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Abstract

In this paper we describe a prosody-
dependent duration model as a first step to-
ward incorporating a prosodic consistency
constraint into a speech recognizer. As
part of this model, we describe a text-
based prosody prediction scheme, novel in
its use of a preliminary integrated comma-
prediction/POS tagging step. We also
demonstrate a relative decrease in perplex-
ity using the prosody-dependent duration
model and analyze what conditioning fac-
tors most contributed to that decrease. The
analysis indicates that while word posi-
tion is, by far, the most important fac-
tor, predicted prosodic labeling information
also contributes to the decrease. This fi-
nal result suggests a benefit to integrat-
ing a prosodic consistency constraint into
a speech recognition system.

1 Introduction

While much effort has gone into using prosody in
the areas of speech synthesis and understanding (e.g
(Noth et al., 2000; Taylor and Black, 1998)), less
has been focused on using it to aid directly in the
task of speech recognition (e.g. (Stolcke et al., 1999;
Ostendorf et al., 2003; Chen et al., 2003).) The util-
ity of prosody in speech recognition comes from the
fact that, while prosody is not fully determined by
an utterances lexical content, lexical content does
make some prosodic realizations more probable than
others. This implies that we can meaningfully ask
whether the acoustic cues to the prosody of an ut-
terance are consistent with a textual hypothesis.

In this work we report on an initial effort to de-
velop a prosody-dependent duration model. It is
closely related to (Chen et al., 2003). However, while

that work uses a standard language model for text-
based prosody prediction, we incorporate techniques
borrowed from speech synthesis research as well as an
automatic comma annotation technique in an effort
to increase robustness.

The rest of this paper proceeds as follows. In Sec-
tion 2 we begin with a description of a very general
framework to incorporate a prosodic consistency con-
straint into speech recognition. In Section 3, we de-
scribe our text-based prosody prediction algorithm.
This is followed by a description of duration model-
ing in Section 4. After that, we present experiments
and results in Section 5. We end with a brief sum-
mary in Section 6 and a discussion of future work in
Section 7.

2 A Prosodic Consistency
Framework

Figure 1 illustrates a framework for incorporating a
prosodic consistency constraint into a speech recog-
nizer. On the left path, an N-best list is generated by
the recognizer and text-based prosody prediction is
performed on each of the N-best entries. On the right
path the utterance is analyzed for acoustic-prosodic
cues. The level of consistency between the predicted
prosody for each entry and the acoustic cues mea-
sured in the utterance is then used to rescore the
N-best list.

This work does not implement a speech recognizer.
Instead, our intent is to show that using a particular
prosodic cue in this framework, specifically duration,
has the potential to reduce the recognition search
space. In this effort, the “Acoustic Prosodic Analy-
sis” component shown in Figure 1 simply reads the
phone durations from the N-best list. The “Text-
based Prosody Prediction” component, however, is
fairly complex, and the next section gives a full de-
scription of its inner-workings.
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Figure 1: A framework for incorporating prosodic
consistency into a speech recognition system.

3 Text-based Prosody Prediction

3.1 Overview

The problem being addressed by text-based prosody
prediction is that of assigning probabilities to
prosodic labellings for a string of text, that is we
are attempting to find the probability, P(L|W) for
a particular prosodic labeling, L, given the word
string, W = {w1,ws...wn}. The labeling consists
of phrase breaks and prominences. Specifically, each
word boundary is put into one of three categories:
no phrase break, intermediate phrase break, or full
phrase break. Each word is labeled as either promi-
nent or not prominent.

We decompose the probability P(L|W) based on
comma locations within the text, C, and part-of-
speech (POS) labels, S:

PLw) = Y P(L,C,S|W) (1)
C,S

= Y P(L|C,S,W)P(C,S|W) (2)
C,S

This decomposition suggests a comma and POS
prediction step to obtain P(C,S|W) followed by
prosodic prediction to obtain P(L|C,S,W). The
method is novel in the inclusion of the comma pre-
diction step. The motivation for this comes from the
observation that full phrase breaks often occur in the
presence of a comma. Indeed, predicting prosodic
boundaries with punctuated text is an easier task
(Ostendorf and Veilleux, 1994; Taylor and Black,
1998). An alternative approach, taken in (Ostendorf
and Veilleux, 1994), would be to do syntactic analy-
sis of the text, and then use constituent boundaries

to aid in boundary prediction. However, we hope
that our method may later be successfully applied to
more spontaneous speech, which is difficult to parse
syntactically. We will now describe the models used
for P(C,S|W) and P(L|C,S,W).

