
Induction of Greedy Controllers for Deterministic Treebank
Parsers

Tom Kalt
Department of Computer Science

University of Massachusetts
Amherst, MA 01003-9264

kalt@cs.umass.edu

Abstract

Most statistical parsers have used the gram-
mar induction approach, in which a stochastic
grammar is induced from a treebank. An alter-
native approach is to induce a controller for a
given parsing automaton. Such controllers may
be stochastic; here, we focus on greedy con-
trollers, which result in deterministic parsers.
We use decision trees to learn the controllers.
The resulting parsers are surprisingly accurate
and robust, considering their speed and simplic-
ity. They are almost as fast as current part-of-
speech taggers, and considerably more accurate
than a basic unlexicalized PCFG parser. We
also describe Markov parsing models, a general
framework for parser modeling and control, of
which the parsers reported here are a special
case.

1 Introduction

A fundamental result of formal language the-
ory is that the languages defined by context-free
grammars are the same as those accepted by
push-down automata. This result was recently
extended to the stochastic case (Abney, et al.,
1999). There are thus two main approaches to
training a statistical parser: inducing stochastic
grammars and inducing stochastic automata.
Most recent work has employed grammar induc-
tion (Collins, 1999; Charniak, 2000). Examples
of the automaton-induction approach are Her-
mjakob (1997), which described a determinis-
tic parser, and Ratnaparkhi (1998), which de-
scribed a stochastic parser.

The deterministic parsers reported in this pa-
per are greedy versions of stochastic parsers
based on Markov parsing models, described in
section 3.3. A greedy parser takes the single
most probable action at every choice point. It
thus does the minimum amount of search pos-
sible. There will always be a tradeoff between
speed on the one hand and accuracy and robust-
ness on the other. Our aim, in studying greedy

parsers, is to find out what levels of coverage
and accuracy can be attained at the high-speed
extreme of this tradeoff. There is no guarantee
that a greedy parser will find the best parse, or
indeed any complete parse. So the accuracy and
coverage of greedy parsers are both interesting
empirical questions. We find that they are al-
most as fast as current part-of-speech taggers,
and they outperform basic unlexicalized PCFG
parsers. While coverage is a concern, it is quite
high (over 99%) for some of our parsers.

2 Previous work

Markov parsing models are an example of
the history-based parsing approach (Black, et
al., 1992). History-based parsing, broadly
interpreted, includes most statistical parsers.
Markov parsing models take a more automaton-
oriented (or control-oriented) view of what his-
tory means, compared to the more grammar-
oriented view of the original paper and most
subsequent work.

Hermjakob (1997) described a deterministic
shift-reduce parser. The control is learned by a
hybrid of decision trees and decision lists. This
work also used a rich hand-crafted semantic on-
tology. The state representation contained over
200 features, although it still worked rather well
when this was reduced to 12. A notable feature
was that good performance was achieved with
very little training data (256 sentences). His
results are not directly comparable with most
other experiments, for several reasons, includ-
ing the use of a subset of the Wall St. Journal
corpus that used a closed lexicon of 3000 words.

Ratnaparkhi (1999) used a maximum entropy
model to compute action probabilities for a
bottom-up parser. His score function is an in-
stance of a Markov parsing model, as defined
in this paper (although he did not interpret his
score as a probability). His parser performed
at a level very close to state-of-the-art. His ap-
proach was similar to ours in a number of ways.

He used a beam search to find multiple parses.
Wong and Wu (1999) implemented a deter-

ministic shift-reduce parser, using a novel vari-
ation on shift-reduce which employed a separate
chunker-like phase as well as a base NP recog-
nizer. They used decision trees to learn control.
Their state representation was restricted to un-
lexicalized syntactic information.

The approach described here combines many
elements which have previously been found use-
ful. Left-corner parsing is discussed in Man-
ning and Carpenter (1997) and Roark (2001).
For search, Roark used beam search with non-
backtracking top down automata, rather than
the more usual chart-based search. Magerman
(1994) used a parsing model based on decision
tree techniques. Numerous papers (Manning
and Carpenter, 1997; Johnson, 1998; Charniak
et al., 1998; Roark, 2001) report that treebank
binarization is advantageous.

