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Abstract

This paper describes results from several dozen
experimental systems, and draws conclusions
about the ability of speech recognition mod-
els to represent the relationship among syntax,
prosody, and segmental acoustics. Prosody-
dependent allophone modeling can reduce the
word error rate (WER) of a speech recognizer,
but only if both the language model and the
acoustic model encode explicit dependence on
prosody. Word error rate is improved mainly
because the observed prosody is linguistically
unlikely to co-occur with any incorrect word
string. Additional improvements, in both per-
plexity and WER, can be obtained using a
semi-factored language model, in which the re-
lationship between prosody and the word se-
quence is at least partly mediated by syntactic
tags. Careful analysis of the relationship be-
tween prosody and syntax indicates that syn-
tactic phrase boundaries are the most important
cue for prosodic phrase boundary recognition,
while part of speech is the most important cue
for locating pitch accents, but that neither of
these cues is entirely sufficient for either clas-
sification task. Experiments to port this sys-
tem from Radio News to the Switchboard cor-
pus are currently under way, but preliminary re-
sults suggest that the prosody of Switchboard is
profoundly different from the prosody of Radio
News.

1 Introduction

In prosody-dependent speech recognition, acoustic phone
models and acoustic prosody models are interdepen-
dent, so one cannot be searched without simultaneously

searching the other. Our first experiments in prosody-
dependent recognition did not explicitly model syntactic
structure, but we have discovered that the relationship be-
tween word sequence and prosodic tag sequence is most
accurately learned by a factored language model with an
explicit representation of syntactic class and, if possible,
syntactic phrase structure. Thus our systems require an
integrated probabilistic model of the relationship among
prosodic, syntactic, lexical, and acoustic features, sum-
marized as

V,P= P 1
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where O = [d1,...,0r] is a sequence of acoustic ob-
servations, W = [wy,...,wp] is a sequence of words,
and each word is tagged with both syntactic informa-
tion, S = [s1,...,sn] and prosodic information P =
[p1,---,pn]- As in most large vocabulary speech recog-
nition systems, Eq. 1 is implemented by way of an inter-
mediate sequence of allophone labels, Q = [g1,...,qr],
thus

p(W, S, P,0) ~ maxq p(0O|Q)p(Q|W, P)
p(W, P|S)p(S) 2)

Enabling technologies for the recognition of prosody
include prosody-dependent allophones and prosody-
sensitive acoustic observations, discussed in Sec. 2. En-
abling technology for the simultaneous recognition of
syntax is a factored prosody-dependent language model,
with factors representing part of speech and (in a rescor-
ing pass) CFG parse structure, discussed in Sections 3
and 5. The system has been trained and tested using the
Radio News Corpus (Ostendorf et al., 1995). The Radio
News Corpus is the largest publicly available corpus la-
beled with the tones and break indices (TOBI) prosodic
labeling standard (Beckman and Elam, 1994). The Radio
News Corpus was designed for speech synthesis studies.
By speech recognition standards, it is an extremely small



corpus (a bit over 3 hours of speech, read by seven pro-
fessional radio announcers). To our knowledge, no other
research group has reported speech recognition word er-
ror rate for this corpus, but two studies have reported au-
tomatic pitch accent recognition results for this corpus.
(Ostendorf and Ross, 1997) achieved 89% accent recog-
nition correctness given known word alignment. (Taylor,
2000) reported 72.7% accent recognition correctness, and
47.7% accent recognition accuracy, based purely on ob-
servation of FO (without lexical sequence information or
MFCC observations). Our experiments are not directly
comparable to either of these previous studies; like Tay-
lor, we do not assume a priori knowledge of word bound-
ary times, but like Ostendorf and Ross, we use word se-
quence information to aid us in the automatic labeling of
prosodic tags.

Current experiments seek to extend our system to the
Switchboard corpus. In order to train on Switchboard,
it is necessary, first, to both manually and automatically
generate TOBI labels for a certain amount of Switch-
board data, and second, to develop acoustic and language
models of disfluency. Sec. 6 describes our preliminary at-
tempts to transcribe and model the prosody of disfluency
in Switchboard.

