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Abstract 
This paper describes a data source and 
methodology for producing customized test 
suites for molecular biology entity 
identification systems.  The data consists of: 
(a) a set of gene names and symbols classified 
by a taxonomy of features that are relevant to 
the performance of entity identification 
systems, and (b) a set of sentential 
environments into which names and symbols 
are inserted to create test data and the 
associated gold standard.  We illustrate the 
utility of test sets producible by this 
methodology by applying it to five entity 
identification systems and describing the error 
patterns uncovered by it, and investigate 
relationships between performance on a 
customized test suite generated from this data 
and the performance of a system on two 
corpora. 

 
1 Introduction 
This paper describes a methodology and data for the 
testing of molecular biology entity identification (EI) 
systems by developers and end users.  Molecular 
biology EI systems find names of genes and gene 
products in free text.  Several years’ publication history 
has established precision, recall, and F-score as the de 
facto standards for evaluating EI systems for molecular 
biology texts at the publication stage and in 
competitions like BioCreative 
(www.mitre.org/public/biocreative).  These measures 
provide important indices of a system’s overall output 
quality.  What they do not provide is the detailed sort of 
information about system performance that is useful for 
the system developer who is attempting to assess the 

strengths and weaknesses of a work in progress, nor do 
they provide detailed information to the potential 
consumer who would like to compare two systems 
against each other. Hirschman and Mani (2003) point 
out that different evaluation methods are useful at 
different points in the software life-cycle.  In particular, 
what they refer to as feature-based evaluation via test 
suites is useful at two points: in the development phase, 
and for acceptance testing.  We describe here a 
methodology and a set of data for constructing 
customized feature-based test suites for EI in the 
molecular biology domain.  The data consists of two 
sets.  One is a set of names and symbols of entities as 
that term is most commonly understood in the 
molecular biology domain—genes and gene products.  
(Sophisticated ontologies such as GENIA (Ohta et al. 
2002) include other kinds of entities relevant to 
molecular biology as well, such as cell lines.)  The 
names and symbols exemplify a wide range of the 
features that characterize entities in this domain—case 
variation, presence or absence of numbers, presence or 
absence of hyphenation, etc. The other is a set of 
sentences that exemplify a range of sentential contexts 
in which the entities can appear, varying with respect to 
position of the entity in the sentence (initial, medial, or 
final), presence of keywords like gene and protein, 
tokenization issues, etc.  Both the entities and the 
sentential contexts are classified in terms of a taxonomy 
of features that are relevant to this domain in particular 
and to natural language processing and EI in general.  
The methodology consists of generating customized test 
suites that address specific performance issues by 
combining sets of entities that have particular 
characteristics with sets of contexts that have particular 
characteristics.  Logical combination of subsets of 
characteristics of entities and contexts allows the 
developer to assess the effect of specific characteristics 
on performance, and allows the user to assess 
performance of the system on types of inputs that are of 
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particular interest to them.  For example, if the 
developer or end-user wants to assess the ability of a 
system to recognize gene symbols with a particular 
combination of letter case, hyphenation, and presence 
or absence of numerals, the data and associated code 
that we provide can be used to generate a test suite 
consisting of symbols with and without that 
combination of features in a variety of sentential 
contexts. 

Inspiration for this work comes on the one hand 
from standard principles of software engineering and 
software testing, and on the other hand from descriptive 
linguistics (Harris 1951, Samarin 1967).  In Hirschman 
and Mani’s taxonomy of evaluation techniques, our 
methodology is referred to as feature-based, in that it is 
based on the principle of classifying the inputs to the 
system in terms of some set of features that are relevant 
to the application of interest.  It is designed to provide 
the developer or user with detailed information about 
the performance of her EI system.  We apply it to five 
molecular biology EI and information extraction 
systems: ABGene (Tanabe and Wilbur 2002a, Tanabe 
and Wilbur 2002b); KeX/PROPER (Fukuda et al. 
1997); Yapex (Franzén et al. 2002); the stochastic POS 
tagging-based system described in Cohen et al. (in 
submission); and the entity identification component of 
Ono et al.’s information extraction system (Ono et al. 
2001), and show how it gives detailed useful 
information about each that is not apparent from the 
standard metrics and that is not documented in the cited 
publications.  (Since we are not interested in punishing 
system developers for graciously making their work 
available by pointing out their flaws, we do not refer to 
the various systems by name in the remainder of this 
paper.)   

