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Abstract

In this paper we investigate whether paragraphs can
be identified automatically in different languages
and domains. We propose a machine learning ap-
proach which exploits textual and discourse cues
and we assess how well humans perform on this
task. Our best models achieve an accuracy that is
significantly higher than the best baseline and, for
most data sets, comes to within 6% of human per-
formance.

1 Introduction

Written texts are usually broken up into sentences
and paragraphs. Sentence splitting is a necessary
pre-processing step for a number of Natural Lan-
guage Processing (NLP) tasks including part-of-
speech tagging and parsing. Since sentence-final
punctuation can be ambiguous (e.g., a period can
also be used in an abbreviation as well as to mark
the end of a sentence), the task is not trivial and has
consequently attracted a lot of attention (e.g., Rey-
nar and Ratnaparkhi (1997)). In contrast, there
has been virtually no previous research on inferring
paragraph boundaries automatically. One reason for
this is that paragraph boundaries are usually marked
unambiguously by a new line and extra white space.

However, a number of applications could bene-
fit from a paragraph detection mechanism. Text-
to-text generation applications such as single- and
multidocument summarisation as well as text sim-
plification usually take naturally occurring texts as
input and transform them into new texts satisfying
specific constraints (e.g., length, style, language).
The output texts do not always preserve the struc-
ture and editing conventions of the original text.
In summarisation, for example, sentences are typ-
ically extracted verbatim and concatenated to form
a summary. Insertion of paragraph breaks could im-
prove the readability of the summaries by indicating
topic shifts and providing visual targets to the reader
(Stark, 1988).

Machine translation is another application for

which automatic paragraph detection is relevant.
Current systems deal with paragraph boundary in-
sertion in the target language simply by preserv-
ing the boundaries from the source language. How-
ever, there is evidence for cross-linguistic variation
in paragraph formation and placement, particularly
for languages that are not closely related such as En-
glish and Chinese (Zhu, 1999). So, a paragraph in-
sertion mechanism that is specific to the target lan-
guage, instead of one that relies solely on the source
language, may yield more readable texts.

Paragraph boundary detection is also relevant for
speech-to-text applications. The output of auto-
matic speech recognition systems is usually raw
text without any punctuation or paragraph breaks.
This naturally makes the text very hard to read,
which can cause processing difficulties, especially
if speech recognition is used to provide deaf stu-
dents with real-time transcripts of lectures. Further-
more, sometimes the output of a speech recogniser
needs to be processed automatically by applications
such as information extraction or summarisation.
Most of these applications (e.g., Christensen et al.,
(2004)) port techniques developed for written texts
to spoken texts and therefore require input that is
punctuated and broken into paragraphs. While there
has been some research on finding sentence bound-
aries in spoken text (Stevenson and Gaizauskas,
2000), there has been little research on determining
paragraph boundaries.1

If paragraph boundaries were mainly an aes-
thetic device for visually breaking up long texts into
smaller chunks, as has previously been suggested
(see Longacre (1979)), paragraph boundaries could
be easily inserted by splitting a text into several
equal-size segments. Psycho-linguistic research,
however, indicates that paragraph boundaries are
not purely aesthetic. For example, Stark (1988)

1There has been research on using phonetic cues to segment
speech into “acoustic paragraphs” (Hauptmann and Smith,
1995). However, these do not necessarily correspond to written
paragraphs. But even if they did, textual cues could comple-
ment phonetic information to identify paragraphs.



asked her subjects to reinstate paragraph bound-
aries into fiction texts from which all boundaries
had been removed and found that humans are able
to do so with an accuracy that is higher than would
be expected by chance. Crucially, she also found
that (a) individual subjects did not make all their
paragraphs the same length and (b) paragraphs in
the original text whose length deviated significantly
from the average paragraph length were still iden-
tified correctly by a large proportion of subjects.
These results show that people are often able to
identify paragraphs correctly even if they are excep-
tionally short or long without defaulting to a simple
template of average paragraph length.