2 Prosody-Dependent Allophones

In the notation of Eq. 2, recognition of prosody is en-
abled by the use of prosody-dependent allophone models
and prosody-sensitive acoustic observations. Prosody-
dependent allophones are similar to the clustered tri-
phones used in standard LVCSR, except that clusters may
be defined on the basis of prosodic as well as phonetic
context. Each allophone model is a three-state HMM
with an explicit duration PMF, and with two observation
streams. The first observation stream carries acoustic-
phonetic observations (currently MFCCs and energy).
The second observation stream carries acoustic-prosodic
observations (pitch). Allophone cluster definitions are
created separately for the duration PMFs, acoustic pho-
netic PDFs, and acoustic prosodic PDFs, thus each type
of observation is used to distinguish only those context
variables with which it is most highly correlated.
Allophone clusters may be defined by any of the fol-
lowing five context variables: left phonetic context, right
phonetic context, pitch accent, intonational phrase po-
sition, syntactic category. A complete specification of
these five context variables may be encoded using the
notation shown in Table 1. An allophone is considered
to be phrase-final if it is part of the thyme of the sylla-
ble preceding an intonational phrase boundary, and non-
final otherwise (Wightman et al., 1992). An allophone
is considered to be accented if it is part of the lexically
stressed syllable of a word transcribed as containing a
pitch accent, and unaccented otherwise. Other prosodic

Table 1: Context variables that may be used to deter-
mine an allophone cluster. A fully specified allophone
of phoneme PH takes the form L-PH+R_APS.

Variable Meaning Allowed Settings
L Left Phoneme | (vwl, gld, nsl, fric, stop)
R Right Phoneme | (vwl, gld, nsl, fric, stop)
A Accent (unaccented, accented)
P Phrase (non-final, final)
S Syntax (content, function)

distinctions that we have tested include the distinction be-
tween phrase-initial and non-initial allophones, and the
distinction between consonants in the onset and coda of
an accented syllable (Borys, 2003a; Chen et al., 2004);
our best-performing systems implement only the context
variables listed in Table 1. Our best-performing systems
currently only distinguish the manner class of phonemes
to the left and right, and not their place, voicing, or vo-
calic features (Borys, 2003b; Chen et al., 2004). As
place, voicing, and vocalic features have often proven
to be useful in other studies of allophonic variation, we
suspect that the uselessness of these features in our stud-
ies may be an artifact of the relatively small speech cor-
pus that we use to train and test our models. Finally, the
“syntactic category” tag may carry any syntactic features
that can modify allophone pronunciation without produc-
ing a pitch accent or phrase boundary; our current system
distinguishes allophones in content words vs. function
words.

Each allophone model is a three-state hidden Markov
model with an explicit duration probability mass function
(PMF). Modifications to HTK necessary in order to im-
plement an explicit duration PMF are described in (Chen
et al., 2004); di £ £ files creating the modified functions
HDRest, HDERest, HDInit, and HDVite are available at
http://www.ifp.uiuc.edu/speech/software/. Parameters of
the duration PMF and observation PDFs may be tied in-
dependently of one another.

Each state in the allophone model observes two
streams of data: an acoustic-phonetic stream, intended
to carry information primarily about the shape of
the vocal tract, and an acoustic-prosodic stream, in-
tended to carry information primarily about the voice
source. The acoustic-prosodic observation stream mod-
els a smoothed, nonlinearly transformed pitch frequency,
based on the pitch frequency fp and probability of voic-
ing (PV) estimated by the formant program in En-
tropic XWAVES. In order to remove pitch doubling and
halving errors, we use a method similar to that pro-
posed in (Kompe, 1997): a 3 mixture Gassian classifier
is trained on the fy data from each utterance, with mix-
ture component means constrained to equal 1/2, 1, and 2



times the utterance mean pitch. Measured fy candidates
classified as apparently equal to 2fy or f,/2 are elimi-
nated, as are fy measurements with small PVs. Remain-
ing fo measurements are normalized and converted to log
scale using the formula

