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Abstract
We describe how simple, commonly understood statisti-
cal models, such as statistical dependency parsers, proba-
bilistic context-free grammars, and word-to-word trans-
lation models, can be effectively combined into a uni-
fied bilingual parser that jointly searches for the best En-
glish parse, Korean parse, and word alignment, where
these hidden structures all constrain each other. The
model used for parsing is completely factored into the
two parsers and the TM, allowing separate parameter es-
timation. We evaluate our bilingual parser on the Penn
Korean Treebank and against several baseline systems
and show improvements parsing Korean with very lim-
ited labeled data.

1 Introduction
Consider the problem of parsing a languageL for which
annotated resources like treebanks are scarce. Suppose
we have a small amount of text data with syntactic an-
notations and a fairly large corpus of parallel text, for
which the other language (e.g., English) is not resource-
impoverished. How might we exploit English parsers to
improve syntactic analysis tools for this language?

One idea (Yarowsky and Ngai, 2001; Hwa et al., 2002)
is to project English analysis ontoL data, “through”
word-aligned parallel text. To do this, we might use an
English parser to analyze the English side of the parallel
text and a word-alignment algorithm to induce word cor-
respondences. By positing a coupling of English syntax
with L syntax, we can induce structure on theL side of
the parallel text that is in some sense isomorphic to the
English parse.

We might take the projection idea a step farther. A
statistical English parser can tell us much more than the
hypothesized best parse. It can be used to findevery
parse admitted by a grammar, and also scores of those
parses. Similarly, translation models, which yield word
alignments, can be used in principle to score competing
alignments and offer alternatives to a single-best align-
ment. It might also be beneficial to include the predic-
tions of anL parser, trained on any available annotated
L data, however few.

This paper describes how simple, commonly under-
stood statistical models—statistical dependency parsers,
probabilistic context-free grammars (PCFGs), and word
translation models (TMs)—can be effectively combined
into a unified framework that jointly searches for the best

English parse,L parse, and word alignment, where these
hidden structures are all constrained to be consistent.
This inference task is carried out by a bilingual parser.
At present, the model used for parsing is completely fac-
tored into the two parsers and the TM, allowing separate
parameter estimation.

First, we discuss bilingual parsing (§2) and show how
it can solve the problem of joint English-parse,L-parse,
and word-alignment inference. In§3 we describe param-
eter estimation for each of the factored models, includ-
ing novel applications of log-linear models to English
dependency parsing and Korean morphological analysis.
§4 presents Korean parsing results with various mono-
lingual and bilingual algorithms, including our bilingual
parsing algorithm. We close by reviewing prior work in
areas related to this paper (§5).

2 Bilingual parsing
The joint model used by our bilingual parser is an in-
stance of a stochastic bilingual multitext grammar (2-
MTG), formally defined by Melamed (2003). The 2-
MTG formalism generates two strings such that each
syntactic constituent—including individual words—in
one side of the bitext corresponds either to a constituent
in the other side or to∅.

Melamed defines bilexicalized MTG (L2MTG), which
is a synchronous extension of bilexical grammars such
as those described in Eisner and Satta (1999) and applies
the latter’s algorithmic speedups to L2MTG-parsing.

Our formalism is not a precise fit to either unlexical-
ized MTG or L2MTG since we posit lexical dependency
structure only inoneof the languages (English). The pri-
mary rationale for this is that we are dealing with only a
small quantity of labeled data in languageL and there-
fore do not expect to be able to accurately estimate its
lexical affinities. Further, synchronous parsing is in prac-
tice computationally expensive, and eliminating lexical-
ization on one side reduces the run-time of the parser
from O(n8) to O(n7). Our parsing algorithm is a simple
transformation of Melamed’s R2D parser that eliminates
head information in all Korean parser items.

The model event space for our stochastic “half-
bilexicalized” 2-MTG consists of rewrite rules of the fol-
lowing two forms, with English above andL below:(

X[h1]
A

→ h1

h2

)
,

(
X[h1]

A
→ Y [h1]Z[c1]

BC

)



where upper-case symbols are nonterminals and lower-
case symbols are words (potentially∅). One approach
to assigning a probability to such a rule is to make an
independence assumption, for example:

Pr
bi

(
X[h]
A

→ Y [h1]Z[c]
BC

)
=

Pr
English

(X[h] → Y [h1]Z[c1]) · Pr
L

(A → BC)

There are two powerful reasons to model the bilingual
grammar in this factored way. First, we know of no tree-
aligned corpora from which bilingual rewrite probabili-
ties could be estimated; this rules out the possibility of
supervised training of the joint rules. Second, separat-
ing the probabilities allows separate estimation of the
probabilities—resulting in two well-understood param-
eter estimation tasks which can be carried out indepen-
dently.1

This factored modeling approach bears a strong re-
semblance to the factored monolingual parser of Klein
and Manning (2002), which combined an English depen-
dency model and an unlexicalized PCFG. The generative
model used by Klein and Manning consisted of multiply-
ing the two component models; the model was therefore
deficient.