Human agreement on the task suggests that the
text itself provides cues for paragraph insertion,
even though there is some disagreement over which
specific cues are used by humans (see Stark (1988)).
Possible cues include repeated content words, pro-
noun coreference, paragraph length, and local se-
mantic connectedness.

In this paper, we investigate whether it is possi-
ble to exploit some of these textual cues together
with syntactic and discourse related information to
determine paragraph boundaries automatically. We
treat paragraph boundary identification as a classi-
fication task and examine whether the difficulty of
the task and the utility of individual textual cues
varies across languages and across domains. We
also assess human performance on the same task
and whether it differs across domains.

2 Related Work

Previous work has focused extensively on the task
of automatic text segmentation whose primary goal
is to divide individual texts into sub-topics. De-
spite their differences, most methods are unsuper-
vised and typically rely on the distribution of words
in a given text to provide cues for topic segmenta-
tion.2 Hearst’s (1997) TextTiling algorithm, for ex-
ample, determines sub-topic boundaries on the basis
of term overlap in adjacent text blocks. In more re-
cent work, Utiyama and Isahara (2001) combine a
statistical segmentation model with a graph search
algorithm to find the segmentation with the maxi-
mum probability. Beeferman et al. (1999) use su-
pervised learning methods to infer boundaries be-
tween texts. They employ language models to de-
tect topic shifts and combine them with cue word
features.

2Due to lack of space we do not describe previous work in
text segmentation here in detail; we refer the reader to Utiyama
and Isahara (2001) and Pevzener and Hearst (2002) for a com-
prehensive overview.

Our work differs from these previous approaches
in that paragraphs do not always correspond to sub-
topics. While topic shifts often correspond to para-
graph breaks, not all paragraph breaks indicate a
topic change. Breaks between paragraphs are often
inserted for other (not very well understood) reasons
(see Stark (1988)). Therefore, the segment granular-
ity is more fine-grained for paragraphs than for top-
ics. An important advantage for methods developed
for paragraph detection (as opposed to those de-
veloped for text-segmentation) is that training data
is readily available, since paragraph boundaries are
usually unambiguously marked in texts. Hence, su-
pervised methods are “cheap” for this task.

3 Our Approach

3.1 Corpora

Our study focused on three languages: English,
German, and Greek. These languages differ in
terms of word order (fixed in English, semi-free in
German, fairly flexible in Greek). Greek and Ger-
man also have richer morphology than English. Ad-
ditionally, Greek has a non-Latin writing system.

For each language we created corpora represen-
tative of three domains: fiction, news, and parlia-
mentary proceedings. Previous work on the role of
paragraph markings (Stark, 1988) has focused ex-
clusively on fiction texts, and has shown that hu-
mans can identify paragraph boundaries in this do-
main reliably. It therefore seemed natural to test our
automatic method on a domain for which the task
has been shown to be feasible. We selected news
texts since most summarisation methods today fo-
cus on this domain and we can therefore explore the
relevance of our approach for this application. Fi-
nally, parliamentary proceedings are transcripts of
speech, and we can examine whether a method that
relies solely on textual cues is also useful for spoken
texts.

For English, we used the whole Hansard section
of the BNC, as our corpus of parliamentary proceed-
ings. We then created a fiction corpus of similar size
by randomly selecting prose files from the fiction
part of the BNC. In the same way a news corpus
was created from the Penn Treebank.

For German, we used the prose part of Project
Gutenberg’s e-book collection3 as our fiction corpus
and the complete Frankfurter Rundschau part of the
ECI corpus4 as our news corpus. The corpus of par-
liamentary proceedings was obtained by randomly

3http://www.gutenberg.net/ For copyright reasons,
this web site mainly contains books published before 1923.

4http://www.elsnet.org/eci.html



fiction news parliament
English 1,140,000 1,156,000 1,156,000
German 2,500,000 4,100,000 3,400,000
Greek 563,000 1,500,000 1,500,000

Table 1: Number of words per corpus

selecting a subset of the German section from the
Europarl corpus (Koehn, 2002).