fo =log (@ + 1) : 3)
7’

where p is the utterance mean pitch. Eq. 3 is intended to
mimic Fujisaki’s log(fo/ min fo) parameterization (Fu-
jisaki and Hirose, 1984; Hirai et al., 1997); in our ex-
periments we found that estimates of the mean pitch are
less sensitive to pitch tracking errors than estimates of the
min fy, thus we find that Eq. 3 is less sensitive to pitch
tracking errors than Fujisaki’s parameterization. Frames
with missing fo are filled by linearly interpolating fo be-
tween available frames, resulting in a smoothed normal-
ized pitch waveform fo(t). The acoustic-prosodic ob-
servation stream models a scalar observation, Y (t) =
g([fo(t — 20ms), ..., fo(t + 20ms)]). The function g(-)
is a multilayer perceptron, trained so that Y (¢) is an esti-
mate of the a posteriori probability that frame ¢ is part of
a pitch-accented syllable (Kim et al., in press).

In our best-performing systems, the duration PMF de-
pends on intonational phrase position, and the FO stream
depends on pitch accent. Splitting the duration PMF and
the FO stream seems to be effective, despite the small size
of the database, because each of these PDFs requires a
very small number of trainable parameters. The duration
PMF is stored as a discrete distribution, with 10-15 train-
able parameters per state. A Gaussian model of the scalar
FO stream works as well, in our experiments, as a mixture
Gaussian model, thus the FO stream requires only 2 train-
able parameters per state. The MFCC stream, by com-
parison, requires 237 trainable parameters per state for
a 3-mixture model of a 39-dimensional acoustic feature
vector. Because of the relatively high parameter dimen-
sion of the MFCC PDF, all of our attempts to condition
the MFCC stream on prosodic context have been stymied
by data sparsity problems.

Our approach to prosodic conditioning of the MFCC
stream is similar to that proposed in (Ostendorf et al.,
1997). Either individual HMM states (as in (Ostendorf
et al., 1997)) or entire allophone models are first split
into prosody-dependent allophones (as shown in Table 1),
then clustered using a standard cross-entropy-based hi-
erarchical clustering algorithm. Two baselines are used:
arecognizer composed of clustered prosody-independent
triphone models, and a recognizer composed of mono-
phone models. First, we attempted to cluster individ-
ual HMM states using the HTK hierarchical clustering
routines (HERest, HLStats, and HHEd); embedded re-
estimation using HERest failed repeatedly to converge,
apparently because the training database is just too small.

Second, we wrote our own code to cluster entire al-
lophone models using a cross-entropy metric compara-
ble to that used by HTK (Borys, 2003b; Borys, 2003a).
In order to guarantee convergence, the clustering algo-
rithm was constrained to generate a pre-specified num-
ber of clustered allophone models, regardless of the re-
sulting change in WER. Hierarchical clustering of tri-
phone or allophone models successfully improved the
cross-entropy of the test data, but WER of the clustered-
allophone recognizer was substantially worse than WER
of a 48-monophone baseline recognizer. WER of the
monophone recognizer was 24.8%; WER of the prosody-
independent clustered triphone model was 36.2%; WER
of the prosody-dependent clustered allophone model was
25.2%. Because clustered allophones failed to outper-
form a monophone model, all results reported in Sec. 4 of
this paper will be based on a 48-monophone recognizer,
with prosodic splitting only of the duration PMF and the
FO stream.

Although monophones outperform any triphone or al-
lophone model of this database, there are tendencies in
the clustering result that support prior phonetic literature
in interesting ways. Of the questions selected by the
clustering algorithm, slightly more questions concerned
intonational phrase position than pitch accent (21% vs.
16%) (Borys, 2003b), in agreement with a number of
phonetic studies that suggest important articulatory cor-
relates of intonational phrase boundary (Fougeron and
Keating, 1997; Dilley et al., 1996; Cho, 2001). Although
vowels were sensitive to all possible prosodic distinc-
tions, consonants were sensitive only to the “lengthen-
ing vs. strengthening vs. neutral” three-way distinction
proposed by Fougeron and Keating (Fougeron and Keat-
ing, 1997): phrase-final consonants (“lengthened”) were
insensitive to pitch accent, while consonants at the begin-
ning of a phrase-medial accented syllable were grouped
together with both accented and unaccented phrase-initial
consonants (“strengthened”) (Borys, 2003a).