We go a step farther, replacing the deficient genera-
tive model with a log-linear model. The underlying pars-
ing algorithm remains the same, but the weights are no
longer constrained to sum to one. (Hereafter, we assume
weights are additive real values; a log-probability is an
example of a weight.) The weights may be estimated
using discriminative training (as we do for the English
model,§3.1) or as if they were log-probabilities, using
smoothed maximum likelihood estimation (as we do for
the Korean model,§3.3). Because we use this model only
for inference, it is not necessary to compute a partition
function for the combined log-linear model.

In addition to the two monolingual syntax models, we
add a word-to-word translation model to the mix. In
this paper we use a translation model to induce only a
single best word matching, but in principle the transla-
tion model could be used to weight all possible word-
word links, and the parser would solve the joint align-
ment/parsing problem.2

As a testbed for our experiments, the Penn Korean
Treebank (KTB; Han et al., 2002) provides 5,083 Ko-
rean constituency trees along with English translations
and their trees. The KTB also analyzes Korean words
into their component morphemes and morpheme tags,
which allowed us to train a morphological disambigua-
tion model.

To make the most of this small corpus, we performed
all our evaluations using five-fold cross-validation. Due
to the computational expense of bilingual parsing, we

1Of course, it might be the case that some informationis known
about the relationship between the two languages. In that case, our log-
linear framework would allow the incorporation of additional bilingual
production features.

2Although polynomial, we found this to be too computationally de-
manding to do with our optimal parser in practice, but with pruning
and/or A∗ heuristics it is likely to be feasible.

produced a sub-corpus of the KTB limiting English sen-
tence length to 10 words, or 27% of the full data. We then
randomized the order of sentences and divided the data
into five equal test sets of 280 sentences each (≈1,700
Korean words,≈2,100 English words). Complementing
each test set, the remaining data were used for training
sets of increasing size to simulate various levels of data
scarcity.

3 Parameter estimation
We now describe parameter estimation for the four com-
ponent models that combine to make our full system (Ta-
ble 1).

3.1 English syntax model
Our English syntax model is based on weighted bilexi-
cal dependencies. The model predicts the generation of
a child (POS tag, word) pair, dependent upon its parent
(tag, word) and the tag of the parent’s most recent child
on the same side (left or right). These events correspond
quite closely to the parser described by Eisner’s (1996)
model C, but instead of the rules receiving conditional
probabilities, we use a log-linear model and allow arbi-
trary weights. The model does not predict POS tags; it
assumes they are given, even in test.

Note that the dynamic program used for inference
of bilexical parses is indifferent to the origin of the
rule weights; they could be log-probabilities or arbitrary
numbers, as in our model. The parsing algorithm need
not change to accommodate the new parameterization.

In this model, the probability of a (sentence, tree) pair
(E, T ) is given by:

Pr(E, T ) =
exp (f(E, T ) · θ)∑

E′,T ′ exp(f(E′, T ′) · θ)
(1)

whereθ are the model parameters andf is a vector func-
tion such thatfi is equal to the number of times a feature
(e.g., a production rule) fires in(E, T ).

Parameter estimation consists of selecting weightsθ
to maximize the conditional probability of the correct
parses given observed sentences:3

∏
i

Pr(Ti|Si) =
∏

i

exp (f(Ei, Ti) · θ)∑
T ′ exp(f(Ei, T ′) · θ)

(2)

Another important advantage of moving to log-linear
models is the simple handling of data sparseness. The
feature templates used by our model are shown in Ta-
ble 2. The first feature corresponds to the fully-described
child-generation event; others are similar but less infor-
mative. These “overlapping” features offer a kind of
backoff, so that each child-generation event’s weight re-
ceives a contribution from several granularities of de-
scription.

Feature selection is done by simple thresholding: if a
feature is observed 5 times or more in the training set,
its weight is estimated; otherwise its weight is locked at

3This can be done using iterative scaling or gradient-based numeri-
cal optimization methods, as we did.