Software testing techniques can be grouped into 
structured (Beizer 1990), heuristic (Kaner et al. 2002), 
and random categories.  Testing an EI system by 
running it on a corpus of texts and calculating precision, 
recall, and F-score for the results falls into the category 
of random testing.  Random testing is a powerful 
technique, in that it is successful in finding bugs.  When 
done for the purpose of evaluation, as distinct from 
testing (see Hirschman and Thompson 1997 for the 
distinction between the two, referred to there as 
performance evaluation and diagnostic evaluation), it 
also is widely accepted as the relevant index of 
performance for publication.  However, its output lacks 
important information that is useful to a system 
developer (or consumer): it tells you how often the 
system failed, but not what it failed at; it tells you how 
often the system succeeds, but not where its strengths 
are.   

For the developer or the user, a structured test suite 
offers a number of advantages in answering these sorts 
of questions.  The utility of such test suites in general 

software testing is well-accepted.  Oepen et al. (1998) 
lists a number of advantages of test suites vs. 
naturalistic corpora for testing natural language 
processing software in particular: 
• Control over test data: test suites allow for 

“focussed and fine-grained diagnosis of system 
performance” (15).  This is important to the 
developer who wants to know exactly what 
problems need to be fixed to improve performance, 
and to the end user who wants to know that 
performance is adequate on exactly the data that 
they are interested in. 

• Systematic coverage: test suites can allow for 
systematic evaluation of variations in a particular 
feature of interest.  For example, the developer 
might want to evaluate how performance varies as 
a function of name length, or case, or the presence 
or absence of hyphenation within gene symbols.  
The alternative to using a structured test suite is to 
use a corpus, and then search through it for the 
relevant inputs and hope that they are actually 
attested. 

• Control of redundancy: while redundancy in a 
corpus is representative of actual redundancy in 
inputs, test suites allow for reduction of 
redundancy when it obscures the situation, or for 
increasing it when it is important to test handling of 
a feature whose importance is greater than its 
frequency in naturally occurring data.  For 
example, names of genes that are similar to names 
of inherited diseases might make up only a small 
proportion of the gene names that occur in PubMed 
abstracts, but the user whose interests lie in 
curating OMIM might want to be able to assure 
herself that coverage of such names is adequate, 
beyond the level to which corpus data will allow.   

• Inclusion of negative data: in the molecular 
biology domain, a test suite can allow for 
systematic evaluation of potential false positives.   

• Coherent annotation: even the richest metadata is 
rarely adequate or exactly appropriate for exactly 
the questions that one wants to ask of a corpus.  
Generation of structured, feature-based test suites 
obviates the necessity for searching through 
corpora for the entities and contexts of interest, and 
allows instead the structuring of contexts and 
labeling of examples that is most useful to the 
developer. 

The goal of this paper is to describe a methodology and 
publicly available data set for constructing customized 
and refinable test suites in the molecular biology 
domain quickly and easily.  A crucial difference 
between similar work that simply documents a 
distributable test suite (e.g. Oepen (1998) and Volk 
(1998)) and the work reported in this paper is that we 
are distributing not a static test suite, but rather data for 



generating test suites—data that is structured and 
classified in such a way as to allow software developers 
and end users to easily generate test suites that are 
customized to their own assessment needs and 
development questions.  We build this methodology 
and data on basic principles of software engineering 
and of linguistic analysis.  The first such principle 
involves making use of the software testing notion of 
the catalogue.   

A catalogue is a list of test conditions, or qualities 
of particular test inputs (Marick 1997).  It corresponds 
to the features of feature-based testing, discussed in 
Hirschman and Mani (2003) and to the schedule 
(Samarin 1967:108-112) of descriptive linguistic 
technique.  For instance, a catalogue of test conditions 
for numbers might include: 
• zero, non-zero, real, integer 
• positive, negative, unsigned 
• the smallest number representable in some data 

type, language, or operating system; smaller than 
the smallest number representable 

• the largest number representable; larger than the 
largest number representable  

Note that the catalogue includes both “clean” 
conditions and “dirty” ones.  This approach to software 
testing has been highly successful, and indeed the best-
selling book on software testing (Kaner et al. 1999) can 
fairly be described as a collection of catalogues of 
various types. 