3 Prosody-Dependent Language Models

The relationship between syntax, prosody, and the word
string is modeled by a tagged language model. A
tagged language model is an estimate of the probabil-
ity p(Wm,Pm, Sm|history) where w,, is the mth word
in the sentence, and p,, and s,, are its prosodic and
syntactic tags, respectively. The amount of prosodi-
cally labeled data in the English language is not nearly
sufficient to create a reliable maximum likelihood esti-
mate of p(Why,, Prm,, $m |history), therefore we have exper-
imented with three methods for estimating the language
model probability: a backed-off prosodically-labeled bi-
gram (with no encoding of syntax), and two factored lan-
guage models.

A prosody-dependent bigram is an estimate of



(Wi, D |Wm—1,Pm—1). The prosodic label p,, car-
ries two types of information: the pitch accent status of
word w,,, and the position of w,,, within an intonational
phrase. There are eight possible settings of p,,: a word
may be accented or unaccented; the same word may be
phrase-initial, phrase-final, phrase-medial, or it may be
a one-word intonational phrase (both phrase-initial and
phrase-final). A prosodically tagged word may be en-
coded in the form W_AP, where W is the word label, A
takes the values “a” or “u” (accented or unaccented),
and P takes the values “i,m,f,0” (initial, medial, final,
one-word phrase). The sequence [pm,_1,Pm] takes on
|P|? = 64 possible values, so in theory, a prosody-
dependent bigram model learns 64 times as many param-
eters as a prosody-independent bigram model. In prac-
tice, most possible combinations of w,, and p,, never oc-
cur, so their probabilities are estimated by backing off to
1-gram and 0-gram (uniform) distributions; in our experi-
ments, the actual parameter count of a prosody-dependent
bigram model is slightly less than three times that of a
prosody-independent bigram.

An empirically superior estimate of the prosody-
dependent bigram probability may be trained by ex-
plicitly modeling the relationship between the prosodic
tag, pg. and the syntactic tag, s; (Chen and Hasegawa-
Johnson, 2003). The syntactic tag s, specifies the part
of speech of word wy, and during second-pass decoding
(given a complete sentence hypothesis), may also spec-
ify the position of word wy, relative to syntactic phrase
and clause boundaries. By explicitly modeling syntactic
tags, the prosody-dependent bigram probability may be
written as

p(wj, pilwi, pi) = Y p(w;, pss 55, silws, pi) (@)
884
p(wj, pj, S5, $:|w;, p;) is proportional to the bigram prob-
ability of a syntactically and prosodically tagged vocab-
ulary. This tagged bigram probability may be computed
as

p(w]7pj7 Sjs Si‘wiupi) ~
p(pjlsj, 8i,0i)P(85, silwj, wi)p(wjlwi, pi)  (5)

The approximation in Eq. 5 is valid if we assume that,
first, prosody is independent of the word string given
knowledge of syntax (reasonable because neither side
of the equation has any explicit representation of dia-
log context), and second, that the syntactic tags are inde-
pendent of prosody given knowledge of the word string
(reasonable except for those cases when prosody may be
used to resolve syntactic ambiguity, (Price et al., 1991)).
Under these assumptions, the tagged bigram probability
factors into three terms. The first term, p(p;|s;, si,p:),
may be robustly estimated from a relatively small cor-
pus, because the syntactic tagset and the prosodic tagset