3 Automaton Induction

3.1 General Concepts

Our approach to automaton induction is to view
parsing as a control problem. The parsing au-
tomaton is a discrete dynamical system which
we want to learn to control. At any given time, a
parser is in some state. We use the term state as
in control theory, and not as in automata theory.
The state consists of the contents of the parser’s
data structures: a buffer holding the input sen-
tence, a push-down stack, and a set of parse
tree fragments, consisting of current or previ-
ous stack items connected by arcs. A parser
has a finite set of actions, which perform simple
operations on its data structures (pushing and
popping the stack, dequeuing from the input
buffer, and creating arcs between stack items).
Performing an action changes the state. Most
important, the parser has a controller, which
chooses an action at each time step based on
the current state. A map from states to ac-
tions is called a policy. If this map is a func-
tion, then the policy is deterministic, and re-
sults in a deterministic parser. If the map is a
state-conditional distribution over actions, then
the policy is stochastic, resulting in a stochastic
parser. A deterministic parser returns a single
parse for a given input, while a stochastic parser
may return more than one. Thus the problem
of inducing a stochastic parsing automaton con-
sists in specifying the automaton’s data struc-
tures, its dynamics (what the actions do), and
then learning a stochastic policy.

In this paper, we assume that the parsing au-
tomaton always halts and outputs a tree. We
can easily modify any parser so that this is the
case. A parser fails when it is asked to per-
form an action that is impossible (e.g. shifting
when there is no more input). When this hap-
pens, the parser terminates by creating a root
node labeled fail, whose children are all com-
plete constituents constructed so far, along with
any unused input. Parsers can also fail by go-
ing into a cycle. This must be detected, which
can be done by limiting the number of actions
to some multiple of the input length. In prac-
tice, we have found that cycles are rare, and
not difficult to handle. We also assume that the
parsing automaton is reversible; that is, for a
given input string, there is a one-to-one corre-
spondence between parse trees and the sequence
of actions that produces that tree. Because of
reversibility, given a parser and a tree, we can
easily determine the unique sequence of actions
that the parser would use to produce that tree;
we call this unparsing.

3.2 Deterministic Control

The parsers reported in this paper used deter-
ministic controllers created as described below.
Induction of deterministic control for a given
parser, using a treebank, is a straightforward
classification problem. We use the parser and
the treebank to create a training set of (state,
action) pairs, and we induce a function from
states to actions, which is the deterministic con-
troller. To create training instances from a tree-
bank, we first unparse each tree to get an action
sequence. We then use these actions to control
the parser as it processes the corresponding in-
put. At each time step, we create a training
instance, consisting of the parser’s current state
and the action it takes from that state.

State: We said above that the parser’s state
consists of the contents of its data structures;
we will call this the complete state. The state
space of the complete state is infinite, as states
include the contents of unbounded stacks and
input buffers. We need to map this into a man-
ageable number of equivalence classes. This is
done in two stages. First, we restrict attention
to a finite part of the complete state. That is,
we map particular elements of the parser’s data
structures onto a feature vector. We refer to
this as the state representation, and the choice
of representation is a critical element of parser
design. All the work reported here uses twelve

features, which will be detailed in section 4.1.
With twelve features and around 75 categori-
cal feature values, the state space is still huge.
The second state-space reduction is to use a de-
cision tree to learn a mapping from state rep-
resentations to actions. Each leaf of the tree
is an equivalence class over feature vectors and
therefore also over complete states. The action
assigned to the leaf is the highest-frequency ac-
tion found in the training instances that map to
the leaf. Thus we have three different notions
of state: the complete state, the state represen-
tation, and the state equivalence classes at the
leaves of the decision tree.

We use a CART-style decision tree algorithm
(Brieman, et al., 1984) as our main machine
learning tool. The training sets used here con-
tained over two million instances. The CART
algorithm was modified to handle large train-
ing sets by using samples, rather than all in-
stances, to choose tests at each node of the tree.
All features used were categorical, and all tests
were binary. Our decision trees had roughly 20k
leaves. Tree induction took around twenty min-
utes.

3.3 Markov Parsing Models

We define a class of conditional distributions
over parse trees which we call Markov parsing
models (MPMs). Consider a reversible parsing
automaton which takes a sequence of n actions
(a1, a2, ...an) on an input string σ to produce
a parse t. At each step, the automaton is in
some state si, and in every state the automaton
chooses actions according to a stochastic policy
P (ai|si). Because of reversibility, for a given in-
put σ, there is an isomorphism between parse
trees and action sequences:

t ⇔ (a1, a2, ...an)

Taking probabilities,

P (t|σ) = P (a1, a2, ...an|σ) (1)

=
n∏

i=1

P (ai|ai−1...a1, σ) (2)

=
n∏

i=1

P (ai|si) (3)

The second step merely rewrites equation
1 using a probailistic identity. In the third
step, replacing the history at the ith time step
(ai−1, ...a1, σ) with the state si is an expression

of the Markov property. This is justified since
for a reversible automaton, the action sequence
defines a unique state, and that state could only
be reached by that action sequence.