The contributions of descriptive linguistics include 
guiding our thinking about what the relevant features, 
conditions, or categories are for our domain of interest.  
In this domain, that will include the questions of what 
features may occur in names and what features may 
occur in sentences—particularly features in the one that 
might interact with features in the other.  Descriptive 
linguistic methodology is described in detail in e.g. 
Harris (1951) and Samarin (1967); in the interests of 
brevity, we focus on the software engineering 
perspective here, but the thought process is very 
similar.  The software engineering equivalent of the 
descriptive linguist’s hypothesis is the fault model 
(Binder 1999)—an explicit hypothesis about a potential 
source of error based on “relationships and components 
of the system under test” (p. 1088).  For instance, 
knowing that some EI systems make use of POS tag 
information, we might hypothesize that the presence of 
some parts of speech within a gene name might be 
mistaken for term boundaries (e.g. the of in bag of 
marbles, LocusID 43038).  Catalogues are used to 
develop a set of test cases that satisfies the various 
qualities.  (They can also be used post-hoc to group the 
inputs in a random test bed into equivalence classes, 
although a strong motivation for using them in the first 
place is to obviate this sort of search-based post-hoc 
analysis.)  The size of the space of all possible test 

cases can be estimated from the Cartesian product of all 
catalogues; the art of software testing (and linguistic 
fieldwork) consisting, then, of selecting the highest-
yielding subset of this often enormous space that can be 
run and evaluated in the time available for testing.   

At least three kinds of catalogues are relevant to 
testing an EI system.  They fall into one of two very 
broad categories: syntagmatic, having to do with 
combinatory properties, and paradigmatic, having to do 
with varieties of content.  The three kinds of catalogues 
are: 
1. A catalogue of environments in which gene names 

can appear.  This is syntagmatic. 
2. A catalogue of types of gene names.  This is 

paradigmatic. 
3. A catalogue of false positives.  This is both 

syntagmatic and paradigmatic. 
The catalogue of environments would include, for 
example, elements related to sentence position, such as 
sentence-initial, sentence-medial, and sentence-final; 
elements related to list position, such as a single gene 
name, a name in a comma-separated list, or a name in a 
conjoined noun phrase; and elements related to 
typographic context, such as location within 
parentheses (or not), having attached punctuation (e.g. a 
sentence-final period) (or not), etc.  The catalogue of 
types of names would include, for example, names that 
are common English words (or not); names that are 
words versus “names” that are symbols; single-word 
versus multi-word names; and so on.  The second 
category also includes typographic features of gene 
names, e.g. containing numbers (or not), consisting of 
all caps (or not), etc.  We determined candidate features 
for inclusion in the catalogues through standard 
structuralist techniques such as examining public-
domain databases containing information about genes, 
including FlyBase, LocusLink, and HUGO, and by 
examining corpora of scientific writing about genes, 
and also by the software engineering techniques of 
“common sense, experience, suspicion, analysis, [and] 
experiment” (Binder 1999).  The catalogues then 
suggested the features by which we classified and 
varied the entities and sentences in the data.   
General format of the data 
The entities and sentences are distributed in XML 
format and are available at a supplemental web site 
(compbio.uchsc.edu/Hunter_lab/testing_ei).  A plain-
text version is also available.  A representative entity is 
illustrated in Figure 1 below, and a representative 
sentence is illustrated in Figure 2.  All data in the 
current version is restricted to the ASCII character set.   
Test suite generation   
Data sets are produced by selecting sets of entity 
features and sets of sentential context features and 
inserting the entities into slots in the sentences.    This 



can be accomplished with the user’s own tools, or using 
applications available at the supplemental web site.  
The provided applications produce two files: a file 
containing raw data for use as test inputs, and a file 
containing the corresponding gold standard data marked 
up in an SGML-like format.  For example, if the raw 
data file contains the sentence ACOX2 polymorphisms 
may be correlated with an increased risk of larynx 
cancer, then the gold standard file will contain the 
corresponding sentence <gp>ACOX2</gp> 
polymorphisms may be correlated with an increased 
risk of larynx cancer.  Not all users will necessarily 
agree on what counts as the “right” gold standard—see 
Olsson et al. (2002) and the BioCreative site for some 
of the issues.  Users can enforce their own notions of 
correctness by using our data as input to their own 
generation code, or by post-processing the output of our 
applications.   
 
