
Error Detection and Recovery in Spoken Dialogue Systems

Edward Filisko and Stephanie Seneff ∗

Spoken Language Systems Group
MIT Computer Science and Artificial Intelligence Laboratory

200 Technology Square, Cambridge, MA 02139
{filisko,seneff}@csail.mit.edu

Abstract

This paper describes our research on both the
detection and subsequent resolution of recog-
nition errors in spoken dialogue systems. The
paper consists of two major components. The
first half concerns the design of the error detec-
tion mechanism for resolving city names in our
MERCURY flight reservation system, and an in-
vestigation of the behavioral patterns of users
in subsequent subdialogues involving keypad
entry for disambiguation. An important obser-
vation is that, upon a request for keypad en-
try, users are frequently unresponsive to the ex-
tent of waiting for a time-out or hanging up the
phone. The second half concerns a pilot ex-
periment investigating the feasibility of replac-
ing the solicitation of a keypad entry with that
of a “speak-and-spell” entry. A novelty of our
work is the introduction of a speech synthesizer
to simulate the user, which facilitates develop-
ment and evaluation of our proposed strategy.
We have found that the speak-and-spell strat-
egy is quite effective in simulation mode, but it
remains to be tested in real user dialogues.

1 Introduction

Spoken dialogue systems are emerging as an intuitive in-
terface for providing conversational access to online in-
formation sources (Eckert et al., 1997; Gorin et al., 1997;
Dahlback et al., 1999; Zue et al., 2000; Walker et al.,
2001; Glass and Seneff, 2003; Pieraccini et al., 1997;
Quast et al., 2003; J. Gustafson, 1999; Polifroni and
Chung, 2002; Denecke, 2002; Seneff, 2002; Zue and
Glass, 2000). While the effectiveness of such systems

∗ This research was supported by an industrial consortium
supporting the MIT Oxygen Alliance.

has improved significantly over the past several years, a
critical barrier to widespread deployment remains in the
form of communication breakdown at strategic points in
the dialogue, often when the user is trying to convey a
critical piece of information that the system repeatedly
misunderstands.

This paper focuses on the specific two-stage problem
of error detection and subsequent recovery, in a situa-
tion where the user is attempting to provide a named
entity which the system fails to understand. It is not
a straightforward process for the system even to notice
that it has made a mistake. Tedious confirmation subdia-
logues for every attribute provided would lead to annoy-
ance and widespread unwillingness to use the system at
all. Hence, the system should only invoke a confirmation
subdialogue when it perceives there to be a communica-
tion breakdown.

The second aspect of the problem, error recovery,
is also challenging. The system may persist in mis-
understanding repeated spoken renditions of the same
named entity, unless a substantially different tactic can
be adopted to assure higher communicative success.

The remainder of the paper is organized as follows.
Section 2 motivates why we think this is an interesting
and important problem. In Sections 3 and 4, we describe
the error detection and recovery strategies that have been
adopted in our MERCURY flight reservation system (Sen-
eff, 2002; Seneff and Polifroni, 2000), and we provide an
analysis of the degree to which error recovery was suc-
cessful, specifically for the case of entering a source or
destination city name. The approach used was to solicit
a keypad entry of the city in cases where the system de-
tected a communication breakdown. We have analyzed
a set of 172 cases where keypad entry of a city was so-
licited. One of the observations was that users were often
not very receptive to the idea of switching into keypad
mode to map the spelling of the city to a numeric code.
Whether this is the result of cognitive overload, confu-

sion, or some other reason is not clear, however, since we
were unable to interview users to identify why they chose
not to use the keypad.

Motivated by the apparent need for a more intuitive
error recovery strategy, we describe in Sections 5 and
6 a set of experiments that explore an alternative ap-
proach whereby the user is instead asked to speak and
spell the problematic city name. We have recently devel-
oped the capability to utilize a pronounced version of a
word to greatly enhance the accuracy of a letter recogni-
tion task, and have successfully integrated this technol-
ogy into a personal name enrollment task (Seneff et al.,
2003; Chung et al., 2003). Our interest here was in evalu-
ating whether a similar technique would be useful for the
error recovery problem.