3.2 Comma Prediction and POS Labeling

With the comma prediction model, we are attempt-
ing to compute the probability P(C,S|W), that is
the probability of a particular set of comma place-
ments, C, and POS tags, S, for a word string, W.
By jointly determining C' and S, this implementa-
tion represents a hybrid between the comma predic-
tion algorithm presented in (Beeferman et al., 1998)
and an HMM POS tagging algorithm like that in
(DeRose, 1988).

The hybrid model is separated into a unigram POS
component capturing P(W|S), the probability that a
particular POS tag is attached to a particular word,
and a comma/POS N-gram component representing
P(C,S):

P(C,S,W)
PCSW) = =g 3)
_ PWICSIPECS)
P(W)
PW|C,S) = P(W|S) (5)
= P(w]|s}) (6)
N
~ HP(wi|5i) (7)
=1

The history for the p(C,S) N-gram is based on the
past N-1 POS labels and/or commas.

Underlying this implementation is the assumption
that comma locations are independent of the words
given the words’ parts-of-speech. This is motivated
by the fact that commas occur at syntactic breaks,
and syntax and part-of-speech are very strongly re-
lated. Still, this represents a very large assump-
tion. In Section 5.3.1 we discuss how this assumption
is relaxed by giving common words their own POS
classes.

3.3 Prosodic Prediction

In the prosodic prediction component of the system,
we are computing the probability P(L|C, S, W). We
separate L into two parts: break classifications (B)
and prominence classifications (R).

P(L|C,S5,W) = P(B,RIC,S,W) (8
= P(R|B,C,S,W)P(B|C,S,W)(9)
We will first discuss how we obtain the break term,

P(B|C,S,W), then how we obtain the prominence
term, P(R|B,C,S,W).



3.3.1 Break Prediction

In obtaining P(B|C, S, W), we first assume that B
is conditionally independent of W given S and C":

P(B|C,S,W) =~ P(B|C,S) (10)

While this assumption results in ignoring word-
specific (and thus also semantic) cues to break lo-
cation, it does allow us to use some syntactic infor-
mation. Both (Ostendorf and Veilleux, 1994) and
(Taylor and Black, 1998) have found this approxi-
mation to be workable.

We relate the approximation to the joint probabil-
ity, P(B, C,S):

P(B,C,S)

P(BIC,S) = “p

(11)
To find P(B,C,S), we can use the framework pre-
sented in (Taylor and Black, 1998). Let b; be the
type of the boundary between w; and w;41.

P(B,C,S) = P(C,S|B)P(B)

N
(IT P(ei, siy siva| BY)P(B) (13)

(12)

Q

;1
(H P(ci, si siv1/bi)) P(B) (14)

The first component of the model, P(c;, s;, Si+1|b;)
captures the distribution of the parts-of speech sur-
rounding boundaries. The second component, P(B),
captures common boundary type patterns and is
modeled with an N-gram. The normalization term in
Equation 11, P(C, S) is estimated from the training
data.

The parts of speech were collapsed into the classes
described in (Ostendorf and Veilleux, 1994): content
words, determiners, prepositions, and a general class
incorporating function words that were neither deter-
miners nor prepositions. This is a smaller set than
was used in (Taylor and Black, 1998), and seemed
more appropriate given that we were working with a
smaller amount of training data.

3.3.2 Prominence Prediction

A simple model was wused to compute
P(R|B,C,S,W). The word classes used for
break prediction were further collapsed into function
and content word classes. A unigram model of
prominence based on these classes was then applied.
Thus, the following assumption was made:

P(R|B,C,S,W) ~ P(R|S)

This assumption is motivated by the fact that con-
tent words very often are prominent while function
words very often are not. While this simple unigram
model tends to over-predict prominences, it is used
by many speech synthesizers.

4 Duration Modeling

In this work we model only vowel durations. The
end result of applying the duration model should
be the probability of the vowel durations, D =
{d1,17 d1,2..., d2’1, d2’2, } (where dz'J' corresponds to
the jth vowel in w;), given the word sequence, W.

To allow the incorporation of prosodic prediction,
we decompose P(D|W):

P(D|W)

Z P(D, L|W) (17)
P

> P(D|W,L)P(LIW) (18)

P(L|W) is the probability computed by our text-
based prosody prediction model.