ID: 136 
name_vs_symbol: n 
length: 3 
case: a 
contains_a_numeral: y 
contains_Arabic_numeral: y 
Arabic_numeral_position: f 
contains_Roman_numeral: 
<several typographic features omitted> 
contains_punctuation: 1 
contains_hyphen: 1 
contains_forward_slash: 
<several punctuation-related features omitted> 
contains_function_word: 
function_word_position: 
contains_past_participle: 1 
past_participle_position: i 
contains_present_participle: 
present_participle_position: 
source_authority: HGNC ID: 2681 "Approved Gene 
Name" field 
original_form_in_source: death-associated 
protein 6 
data: death-associated protein 6 

Figure 1  A representative entry from the entity data 
file.  A number of null-valued features are omitted for 
brevity—see the full entry at the supplemental web site.  
The data field (last line of the figure) is what is output 
by the generation software. 
ID: 25 
type: tp 
total_number_of_names: 1 
list_context:  
position: I 
typographic_context:  
appositive:  
source_id: PMID: 14702106 
source_type: title 
original_form_in_source: Stat-3 is required 
for pulmonary homeostasis during hyperoxia. 
slots: <> is required for pulmonary 
homeostasis during hyperoxia.    
 

Figure 2  A representative entry from the sentences 
file.  Features and values are explained in section 2.2 
Feature set for sentential contexts below.   The slots 
field (last line of the figure) shows where an entity 
would be inserted when generating test data.   

2   The taxonomy of features for entities 
and sentential contexts 
In this section we describe the feature sets for entities 
and sentences, and motivate the inclusion of each, 
where not obvious.   

2.1   Feature set for entities 
Conceptually, the features for describing name-inputs 
are separated into four categories: 
orthographic/typographic, morphosyntactic, source, and 
lexical.   
• Orthographic/typographic features describe the 
presence or absence of features on the level of 
individual characters, for example the case of letters, 
the presence or absence of punctuation marks, and the 
presence or absence of numerals.   

• Morphosyntactic features describe the presence or 
absence of features on the level of the morpheme or 
word, such as the presence or absence of participles, 
the presence or absence of genitives, and the presence 
or absence of function words.   

• Source features are defined with reference to the 
source of an input.  (It should be noted that in software 
engineering, as in Chomskyan theoretical linguistics, 
data need not be naturally-occurring to be useful; 
however, with the wealth of data available for gene 
names, there is no reason not to include naturalistic 
data, and knowing its source may be useful, e.g. in 
evaluating performance on FlyBase names, etc.)  
Source features include source type, e.g. literature, 
database, or invention; identifiers in a database; 
canonical form of the entity in the database; etc. 

• Lexical features are defined with respect to the 
relationship between an input and some outside source 
of lexical information, for instance whether or not an 
input is or contains a common English word.  This is 
also the place to indicate whether or not an input is 
present in a resource such as LocusLink, whether or not 
it is on a particular stoplist, whether it is in-vocabulary 
or out-of-vocabulary for a particular language model, 
etc. 

The distinction between these three broad 
categories of features is not always clear-cut.  For 
example, presence of numerals is an 
orthographic/typographic feature, and is also 
morphosyntactic when the numeral postmodifies a 
noun, e.g. in heat shock protein 60.  Likewise, features 
may be redundant—for example, the presence of a 
Greek letter in the square-bracket- or curly-bracket-



enclosed formats, or the presence of an apostrophized 
genitive, are not independent of the presence of the 
associated punctuation marks.  However, Boolean 
queries over the separate feature sets let them be 
manipulated and queried independently. So, entities 
with names like A' can be selected independently of 
names like Parkinson’s disease.   

2.1.1   Orthographic/typographic features 
Length:  Length is defined in characters for 

symbols and in whitespace-tokenized words for names.   
Case: This feature is defined in terms of five 

possible values: all-upper-case, all-lower-case, upper-
case-initial-only, each-word-upper-case-initial (e.g. 
Pray For Elves), and mixed.  The fault model 
motivating this feature hypothesizes that taggers may 
rely on case to recognize entities and may fail on some 
combinations of cases with particular sentential 
positions.  For example, one system performed well on 
gene symbols in general, except when the symbols are 
lower-case-initial and in sentence-initial position (e.g. 
p100 is abundantly expressed in liver… (PMID 
1722209) and bif displays strong genetic interaction 
with msn (PMID 12467587).    