are both much smaller than the vocabulary. The sec-
ond term, p(s;, s;|w;, w;), is the probability that a word
sequence (w;,w;) implements syntactic tag sequence
(i, 8;). Computation of this probability is simplified by
appropriate choice of the syntactic tagset. During first-
pass recognition, the syntactic tag s; encodes only the
part of speech of word w;. In most cases, the word se-
quence (w;,w;) uniquely determines the POS sequence
(i, 8;); the few common exceptions can be robustly es-
timated from a large text database with manual or au-
tomatic POS tags. During second-pass recognition, in
an N-best rescoring paradigm, it is possible to assume
that the recognizer is computing the prosody-dependent
and syntax-dependent probability of a complete sentence
transcription, W = [wy,...,wp]. Given a complete
transcription, itis possible to compute the maximum like-
lihood phrase-level parse of the sentence using a context-
free grammar, and to augment the syntactic tag s; with in-
formation about the position of the word in its surround-
ing phrase and clause. Like POS, this new syntactic in-
formation may be treated, by the prosody-dependent lan-
guage model, as information uniquely determined by the
hypothesized word sequence (w;, w;).

The third term in Eq. 5, p(w;|w;,p;), is a prosody-
dependent semi-bigram probability. We have tested
two variants of Eq. 5: one in which the probability
p(wjlw;, p;) is estimated directly from the Radio News
corpus, using backed-off ML estimation, and one in
which the probability is estimated using the following ap-
proximation:

plwjlwi, pi) = PEEEbGuld

ZS_ o P(pilsis; )p(sisglwiw;)p(w;|ws:)
i055

(6)

Zw,zs, o Ppilsis;)p(siss|wiw;)p(w;|w:)
G

4 Results

Table 2 describes performance of six different recogniz-
ers, each based on 48 monophone HMMs, each com-
posed of an MFCC observation stream (3-mixture Gaus-
sian) and a pitch observation stream (Gaussian), with
explicit representation of duration probability density.
Each row was created by training the named recognizer
on about 90% of the TOBI-transcribed data in the Ra-
dio News corpus (six talkers), and testing on the re-
maining 10% (from the same six talkers). During test-
ing, each recognizer output its best estimate of the com-
plete lexical and prosodic transcription of the utterance.
Word error rate was computed by comparing the lexi-
cal transcription to a reference using the program HRe-
sults, without considering the prosodic transcription; ac-
cent and boundary recognition error rates were com-
puted by ignoring the lexical transcription. The sys-
tem in the first row has no explicit representation of



Table 2: Word error rate (WER), accent error rate (AER),
and intonational phrase boundary error rate (BER, in per-
cent) with six different combinations of acoustic model
(AM) and language model (LM). PI=prosody indepen-
dent (baseline), PD=prosody dependent. Accent and
boundary error rates of the system with no prosody de-
pendence are at chance.

AM | LM WER | AER | BER
PI PI 248 | 446 | 15.6
PD | PI 240 | 459 | 15.0
PI PD Bigram 243 | 23.1 | 145
PD | PD Bigram 234 | 203 | 143
PD | PD Semi-factored | 21.7 | 20.3 | 142
PD | PD Factored 22.9 19.7 | 134

prosody. Accent and boundary recognition error rates
of the first system are at chance for this database: 45%
of words in this database are unaccented (55% are ac-
cented), and 16% are phrase-final. In the second sys-
tem, the FO stream is accent-dependent and the duration
PMF is phrase-position dependent; all systems in this ta-
ble use a prosody-independent MECC stream. The third
system uses a prosody-dependent bigram language model
with no model of the acoustic correlates of prosody. The
fourth system uses a prosody-dependent bigram, plus
explicit models of accent-dependent pitch variation and
phrase-final lengthening. The fifth system uses a semi-
factored language model, meaning that p(w,, p;|w;, p;)
is factored, but p(w;|w;, p;) is not (Eq. 5 is used, but not
Eq. 6). The last system uses both Eq. 5 and 6.

The results of Table 2 indicate that word error rate
is only significantly improved if a prosody-dependent
acoustic model and a prosody-dependent language model
are combined. Prosody-dependent language model-
ing, alone, is sufficient for better-than-chance recogni-
tion of accents and boundaries; a prosody-dependent
acoustic model, alone, is insufficient for any type of
gain. Chen and Hasegawa-Johnson (Chen and Hasegawa-
Johnson, 2004) have presented a formal, information-
theoretic hypothesis explaining the necessity of simulta-
neous prosody-dependent language modeling and acous-
tic modeling. The core of the argument is the observa-
tion that word error rate is improved only if the observed
prosody (the prosody that maximizes the acoustic obser-
vation PDF) is linguistically unlikely to co-occur with
any incorrect word string.