For Greek, a fiction corpus was compiled from
the ECI corpus by selecting all prose files that con-
tained paragraph markings. Our news corpus was
downloaded from the WWW site of the Modern
Greek newspaper Eleftherotypia and consists of fi-
nancial news from the period of 2001–2002. A cor-
pus of parliamentary proceedings was again created
by randomly selecting a subset of the Greek section
of the Europarl corpus (Koehn, 2002).

Parts of the data were further pre-processed to
insert sentence boundaries. We trained a publicly
available sentence splitter (Reynar and Ratnaparkhi,
1997) on a small manually annotated sample (1,000
sentences per domain per language) and applied it
to our corpora. Table 1 shows the corpus sizes. All
corpora were split into training (72%), development
(24%) and test set (4%).

3.2 Machine Learning

We used BoosTexter (Schapire and Singer, 2000) as
our machine learning system. BoosTexter was orig-
inally developed for text categorisation and com-
bines a boosting algorithm with simple decision
rules. For all domains and languages our training
examples were sentences. Class labels encoded for
each sentence whether it was starting a paragraph or
not.

The features we used fall broadly into three dif-
ferent areas: non-syntactic features, language mod-
elling features and syntactic features. The latter
were only applied to English as we did not have suit-
able parsers for German and Greek.

The values of our features are numeric, boolean
or “text”. BoosTexter applies unigram models when
forming classification hypotheses for features with
“text” values. These can be simply words or anno-
tations such as part-of-speech tags.

We deliberately did not include anaphora-based
features. While anaphors can help determine para-
graph boundaries (paragraph initial sentences tend
to contain few or no anaphors), anaphora structure
is dependent on paragraph structure rather than the
other way round. Hence, in applications which ma-
nipulate texts and thereby potentially “mess-up” the

anaphora structure (e.g., multi-document summari-
sation), anaphors are not a reliable cue for paragraph
identification.5

3.2.1 Non-syntactic Features
Distance (Ds, Dw): These features encode the dis-
tance of the current sentence from the previous para-
graph break. We measured distance in terms of the
number of intervening sentences (Ds) as well as in
terms of the number of intervening words (Dw). If
paragraph breaks were driven purely by aesthetics
one would expect this feature to be among the most
successful ones.6

Sentence Length (Length): This feature encodes
the number of words in the current sentence. Aver-
age sentence length is known to vary with text posi-
tion (Genzel and Charniak, 2003) and it is possible
that it also varies with paragraph position.

Relative Position (Pos): The relative position of a
sentence in the text is calculated by dividing the cur-
rent sentence number by the number of sentences
in the text. The motivation for this feature is that
paragraph length may vary with text position. For
example, it is possible that paragraphs at the begin-
ning and end of a text are shorter than paragraphs
in the middle and hence a paragraph break is more
likely at the two former text positions.

Quotes (Quotep, Quotec, Quotei): These features
encode whether the previous or current sentence
contain a quotation (Quotep and Quotec, respec-
tively) and whether the current sentence contin-
ues a quotation that started in a preceding sentence
(Quotei). The presence of quotations can provide
cues for speaker turns, which are often signalled by
paragraph breaks.

Final Punctuation (FinPun): This feature keeps
track of the final punctuation mark of the previous
sentence. Some punctuation marks may provide
hints as to whether a break should be introduced.
For example, in the news domain, where there is
hardly any dialogue, if the previous sentence ended
in a question mark, it is likely that the current sen-
tence supplies an answer to this question, thus mak-
ing a paragraph break improbable.

Words (W1, W2, W3, Wall ): These text-valued fea-
tures encode the words in the sentence. Wall takes
the complete sentence as its value. W1, W2 and W3
encode the first word, the first two words and the
first three words, respectively.

5This is also true for some of the other features we use
(e.g., sentence length) but not quite to the same extent.

6One could also use the history of class labels assigned to
previous sentences as a feature (as in part-of-speech tagging);
however, we leave this to future research.