The assumption is made that the duration d; ; de-
pends only on w; (the word to which the vowel be-
longs), b; (the type of the following boundary) and
p; (whether or not word 7 is prominent). Also, we
assume that, given the word string and prosodic la-
beling, the durations are independent. This gives us:

N M;
P(D|W,L) ~ H H P(d; j|w;, bi, 1;) (19)

i=1j=1

Raw durations are normalized for both speaking
rate and vowel identity, using the method described
in (Wightman et al., 1992). This normalization
makes the duration independence assumption rea-
sonable. Normalized durations are modeled as Gaus-
sian distributions, and separate models are built de-
pending on 4 factors. The first factor is the lezical
stress of the vowel. Second is the vowel’s word po-
sition (i.e. whether or not the vowel is in the last
syllable of the word.) These first two factors reflect
the dependence of duration on w;. The third factor
is the boundary type following the word (i.e. whether
the word precedes an intermediate phrase break, a
full phrase break, or no phrase break.) This reflects
the dependence of duration on b;. The final factor
is prominence (i.e. whether or not the word contain-
ing the vowel is prominent.) This factor reflects the
dependence of duration on ;.



5 Experiments and Results

5.1 Data

Training and testing of the comma/POS prediction
component were completed using the tagged Wall
Street Journal portion of the Treebank corpus (Mar-
cus et al., 1993). 130,226 utterances were used for
training, while 1,986 were used for testing.

Training and testing of the prosodic prediction
component as well as the duration model were com-
pleted using the FM Radio News corpus (Ostendorf
and Veilleux, 1994). 485 (3 news stories read by 5
speakers) utterances were used for training, a super-
set of the 312 used in (Ostendorf and Veilleux, 1994).
For prosodic prediction, 23 sentences were used for
testing with 5 possible prosodic transcriptions con-
sidered correct. This is the same test set used in
(Ostendorf and Veilleux, 1994). The same 23 sen-
tences read by a single speaker were used for dura-
tion model tests. While the test speaker was part of
the training data, the test news story was not.

5.2 Evaluation Metric

In order to evaluate the extent to which duration
modeling was constraining the recognition search
space, we derived a measure of perplexity reduction.
In its standard form, perplexity measures the uncer-
tainty present in a language model. We wanted a
measure of how much prosody-dependent duration
information reduced uncertainty.
Suppose we computed perplexity using P(W|D)
instead of P(W):
PPdur — 2%1logzP(W\D) (20)
To obtain P(W|D), we can use Bayes rule with
the probability computed by the duration model (see
Section 4):

DIW)P(W)

pw|p) = “250 (21)

If we wish to compare the results of two duration
models, a and b, we can look at the percentage by
which model b reduces this duration-dependent per-
plexity:

PP(b)
Rpp = 1- % (22)
PPdu'r
95+ loga P (WD)
= 1-—— (23)

o =tloga P (WD)

P (DIW)\ ¥
= 1= (P(”)(DIW)> 29

Thus our evaluation metric, Rpp, can be com-
puted directly from our duration model probability
and a baseline duration model probability. For the
baseline, we use a global model trained on all vowel
data without regard to lexical stress, word position,
or phrase break or prominence locations, although
speaking rate and vowel identity normalization were
still performed.

5.3 Results

5.3.1 Text-based prediction

We first evaluate the performance of the comma
prediction component of the system. A 61.3% recall
rate and a 3.0% false dection rate are obtained, where
the recall rate is the probability that a comma is
predicted at a word boundary with a comma, and the
false detection rate is the probability that a comma is
predicted where none exists in the transcription. In
this experiment, a 5-gram model was utilized and the
top 1000 words/POS pairs (accounting for 51.2% of
the words in the training data) were assigned special
POS tags.

Now we turn to phrase break prediction results,
shown in Table 1. As mentioned previously, 5 “cor-
rect” prosodic labellings were available for each of
the test utterances, corresponding to the realizations
of 5 different speakers. The labeling most similar to
the automatic labeling for each utterance was used
to compute the results in the table. About 7% of
boundaries were full phrase breaks. For computa-
tional reasons, Equation 2 was not implemented as
is. Instead of summing over all C, the highest proba-
bility comma annotation was chosen and used in the
prosodic prediction step.

The table shows results under three different con-
ditions: using transcribed commas, without using
any comma prediction and using predicted comma
locations (from the model using POS information.)
We see that, while the system using predicted comma
locations does not perform as well as the one us-
ing the transcribed comma locations, it does perform
better overall than the system without comma pre-
diction.