The last two rows of Table 2 present results obtained
using the semi-factored and factored bigram language
models. The word perplexities of the bigram, semi-
factored, and factored language models, using the same
test corpus as in Table 2, are 60, 54, and 47, respectively.
The semi-factored model has significantly lower WER

Table 3: Accent error rate (AER) and boundary error rate
(BER) of five machine learning algorithms in the task of
automatic prosodic transcription of the Radio News cor-
pus based on word sequence information. NN=Neural
Network. From (Cohen, 2004).

Features: Word-based POS

Learning Algorithm AER BER
None (Chance) 426 19.1
C4.5 Rules 18.1 12.1
SLIPPER 184 11.5
QUEST Univariate 12.1
Features: Full Syntactic Parse

C4.5 Rules 173 112
SLIPPER 177 102
QUEST Univariate 17.5 10.6
QUEST Linear 174 110
NN, All Features 17.1  10.8
NN, Category Features | 16.9 104

than the baseline bigram (21.7% vs. 23.4%), but not sig-
nificantly lower boundary error rate (14.2% vs. 14.3%)
or accent error rate (20.3% vs. 20.3%). The factored
model has significantly improved boundary recognition
error (13.4% vs. 14.3%), but not significantly improved
WER (22.9% vs. 23.4%).

5 Prediction of Prosody from Syntax

Table 2 demonstrates that prosody is most useful when its
acoustic and word sequence correlates are jointly mod-
eled, and that, for the purpose of modeling prosody, syn-
tactically inspired language models significantly outper-
form a baseline bigram model. In order to better under-
stand the relationship between prosody and syntax, Co-
hen (Cohen, 2004) performed a series of experiments in
which automatic syntactic parsers, tree-based learners,
and neural networks were used to predict the prosodic
tags on each word in the Radio News corpus. Nine ma-
chine learning algorithms were tested, using seven differ-
ent syntactic feature sets, for prediction of two prosodic
tag variables. Table 3 presents results from several repre-
sentative experiments, including the most successful.

All classifiers in Table 3 used a two-stage classification
algorithm: word sequence was first automatically parsed
to produce syntactic tags, and syntactic tags were then
classified in order to determine prosodic tags. Two types
of binary prosodic tags were estimated: accent recog-
nition marked the target word as either accented or un-
accented, while boundary recognition marked the target
word as either intonational-phrase-initial or non-initial.

Two types of syntactic parsers were used. The top half
of the table, marked “Word-Based POS,” describes ac-



cent recognition experiments using part of speech (POS)
information generated by the Roth-Zelenko (RZ) shal-
low parsing algorithm (Roth and Zelenko, 1998), and
prosodic boundary recognition experiments using the RZ
algorithm plus seven syntactic phrase boundary features.
Each prosodic tag is computed based on observation of
the POS of three consecutive words (the target word plus
two prior words). Each POS tag, in turn, is computed
by the RZ algorithm based on lexical features in a five
word window, thus the total system computes prosodic
tags of one word based on lexical features of 3+5-1=7
consecutive words. Recognition of intonational phrase
boundary based only on POS information was found to
be quite poor, therefore boundary recognition results in
this half of the table also use a small set of full-parse in-
formation: seven features labeling the type of the syn-
tactic phrase boundary beginning on the target word, as
determined by the Charniak parser. The columns marked
“Full Syntactic Parse” use both POS and phrasal parse
information generated by Charniak’s parser (Charniak,
1994). Charniak’s parser computes the maximum like-
lihood parse of an entire breath group using a stochastic
context-free grammar, including opening and closing of
every phrase, clause, and fragment, and the part of speech
of every word. Prosodic taggers based on full-parse fea-
tures observed POS in a four-word window, and parse
features in a two-word window (the target word and the
word to its left). Parse features of a word include indi-
cator features marking the types of phrases that open or
close with the given word, as well as two integer fea-
tures counting the number of phrases, of any type, that
the word opens or closes. Two types of indicator fea-
tures were tested: the “all features” condition used sepa-
rate indicator features for every type of phrase or clause
defined by the Charniak parser, while the “category fea-
tures” used indicator features to mark the onset and offset
of heuristically designed categories. All learners except
the neural network had better performance in the “all fea-
tures” condition, thus results for the “category features”
are only shown for the neural network.

