relas"lfication task — given a parsed constituent known

tive to a target predicate and then labeling those cong, play a semantic role relative to a given predicate,

st!tuents according to the‘? respecti\_/e roI_es. SIC)ec'élecide which role is the appropriate one to assign
fying an event's agent, patient, location, time of oc-

to that constituent. Gold-standard sentence parses

_cufrrenc?, etc, tcant'be us?fuéfo(rj NLP tatskls 32%%h3a?or test and training are taken from the PropBank
information extraction (c.f., Surdeanu et al, )’dataset. We report results on two feature sets from

dlaI(_)g u_nderstandmg,.questlon answering, text SUMg 6 literature and a new feature set described here.
marization, and machine translation. Example 1de- | '« o 2 we describe the data used in the ex-

picts a semantic parse. periments. Section 3 details the classification algo-
rithm. Section 4 presents the experimental results
and describes each experiment’s feature set. Sec-
tion 5 provides a discussion and thoughts on future

We expand on previous semantic parsing workwork.
(Gildea and Jurafsky, 2002; Pradhan et al., 2003;
Surdeanu et al., 2003) by presenting a novel algo-2 The Data
rithm worthy of further exploration, describing a The classifiers were trained on data derived from
technique to drastically reduce feature space sizeéhe PropBank corpus (Kingsbury et al., 2002). The
and presenting statistically significant new featuressame observations and features are used as de-
The accuracy of the final system is 88.3% on thescribed by (Pradhan et al., 2003). They acquired
classification task using the PropBank (Kingsburythe original data from the July 15, 2002 release
et al., 2002) corpus. This is just 0.6% off the bestof PropBank, which the University of Pennsylva-

accuracy reported in the literature. nia created by manually labeling the constituents

(1)  [agent She] [p bought] [parien: the vase]
[Locative in Egypt]



S | Section | #sent] #words| # preds| # args]

NP VP»\i training 28 651 50 129

‘ ‘ NP PP development]| 1.2 28 2.2 5.7
P

She bought thevase in Egypt test 15 33 2.7 70

Arg0  Predicate  Argl  ArgM-Loc Table 1: Number of sentences, words, marked pred-

icates, and labeled arguments in thousands

Figure 1: Syntactic parse of the sentence in (2)

of the Penn TreeBank gold-standard parses (Marcu$'® MOst popular class at input” Thus Bagging

et al., 1994). Predicate usages (at present, stricti{Preiman, 1996) is a form of Random Forest, where
verbs) are hand annotated with 22 possible semark2ch tree is grown based on the selection, with re-
tic roles plus the null role to indicate grammatical Pacement, ofV random training examples, where
constituents that are not arguments of the predicatdy IS the number of total examples in the training
The argument labels can have different meaningSet: _

depending on their target predicate, but the anno- Breiman (2001) describes two new subclasses of
tation method attempted to assign consistent mearz@ndom Forests, Forest-RI and Forest-RC. In each,
ings to labels, especially when associated with simP€ combines Bagging, using the CART methodol-
ilar verbs. There are seven core roles or argument§9Y 0 create trees, with random feature selection
labeledARGO- 5 and ARGY. ARGO usually corre- (Am|t_ and Geman, 1997) at each nqde in the tree.
sponds to the semantic agent #rE1 to the entity That is, at ea_ch node he selects a d!fferent random
most affected by the action. In addition to the coreSubset of the input features and considers only these
arguments, there are 15 adjunctive arguments, sudf €Stablishing the decision at that node. ,
asARGM Loc which identifies locatives. Thus our _ The bigidea behind Random Forests is that by in-
previous example, “She bought the vase in Egypt’j€cting randomness into the individual trees via ran-
would be parsed as shown in example 2. Figuréjom fe_atu_re selectlorj, thfa _co_rrelatlon between their
1 shows the associated syntactic parse without thelassification results is minimized. A lower correla-

parts of speech. tion combined with reasonably good classification

accuracy for individual trees leads to a much higher

(2) [argo She] [p bought] [4.41 the vase] accuracy for the composite forest. In fact, Breiman
[ArgM-Loc IN EQYPL] shows that a theoretical upper bound can be estab-