3.2.2 Language Modelling Features
Our motivation for including language modelling
features stems from Genzel and Charniak’s (2003)
work where they show that the word entropy rate is
lower for paragraph initial sentences than for non-
paragraph initial ones. We therefore decided to ex-
amine whether word entropy rate is a useful feature
for the paragraph prediction task. Using the train-
ing set for each language and domain, we created
language models with the CMU language modelling
toolkit (Clarkson and Rosenfeld, 1997). We exper-
imented with language models of variable length
(i.e., 1–5) and estimated two features: the prob-
ability of a given sentence according to the lan-
guage model (LMp) and the per-word entropy rate
(LMpwe). The latter was estimated by dividing the
sentence probability as assigned by the language
model by the number of sentence words (see Genzel
and Charniak (2003)).

We additionally experimented with character
level n-gram models. Such models are defined over
a relatively small vocabulary and can be easily con-
structed for any language without pre-processing.
Character level n-gram models have been applied
to the problem of authorship attribution and ob-
tained state-of-the art results (Peng et al., 2003).
If some characters are more often attested in para-
graph starting sentences (e.g., “A” or “T”), then we
expect these sentences to have a higher probability
compared to non-paragraph starting ones. Again,
we used the CMU toolkit for building the character
level n-gram models. We experimented with mod-
els whose length varied from 2 to 8 and estimated
the probability assigned to a sentence according to
the character level model (CMp).

3.2.3 Syntactic Features
For the English data we also used several features
encoding syntactic complexity. Genzel and Char-
niak (2003) suggested that the syntactic complex-
ity of sentences varies with their position in a para-
graph. Roughly speaking, paragraph initial sen-
tences are less complex. Hence, complexity mea-
sures may be a good indicator of paragraph bound-
aries. To estimate complexity, we parsed the texts
with Charniak’s (2001) parser and implemented the
following features:

Parsed: This feature states whether the current
sentence could be parsed. While this is not a real
measure of syntactic complexity it is probably cor-
related with it.

Number of phrases (nums, numvp, numnp, numpp):
These features measure syntactic complexity in
terms of the number of S, VP, NP, and PP con-

stituents in the parse tree.

Signature (Sign, Signp): These text-valued fea-
tures encode the sequence of part-of-speech tags in
the current sentence. Sign only encodes word tags,
while Signp also includes punctuation tags.

Children of Top-Level Nodes (Childrs1, Childrs):
These text-valued features encode the top-level
complexity of a parse tree: Childrs1 takes as its
value the sequence of syntactic labels of the children
of the S1-node (i.e., the root of the parse tree), while
Childrs encodes the syntactic labels of the children
of the highest S-node(s). For example, Childrs1 may
encode that the sentence consists of one clause and
Childrs may encode that this clause consists of an
NP, a VP, and a PP.

Branching Factor (Branchs, Branchvp, Branchnp,
Branchpp): These features express the average
number of children of a given non-terminal con-
stituent (cf. Genzel and Charniak (2003)). We com-
pute the branching factor for S, VP, NP, and PP con-
stituents.

Tree Depth: We define tree depth as the average
length of a path (from root node to leaf node).

Cue Words (Cues, Cuem, Cuee): These features
are not strictly syntactic but rather discourse-based.
They encode discourse cues (such as because) at
the start (Cues), in the middle (Cuem) and at the
end (Cuee) of the sentence, where “start” is the first
word, “end” the last one, and everything else is
“middle”. We keep track of all cue word occur-
rences, without attempting to distinguish between
their syntactic and discourse usages.

For English, there are extensive lists of discourse
cues (we used Knott (1996)), but such lists are not
widely available for German and Greek. Hence, we
only used this feature on the English data.

4 Experiments

BoosTexter is parametrised with respect to the num-
ber of training iterations. In all our experiments,
this parameter was optimised on the development
set; BoosTexter was initially trained for 500 itera-
tions, and then re-trained with the number of itera-
tions that led to the lowest error rate on the devel-
opment set. Throughout this paper all results are re-
ported on the unseen test set and were obtained us-
ing models optimised on the development set. We
report the models’ accuracy at predicting the right
label (i.e., paragraph starting or not) for each sen-
tence.