Model Formalism Estimation Role
English syntax (§3.1) bilexical dependency discriminative estimation combines with Korean

grammar syntax for bilingual parsing
Korean morphology (§3.2) two-sequence discriminative estimation best analysis used as input

trigram model over a lattice to TM training and to parsing
Korean syntax (§3.3) PCFG smoothed MLE combines with English

syntax for bilingual parsing
Translation model (§3.4) IBM models 1–4, unsupervised estimation best analysis used as

both directions (approximation to EM) input to bilingual parsing

Table 1: A summary of the factored models described in this paper and their interactions.

〈TP ,WP , TA, TC ,WC , D〉 〈TP , TA, TC , D〉
〈TP , TA, TC ,WC , D〉 〈TP ,WP , TA, TC , D〉
〈TP ,WP , stop, TC , D〉 〈TP , stop, TC , D〉

Table 2: Feature templates used by the English depen-
dency parser.TX is a tag andWX is a word. P indi-
cates the parent,A the previous child, andC the next-
generated child.D is the direction (left or right). The
last two templates correspond to stopping.

0. If a feature is never seen in training data, we give it
the same weight as the minimum-valued feature from the
training set (θmin). To handle out-of-vocabulary (OOV)
words, we treat any word seen for the first time in the
final 300 sentences of the training corpus as OOV. The
model is smoothed using a Gaussian prior with unit vari-
ance on every weight.

Because the left and right children of a parent are in-
dependent of each other, our model can be described as
a weighted split head automaton grammar (Eisner and
Satta, 1999). This allowed us to use Eisner and Satta’s
O(n3) parsing algorithm to speed up training.4 This
speedup could not, however, be applied to the bilingual
parsing algorithm since a split parsing algorithm will pre-
clude inference of certain configurations of word align-
ments thatare allowed by a non-split parser (Melamed,
2003).

We trained the parser on sentences of 15 words or
fewer in the WSJ Treebank sections 01–21.5 99.49% de-
pendency attachment accuracy was achieved on the train-
ing set, and 76.68% and 75.00% were achieved on sec-
tions 22 and 23, respectively. Performance on the En-
glish side of our KTB test set was 71.82% (averaged
across 5 folds,σ = 1.75).

This type of discriminative training has been applied
to log-linear variants of hidden Markov models (Lafferty
et al., 2001) and to lexical-functional grammar (Johnson
et al., 1999; Riezler et al., 2002). To our knowledge, it
has not been explored for context-free models (includ-
ing bilexical dependency models like ours). A review

4Our split HAG’s head automaton states correspond to the POS tags
of the dependent words; this makes the head automaton deterministic
and offers an additional speedup.

5The parser does not model POS-tags; we assume they are known.
Head words in the WSJ corpus were obtained using R. Hwa’s
const2dep tool.

of discriminative approaches to parsing can be found in
Chiang (2003).

3.2 Korean morphological analysis
A Korean word typically consists of a head morpheme
followed by a series of closed-class dependent mor-
phemes such as case markers, copula, topicalizers, and
conjunctions. Since most of the semantic content re-
sides in the leading head morpheme, we eliminate for
word alignment all trailing morphemes, which reduces
the KTB’s vocabulary size from 10,052 to 3,104.

Existing morphological processing tools for many lan-
guages are often unweighted finite-state transducers that
encode the possible analyses for a surface form word.
One such tool,klex , is available for Korean (Han,
2004).

Unfortunately, while the unweighted FST describes
the set of valid analyses, it gives no way to choose
among them. We treat this as a noisy channel: Korean
morpheme-tag pairs are generated in sequence by some
process, then passed through a channel that turns them
into Korean words (with loss of information). The chan-
nel is given by the FST, but without any weights. To
select the best output, we model the source process.

We model the sequence of morphemes and their tags
as a log-linear trigram model. Overlapping trigram, bi-
gram, and unigram features provide backoff information
to deal with data sparseness (Table 3). For each training
sentence, we used the FST-encoded morphological dic-
tionary to construct a lattice of possible analyses. The
lattice has a “sausage” form with all paths joining be-
tween each word.

We train the feature weights to maximize the weight
of the correct path relative to all paths in the lattice. In
contrast, Lafferty et al. (2001) train to maximize the the
probability of the tags given the words. Over training
sentences, maximize:∏

i

Pr(Ti,Mi|lattice)

=
∏

i

exp(f(Ti,Mi) · θ)∑
(T ′,M ′)∈lattice exp(f(T ′,M ′) · θ)

(3)

whereTi is the correct tagging for sentencei, Mi is the
correct morpheme sequence.