Deveiopment uning s b on Proptank secl21e0 0 e eneralzation err i tes of e
tion 00 and final results are reported for section 23'(:Iass%‘ication correlati’on from individual trees
We trained and tested on the same subset of obsef: P,

vations as did Pradhan et al. (2003). They indicate he strengths, is the expec_ted margin over the in- .
that a small number of sentences (less than 1% ut space, where the margin of an ensemble classi-

were discarded due to manual tagging errors in theer is defined as the difference between the fraction

- : of the ensemble members that vote for the correct
original PropBank labeling process, (e.g., an empty lass versus the fraction voting for the most popular

role tag). This one percent reduction applies to all® . : :
sections of the corpus (training, development an03222??tt'i\:)enc(l)?SZhi?Z%rﬁgcvapﬁezogrlg L(glc?u?ae::ged
test). They removed an additional 2% of the train- P s aitp €y ¢ paed.

; . . . .. The upper bound on the generalization error is given
ing data due to issues involving the named entltyb the followina equation:
tagger splitting corpus tokens into multiple words. y geq '

However, where these issues occurred in tagging the (1= s2)

section 23 test sentences, they were manually cor- B <p—7p—" (1)
rected. The size of the dataset is shown in Table 1. o

3 TheAlgorithm Breiman found that Forest-R_I and Forest-RC
compare favorably to AdaBoost in general, are far

3.1 Random Forests less sensitive to noise in the training data, and can

Breiman (2001) defines a random forest as “a clastearn well using weak inputs.

sifier consisting of a collection of tree structured

classifiers{h(x, ®), k=1, ...} where the{®,,} are 3.2 Featurelssues

independently identically distributed random [train- Before describing the variant of Random Forests we

ing] vectors and each tree casts a unit vote foruse here, it is helpful to discuss a couple of impor-



tant issues related to the input features. In the expemeans that we use all training observations to con-
iments here, the true input features to the algorithnstruct each tree in the forest. This is somewhat
are all categorical. Breiman’s approach to handlingcounter-intuitive given that it should increase cor-
categorical inputs is as follows. He modifies theirrelation in the outputs of the trees. However, the
selection probability such that they drel times as  strength of the forest is based in part on the accu-
likely as a numeric input to be selected for evalu-racy of its trees, which will increase when utilizing
ation at each node, whefé is the number of val- more training data. We also hypothesize that, given
ues the categorical feature can take. Then when the feature sets here, the correlation isn’t affected
categorical input is selected he randomly chooses significantly by the removal of Bagging. The rea-
subset of the category values and converts the inpwgon for this is the massive number of binary-valued
into a binary-valued feature whose value is one iffeatures in the problem (577,710 in just the baseline
the training observation’s corresponding input valuefeature set). Given this fact, using random feature
is in the chosen subset and zero otherwise. selection alone might result in substantially uncor-
In many machine learning approaches, a categor€lated trees. As seen in equation 1 and shown em-
ical feature having’ different values would be con- pirically in (Breiman, 2001), the lack of correlation
verted toV (or V-1) separate binary-valued features produced by random feature selection directly im-
(e.g., this is the case with SVMs). Here, we procesproves the error bound.
them as categorical features, but conceptually think Forest-RI involves growing two forests and se-
of them as separate binary-valued features. In atecting the one most likely to provide the best re-
attempt to minimize confusion, we will refer to the sults. These two forests are constructed using dif-
categorical input features simply agputsor asin-  ferent values forr", the number of random features
put featuresthe equivalent set of binary-valued fea- evaluated at each node. The choice of which forest
tures as théinary-valued featurgsand the features is more likely to provide the best results is based on
that are randomly composed in the tree building pro€stimates using the observations not included in the
cess (via random category value subset selection) dgaining data (the out-of-bag observations). Since

composed features we did not use Bagging, all of our observations are
used in the training of each tree and we could not
3.3 Algorithm Description take this approach. Additionally, it is not clear that

Take any tree building algorithm (e.g., C5.0 (Quin_this.pr.ovided bettgr results in (Breiman, 2001) and
lan, 2002)) and modify it such that instead of exam-Préeliminary experiments (not reported here) suggest
ining all of the input features at each node, it con-thatitmight be more effective to simply find a good
siders only a random subset of those features. Conyalue forf”.