Equation 3 defines a Markov parsing model.
Generative models, such as PCFGs, define a
joint distribution P (t, σ) over trees and strings.
By contrast, a parsing model defines P (t|σ),
conditioned on the input string. Assuming that
the input string is given, a potential advantage
of a conditional model over a generative one is
that it makes better use of limited training data,
as it doesn’t need to model the string proba-
bility. The string probability is useful in some
applications, such as speech recognition, but it
requires extra parameters and training data to
model it.

An MPM plays two roles. First, as in most
statistical parsers, it facilitates syntactic disam-
biguation by specifying the relative likelihood of
the various structures which might be assigned
to a sentence. Second, it is directly useful for
control; it tells us how to parse and search ef-
ficiently. By contrast, in some recent models
(Collins, 1999; Charniak et al. 1998), some
events used in the model are not available until
after decisions are made; therefore a separate
”figure of merit” must be engineered to guide
search.

3.4 ML Estimation of MPM

parameters

The parameters of an MPM can be estimated
using a treebank. Consider the decision-tree
induction procedure described in section 3.2.
Each leaf of the tree corresponds to a state s

in the model, and contains a set of training in-
stances. For each action a, the ML estimate of
P (a|s) is simply the relative frequency of that
action in the training instances at that leaf.

A similar distribution can be defined for any
node in the tree, not just for leaves. If necessary,
the ML estimates can be smoothed by ”backing
off” to the distribution at the next-higher level
in the tree. Other smoothing methods are pos-
sible as well.

4 Description of parsers

We now describe the parsers we implemented.
Three parsing strategies (top-down, left-corner,
and shift-reduce) have been discussed exten-
sively in the literature. As there is no consensus
on which is best for parsing natural language,
we tried all three. Our goal was not to directly
compare the strategies, but simply to find the

one that worked best in our system. Direct com-
parison would be difficult, in particular because
the choice of state representation has a big in-
fluence on performance; and there is no obvious
way of choosing the best state representation for
a particular parsing strategy.

The input sentences were pre-tagged using
the MAXPOST tagger (Ratnaparkhi, 1996).
All parsers here are unlexicalized, so they use
preterminals (part-of-speech tags) as their input
symbols. Each parser has an input (or looka-
head) buffer, organized as a FIFO queue. Each
parser also has a stack. Stack items are labeled
with either a preterminal symbol or a nontermi-
nal (a syntactic category). The ”completeness”
of a stack item is different in the three parsing
strategies (a node is considered complete if it is
connected to its yield). Below, for conciseness,
we describe some actions as having arguments;
this is shorthand for the set of actions contain-
ing each distinct combination of arguments. All
three parsers handle failure as described in sec-
tion 3.1, that is, by returning a fail node whose
children are the constituents completed so far,
plus any remaining input.

Even within a parsing strategy, we have con-
siderable latitude in designing the dynamics of
a parser. For example, Roark (2001) describes
how a top-down parser can be aggressive or
lazy. It is advantageous to be lazy, since de-
layed predictions are made when there is bet-
ter evidence for the correct prediction. For this
and other reasons, the parsers described below
depart somewhat from the usual textbook defi-
nitions.

Shift-Reduce: The SR parser’s shift ac-
tion dequeues an input item and pushes it on
the stack. The reduce(n, cat) action pops
n stack symbols (n ≥ 1), makes them children
of a new symbol labeled cat, and pushes that
symbol on the stack. The SR parser terminates
when the input is consumed and the stack con-
tains the special symbol top. In the SR parser,
all stack items are always complete; the tree un-
der a stack node is not modified further.

Top-Down: The TD parser has a pre-
dict(list) action, where the elements of list are
either terminals or nonterminals. The predict
action pops the stack, makes a new item for each
list element, pushes each of these on the stack
in reverse order, and makes each new item a
child of the popped item. The other action is
match. This action is performed if and only
if the top-of-stack item is a preterminal. The

stack is popped, one input symbol is dequeued,
and the popped stack item is replaced in the
tree by the input item. (Our match coerces the
prediction to use the input label, rather than
requiring a match, which causes too many fail-
ures.) In the TD parser, all stack items are pre-
dictions, and are incomplete in the sense that
their yield has not been matched yet.