English German Greek
feature fiction news parl. fiction news parl. fiction news parl.
Bd 60.16 51.73 59.50 65.44 59.03 58.26 59.00 52.85 66.48
Bm 71.04 51.44 69.38 75.75 68.24 66.17 67.57 53.99 76.25
Dists 71.07 57.74 54.02 75.80 68.25 66.23 67.69 57.94 76.30
Distw 71.02 63.08 65.64 75.80 67.70 67.20 68.31 59.76 76.30
Length 72.08 56.11 68.45 75.75 72.55 67.10 67.52 60.84 76.55
Position 71.04 49.18 38.71 75.68 68.05 66.35 67.57 56.52 76.35
Quotep 80.84 56.25 30.62 72.97 68.24 66.23 72.80 58.00 76.30
Quotec 80.64 54.95 31.00 72.35 68.24 66.17 71.03 53.99 76.25
Quotei 71.04 51.44 30.62 75.75 68.24 66.17 67.57 53.99 76.25
FinPun 72.08 54.18 71.75 73.15 76.36 69.53 73.33 59.86 76.55
W1 72.96 57.74 82.05 75.43 73.87 75.25 67.05 67.41 76.81
W2 73.47 58.51 80.62 75.80 74.77 76.74 66.37 68.22 78.48
W3 73.68 59.90 80.73 75.60 74.50 76.79 67.63 67.88 78.43
Wall 73.99 61.78 75.40 75.60 73.03 76.20 67.78 67.88 77.26
BestLMp 72.83 55.96 69.66 75.93 71.39 67.40 67.57 61.64 76.50
BestLMpwe 72.16 52.21 69.88 75.90 69.24 66.98 67.83 56.29 76.40
BestCMp 72.70 57.36 69.49 75.88 73.37 67.53 67.68 61.68 76.51
allns lcm 82.45 � 70.77 � 82.71 � 76.55

� � 79.28 � 79.17 � 78.03 � 76.31 � 79.35 �

Table 2: Accuracy of non-syntactic and language modelling features on test set

4.1 The Influence of Non-syntactic Features
In the first set of experiments, we ran BoosTexter
on all 9 corpora using non-syntactic and language
modelling features. To evaluate the contribution of
individual features to the classification task, we built
one-feature classifiers in addition to a classifier that
combined all features. Table 2 shows the test set
classification accuracy of the individual features and
their combination (allns lcms). The length of the lan-
guage and character models was optimised on the
development set. The test set accuracy of the opti-
mised models is shown as BestLMp and BestLMpwe
(language models) and BestCMp (character mod-
els).7 The results for the three best performing one-
feature classifiers and the combined classifier are
shown in boldface.

BoosTexter’s classification accuracy was further
compared against two baselines. A distance-based
baseline (Bd) was obtained by hypothesising a para-
graph break after every d sentences. We estimated d
in the training data by counting the average number
of sentences between two paragraphs. Our second
baseline, Bm, defaults to the majority class, i.e., as-
sumes that the text does not have paragraph breaks.

For all languages and domains, the combined
models perform better than the best baseline. In or-
der to determine whether this difference is signifi-
cant, we applied χ2 tests. The diacritic � (

� � ) in Ta-

7Which language and character models perform best varies
slightly across corpora but no clear trends emerge.

ble 2 indicates whether a given model is (not) sig-
nificantly different from the best baseline. Signifi-
cant results are achieved across the board with the
exception of German fiction. We believe the rea-
son for this lies in the corpus itself, as it is very
heterogeneous, containing texts whose publication
date ranges from 1766 to 1999 and which exhibit a
wide variation in style and orthography. This makes
it difficult for any given model to reliably identify
paragraph boundaries in all texts.

In general, the best performing features vary
across domains but not languages. Word features
(W1–W3, Wall ) yield the best classification accura-
cies for news and parliamentary domains, whereas
for fiction, quotes and punctuation seem more use-
ful. The only exception is the German fiction cor-
pus, which consists mainly of 19th century texts.
These contain less direct speech than the two fic-
tion corpora for English and Greek (which contain
contemporary texts). Furthermore, while examples
of direct speech in the English corpus often involve
short dialogues, where a paragraph boundary is in-
troduced after each speaker turn, the German cor-
pus contains virtually no dialogues and examples of
direct speech are usually embedded in a longer nar-
rative and not surrounded by paragraph breaks.