struct a large number of trees using all of the train- To create compose,d features, we randomly select
ing data (we build 128 trees in each experiment). Fi2 Number of the input's category valu€s,given by
nally, allow the trees to individually cast unit votes the following equation:

for each test observation. The majority vote deter- C=1 <4

mines the classification and ties are broken in favor ~

~ 2
C=|15+log, V], V>4 @

of the class that occurs most frequently in the train-

Ing set. whereV is the number of category values still po-

Our implementation is the most similar to Forest-tentially relevant. Random category value selec-
RI, but has several differences, some significanttion is consistent with Breiman’s work, as noted in
These differences involve not using Bagging, thesection 3.2. This random selection method should
use of a single forest rather than two competingact to further reduce the correlation between trees
forests, the assumed sizeldf(the number of rele- and Breiman notes that it gets around the problem
vant values for input), the probability of selecting caused by categorical inputs with large numbers of
individual inputs, how composed features are crevalues. However, he leaves the number of values
ated, and the underlying tree building algorithm. Wechosen unspecified. There is also no indication of
delineate each of these differences in the followingwvhat to do as the categorical input becomes more
paragraphs. sparse near the leaves of the tree (e.g., if the algo-

Forest-RlI combines random feature selectiorrithm sends every constituent whose head word is in
with Bagging. Surprisingly, we found that, in our a set® down the right branch of the node, what ef-
experiments, the use of Bagging was actually hurtfect does this have on future random value selection
ing the classification accuracy of the forests and sin each branch). This is the role &f in the above
we removed this feature from the algorithm. Thisequation.



A value is potentially relevant if it is not known tures by the Forest-RI definition, including two true
to have been effectively removed by a previous debinary inputs. The probability of one of these two
cision. The decision at a given node typically sendsnputsnot being chosen in a given random draw ac-
all of the observations whose input is in the se-cording to the Forest-RI method is 577709/577710
lected category value subset down one branch, an(ee section 3.2 above). Wiftf=7 inputs, generat-
the remaining observations are sent down the othang 3|1 + log, M | = 9 random composed features
(boolean compositions would result in exceptions).results in these two binary inputs having a selection
The list of relevant category values for a given in-probability of 1 — (577709/577710)*, or 0.000016.
put is immediately updated when the decision has Our compromise is first to us€' and vV from
obvious consequences (e.g., the value® iare re-  equation 2 to calculate a baseline numbecoi-
moved from the list of relevant values used by theposablefeatures for each input This quantity is
left branch in the previous example and the list forthe total number of potentially relevant category val-
the right branch is set t&). However, a decision ues divided by the number used to create a com-
based on one input can also affect the remaining relposed feature:
evant category values of other inputs (e.g., suppose V;
that at the node in our previous example, all prepo- fi= c (3)
sitional phrase (PP) constituents had the head wor !
\t/wth andwith was a member ob, then the phr?‘s.e tures f;, we also evaluate a larger numbét, of
type PP would no !onger be relgvant to decISIpnsrandom features at each node in the tree:
in the left branch, since all associated observations
were sent down the right branch). Rather than up- F = max([\/f], min(f, |1.5 + 3logy(f)])) (4)
date all of these lists at each node (a computation- , . :
ally expensive proposition), we only determine theWhere_f is the sum off; over "?“.I mputs. Flna_lly,
unique category values when there are fewer thaff€/€ction and feature composition is done with re-
1000 observations left on the path, or the number O%Iacement. The final feature selection process has at

gecond, given the large number of composable fea-

observations has been cut to less than half what f€ast two significant effects we find positive. First,
was the last time unique values were determined. If1'€ Number of composable features reflects the fact
early experimentation, this reduced the accuracy b at sevleral ffcatggolry vall_lu_es arg’ cbo_n5|dere|d s(ljmul-
about 0.4% relative to calculating the remaining cat-2"€ously, effectively splitting oa; binary-value

egory values after each decision. So when speed {§2{Ures. This has the effect of reducing the selec-

not important, one should take the former approachtio" Probability of many-valued inputs and increas-
Ing the probability of selecting inputs with fewer