Five learners were tested. The neural network was a
sigmoidal feedforward network trained using error back-
propagation. SLIPPER is a boosting algorithm based
on the RIPPER rule learner (Cohen, 1995). C4.5 and
QUEST are tree-based learners (Quinlan, 1993; Loh and
Shih, 1997). Trees learned by the C4.5 algorithm were
generally found to have better test-corpus accuracy if the
tree was first post-processed in order to generate a series
of rules; the resulting rules were also considerably more
human-legible than the raw learned trees. QUEST was
tested using either univariate nodes or “linear” nodes; the
linear-node configuration implements a linear discrimi-
nant combination of all features at each node in the tree.
Rulesets learned by univariate QUEST were generally

more concise and more legible, to a human expert, than
those learned by any other algorithm.

In some cases, different learners discovered quite dif-
ferent patterns of information. The C4.5 learner classifies
pitch accent on the basis of both phrase and POS infor-
mation, if both are available: for example, with certain
exceptions, words are marked as accented if they close
a subordinate clause but not a prepositional phrase. The
QUEST learner, on the other hand, determines pitch ac-
cent using rules that consider only the POS of the current
word and next word. The first QUEST rule places a pitch
accent on every noun, adjective, gerund, or participle, re-
gardless of context. It must be noted, however, that even
though the QUEST learner uses only POS to determine
pitch accent, the QUEST classifier learned using a full
CFG parse outperforms the classifier learned using local
word-based POS tags. Apparently, POS tags generated
by the CFG parser are more useful, for the purpose of
prosody recognition, than POS tags generated by a local
word-sequence-based tagger.

The best predictor of intonational phrase boundary
is the simultaneous closure of more than one syntactic
phrase. If syntactic parse information is unavailable, the
best predictor is the presence of an audible breath; in this
corpus, breath can be pretty reliably labeled based on du-
ration of the pause. After these cues, the next several
levels in both trees are primarily occupied by POS fea-
tures. For example, an intonational phrase boundary is
likely after a noun or interjection, or before an auxiliary,
coordinating conjunction, modal verb, or the word “to.”

6 Switchboard

Our current research seeks to extend these results to
spontaneous speech. Using the neural network classi-
fier whose performance is listed in Table 3, we have
tagged syntactically predicted accent and intonational
phrase boundary positions in the Switchboard conversa-
tional telephone speech corpus (Godfrey et al., 1992).
In order to test these results, and in order to learn
about the differences between conversational speech and
read speech, we have started to manually transcribe the
prosody and disfluency segments in the WS97 subset of
Switchboard (Greenberg and Hitchcock, 2001; Chavarria
et al.,, 2004).

Preliminary results from this corpus indicate that sta-
tistical models trained to represent the prosody of Radio
News speech are unable to predict the prosody of Switch-
board speech. The models listed in Table 3 do not pre-
dict prosodic phrase boundary position at rates better than
chance. Pitch accent is predicted with an accuracy better
than chance, but still insufficient to be of any use for the
clustering of allophone HMMs, thus when clustering ex-
periments are repeated on the Switchboard corpus, error
rates of the prosody-dependent and prosody-independent
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Figure 1: Transcription of prosody and disfluencies in the
phrase “I, I, one of the...”

systems are identical.