Left-Corner: Unlike the other two strate-
gies, the LC parser’s stack may contain both
complete and incomplete items. Every incom-
plete item is marked as such. Also, every in-
complete item has a complete left-corner (that
is, left-most child). The LC parser has three
actions. Shift is the same as for SR. The
project(cat) action pops a completed item
from the stack, and makes it the left corner of
a new incomplete node labeled cat, which is
pushed onto the stack. Finally, the attach ac-
tion finds the first incomplete item on the stack,
pops all items above it, makes them its children,
and marks the stack node, which is now at the
top of the stack, as complete.

4.1 Representation

Treebank Representation: Following many
previous researchers, we binarize the treebank,
as illustrated in Fig. 4.1. There are several
reasons for doing this. The Penn Treebank em-
ploys a very flat tree style, particularly for noun
phrases. Some nodes have eight or more chil-
dren. For the SR and LC parsers, this means
that many words must be shifted onto the stack
before a reduce or attach action. Binariza-
tion breaks a single decision into a sequence of
smaller ones. Also, the parser’s data structures
are used in a more uniform way, allowing for im-
provements in state representation. For exam-
ple, in binarized SR parsing, the top two stack
nodes are the only candidates for reduction, and
the previous stack node always represents the
phrase preceding the one being built. For TD,
binarization has the effect of delaying predic-
tions. Roark (2001) showed that this is a big ad-
vantage for top-down parsing, particularly right
binarization to nullary. We tried several bina-
rization transformations. Unlike previous work,
we labeled all nodes introduced by binarization
as e.g. NP*, simply noting that this is a ”syn-
thetic” child of an NP. These binarizations are
reversible, and we convert back to Penn Tree-
bank style before evaluation.

State representation: The state represen-
tation for each parser consisted of twelve cate-

oldthe

DT JJ NN

dog

NP

the

DT

old

JJ

NN

dog

NP *

NP

old

JJ NN

dog

the

DT NP *

NP

old

JJthe

DT

NN

dog

NP *

NP

NP * the

DT

old

JJ

NN

dog

NP *

NP

NP *

NP *

ε

(a) (b) (c) (d) (e)

Figure 1: Tree binarizations: (a) original; (b) left binarized (L); (c) right binarized to binary (R2);
(d) right binarized to unary (R1); (e) right binarized to nullary (R0)

gorical features. Each feature is a node label,
either a non-terminal (POS tag) or a terminal
symbol (syntactic category). There are 49 dis-
tinct POS tags and 28 distinct category labels.
We attempted to choose the items that would
be the most relevant to the parsing decisions.
The choices represented here are based on in-
tuition along with trial and error; no system-
atic attempt has been made so far to determine
the best set of features for the state representa-
tions. This is an area for future work. We used
the same number (twelve) for each of the three
parsers to make them roughly comparable.

Each parser’s state representation contained
features for the first four input symbols and the
top two stack items. The remaining features are
as follows:

SR: the third and fourth stack items, and the
left and right children of the first two stack
items.

LC: the third and fourth stack items, the left
and right children of the first stack item,
and the left children of the second and third
stack items.

TD: the first four ancestors of the first stack
item, and the first two completed phrases
preceding the first stack item (found by go-
ing to the parent, then to its left child, re-
turning it if the child is complete, otherwise
recursing on the parent).

The choice of items to include in the state rep-
resentation corresponds to choosing events for
the probabilistic models used in other statisti-
cal parsers. The different parsing strategies pro-
vide different opportunities for conditioning on

context. This is a very rich topic which unfor-
tunately we can’t explore further here.

5 Results

All experiments were done on the standard
Penn Treebank Wall St. Journal task (Marcus
et al., 1993), for comparison with other work.
We used sections 2-21 for training, section 0
for development testing, and section 23 for final
testing. All preliminary experiments used the
development set for testing. We evaluated per-
formance of each parser with several treebank
transforms. Results are in Table 1. We report
recall and precision for all sentences with length
≤ 100 and for all sentences with length ≤ 40 to-
kens. For a treebank parse T and a parse t to
be evaluated, these measures are defined as

recall =
correct constituents in t

constituents in T

precision =
correct constituents in t

constituents in t

We followed the standard practice of ignor-
ing punctuation and conflating ADVP and PRN
for purposes of evaluation. The results reported
are for all results, not just complete parses. For
fail nodes, the evaluation measures give par-
tial credit for whatever has been completed cor-
rectly. Including incomplete parses in the re-
sults tends to lower recall and precision, com-
pared to the results for the complete parses only.