Breiman indicates that, when several of the in-category values. Using the baseline feature set as
puts are categorical, in order to increase strengtlan example, the probability of evaluating one of the
enough to obtain a good accuracy rate the numbdrinary-valued inputs at the root of the tree increases
of inputs evaluated at each node must be increasedom 0.000016 to 0.0058. Second, as category val-
to two-three timeg1 + log, M | (whereM is the ues are used they are periodically removed from the
number of inputs). It is not clear whether the inputset under consideration, reducing the correspond-
selection process is with or without replacementing size ofV;, and the input selection probabilities
Some of the inputs in the semantic parsing prob-are then adjusted accordingly. This has the effect
lem have five orders of magnitude more categoryof continuously raising the selection probability for
values than others. Given this issue, if the selecthose inputs that have not yet been utilized.
tion is without replacement, it leads to evaluating Finally, we use ID3 to grow trees rather than
features composed from each of our seven baselin€ART, which is the tree algorithm Forest-RI uses.
inputs (figure 2) at each node. This would likely We don’t believe this should have any significant
increase correlation, since those inputs with a veneffect on the final results. The choice was purely
small number of category values will almost alwaysbased on already having an implementation of ID3.
be the most informative near the root of the tree and-rom a set of possible split decisions, ID3 chooses
would be consistently used for the upper most decithe decision which leads to the minimum weighted
sions in the tree. On the other hand, if selection isaverage entropy among the training observations as-
with replacement, then using the Forest-RI methodsigned to each branch, as determined by class labels
for calculating the input selection probability will (Quinlan, 1986; Mitchell, 1997).
result in those inputs with few category values al- These algorithm enhancements are appropriate
most never being chosen. For example, the baselin®r any task with high dimensional categorical in-
feature set has 577710 equivalent binary-valued fegauts, which includes many NLP applications.



PREDICATE: the lemma of the predicate whose | Classifier | Accuracy |

arguments are to be classified — the infinitive form Bayesian (Gildea and Palmer, 2002)  82.8

of marked verbs in the corpus _ Decision Tree (Surdeanu et al., 2003) 78.8
CONSTITUENTPHRASE TYPE: the syntactic type SVM (Pradhan et al., 2003) 871
assigned to the constituent/argument being classi- First Tree 78.3

fied Random Forest 84.6

HeEAD WoRD (HW): the head word of the target

constituent Table 2: Results of baseline feature set experiment

PARSE TREEPATH (PATH): the sequence of parge
tree constituent labels from the argument to |its
predicate
PosITION: a binary value indicating whether the  their hardware, they trained on only 75 KB of the
target argument precedes or follows its predicate ~ PropBank argument constituents — about 60% of
VOICE: a binary value indicating whether the the annotated data.
predicate was used in an active or passive phrase Table 2 shows the results of experiment 1, com-
SfLJtE}-eCS’TeZ?C%E'ZSA;II’ZrT(;E)g?epne}[rcs:gr:rs(tai?uee):ﬁansmn paring the classifier accuracies as trained on the
baseline feature set. Using a difference of two pro-

Figure 2: Baseline feature set of experiment 1, se@ortions test as described in (Dietterich, 1998), the

(Gildea and Jurafsky, 2002) for details accuracy differences are all statistically significant
at p=0.01. The Random Forest approach outper-

forms the Bayesian method and the Decision Tree
. method. However, it does not perform as well as the
4 TheExperiments SVM classifier. Interestingly, the classification ac-

Four experiments are reported: the first uses theuracy of the first tree in the Random Forest, given
baseline features of Gildea and Jurafsky (2002); thén row four, is almost as high as that of the C5 deci-

second is composed of features proposed by Pragion trees (Quinlan, 2002) of Surdeanu et al.

han et al. (2003) and Surdeanu et al. (2003); the _

third experiment evaluates a new feature set; and th2 Experiment 2: Extended Feature Set

final experiment addresses a method of reducing thghe second experiment compares the random for-
feature space. The experiments all focus strictly orest classifier to the boosted decision tree and the
the classification task — given a syntactic constituensvM using all of the features reported by Pradhan
known to be an argument of a given predicate, deet al. The additional features used in this experi-
cide which argument role is the appropriate one tament are listed in Figure 3 (see sources for further
assign to the constituent. details). In addition to the extra features noted in the
41 Experiment 1: Basline Feature Set previous experiment, Surdeanu et al. report on four

more features, not included here (content word part

The first experiment compares the random for-gf speech (CW Po$) CW named entity class, and
est classifier to three other classifiers, a statistiyyg phrasal verb collocation features).

cal Bayesian approach with backoff (Gildea and 1546 3 shows the resuits of experiment 2, com-