Manual transcription suggests many reasons why the
syntactic and acoustic correlates of prosody in the
Switchboard corpus may be significantly different from
their correlates in Radio News. First, few Switchboard ut-
terances contain complete, well-formed sentences. Sec-
ond, Radio News speech is characterized by clear FO
markers for all kinds of pitch accent and phrase boundary
tones, while FO contours extracted from the Switchboard
corpus are comparatively monotone. Comparison of L-
(intermediate phrase boundary tones) and 1.-1.% (intona-
tional phrase boundary tones) on the Switchboard cor-
pus discovered that phrase-final lengthening is the only
reliable acoustic correlate of this distinction; FO corre-
lates seem not to reliably mark this distinction in Switch-
board (Chavarria et al., 2004).

Disfluency is the third reason that Switchboard
prosody is unlike Radio News prosody. Although we be-
gan transcribing Switchboard with the goal of only an-
notating prosody, we discovered almost immediately that
itis impossible to annotate prosodic phrase boundaries in
Switchboard without devising some sort of annotation for
disfluencies. We have adopted the annotation system of
Heeman and Allen (Heeman and Allen, 1999), accord-
ing to which the words being corrected are called the
“reparandum’ or REP, the correction is called the “alter-
ation” (ALT), and filled pauses or meta-dialog between
REP and ALT are called the “edit” (EDT).

Fig. 1 shows a disfluency with a double reparandum:
“I, I, one of the things I...” The first reparandum is re-
peated, then finally replaced by the alteration. Fig. 1
shows two characteristics of disfluency that have not been
extensively studied. First, both of the reparanda end in
glottalization, clearly visible in the form of extremely
low-frequency or low-amplitude glottal excitation. Sec-
ond, the prosody of the reparandum is “mimicked” in the
alteration, despite dramatically different lexical content.
In this corpus, words in the reparandum or alteration of

a disfluency are as likely to bear a pitch accent as any
other words in the sentence: 40%, compared to 39.9%
of all words. About two thirds of the accented words in
the reparandum are replaced by accented words in the al-
teration (10/16); about two thirds of unaccented words
are replaced by unaccented words (15/21). Repetition
of prosody is perceptually salient: some listeners report
that the alteration “mimics” the intonational contour of
the reparandum.

Disfluency is common in Switchboard. Of 1100 words
we have transcribed, 40 are part of a reparandum, 37 are
filled pauses, and 41 are part of an alteration, thus 10% of
the words we have transcribed are part of a disfluency.
This estimate is higher than most published estimates,
perhaps because we include all words that are part of the
reparandum or alteration, but most published studies esti-
mate that at least 5% of the words in Switchboard are part
of a disfluency (e.g., (Shriberg, 2001)). Any complete de-
scription of the prosody of Switchboard will necessarily
include, as one component, a theory about the prosody of
disfluency.

7 Conclusions

This paper has reviewed results from a number of ex-
perimental systems that simultaneously recognize the
prosodic and lexical transcriptions of an utterance. It
has been demonstrated, first, that prosody-dependent al-
lophone modeling can reduce the word error rate of
a speech recognizer, but that reliable WER reductions
depend on the simultaneous use of both a prosody-
dependent acoustic model and a prosody-dependent lan-
guage model. Additional improvements, in both perplex-
ity and WER, can be obtained using a semi-factored lan-
guage model, in which the relationship between prosody
and the word sequence is at least partly mediated by syn-
tactic tags. Careful analysis of the relationship between
prosody and syntax indicates that syntactic phrase bound-
aries are the most important cue for prosodic phrase
boundary recognition, while part of speech is the most
important cue for locating pitch accents, but that neither
of these cues is entirely sufficient for either classification
task. Even if a pitch accent recognizer completely ignores
phrase information (as does the QUEST learner), its error
rate can be reduced by deriving POS information from a
complete CFG parse of the sentence, rather than from a
local lexical-feature-based classifier.

The prosody of conversational telephone speech is sig-
nificantly different, in important ways, from the prosody
of Radio News speech. Preliminary results suggest that
important differences include the use of incomplete sen-
tences, relatively greater use of duration to cue prosody
(and correspondingly less use of pitch), and, perhaps
most importantly, the frequent occurrence of disfluency.
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