It is difficult, however, to develop and perfect an algo-
rithm involving multiple recognition passes, that is only
triggered sporadically in user conversations. Hence, we
discuss a novel approach to system development based on
simulating the completion of user dialogues beginning at
the point where the system had detected a communica-
tion breakdown. In other words, we utilize a speech syn-
thesizer to produce a speak-and-spell waveform that is
solicited in lieu of the keypad entry in the MERCURY di-
alogues we have analyzed. DECTalk1 acts as a user con-
tinuing the conversation from the point where the orig-
inal MERCURY system detected communication break-
down. The synthetic speech is processed through the
speak-and-spell recognition system. An analysis of the
rate of success is then an indicator of how promising the
method might be for real user dialogues. At the same
time, we have expanded the set of cities from the origi-
nal 500 known to the MERCURY system to a much larger
set of nearly 17,000 city names within the United States.
If successful, this new speak-and-spell mode would thus
greatly expand the number of cities that the system could
theoretically recognize.

2 Background and Motivation

Spoken conversational systems have great potential for
providing spoken language access to information sources.
However, such systems are only useful if they can under-
stand most of the content words in each utterance. Many
a user has been aggravated by conversational systems that
hypothesize the same incorrect words over and over, of-
ten due to ignorance of critical words the user is speak-
ing. The dialogue manager component is often of lit-
tle or no help, suggesting, “Please try using shorter sen-
tences,” or “I did not understand. Please rephrase your
query.” The system must be able to recognize compli-
cations such as misrecognitions, repetitive mistakes, and
out-of-vocabulary (OOV) words, and to react appropri-

1http://research.compaq.com/wrl/decarchives/dtj/dtjk01/

ately. A more successful interaction is achievable if the
dialogue manager is able to work with the user to resolve
an error in the course of the dialogue.

A common strategy used in human-human dialogue for
handling an OOV word is for one participant to ask the
other to repeat or spell the unknown word. This provides
the inquisitor with more detailed information about the
word, which can facilitate his understanding of the word.
Several dialogue systems have employed such a strategy
in dealing with a confusing or unknown word (Bauer and
Junkawitsch, 1999; Schramm et al., 2000). We aim to
employ such a speak-and-spell strategy in our system.

In this work, we focus on the class of place names,
specifically cities, states, and airports. Such names are
prevalent and problematic in any domain where geogra-
phy plays a dominant role. For example, a weather infor-
mation system or a flight reservation system must have
the city, state, or country names exactly correct in order
to be useful. In real user interactions, it is inevitable that
some city will be mentioned that is unknown to the sys-
tem. Such a name will often be misrecognized as a known
city. The dialogue manager must determine whether a
poorly scoring hypothesized city name is, in fact, a mis-
recognized but known city, or an entirely new word. Such
uncertainty must be resolved in a manner that is time-
efficient and does not overburden the user.

For example, in the case of a weather information sys-
tem, very common geographic names would most likely
be known to the recognizer (e.g., New York, Moscow).
If a user wants to know the weather in his hometown of
Menominee, for example, which is unknown to the rec-
ognizer, the system is faced with a problem. If the recog-
nizer is not equipped with an unknown word detector, the
closest word in the recognizer’s vocabulary will be cho-
sen as the best hypothesis. The user will then have to pro-
ceed through potentially many clarification turns in which
the system repeatedly hypothesizes incorrect city names.
Since “Menominee” is OOV, the system will never find
the correct city name.

If, however, a large external database is available (e.g.,
US Census data), that the system could consult given a
hypothesized spelling of the unknown city, there is hope
that the system will find the user’s intended city name.
Such an approach of access to a much larger vocabulary
in spell mode has been successfully applied, for example,
in (Schramm et al., 2000). In the most extreme case, the
large external database would be the World Wide Web.
One could imagine the system posing a search query on
the Web to determine that the closest major city is Green
Bay, Wisconsin, located 60 miles south of Menominee,
so it may suffice to provide the weather for Green Bay.