Note that the distance in words from the previ-
ous paragraph boundary (Distw) is a good indicator
for a paragraph break in the English news domain.
However, this feature is less useful for the other two



languages. An explanation might be that the En-
glish news corpus is very homogeneous (i.e., it con-
tains articles that not only have similar content but
are also structurally alike). The Greek news cor-
pus is relatively homogeneous; it mainly contains
financial news articles but also some interviews, so
there is greater variation in paragraph length, which
means that the distance feature is overtaken by the
word-based features. Finally, the German news cor-
pus is highly heterogeneous, containing not only
news stories but also weather forecasts, sports re-
sults and cinema listings. This leads to a large vari-
ation in paragraph length, which in turn means that
the distance feature performs worse than the best
baseline.

The heterogeneity of the German news corpus
may also explain another difference: while the fi-
nal punctuation of the previous sentence (FinPun)
is among the less useful features for English and
Greek (albeit still outperforming the baseline), it
is the best performing feature for German. The
German news corpus contains many “sentences”
that end in atypical end-of-sentence markers such
as semi-colons (which are found often in cinema
listings). Atypical markers will often not occur
before paragraph breaks, whereas typical markers
will. This fact renders final punctuation a better
predictor of paragraph breaks in the German corpus
than in the other two corpora.

The language models behave similarly across do-
mains and languages. With the exception of the
news domain, they do not seem to be able to out-
perform the majority baseline by more than 1%.
The word entropy rate yields the worst performance,
whereas character-based models perform as well as
word-based models. In general, our results show
that language modelling features are not particularly
useful for this task.

4.2 The Influence of Syntactic Features

Our second set of experiments concentrated solely
on the English data and investigated the useful-
ness of the syntactic features (see Table 3). Again,
we created one-feature classifiers and a classifier
that combined all features, i.e., language and char-
acter models, non-syntactic, and syntactic features
(allns lcm syn). Table 3 also repeats the performance
of the two baselines (Bd and Bm) and the combined
non-syntactic models (allns lcm). The accuracies of
the three best performing one-feature models and
the combined model are again shown in boldface.

As can be seen, syntactic features do not con-
tribute very much to the overall performance. They
only increase the accuracy by about 1%. A χ2 test

English
feature fiction news parl.
Bd 60.16 51.73 59.50
Bm 71.04 51.44 69.38
Cues 71.48 51.49 40.64
Cuem 70.97 54.28 59.03
Cuee 71.04 51.78 31.61
Parse 71.04 51.88 30.62
Nums 71.04 53.56 69.05
Numvp 71.04 54.18 70.59
Numnp 71.77 56.11 68.94
Numpp 71.04 53.61 64.98
Numad jp 71.04 51.11 42.62
Numadvp 71.04 52.40 47.96
Sign 75.39 57.02 67.95
Signp 75.49 59.18 70.76
Childrs1 71.69 55.87 79.35
Childrs 75.34 55.53 79.52
Branchs 71.35 55.82 69.11
Branchvp 71.33 53.46 70.48
Branchnp 71.77 56.11 33.09
Branchpp 71.04 51.44 30.62
TreeDepth 72.57 54.04 69.00
allns lcm 82.45 70.77 82.71
allns lcm syn 82.91 � �

† 71.83 � �
† 83.92 � �

†

Table 3: Syntactic features on English test data

revealed that the difference between allns lcm and
allns lcm syn is not statistically significant (indicated
by

�
† in Table 3) for any of the three domains.

The syntactic features seem to be less domain de-
pendent than the non-syntactic ones. In general, the
part-of-speech signature features (Sign, Signp) are
a good predictor, followed by the syntactic labels
of the children of the top nodes (Childrs, Childrs1).
The number of NPs (Numnp) and their branching
factor (Branchnp) are also good indicators for some
domains, particularly the news domain. This is
plausible since paragraph initial sentences in the
Wall Street Journal often contain named entities,
such as company names, which are parsed as flat
NPs, i.e., have a relatively high branching factor.