There are a few complications. First, the coverage of
the FST is of course not universal; in fact, it cannot ana-
lyze 4.66% of word types (2.18% of tokens) in the KTB.



〈Ti−2,Mi−2, Ti−1,Mi−1, Ti,Mi〉 〈Ti〉
〈Ti−2,Mi−2, Ti−1,Mi−1, Ti〉 〈Ti,Mi〉
〈Ti−2, Ti−1,Mi−1, Ti,Mi〉 〈Ti−1, Ti〉
〈Ti−2, Ti−1,Mi−1, Ti, 〉 〈Ti−1, Ti,Mi〉
〈Ti−2, Ti−1, Ti,Mi〉 〈Ti−1,Mi−1, Ti, 〉
〈Ti−1,Mi−1, Ti,Mi〉 〈Ti−2, Ti−1, Ti〉

Table 3: Feature templates used by the Korean morphol-
ogy model.Tx is a tag,Mx is a morpheme.

We tag such words as atomic common nouns (the most
common tag). Second, many of the analyses in the KTB
are not admitted by the FST: 21.06% of correct analy-
ses (by token) are not admitted by the FST; 6.85% do
not have an FST analysis matching in the first tag and
morpheme, 3.63% do not have an FST analysis matching
the full tag sequence, and 1.22% do not have an analysis
matching the first tag. These do not include the 2.18%
of tokens with no analysis at all. When this happened in
training, we added the correct analysis to the lattice.

To perform inference on new data, we construct a lat-
tice from the FST (adding in any analyses of the word
seen in training) and use a dynamic program (essentially
the Viterbi algorithm) to find the best path through the
lattice. Unseen features are given the weightθmin. Ta-
ble 4 shows performance on ambiguous tokens in train-
ing and test data (averaged over five folds).

3.3 Korean syntax model

Because we are using small training sets, parameter esti-
mates for alexicalizedKorean probabilistic grammar are
likely to be highly unreliable due to sparse data. There-
fore we use an unlexicalized PCFG. Because the POS
tags are given by the morphological analyzer, the PCFG
need not predict words (i.e., head morphemes), only POS
tags.

Rule probabilities were estimated with MLE. Since
only the sentence nonterminalS was smoothed (using
add-0.1), the grammar could parse any sequence of tags
but was relatively sparse, which kept bilingual run-time
down.6

When we combine the PCFG with the other models to
do joint bilingual parsing, we simply use the logs of the
PCFG probabilities as if they were log-linear weights.
A PCFG treated this way is a perfectly valid log-linear
model; the exponentials of its weights just happen to sat-
isfy certain sum-to-one constraints.

In the spirit of joint optimization, we might have also
combined the Korean morphology and syntax models
into one inference task. We did not do this, largely out of
concerns over computational expense (see the discussion
of translation models in§3.4). This parser, independent
of the bilingual parser, is evaluated in§4.

6We also found that this type of smoothing and smoothingall non-
terminals gave indistinguishable results on monolingual parsing. Al-
ternatively, we could have trained the PCFG discriminatively (treating
the PCFG rules as log-linear features), but because our training sets are
small we do not expect such training to be very different from training
the PCFG as a generative model with probabilities.

3.4 Translation model

In our bilingual parser, the English and Korean parses are
mediated through word-to-word translational correspon-
dence links. Unlike the syntax models, the translation
models were trained without the benefit of labeled data.
We used the GIZA ++ implementation of the IBM statisti-
cal translation models (Brown et al., 1993; Och and Ney,
2003).

To obtain reliable word translation estimates, we
trained on a bilingual corpus in addition to the KTB
training set. The Foreign Broadcast Information Service
dataset contains about 99,000 sentences of Korean and
72,000 of English translation. For our training, we ex-
tracted a relatively small parallel corpus of about 19,000
high-confidence sentence pairs.

As noted above, Korean’s productive agglutinative
morphology leads to sparse estimates of word frequen-
cies. We therefore trained our translation models af-
ter replacing each Korean word with its first morpheme
stripped of its closed-class dependent morphemes, as de-
scribed in§3.2.

The size of the translation tables made optimal bilin-
gual parsing prohibitive by exploding the number of
possible analyses. We therefore resorted to using
GIZA ++’s hypothesized alignments. Since the IBM
models only hypothesize one-to-many alignments from
target to source, we trained using each side of the bitext
as source and target in turn. We could then produce two
kinds of alignment graphs by taking either theintersec-
tion or theunion of the links in the two GIZA ++ align-
ment graphs. All words not in the resulting alignment
graph are set to align to∅.