It should be mentioned that the flexibility of allowing
the user to spell a word creates a new task for the system.
Instead of simply looking up a hypothesized word in a

User: I would like to fly to austin tomorrow morning [mis-recognized as “Boston”]
System: Sorry. I’m not sure what you said. There are no flights from Boston to Boston.
User: austin texas
System: Okay, flights from Austin to Boston departing between 5:00 am and noon on Monday March tenth.

One moment please. If I have misunderstood you, you should say, Scratch that.
There are no nonstop flights. I have flights on American, Continental, and Delta. There are at least
6 flights departing between 8:00 a.m. and 9:00 a.m. Can you be more specific?

User: I would like to fly from boston massachusetts to austin texas
System: Please enter the departure city name using the telephone keypad ending with the pound key.
User: 267866# [user enters “Boston” via keypad]
System: Okay from Boston to Austin. What date will you be traveling?
USER: I would like to leave tomorrow morning
System: Okay, flights from Boston to Austin departing between 5:00 am and noon on Monday March tenth.

One moment please. . . .

Figure 1: Example of a dialogue involving a successful entry of a departure city using the telephone keypad, initiated by the system
based on perceived confusion.

SYSTEM: Welcome Angie. How may I help you?
USER: I would like to <uh> [mis-recognized as: I would like to Atlanta]
SYSTEM: Okay from Hartford to Atlanta. What date will you be traveling?
USER: October thirty first.
SYSTEM: Okay, from Hartford to Atlanta on Wednesday October 31. Can you provide the approximate

departure time or airline?
USER: Late morning.
SYSTEM: Okay, flights from Hartford to Atlanta departing between 10:00 a.m. and noon on Wednesday October 31.

One moment please... I have a nonstop Delta flight leaving at 11:20 a.m. and arriving at 1:45 pm.
Would that work?

USER: No.
SYSTEM: There are no nonstop flights. I have a U S Airways flight connecting in Charlotte leaving at 10:45 a.m.,

a United flight connecting in Washington Dulles leaving at 11:20 a.m., and a U S Airways flight leaving
at noon. Please select one of these flights or change any constraint you have already specified.

USER: I would like to change the arrival city.
SYSTEM: Please enter the destination city using the telephone keypad ending with the pound key.
USER: 6752636# [user enters “Orlando” via keypad]
SYSTEM: I heard you say you want to arrive in Orlando. Is that correct? If you need help, you can say, for example,

what cities do you know in Oregon.
USER: That is correct.

Figure 2: Example of a dialogue involving a successful entry of an arrival city using the telephone keypad, provoked by a specific
request by the user to change the arrival city.

lexicon, the system must now remain open to the possibil-
ity that the hypothesized word (i.e., sequence of letters)
is misspelled. In other words, a spelling checker must
be utilized. Depending on the robustness of the spelling
checker, the system may or may not be able to identify the
intended word from a misspelling. With a large database,
a potential misspelling could correspond to multiple data
items. In such a case, the system would need to initiate a
disambiguation subdialogue to resolve the ambiguity.

There are several pragmatic issues to consider in ob-
taining spelled data from a user whether via keypad
or speech. The problem of disambiguating keypad se-
quences has been addressed using both dictionary-based
(Davis, 1991) as well as probabilistic (MacKenzie et al.,
2001) approaches. In both input modes, the user may
use abbreviations such as “S T P E T E R S B U R G”