Palmer, 2002), a decision tree classifier (Surdeanya g the classifier accuracies using the full feature
etal., 2003), and a Support Vector Machine (SVM)ges reported in each source. Surdeanu et al. also ap-
(.Prad'han'et al., 2'003). 'The baSelln? fegture set Utblied boosting in this experiment and chose the out-
lized in this experiment is described in Figure 2 (Se€;ome of the boosting iteration that performed best.
(Gildea and Jurafsky, 2002) for details). Using the difference of two proportions test, the ac-
Surdeanu et al. omit the curacy differences are all statistically significant at
SuB- CATEGORI ZATI ON feature, but add a ,-g (01, The Random Forest approach outperforms
binary-valued feature that indicates the govemingpe Boosted Decision Tree method by 3.5%, but
category of noun-phrase argument constituentSyaiis the SVM classifier by 2.3%. In analyzing the
This feature takes on the value S or VP dependingq formance on individual argument classes using
on which constituent type (sentence or verb phasg,-nemar's test, Random Forest performs signifi-

respectively) eventually dominates the argument irbantly better oiARGO (p=0.001) then the SVM, and
the parse tree. This generally indicates grammaticahe S\yvM has significantly better results #RGl

subjects versus objects, respectively. They alsgo—q 001). The large number of degrees of freedom
used the predicate with its case and morphology

intact,_ in_addition to using its Iemmz’?l. _ Sgrdeanu 1We also tested the CW PoS, but it did not improve the de-
et al. indicate that, due to memory limitations on velopment results and was omitted.




NAMED ENTITIES: seven binary-valued feg- GOVERNING PrReEPOSITION (GP): if the con-
tures indicating whether specific named enti- stituent’s parent is a PP, this is the associated
ties (FERSON ORGANIZATION, DATE, TIME, preposition (e.g., in “made of4f.4o gallium ar-
MONEY, LOCATION, and FERCENT) occurred senide]”, this feature is ‘of’, since the Arg2-NP |s
anywhere in the target constituent (Surdeanu et al., governed by an ‘of’-based PP)

2003) CW BASE: starting with the CW, convert it to it$
HW PoS: the grammatical part of speech of the singular form, remove any prefix, and convert dig-
target constituent’s head word (Surdeanu et jal., its to ‘n’ (e.q., this results in the following C\A-
2003) CW Base mappings: accidents accident, non-
CONTENTWORD (CW): “lexicalized feature tha binding — binding, repayments- payment, and
selects an informative word from the constituent, 1012— nnnn)

different from the head word”(Surdeanu et al.,

2003) Figure 4: Features in experiment 3

VERB CLUSTER: a generalization of the verb
predicate by clustering verbs into 64 classes

(Pradhan et al., 2003) | Feature Set || Accuracy |
HALF PATH: the sequence of parse tree can- Extended (see figures 2 & 3) 86.6
stituent labels from the argument to the lowest Extended + CW BSE 87.4
common ancestor of the predicate (Pradhan eflal., Extended + @VERNING PREPOSITION 87.4
2003) Extended + CW BSE & GP 88.3
Figure 3: Additional features in experiment 2 Table 4: Results of experiment 2
| Classifier [ Accuracy |

Boosted Decision Tree (Surdeanu et dl., 83.7 only at p=0.1.

2003) In analyzing the effect on individual argument

Random Forest (trained with CW) 87.2 classes, seven have high? values ARG2- 4,

SVM (Pradhan et al., 2003) 88.9 ARGM DI s (discourse), ARGM Loc (locative),

Random Forest (trained without CW) 86.6 ARGM MNR (manner), and\RGM TMP (temporal)),

but given the large number of degrees of free-
dom, onlyARGM TmP is significant (p=0.05). Ex-
ample section-00 sentence fragments including the
target predicateR) and ARG2 role whose classi-
prevent significance at p=0.1 for any other argu-ication was corrected by th€P feature include
ments, but the SVM appears to perform much better[ , banned] to [everyday visitors]”, 4 consid-
ONARG2 andARG3. ered] as [an additional risk for the investor]”, and
“[ » made] of [gallium arsenide]”. Comparing the

W | q | ¢ q SVM results to the best results here, the Ran-
e evaluated several new features and report on thg, , Forest performs significantly better on Arg0

most significant here,_ as described in figure e . (p=0.001), and the SVM is significantly better on
results are reported in table 4. The accuracy |m-Argl (p=0.001). Again the degrees of freedom pre-

provements relative to the results from experimen(,ent significance at p=0.1, but the Random Forest
2 are all statistically significant at p=0.001 (McNe- outperforms the SVM with :afairly high? value on

mar’s testis us_ed for all significance_ tests in_this SeCARGA. ARGM DI S, ARGM Loc, andARGM TMP.
tion). Comparing the SVM results in experiment 2

to the best results here shows statistical significanca 4 Experiment 4: Dimensionality Reduction