Numeral-related features: A set of features 
encodes whether or not an entity contains a numeral, 
whether the numeral is Arabic or Roman, and the 
positions of numerals within the entity (initial, medial, 
or final).  The motivation for this feature is the 
hypothesis that a system might be sensitive to the 
presence or absence of numerals in entities.  One 
system failed when the entity was a name (vs. a 
symbol), it contained a number, and the number was in 
the right-most (vs. a medial) position in a word.  It 
correctly tagged entities like glucose 6 phosphate 
dehydrogenase but missed the boundary on 
<gp>alcohol dehydrogenase</gp> 6. This pattern was 
specific to numbers—letters in the same position are 
handled correctly.  

Punctuation-related features: A set of features 
includes whether an entity contains any punctuation, the 
count of punctuation marks, and which marks they are 
(hyphen, apostrophe, etc.).  One system failed to 
recognize names (but typically not symbols) when they 
included hyphens.  Another system had a very reliable 
pattern of failure involving apostrophes just in case they 
were in genitives. 

Greek-letter-related features:  These features 
encode whether or not an entity contains a Greek letter, 
the position of the letter, and the format of the letter.  
(This feature is an example of an orthographic feature 
which may be defined on a substring longer than a 
character, e.g. beta.)  Two systems had problems 
recognizing gene names when they contained Greek 
letters in the PubMed Central format, i.e. [beta]1 
integrin.   

2.1.2   Morphosyntactic features 
The most salient morphosyntactic feature is whether an 
entity is a name or a symbol.  The fault model 
motivating this feature suggests that a system might 
perform differently depending on whether an input is a 
name or a symbol.  The most extreme case of a system 
being sensitive to this feature was one system that 
performed very well on symbols but recognized no 
names whatsoever.   

Features related to function words: a set of 
features encodes whether or not an entity contains a 
function word, the number of function words in the 
entity, and their positions—for instance, the facts: that 
scott of the antarctic (FlyBase ID FBgn0015538) 
contains two function words; that they are of and the; 
and that they are medial to the string.  This feature is 
motivated by two fault models.  One posits that a 
system might apply a stoplist to its input and that 
processing of function words might therefore halt at an 
early stage.  The other posits that a system might 
employ shallow parsing to find boundaries of entities 
and that the shallow parser might insert boundaries at 
the locations of function words, causing some words to 
be omitted from the entity.  One system always had 
partial hits on names that were multi-word unless each 
word in it was upper-case-initial, or there was an 
alphanumeric postmodifier (i.e. a numeral, upper-cased 
singleton letter, or Greek letter) at the right edge.   

Features related to inflectional morphology: a 
set of features encodes whether or not an entity contains 
nominal number or genitive morphology or verbal 
participial morphology, and the positions of the words 
in the entity that contain those morphemes, for instance 
the facts that apoptosis antagonizing transcription 
factor (HUGO ID 19235) contains a present participle 
and that the word that contains it is medial to the string.   

Features related to parts of speech: Future 
development of the data will include features encoding 
the parts of speech present in names. 

2.1.3   Source features 
Source or authority:  This feature encodes the 

source of or authority cited for an entity.  For many of 
the entries in the current data, it is an identifier from 
some database.  For others, it is a website (e.g. 
www.flynome.org).  Other possible values include the 
PMID of a document in which it was observed.   

Original form in source:  Where there is a source 
for the entity or for some canonical form of the entity, 
the original form is given.  This is not equivalent to the 
“official” form, but rather is the exact form in which the 
entity occurs; it may even contain typographic errors 
(e.g. the extraneous space in nima –related kinase, 
LocusID 189769 (reported to the NCBI service desk).   

http://www.flynome.org/


2.1.4   Lexical features 
These might be better called lexicographic features.  
They can be encoded impressionistically, or can be 
defined with respect to an external source, such as 
WordNet, the UMLS, or other lexical resources.  They 
may also be useful for encoding strictly local 
information, such as whether or not a gene was attested 
in training data or whether it is present in a particular 
language model or other local resource.  These features 
are allowed in the taxonomy but are not implemented in 
the current data.  Our own use of the entity data 
suggests that it should be, especially encoding of 
whether or not names include common English words.  
(The presence of function words is already encoded.)   