for “Saint Petersburg”. Spoken spelling is especially dif-
ficult, because the recognition accuracy for spoken let-
ters can be quite low. For instance, the members of the
“E-set” (B, C, D, E, G, P, T, V, Z) are well-known for
being confusable to a recognizer, as discussed in previ-
ous studies (Marx and Schmandt, 1994). This problem is
compounded by the fact that humans spell words in cre-
ative ways. Some may spell in military style (e.g., “Al-
pha Bravo Charlie” for “A B C”) or in simile (e.g., “B
as in ‘Boy”’). Some users may include the word “space”
to mark the word boundaries of a multi-word sequence,
such as “N E W space Y O R K”. Some may simply enter
a letter sequence containing several meaningful chunks,
as in “N E W Y O R K J F K N Y C” for Kennedy Air-
port in New York City. Many of these issues have been
addressed in (Schramm et al., 2000).

3 MERCURY Error Recovery Strategy

The MERCURY system, accessible via a toll free num-
ber2, provides information about flights available for over
500 cities worldwide. We have invested considerable ef-
fort into making MERCURY intuitive to use and robust in
handling a wide range of different ways users might ex-
press their flight constraints and select the flights of the
itinerary. A typical user begins by logging on, providing
both his name and password, which allows the system to
look up some personalized information such as the e-mail
address and the preferred departure city. MERCURY’s di-
alogue plan involves arranging a trip one leg at a time.
Once the itinerary is fully specified, MERCURY offers to
price the itinerary and, subsequently, to send a detailed
record of the itinerary to the user via e-mail, which can
then be forwarded to a travel agent for the actual booking.

A critical aspect of flight dialogues is the successful
communication of the source, destination, and date, all of
which are susceptible to recognition error. MERCURY’s
default policy is to use implicit confirmation to communi-
cate to the user its interpretation of his utterances. In the
meantime, it monitors the evolution over time of these
three critical attributes. When it detects odd behavior, it
switches into a mode where keypad entry is solicited. The
keypad entry is matched against existing hypotheses and,
if a successful match is obtained, is assumed to be correct.
Otherwise, a verbal confirmation subdialogue, soliciting
a “yes/no” answer, is invoked.

For source and destination, the system tabulates at
each turn whether the attribute was inherited, repeated, or
changed. If a change is detected after flights have already
been retrieved, the system prompts for spoken confirma-
tion of the surprising move, anticipating possible recog-
nition error. After two consecutive turns where the user
has either apparently repeated or replaced the departure
or arrival city, the system requests the user to enter the
city by spelling it using the telephone keypad. This strat-
egy is also used if a substitution/repetition of the city is
followed by an utterance that is not understood, or when-
ever the user explicitly requests to change the departure
or arrival city. It turns out that MERCURY’s 500 cities are
uniquely identifiable through their keypad codes; how-
ever, if this were not the case, a follow-up disambiguation
subdialogue could be arranged. This keypad mechanism
also provides the opportunity to confirm whether the de-
sired city is known or unknown.

A similar process takes place for dates. If the user
appears to repeat the date, without providing any other
information, there is the suspicion that a misrecognized
date has again been misrecognized the same way. In this
case, the system tries to find an alternative hypothesis for
the date by re-examining the N -best list of recognizer

21-877-MIT-TALK.

hypotheses, and, in any case, also asks for user confir-
mation. As is the case for cities, the system invokes the
keypad upon repeated date corrections.

Figures 1 and 2 provide two examples of user dia-
logues involving keypad city entry. Figure 1 illustrates
a dialogue where the conversation is clearly confused,
and the system eventually takes the initiative to invite
a keypad entry of the departure city. The user wanted
to go to “Austin”, which the system misunderstood as
“Boston”. This particular user had a default departure
city of “Boston”, which caused the system to suppose
that the user had requested a pragmatically unreasonable
flight from “Boston” to “Boston”. The user’s follow-up
fragment, “Austin, Texas”, was correctly understood, but
misinterpreted as the departure city instead of the arrival
city, leading to further confusion. It was only after the
user had cleared up the confusion, with the complete ut-
terance, “I would like to fly from Boston, Massachusetts
to Austin, Texas,” that the system was finally on the right
track, but by this point, it had identified difficulty with
the source, reacting by launching a keypad entry request,
with subsequent resolution.