Our bilingual parser deals only in one-to-one align-
ments (mappings); the intersection graph yields a map-
ping. The union graph yields a set of links which may
permit different one-to-one mappings. Using the union
graph therefore allows for flexibility in the word align-
ments inferred by the bilingual parser, but this comes at
computational expense (because more analyses are per-
mitted).

Even with over 20,000 sentence pairs of training data,
the hypothesized alignments are relatively sparse. For
the intersection alignments, an average of 23% of non-
punctuation Korean words and 17% of non-punctuation
English words have a link to the other language. For the
union alignments, this improves to 88% for Korean and
22% for English.

A starker measure of alignment sparsity is the accu-
racy of English dependency links projected onto Korean.
Following Hwa et al. (2002), we looked at dependency
links in the true English parses from the KTB where both
the dependent and the head were linked to words on the
Korean side using the intersection alignment. Note that
Hwa et al. used not only the true English trees, but also
hand-produced alignments. If we hypothesize that, if En-
glish wordsi and j are in a parent-child relationship,
then so are their linked Korean words, then we infer an
incomplete dependency graph for the Korean sentences
whose precision is around 49%–53% but whose recall is



Training sentences All tags All morphemes First tag First morpheme
Training set accuracy 32 91.14 (1.41) 94.25 (2.59) 91.14 (1.41) 95.74 (2.49)
on ambiguous tokens 64 89.76 (0.34) 93.39 (1.12) 89.76 (0.34) 95.23 (1.43)

128 88.19 (0.91) 92.48 (1.25) 88.38 (1.08) 94.43 (1.02)
512 83.69 (0.94) 89.59 (0.27) 85.03 (1.08) 91.95 (0.21)

1024 82.55 (0.68) 89.28 (0.30) 84.22 (0.77) 91.67 (0.19)
Test set accuracy 32 59.34 (2.52) 53.13 (2.09) 72.81 (1.96) 84.99 (3.11)
on ambiguous tokens 64 59.34 (2.41) 54.76 (1.64) 72.68 (1.79) 85.54 (2.03)

128 60.85 (2.15) 57.20 (2.01) 74.44 (1.17) 86.29 (1.14)
512 63.99 (2.02) 63.24 (1.28) 75.14 (0.86) 85.82 (1.01)

1024 65.26 (1.85) 66.03 (1.72) 75.22 (1.25) 85.62 (1.08)

Table 4: Korean morphological analysis accuracy on ambiguous tokens in the training and test sets: means (and
standard deviations) are shown over five-fold cross-validation. Over 65% of word tokens are ambiguous. The accuracy
of the first tag in each word affects the PCFG and the accuracy of the first morpheme affects the translation model
(under our aggressive morphological lemmatization).

an abysmal 2.5%–3.6%.7

4 Evaluation
Having trained each part of the model, we bring them
together in a unified dynamic program to perform infer-
ence on the bilingual text as described in§2. In order to
experiment easily with different algorithms, we imple-
mented all the morphological disambiguation and pars-
ing models in this paper in Dyna, a new language for
weighted dynamic programming (Eisner et al., 2004).
For parameter estimation, we used the complementary
DynaMITE tool. Just as CKY parsing starts with words
in its chart, the dynamic program chart for the bilingual
parser is seeded with the links given in the hypothesized
word alignment.

All our current results are optimal under the model,
but as we scale up to more complex data, we might in-
troduce A∗ heuristics or, at the possible expense of opti-
mality, a beam search or pruning techniques. Our agenda
discipline is uniform-cost search, which guarantees that
the first full parse discovered will be optimal—if none of
the weights are positive. In our case we are maximizing
sums of negative weights, as if working with log proba-
bilities.8

When evaluating our parsing output against the test
data from the KTB, we do not claim credit for the sin-
gle outermost bracketing or for unary productions. Since
unary productions do not translate well from language to
language (Hwa et al., 2002), we collapse them to their
lower nodes.

4.1 Baseline systems

We compare our bilingual parser to several baseline sys-
tems. The first is the Korean PCFG trained on the small

7We approximated head-words in the Korean gold-standard trees
by assuming all structures to be head-final, with the exception of punc-
tuation. That is, the head-words of sister constituents will elect the
right-most, non-punctuation word among them as the head.

8In fact the English syntax model is not constrained to have non-
positive weights, but we decrement every parameter byθmax. For a
given sentence, this will reduce every possible parse’s weight by a con-
stant value, since the same number of features fire in every parse; thus,
the classification properties of the parser are not affected.