Coverage: Coverage is the fraction of the
test set for which the parser found a complete
parse. The parsers here always return a parse
tree, but some of those trees represent parse
failure, as noted earlier. The SR-L and LC-
R2 parsers have almost complete coverage, with

length ≤ 100 length ≤ 40 Words per
Parser Transform Coverage Recall Precision Recall Precision second

SR L 99.8 76.7 75.8 77.8 77.0 33,740
SR R2 94.9 75.9 77.2 77.1 78.2 33,560
SR R1 90.8 75.6 77.3 76.9 78.3 28,398
LC L 95.6 71.9 71.9 72.9 72.8 25,812
LC R2 99.9 73.9 74.0 74.9 75.0 24,948
LC R1 96.2 74.4 74.3 75.6 75.4 21,610
TD L 31.0 38.7 57.1 41.3 58.3 41,740
TD R2 42.3 47.6 61.6 50.2 62.6 45,274
TD R1 72.0 61.5 66.8 62.9 68.2 30,739
TD R0 98.4 69.3 72.1 70.6 73.2 21,341

Table 1: Parser performance on section 23 of the Penn Treebank. Coverage, recall, and precision
are given as percentages.

TD-R0 lagging slightly behind. As in Roark
(2001), increasingly aggressive binarization is
beneficial for top-down parsing, because deci-
sions are delayed. For greedy parsers with cov-
erage in the high nineties, complete coverage
could be attained at minimal additional cost by
using search only for sentences where the greedy
parse produced a parse failure.

Accuracy: The best recall and precision re-
ported here are better than a basic treebank
PCFG, for which Johnson (1998) gives 69.7%
and 73.5% respectively (for length ≤ 100), un-
der identical conditions. Our results are consid-
erably below the state of the art for this task,
currently around 90%, which is achieved with
much more sophisticated probabilistic models.
Considering their speed and the simplicity of
their representations, it is remarkable that our
parsers achieve the levels of accuracy and cov-
erage reported here. Even at these speeds, im-
provements in accuracy may be possible by im-
proving the representation. And of course, ac-
curacy could be improved at the expense of
speed by adding search (see section 6). The
TD parser lags substantially behind SR in ac-
curacy. The accuracy problem for TD and its
slightly worse coverage are probably due to the
same cause. We suspect that predictive pars-
ing is inherently riskier than bottom-up pars-
ing. Unlike the other two strategies, predictions
must sometimes be made when there is no im-
mediately adjacent complete node in the tree.
However, these comparisons are not conclusive,
because the choice of features for the state rep-
resentation may also have an important role in
the differences.

Speed: Parsing speeds are reported in words

per second. This is exclusive of tagging time
(recall that we pre-tagged our input), and also
exclusive of IO. Experiments were done on a
1.2 GHz Athlon CPU with 1.25 GB of mem-
ory running Linux. The parsers were imple-
mented in Java, including the decision tree mod-
ule. The JVM version was 1.4.2, and the JVM
was warmed up before testing for speed. No ad-
ditional effort was spent on speed optimization.
Clearly, these speeds are quite fast. A fast con-
temporary tagger, TnT (Brants, 2000), which
is implemented in C, tags between 30,000 and
60,000 words per second running on a Pentium
500 MHz CPU.

Our LC parser is slightly slower than our SR
and TD parsers because LC inherently makes
more decisions per sentence than the others do.
Speeds for the low-accuracy TD runs are high
due to the fact that the parser stops early when
it encounters a failure. Comparing these speeds
with other statistical parsers is somewhat prob-
lematic. Differences in CPU speeds and imple-
mentation languages obscure the comparison.
Moreover, many authors simply report accuracy
measures, and don’t report timing results. Any
deterministic parser will have running time that
is linear in the size of the input, and the amount
of work per input word that needs to be done is
small, dominated by the decision tree module,
which is not expensive. By contrast, most cur-
rent statistical parsers lean towards the other
end of the speed-accuracy tradeoff spectrum.

One paper that focuses on efficiency of sta-
tistical parsing is Charniak et al. (1998). They
used a chart parser, and measured speed in units
of popped edges per sentence. This corresponds
closely to the number of actions per sentence

taken by a parsing automaton. They report
that on average the minimum number of popped
edges to create a correct parse would be 47.5.
By this measure, our greedy parsers would take
on average very close to 47 actions. They re-
port 95% coverage and 75% average recall and
precision on sentences of length ≤ 40 with 490
popped edges; this is ten times the minimum
number of steps. However, to get complete cov-
erage, they required 1760 popped edges, which
is a factor of 37 greater than the minimum.