Table 3: Results of experiment 2

4.3 Experiment 3: New Features

?Due to space, we cannot report all experiments; contact thdVe originally assumed we would be using binary-
first author for more information. The other features we eval-valued features with sparse matrices, much like in

uated involved: the phrase type of the parent constituent, thenhe S\/M approach. Since many of the features have

list of phrase types encompassing the sentence fragment be-
tween the target predicate and constituent, the prefix and sufﬁ% very large number of values (e.g., theTH fea-

of the cw and hw, animacy, high frequency words precedingturé has over 540k Value_s)a we S(?Ught ways to re-
and following the predicate, and the morphological form of theduce the number of equivalent binary-valued fea-

predicate. All of these improved accuracy on the developmentyres. This section reports on one of these meth-
set (some with statistical significance at p=0.01), but we susy,yg \yhich should be of interest to others in resource
pect the development baseline was at a low point, since these ined .

features largely did not improve performance when combinedCONStrainead environments.

with CW Base and GP. In this experiment, we preprocess the baseline in-



puts described in Figure 2 to reduce their numbe5 Discussion and Future Research

of category values. Specifically, fqr each original The version of Random Forests described here out-
category valuey; € V, we determine whether it o g the Bayesian algorithm (Gildea and Juraf-

occurs in observations associated with one or mor ky, 2002; Gildea and Palmer, 2002) by 1.8% on the

th_?r? one sire]mantlggrolg_ Ie}bg{’,. IT |t\|i/r?ssgmated same feature set and outperforms the boosted deci-
;N' rlnore X alr;}c%h » Vi IS Ie as IS'.th en;lbr:aps sion tree classifier (Surdeanu et al., 2003) by 3.5%

0 Ion ya sng/g ﬁ \r']V? rfhp ace; Wf' alr|1 ar Qllnrary on the extended feature set with 5 fewer features.

value, v ¢. » WRICN IS the same Tor all SUGNoC- 1,6 g\ classifier (Pradhan et al., 2003) was 2.3%

curring strlctly In assomatlc_)n WitlR;. The PATH etter training on the same data, but only 0.6% bet-

input starts with 540732 original feature values andf)er than our best results ’

has on_Iy 1904 values after this process, whiteaD The Random Forest (RF) approach has advan-
WORD is reduced from 33977 values to 13208 and h iah ke it a b hoi h
PHRASE TYPE is reduced from 62 to 44 values tages that might make it a better choice than an

. " SVM in certain circumstances. Conceptually, it
The process has no effect on the other baseline input . .

S i . iS simpler to understand and can be implemented
features. The total reduction in equivalent binary- ore easily. This also makes it easier to modify
valued features is 97%. We also test the effect of algoritr?/r.n to evaluate new techniques. RFs al-
disregarding featl_Jre valueg QUring training i theyIow one to more easily implement muIti-cIéss clas-
only occur once in the training data. This has Asifiers. The RFs here were implemented as a single
more modest effect, reducirRaTH to 156788 val-

: classifier, rather than as the 22 one-against-all clas-
ues an.(HEADW)RDtO 29482 va_Iues, W'th no o_ther sifiers required by the SVM approach. Since RFs
reductions. The total reduction in equivalent binary-