KTB training sets, as described in§3.3. We also consider
Wu’s (1997) stochastic inversion transduction grammar
(SITG) as well as strictly left- and right-branching trees.
We report the results of five-fold cross-validation with
the mean and standard deviation (in parentheses).

Since it is unlexicalized, the PCFG parses sequences
of tags as output by the morphological analysis model.
By contrast, we can build translation tables for the SITG
directly from surface words—and thus not use any la-
beled training data at all—or from the sequence of head
morphemes. Experiments showed, however, that the
SITG using words consistently outperformed the SITG
using morphemes. We also implemented Wu’s tree-
transformation algorithm to turn full binary-branching
SITG output into flatter trees. Finally, we can provide
extra information to the SITG by giving it a set of En-
glish bracketings that it must respect when constructing
the joint tree. To get an upper bound on performance, we
used the true parses from the English side of the KTB.

Only the PCFG, of course, can be evaluated on la-
beled bracketing (Table 6). Although labeled precision
and recall on test data generally increase with more train-
ing data, the slightly lower performance at the highest
training set size may indicate overtraining of this simple
model. Unlabeled precision and recall show continued
improvement with more Korean training data.

Even with help from the true English trees, the unsu-
pervised SITGs underperform PCFGs trained on as few
as 32 sentences, with the exception of unlabeled recall in
one experiment. It seems that even some small amount
of knowledge of the language helps parsing. Crossing
brackets for the flattened SITG parses are understandably
lower.

4.2 Bilingual parsing

The output of our bilingual parser contains three types of
constituents: English-only (aligned to∅), Korean-only
(aligned to∅), and bilingual. The Korean parse induced
by the Korean-only and bilingual constituents is filtered
so constituents with intermediate labels (generated by the
binarization process) are eliminated.

A second filter we consider is to keep only the (re-



maining) bilingual constituents corresponding to an En-
glish head word’s maximal span. This filter will elimi-
nate constituents whose English correspondent is a head
word withsome(but not all) of its dependents. Such par-
tial English constituents are by-products of the parsing
and do not correspond to the modeled syntax.

With good word alignments, the English parser can
help disambiguate Korean phrase boundaries and over-
come erroneous morphological analyses (Table 5). Re-
sults without and with the second filter are shown in
Table 7. Because larger training datasets lead to larger
PCFGs (with more rules), the grammar constant in-
creases. Our bilingual parser implementation is on the
cusp of practicality (in terms of memory requirements);
when the grammar constant increased, we were unable
to parse longer sentences. Therefore the results given for
bilingual parsing are on reduced test sets, where a length
filter was applied: sentences with|E| + |F | > τ were
removed, for varying values ofτ .

4.3 Discussion
While neither bilingual parser consistently beats the
PCFG on its own, they offer slight, complementary im-
provements on small training datasets of 32 and 64 sen-
tences (Table 7). The bilingual parser without the En-
glish head span filter gives a small recall improvement
on average at similar precision. Neither of these differ-
ences is significant when measured with a paired-sample
t-test.

In contrast, the parserwith the English head span filter
sacrifices significantly on recall for a small but signifi-
cant gain in precision at the 0.01 level. Crossing brack-
ets at all levels are significantly lower with the English
head span filter. We can describe this effect as a filtering
of Korean constituents by the English model and word
alignments. Constituents that are not strongly evident on
the English side are simply removed. On small train-
ing datasets, this effect is positive: although good con-
stituents are lost so that recall is poor compared to the
PCFG, precision and crossing brackets are improved.

As one would expect, as the amount of training data
increases, the advantage of using a bilingual parser
vanishes—there is no benefit from falling back on the
English parser and word alignments to help disambiguate
the Korean structure. Since we have not pruned our
search space in these experiments, we can be confident
that all variations are due to the influence of the transla-
tion and English syntax models.

Our approach has this principal advantage: the various
morphology, parsing, and alignment components can be
improved or replaced easily without needing to retrain
the other modules. The low dependency projection re-
sults (§3.4), in conjunction with our modest overall gains,
indicate that the alignment/translation model should re-
ceive the most attention. In all the bilingual experiments,
there is a small positive correlation (0.3), for sentences
at each length, between the proportion of Korean words
aligned to English and measures of parsing accuracy. Im-
proved English parsers—such as Collins’ models—have
also been implemented in Dyna, the dynamic program-
ming framework used here (Eisner et al., 2004).