We can also compare these results to those re-
ported in (Ostendorf and Veilleux, 1994), labeled O
& V in the table. We see that, using transcribed
comma information, our system, which, under this
condition, is virtually identical to (Taylor and Black,
1998), achieves a higher recall rate, but at the cost of
a higher false detection rate. Similarly, our system
using predicted commas has a higher recall rate than
the first O & V system, but it also has a higher false
detection rate. Finally, considering that only about
7% of the boundaries are phrase breaks, it does not



| Model | Commas || R [FD |
- None 69.4 | 8.3
- Transcribed || 87.0 | 6.0
- Predicted 75.4 | 7.6
o0&V None 66 5
O & V (w/syntax) None 71 4
o0&V Transcribed 81 4

Table 1: Full phrase break prediction recall and false
detection percentages without comma information,
with transcribed comma information and with pre-
dicted comma information. Results labeled O & V
are taken from (Ostendorf and Veilleux, 1994).

appear to perform as well overall as the O & V sys-
tem that incorporates syntax. This was expected, as,
in the O & V system the syntax is hand transcribed.
Our simple unigram model for prominence predic-
tion achieved 78.7% recall and 41% false detection.

5.3.2 Duration Modeling

Now we use the evaluation metric described in Sec-
tion 5.2 to assess whether or not we can use these
prosodic differences in duration to aid in recognition.
The results are shown in Table 2. Values for Rpp are
given both using the labeled prosody of the test data
as well as the prosodic labeling predicted by the text-
based model. The first row contains values of Rpp
computed using all of the duration conditioning fac-
tors enumerated in Section 4. The value of the metric
suggests a significant decrease in uncertainty.

The values of Rpp in the remaining rows are com-
puted by removing one conditioning factor. This
gives us an idea of how much each factor contributed
to the value in the first row. We see that, by far, word
position is the most important conditioning factor.
Removing it results in a sharp decrease in Rpp. In-
formation about phrase break location has the next
most significant effect, with its removal resulting in
decreases of .03 and .02 in the value of Rpp in the
labeled and predicted cases respectively. Prominence
is next, showing decreases of .03 and .01, while re-
moving lexical stress as a conditioning factor results
in a decrease of only .01 in both cases.

We were somewhat surprised that word position
was so important in comparison to break location.
We see two possible reasons for this. First, word
position affects one vowel in every word in every
test utterance. Phrase breaks occur only after about
one fifth of the words, resulting in less impact on
the probability P(D|W). Second, the speech in the
corpus was read by professional radio announcers,
whose job involves being exceptionally intelligible.

Rpp

Conditioning Labeled | Predicted
Factors Prosody | Prosody
all .16 .14
-word position .03 .03
-break .13 .12
-prominence 13 13
-lexical stress .15 .13

Table 2: Reduction in conditional perplexity using a
vowel duration model conditioned on word position,
break, prominence, and lexical stress. Dependence
on factors is removed one at a time to gauge the
importance of each.

We speculate that this may make durational differ-
ences less drastic than they may be in more casual
speech.

Table 2 also shows a decrease in Rpp when we
move from using labeled prosody to using predicted
prosody. This was expected. Even the best text-
based prosody model could not predict the exact
prosodic realization of a particular text string, as
it is an inherently ambiguous task. That said, our
text-based model could certainly be improved. Still,
the predicted prosody-dependent factors show some
effect on Rpp.

6 Summary

In this work we have implemented a text-based
prosody prediction scheme, novel in its use of a
preliminary integrated comma-prediction/POS tag-
ging step. We have also demonstrated an increase
in a word-level constraint metric using prosody-
dependent duration models, and analyzed what con-
ditioning factors most contributed to that increase.
The analysis indicates that while word position is, by
far, the most important factor, predicted prosodic la-
beling information also contributes to the increase.
This final result suggests a benefit to integrating
prosodic consistency into a speech recognition sys-
tem.

7 Future Work

The ultimate goal of this work is to use prosodic
consistency as a constraint in a speech recognizer.
To this end, we plan to close the loop on the work
described here by incorporating prosody-based du-
ration modeling into a speech recognition system.
We also plan to incorporate more acoustic prosodic
cues including pause duration, and fundamental fre-
quency information into this framework.



We feel that prosodic consistency may provide an
especially valuable constraint in more casual speech.
With this in mind, we are looking to move away
from the read speech domain used here and into more
spontaneous domains like university course lectures
and, at the extreme, phone conversations.
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