valued features is 67% are not overly sen_siti\(e to noise in the training da_ta
' (Breiman, 2001), it might be the case that they will
Training on the baseline feature set, the net effecharrow the performance gap when training is based
of these two procedures was less than a 0.3% lossn automatically parsed sentences. Further research
of accuracy on the development set. The McNemays required in this area. Additionally, RFs have an
test indicates this is not significant at p=0.1. In theadvantage in training time. It takes about 40% of
end, our implementation used categorical featuregshe SVM time (8 versus 20 hours) to train on the
rather than binary-valued features (e.g., rather thaextended feature set for the classification task and
use 577710 binary-valued features to represent thge expect this time to be cut by up to a factor of 10
baseline inputs, we use 7 features which might taken porting from MatLab to C. Classification time is
on a large number of valuesRPATHhas 540732 val-  generally faster for RFs as well, which is important
ues). In this case, the method does not result in agyr real-time tasks.
significant a reduction in the memory requirements. | a class-by-class comparison, using the same
While we did not use this feature reduction in anyfeatures, the RF performed significantly better than
of the experiments reported previously, we see it aghe SVM on ArgO roles, the same or slightly better
being very beneficial to others whose implementagn 12 of the other 21 arguments, and slightly bet-
tion may be more resource constrained, particularlyer overall on the 14 adjunctive arguments (77.8%
those using a binary-valued feature representationyersys 77.3% accuracy on 1882 observations). Re-
The method also reduced training time by 17%viewing performance on data not seen during train-
and should lead to much larger reductions for im-ing, both algorithms degraded to about 94% of their
plementations using binary-valued features. For exaccuracy on seen data.
ample, the worst case training time for SVMs is The RF algorithm should be evaluated on the
quadratic in the number of features and this methoddentification task and on the combined identifica-
reduced the dimensionality to 3% of its original tion and classification task. This will provide addi-
size. Therefore, the method has the theoreticafional comparative evidence to contrast it with the
potential to reduce training time by up t®0(1- SVM approach. Further research is also required to
0.03%) = 99.91%. While it is unlikely to ap- determine how RFs generalize to new genres.
proach this in practice, it should provide signifi- Another area for future research involves the es-
cant savings. This may be especially helpful duringtimation of class probabilities. MOB-ESP, a variant
model selection or feature evaluation, after which,of Random Forests which outputs class probability
one could revert to the full dimensionality for fi- estimates, has been shown to produce very good re-
nal training to improve classification accuracy. Thesults (Nielsen, 2004). Preliminary experiments sug-
slight decrement in accuracy may also be overcomgest that using these probability estimates in con-
by the ability to handle larger datasets. junction with an SVM classifier might be more ef-



fective than estimating probabilities based on theDaniel Gildea and Daniel Jurafsky. 2002. Auto-
example’s distance from the decision surface as in matic Labeling of Semantic RolesComputa-
(Platt, 2000). Class probabilities are useful for sev- tional Linguistics 28(3):245-288.

eral semantic parsing and more general NLP task€aniel Gildea and Martha Palmer. 2002. The Ne-
such as selective use of labeled examples during cessity of Parsing for Predicate Argument Recog-
training (c.f., Pradhan et al., 2003) and N-best list nition. Proceedings of ACL-Q2

processing. Paul Kingsbury, Martha Palmer, and Mitch Marcus.
) 2002. Adding semantic annotation to the Penn
6 Conclusion Treebank Proceedings of the HLT-02

The results documented in these experiments arilitchell Marcus, Grace Kim, Mary Ann
very promising and mandate further research. The Marcinkiewicz, Robert Macintyre, Ann Bies,
final classification accuracy of the Random For- Mark Ferguson, Karen Katz, and Britta Schas-
est was 88.3%, just 0.6% behind the SVM results berger. 1994. The Penn TreeBank: Annotating
(Pradhan et al., 2003) and 4.6% higher than the next predicate argument structure.

best results (Surdeanu et al., 2003) — results thaflom M. Mitchell. 1997. Machine Learning
were based on a number of additional features. McGraw-Hill, Boston, MA.

We defined several modifications to the RF algo-Rodney D. Nielsen. 2004. MOB-ESP and other Im-
rithm that increased accuracy. These improvements provements in Probability EstimatiorProceed-
are important for any application with high dimen- ings of the 20th Conference on Uncertainty in Ar-
sional categorical inputs, which includes many NLP tificial Intelligence
tasks. We introduced new features which providedjohn Platt. 2000. Probabilities for Support Vector
a 1.1% improvement in accuracy over the best re- Machines. In A. Smola, P. Bartlett, B. Scolkopf,
sults using features from the literature. We also in- and D. Schuurmans (Edspdvances in Large
troduced a technique to reduce the dimensionality Margin Classifiers MIT Press, Cambridge, MA.
of the feature space, resulting in a reduction to jussameer Pradhan, Kadri Hacioglu, Valerie Krugler,
3% of the original feature space size. This could Wayne Ward, James H. Martin, Daniel Jurafsky.
be an important enabler for handling larger datasets 2003. Shallow Semantic Parsing using Support
and improving the efficiency of feature and model \vector Machines.University of Colorado Tech-

selection. nical Report: TR-CSLR-2003-03
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