5 Prior work
Combining separately trained systems and then search-
ing for an (ideally) optimal solution is standard prac-
tice in statistical continuous speech recognition (Jelinek,
1998) and statistical machine translation (Brown et al.,
1990). Composition is even more of a staple in finite-
state frameworks (Knight and Graehl, 1998). Finally,
factored models involving parses have been used to guide
search. Charniak et al. (2003) combine separately
trained parse production probabilities with translation
probabilities to prune a parse forest hypothesized by the
translation model. As discussed in§2, Klein and Man-
ning (2002) guide their parser’s search using a combina-
tion of separate unlexicalized PCFG and lexical depen-
dency models.

The extent to which assumptions about similarity of
syntax across languages are empirically valid has re-
ceived attention in a few pilot studies. Fox (2002) has
considered English and French, and Hwa et al. (2002) in-
vestigate Chinese and English. Xia et al. (2000) compare
the rule templates of lexicalized tree adjoining grammars
extracted from treebanks in English, Chinese, and Ko-
rean. In the context of machine translation, Dorr (1994)
investigated divergences between two languages’ struc-
tures.

Some proposals have sidestepped the empirical issue
entirely. Wu (1997) and Alshawi et al. (2000) used un-
supervised learning on parallel text to induce syntactic
analysis that was useful for their respective applications
in phrasal translation extraction and speech translation,
though not necessarily similar to what a human anno-
tator would select. Note a point of divergence of the
SITG from our bilingual parsing system: SITG only al-
lows words, but not higher structures, to match null in the
other language and thus requires that the trees in parallel
sentences be isomorphic. Yamada and Knight (2001) in-
troduced tree-to-string alignment on Japanese data, and
Gildea (2003) performed tree-to-tree alignment on the
Korean Treebank, allowing for non-isomorphic struc-
tures; he applied this to word-to-word alignment. Fi-
nally, inspired by these intuitive notions of translational
correspondence, Cherry and Lin (2003) include depen-
dency features in a word alignment model to improve
non-syntactic baseline systems.

In more formal work, Melamed (2003) proposes
multitext grammars and algorithms for parsing them.
Shieber and Schabes (1990) describe a synchronous tree
adjoining grammar. While both of these formalisms re-
quire bilingual grammar rules, Eisner (2003) describes
an algorithm for learning tree substitution grammars
from unaligned trees.

Working on the Penn Korean Treebank, Sarkar and
Han (2002) made a single training/test split and used
91% of the sentences to train a morphological disam-
biguator and lexicalized tree adjoining grammar (LTAG)
based parsing system.

For a monolingual approach to training a parser with
scarce resources, see (Steedman et al., 2003), who apply
co-training and corrected co-training to bootstrapping an
English parser starting with 1000 parsed training sen-



Truth [TOP [NP ngyen.tay/NNC kong.pyeng/NNC cwung.tay/NNC] [ VP [NP ku/DAN to/NNC] ken.sel/NNC] ./SFN]
PCFG [TOP ngyen.tay/VV [S [NP kong.pyeng/NNC cwung.tay/NNC] [ VP [NP ku/NPN to/NNX] ken.sel/NNC] ./SFN]]
Bilingual [TOP [NP ngyen.tay/VV kong.pyeng/NNC1 cwung.tay/NNC] [ VP [NP ku/NPN to/NNX] ken.sel/NNC] ./SFN2]
Translation The regimental1 engineer company constructed that road .2

Truth [TOP [NP ku/DAN sa.lam/NNC] [ NP ceng.chi/NNC kwun.kwan/NNC] ?/SFN]
PCFG [TOP [VP [NP ku/DAN sa.lam/NNC ceng.chi/NNC] kwun.kwan/NNC] ?/SFN]
Bilingual [TOP [NP ku/DAN1 sa.lam/NNC] [ NP ceng.chi/NNC2 kwun.kwan/NNC3] ?/SFN4]
Translation He1 is a political2 officer3 ?4

Table 5: The gold-standard parse, PCFG parse, bilingual parse, and English translation for two selected test sentences.
GIZA -aligned words are coindexed with subscripts. The bilingual parser recovers from erroneous morphological
tagging in the first sentence and finds the proper NP bracketing in the second.