Wong and Wu (1999) report recall and pre-
cision of 78.9% and 77.7% respectively for their
deterministic shift-reduce parser on sentences of
length ≤ 40, which is very similar to the accu-
racy of our SR-L run. They reported a rate of
528 words per second, but did not specify the
hardware configuration.

6 Future work

The approach described here can be extended
in a number of ways. As noted, a Markov
parsing model can be used to guide search.
We plan to add a beam search to explore the
speed-accuracy tradeoff. Improvements in the
state representation are possible, particularly
along the lines of linguistically-motivated tree-
bank transformations, as in Klein and Man-
ning (2003). Adding a lexical component to the
model is another extension we intend to inves-
tigate.

7 Conclusions

Deterministic unlexicalized statistical parsers
have surprisingly good accuracy and coverage,
considering their speed and simplicity. The
best parsers reported here have almost com-
plete coverage, outperform basic PCFGs, and
are roughly as fast as taggers. We described an
approach to statistical parsing based on induc-
tion of stochastic automata. We defined Markov
parsing models, described how to estimate pa-
rameters for them, and showed how the deter-
ministic parsers we implemented are greedy ver-
sions of MPM parsers. We found that for greedy
parsing, bottom-up parsing strategies seem to
have a small advantage over top-down.

Acknowledgements

Thanks to Brian Roark for helpful comments on
this paper.

References

Steven Abney, David McAllester, and Fernando
Pereira. 1999. Relating Probabilistic Gram-

mars and Automata. 37th Annual Meeting of
the Association for Computational Linguis-
tics: Proceedings of the Conference, pp. 542-
549.

E. Black, F. Jelinek, J. Lafferty, D. M. Mager-
man, R. Mercer, and S. Roukos. 1992.
Towards History-based Grammars: Using
Richer Models for Probabilistic Parsing. Pro-
ceedings of the DARPA Speech and Natural
Language Workshop.

Thorsten Brants. 2000. TnT – A Statistical
Part-of-Speech Tagger. Proceedings of the
Sixth Applied Natural Language Processing
Conference.

Leo Brieman, Jerome H. Friedman, Richard A.
Olshen, and Charles J. Stone. 1984. Classi-
fication and Regression Trees. Chapman &
Hall.

Eugene Charniak. 2000. A Maximum-Entropy-
Inspired Parser. In Proceedings of the 1st
Conference of the North American Chapter of
the Association for Computational Linguis-
tics.

Eugene Charniak, Sharon Goldwater, and Mark
Johnson. 1998. Edge-based best-first chart
parsing. In Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence,
pages 127–133

Michael Collins. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
Dissertation, University of Pennsylvania.

Jesus Gimenez and Luis Marquez. 2003. Fast
and Accurate Part-of-Speech Tagging: The
SVM Approach Revisited . Recent Advances
in Natural Language Processing.

Ulf Hermjakob. 1997. Learning Parse and
Translation Decisions from Examples with
Rich Context. Ph.D. Dissertation, University
of Texas.

Mark Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguis-
tics, 24(4):617-636.

Dan Klein and Christopher D. Manning. 2002.
Fast Exact Natural Language Parsing with
a Factored Model. Advances in Neural Infor-
mation Processing Systems 15.

Dan Klein and Christopher D. Manning. 2003.
Accurate Unlexicalized Parsing. 41st Annual
Meeting of the Association for Computational
Linguistics: Proceedings of the Conference.

David M. Magerman. 1994. Natural Language
Parsing as Statistical Pattern Recognition.
Ph.D. Dissertation, Stanford University.

Mitchell P. Marcus, Beatrice Santorini, and

Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19:313–330.

Adwait Ratnaparkhi. 1996. A Maximum En-
tropy Part-Of-Speech Tagger. In Proceedings
of the 1st Conference on Empirical Methods
in Natural Language Processing.

Adwait Ratnaparkhi. 1998. Maximum Entropy
Models for Natural Language Ambiguity Res-
olution. Ph.D. Dissertation. University of
Pennsylvania.

Brian Roark. 2001. Robust Probabilistic Pre-
dictive Syntactic Processing: Motivations,
Models, and Applications. Ph.D. dissertation.
Brown University.

Aboy Wong and Dekai Wu. 1999. Learning a
lightweight robust deterministic parser. Sixth

European Conference on Speech Communica-

tion and Technology.