2.2   Feature set for sentential contexts 
In many ways, this data is much harder to build and 
classify than the names data, for at least two reasons. 
Many more features interact with each other, and as 
soon as a sentence contains more than one gene name, 
it contains more than one environment, and the number 
of features for the sentence as a whole is multiplied, as 
are the interactions between them.  For this reason, we 
have focussed our attention so far on sentences 
containing only a single gene name, although the 
current version of the data does include a number of 
multi-name sentences.  

2.2.1   Positivity 
The fundamental distinction in the feature set for 
sentences has to do with whether the sentence is 
intended to provide an environment in which gene 
names actually appear, or whether it is intended to 
provide a non-trivial opportunity for false positives. 

True positive sentences contain some slot in which 
entities from the names data can be inserted, e.g. <> 
polymorphisms may be correlated with an increased 
risk of larynx cancer or <> interacts with <> and <> 
in the two-hybrid system.   

False positive sentences contain one or more 
tokens that are deliberately intended to pose 
challenging opportunities for false positives.  Certainly 
any sentence which does not consist all and only of a 
single gene name contains opportunities for false 
positives, but not all potential false positives are created 
equal.  We include in the data set sentences that contain 
tokens with orthographic and typographic 
characteristics that mimic the patterns commonly seen 
in gene names and symbols, e.g.  The aim of the present 
study is to evaluate the impact on QoL… where QoL is 
an abbreviation for quality of life.  We also include 
sentences that contain “keywords” that may often be 
associated with genes, such as gene, protein, mutant, 
expression, etc., e.g. Demonstration of antifreeze 
protein activity in Antarctic lake bacteria.  

2.2.2   Features for TP sentences 
Number and positional features encode the total number 
of slots in the sentence, and their positions.  The value 
for the position feature is a list whose values range over 
initial, medial, and final.  For example, the sentence  
<> interacts with <> and <> in the two-hybrid system 
has the value I,M (initial and medial) for the position 
feature.   

Typographic context features encode issues 
related to tokenization, specifically related to 
punctuation, for example if a slot has punctuation on 
the left or right edge, and the identity of the punctuation 
marks. 

List context features encode data about position in 
lists.  These include the type of list (coordination, 
asyndetic coordination, or complex coordination).  

The appositive feature is for the special case of 
appositioned symbols or abbreviations and their full 
names or definitions, e.g. The Arabidopsis INNER NO 
OUTER (INO) gene is essential for formation and…  
For the systems that we have tested with it, it has not 
revealed problems that are independent of the 
typographic context.  However, we expect it to be of 
future use in testing systems for abbreviation expansion 
in this domain.   

Source features encode the identification and type 
of the source for the sentence and its original form in 
the source.  The source identifier is often a PubMed ID.  
It bears pointing out again that there is no a priori 
reason to use sentences with any naturally-occurring 
“source” at all, as opposed to the products of the 
software engineer’s imagination.  Our primary rationale 
for using naturalistic sources at all for the sentence data 
has more to do with convincing the user that some of 
the combinations of entity features and sentential 
features that we claim to be worth generating actually 
do occur.  For instance, it might seem counterintuitive 
that gene symbols or names would ever occur lower-
case-initial in sentence initial position, but in fact we 
found many instances of this phenomenon; or that a 
multi-word gene name would occur in text in all upper-
case letters, but see the INNER NO OUTER example 
above.   

Syntactic features encode the characteristics of 
the local environment.  Some are very lexical, such as: 
whether the following word is a keyword; whether the 
preceding word is a species name.  Others are more 
abstract, such as whether the preceding word is an 
article; whether the preceding word is an adjective; 
whether the preceding word is a conjunction; whether 
the preceding word is a preposition.  Interactions with 
the list context features are complex.  The fault model 
motivating these features hypothesizes that POS context 
and the presence of keywords might affect a system’s 
judgments about the presence and boundaries of names.   



2.2.3   Features for FP sentences 
Most features for FP sentences encode the 
characteristics that give the contents of the sentence 
their FP potential.  The keyword feature is a list of 
keywords present in the sentence, e.g. gene, protein, 
expression, etc.  The typographic features feature 
encodes whether or not the FP potential comes from 
orthographic or typographic features of some token in 
the sentence, such as mixed case, containing hyphens 
and a number, etc.  The morphological features feature 
encodes whether or not the FP potential comes from 
apparent morphology, such as words that end with ase 
or in.   