Method Training Unlabeled Unlabeled Labeled Labeled Crossing
Sentences Precision Recall Precision Recall Brackets

PCFG training 32 57.03(5.45) 78.45(5.71) 51.13(6.14) 70.26(6.40) 0.71(0.22)
64 54.96(4.98) 76.91(6.71) 46.94(4.38) 65.69(5.99) 0.72(0.25)

128 52.60(3.15) 73.20(4.97) 43.46(3.34) 60.48(5.14) 0.82(0.18)
512 50.82(1.46) 70.98(2.00) 39.47(2.49) 55.12(3.42) 0.87(0.06)

1024 50.25(0.82) 70.31(1.32) 37.93(1.45) 53.07(2.16) 0.89(0.04)
PCFG test 32 43.63(4.40) 45.96(5.38) 31.67(3.47) 33.36(4.19) 1.27(0.16)

64 45.90(2.30) 46.68(2.92) 34.29(2.35) 34.91(3.22) 1.18(0.12)
128 48.07(4.14) 48.47(4.45) 36.39(3.37) 36.68(3.50) 1.15(0.14)
512 50.88(2.97) 51.89(2.92) 38.10(3.22) 38.82(2.68) 1.10(0.10)

1024 51.15(2.17) 52.65(1.74) 37.47(1.89) 38.58(1.64) 1.12(0.08)
SITG – 30.65(1.97) 45.22(3.43) – – 1.93(0.17)
Flat SITG – 41.78(1.98) 33.59(3.36) – – 0.94(0.08)
SITG w/Eng. constit. – 36.28(0.70) 52.68(1.03) – – 1.60(0.07)
Flat SITG w/Eng. constit. – 42.55(1.32) 30.64(1.37) – – 0.77(0.06)
L-branching – 25.62(1.07) 35.83(1.39) – – 2.04(0.04)
R-branching – 27.59(1.03) 38.60(1.75) – – 2.06(0.11)

Table 6: Baseline parsing performance on Korean: the table shows means (and standard deviations) for five-fold cross-
validation. The SITG system is evaluated on test data, but is trained without labeled data; the SITG with English trees
uses true treebank English parses to constrain the search and thus represents an upper bound. The table shows means
and standard deviations for five-fold cross-validation. The best test results in each column are in bold.

Method Max. |E| + |F | Training Unlabeled Unlabeled Labeled Labeled Crossing
Test Sen. Length Sentences Precision Recall Precision Recall Brackets

PCFG 20 32 44.19(4.41) 46.51(5.32) 32.10(3.47) 33.78(4.14) 1.23(0.16)
20 64 46.39(2.45) 47.03(3.01) 34.69(2.40) 35.20(3.22) 1.15(0.11)
18 128 49.86(4.83) 49.63(4.74) 37.78(3.74) 37.60(3.61) 1.03(0.13)
17 512 53.89(3.60) 54.60(3.73) 40.61(3.84) 41.10(3.19) 0.87(0.11)
15 1024 57.87(3.75) 59.39(3.35) 43.92(3.52) 45.07(3.26) 0.61(0.09)

Bilingual 20 32 44.17(3.97) 47.10(4.81) 31.67(3.65) 33.78(4.29) 1.22(0.14)
parsing 20 64 46.30(2.46) 47.73(2.83) 34.14(2.60) 35.23(3.35) 1.15(0.12)

18 128 48.75(3.64) 49.51(4.08) 36.95(2.65) 37.52(2.92) 1.04(0.10)
17 512 52.77(3.92) 54.21(4.42) 39.73(3.68) 40.78(3.56) 0.88(0.12)
15 1024 56.70(4.79) 58.85(4.10) 43.09(4.24) 44.71(3.69) 0.60(0.12)

Bilingual 20 32 45.65(5.81) 28.83(4.35) 32.92(4.60) 20.82(3.53) 0.72(0.11)
parsing, 20 64 47.15(2.88) 28.73(1.79) 34.65(2.36) 21.14(1.73) 0.68(0.08)
English 18 128 49.65(4.52) 28.74(2.30) 38.62(3.69) 22.35(1.76) 0.59(0.09)
head span 17 512 52.03(4.21) 29.47(2.71) 39.80(2.92) 22.51(1.32) 0.50(0.08)
filter 15 1024 54.78(5.20) 29.74(1.91) 42.01(5.05) 22.78(1.84) 0.34(0.09)

Table 7: Bilingual parsing performance on Korean: the table shows means (and standard deviations) for five-fold cross-
validation. Bold-faced numbers in the bilingual parsers indicatesignificant improvements on the PCFG baseline using
the paired-sample t-test at the 0.01 level.



tences. Although this technique has interesting proper-
ties, our combined optimization should be more stable
since it does not involve iterative example selection.

6 Conclusion
We have presented a novel technique for merging sim-
ple, separately trained models for Korean parsing, En-
glish dependency parsing, and word translation, and opti-
mizing the joint result using dynamic programming. We
showed small but significant improvements for Korean
parsers trained on small amounts of labeled data.
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