4.3 The Effect of Training Size

Finally, we examined the effect of the size of the
training data on the learner’s classification accuracy.
We conducted our experiments solely on the English
data, however we expect the results to generalise to
German and Greek. From each English training set
we created ten progressively smaller data sets, the
first being identical to the original set, the second
containing 9/10 of sentences in the original train-
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Figure 1: Learning Curves for English

Kappa % Agr
fiction .72 88.58
news .47 77.45
parl. .76 88.50

Table 4: Human agreement on the paragraph identi-
fication task

ing set, the third containing 8/10, etc. The training
instances in each data set were selected randomly.
BoosTexter was trained on each of these sets (using
all features), as described previously, and tested on
the test set.

Figure 1 shows the learning curves obtained this
way. The curves are more or less flat, i.e., increas-
ing the amount of training data does not have a large
effect on the performance of the model. Further-
more, even the smallest of our training sets is big
enough to outperform the best baseline. Hence, it is
possible to do well on this task even with less train-
ing data. This is important, given that for spoken
texts, paragraph boundaries may have to be obtained
by manual annotation. The learning curves indicate
that relatively modest effort would be required to
obtain training data were it not freely available.

4.4 Human Evaluation

We established an upper bound against which our
automatic methods could be compared by conduct-
ing an experiment that assessed how well humans
agree on identifying paragraph boundaries. Five
participants were given three English texts (one
from each domain), selected randomly from the test

corpus. Each text consisted of approximately a tenth
of the original test set (i.e., 200–400 sentences).
The participants were asked to insert paragraph
breaks wherever it seemed appropriate to them. No
other instructions were given, as we wanted to see
whether they could independently perform the task
without any specific knowledge regarding the do-
mains and their paragraphing conventions.

We measured the agreement of the judges using
the Kappa coefficient (Siegel and Castellan, 1988)
but also report percentage agreement to facilitate
comparison with our models. In all cases, we com-
pute pairwise agreements and report the mean. Our
results are shown in Table 4.

As can be seen, participants tend to agree with
each other on the task. The least agreement is ob-
served for the news domain. This is somewhat ex-
pected as the Wall Street Journal texts are rather dif-
ficult to process for non-experts. Also remember,
that our subjects were given no instructions or train-
ing. In all cases our models yield an accuracy lower
than the human agreement. For the fiction domain
the best model is 5.67% lower than the upper bound,
for the news domain it is 5.62% and for the parlia-
ment domain it is 5.42% (see Tables 4 and 3).

5 Conclusion

In this paper, we investigated whether it is possible
to predict paragraph boundaries automatically using
a supervised approach which exploits textual, syn-
tactic and discourse cues. We achieved accuracies
between 71.83% and 83.92%. These were in all but



one case significantly higher than the best baseline.
We conducted our study in three different do-

mains and languages and found that the best fea-
tures for the news and parliamentary proceedings
domains are based on word co-occurrence, whereas
features that exploit punctuation are better predic-
tors for the fiction domain. Models which incor-
porate syntactic and discourse cue features do not
lead to significant improvements over models that
do not. This means that paragraph boundaries can
be predicted by relying on low-level, language in-
dependent features. The task is therefore feasible
even for languages for which parsers or cue word
lists are not readily available.

We also experimented with training sets of differ-
ent sizes and found that more training data does not
necessarily lead to significantly better results and
that it is possible to beat the best baseline comfort-
ably even with a relatively small training set.

Finally, we examined how well humans do on
this task. Our results indicate that humans achieve
an average accuracy of about 77.45% to 88.58%,
where some domains seem to be easier than others.
Our models achieved accuracies of within 6% of hu-
man performance.

In the future, we plan to apply our model to new
domains (e.g., broadcast news or scientific papers),
to non-Indo-European languages such as Arabic and
Chinese, and to machine generated texts.
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