3   Testing the relationship between 
predictions from performance on a test 
suite and performance on a corpus 
Precision and recall on data in a structured test suite 
should not be expected to predict precision and recall 
on a corpus, since there is no relation between the 
prevalence of features in the test suite and prevalence of 
features in the corpus.  However, we hypothesized that 
performance on an equivalence class of inputs in a test 
suite might predict performance on the same 
equivalence class in a corpus.  To test this hypothesis, 
we ran a number of test suites through one of the 
systems and analyzed the results, looking for patterns of 
errors.  The test suites were very simple, varying only 
entity length, case, hyphenation, and sentence position.  
Then we ran two corpora through the same system and 
examined the output for the actual corpora to see if the 
predictions based on the system’s behavior on the test 
suite actually described performance on similar entities 
in the corpora.     

One corpus, which we refer to as PMC (since it 
was sampled from PubMed Central), consists of 2417 
sentences sampled randomly from a set of 1000 full-
text articles.  This corpus contains 3491 entities.  It is 
described in Tanabe and Wilbur (2002b).  The second 
corpus was distributed as training data for the 
BioCreative competition.  It consists of 10,000 
sentences containing 11,851 entities and is described in 
detail at www.mitre.org/public/biocreative.  Each 
corpus is annotated for entities.   

The predictions based on the system’s performance 
on the test suite data were: 
1. The system will have low recall on entities that 

have numerals in initial position, followed by a 
dash, e.g. 825-Oak, 12-LOX, and 18-wheeler 
(/^\d+-/ in Perl). 

2. The system will have low recall on names that 
contain stopwords, such as Pray For Elves and ken 
and barbie.   

3. The system will have low recall on sentence-
medial terms that begin with a capital letter, such 
as Always Early.   

4. The system will have low recall on three-character-
long symbols.   

5. The system will have good recall on (long) names 
that end with numerals. 

We then examined the system’s true positive, false 
positive, and false negative outputs from the two 
corpora for outputs that belonged to the equivalence 
classes in 1-5.  Table 1 shows the results. 
 
 BioCreative 
 TP FP FN P R 
1 12 57 17 .17 .41 
2 0 1 38 0.0 0.0 
4 556 278 512 .67 .52 
5 284 251 72 .53 .80 
 PubMed Central 
 TP FP FN P R 
1 8 10 0 .44 1.0 
2 1 0 2 1.0 .33 
4 163 64 188 .72 .46 
5 108 54 46 .67 .70 
 

Table 1  Performance on two corpora for the 
predictable categories  Numbers in the far left column 
refer to the predictions listed above.  Overall 
performance on the corpora was: BioCreative P = .65, 
R = .68, and PMC P = .71, R = .62.   

For equivalence classes 1, 2, and 4, the predictions 
mostly held.  Low recall was predicted, and actual 
recall was .41, 0.0, .52, 1.0 (the one anomaly), .33, and 
.46 for these classes of names, versus overall recall of 
.68 on the BioCreative corpus and .62 on the PMC 
corpus.  The prediction held for equivalence class 5, as 
well; good recall was predicted, and actual recall was 
.80 and .70—higher than the overall recalls for the two 
corpora.  The third prediction could not be evaluated 
due to the normalization of case in the gold standards.  
These results suggest that a test suite can be a good 
predictor of performance on entities with particular 
typographic characteristics.   

4   Conclusion 
We do not advocate using this approach to replace the 
quantitative evaluation of EI systems by precision, 
recall, and F-measure.  Arguably, overall performance 
on real corpora is the best evaluation metric for entity 
identification, in which case the standard metrics are 
well-suited to the task.  However, at specific points in 
the software lifecycle, viz. during development and at 
the time of acceptance testing, the standard metrics do 
not provide the right kind of information.  We can, 



however, get at this information if we bear in mind two 
things: 
1. Entity identification systems are software, and as 

such can be assessed by standard software testing 
techniques.  

2. Entity identification systems are in some sense 
instantiations of hypotheses about linguistic 
structure, and as such can be assessed by standard 
linguistic “field methods.”  

This paper describes a methodology and a data set for 
utilizing the principles of software engineering and 
linguistic analysis to generate test suites that answer the 
right kinds of questions for developers and for end 
users.  Readers are invited to contribute their own data.   
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