Figure 2 shows an example subdialogue where the des-
tination city was successfully entered using the telephone
keypad, based on an explicit request on the part of the
user to change the destination. Interestingly, the user
delayed the correction until the system invited him to
change any constraint that was already specified. This
particular user probably believed that she was required
to respond to the prompts, although it is conceivable that
the user’s delayed response was due to inattentiveness.
This dialogue thus reveals some of the potential difficul-
ties encountered due to users’ false assumptions about the
system’s behavior.

4 MERCURY Analysis

We have been collecting MERCURY data over the tele-
phone for the past several years (Seneff and Polifroni,
2000), involving user interactions with the system to
make flight reservations. In examining these dialogues,
we have come to the realization that, while keypadding
the date (as a four digit numeric code for month and day)
seems to be intuitive to users and therefore an effective
mechanism for correcting misunderstandings, the situa-
tion is far less effective in the case of city names.

A detailed analysis has thus been performed on all in-
stances where the system requested a source or destina-
tion entry via the keypad, and the user’s reactions to the
requests were observed and quantified. We found that this
strategy, when users were compliant, was generally suc-
cessful for determining the user’s desired source or desti-
nation. For example, if the user were to enter “3387648”,
the system would understand “DETROIT”, and the dia-
logue would smoothly continue.

In addition to many successful responses, however,
several errorful responses were also observed, including
misspelled words (e.g., “TEIPEI” for “TAIPEI”), out-
of-vocabulary words (e.g., “DOMINICA”), or a string
of valid references that could not be resolved as a sin-
gle place name (e.g., “NEWYORKJFKNYC” for “New
York’s Kennedy Airport”). A user time-out or hang-up
was also common, and constituted a significant number
of responses.

A total of 172 instances were observed in which the
system prompted users to enter a source or destination
via the keypad. The number of occurrences is rather low
since this solicitation was only activated as a last resort.
The system then entered a state where speech was not an
option. The users’ responses to these prompts are sum-
marized in Table 1. Most surprising is that nearly half of
the time, the user did not even attempt to use the keypad.
In only 88 of the cases did the user actively enter a key-
pad code. The user let a time-out occur in 50 cases, and
hung up the telephone in an additional 34 cases.

Description Count Percentage

user attempts at keypad entry 88/172 51.1%
time-outs 50/172 29.1%
hang-ups 34/172 19.8%

Table 1: Summary of users’ responses to 172 system prompts
to enter a source or destination using the telephone keypad.

This attempt rate of 51.1% is significantly lower than
originally hoped. Even within the 88 compliant cases,
the results are disappointing, as shown in Table 2. In
61 cases, the keypad sequence entered by the user cor-
responded to a valid city or airport name. Most of these
were known to the system and were processed success-
fully. The remaining 30.7% of attempts consisted of mis-
spellings (such as a double tap on a key, substituting the
number ‘0’ for the letter ‘o’, or terminating with ‘*’ in-
stead of ‘#’) or apparent garbage.

Description Count Percentage

valid city/airport entered 61/88 69.3%
misspelled city/airport entered 19/88 21.6%
garbage entered (e.g, “***#”) 8/88 9.1%

Table 2: Summary of a total of 88 user attempts at entering a
source or destination city or airport name using the telephone
keypad after being prompted by the system.

4.1 Discussion

Our results suggest that the strategy of prompting for key-
pad entry of questionable parameters shows potential for

recovering from situations in which the system is con-
fused about what the user has said. We believe that such
recovery can contribute to successful dialogue comple-
tion, as well as elevating the user’s tolerance level. Nev-
ertheless, our results also pose two questions that need to
be addressed: why do some users’ attempts at keypad en-
try contain errors, and, more importantly, why do some
users not even attempt keypad entry?

It is not possible to know why an individual user was
unable to enter a valid keypad sequence; we had no mech-
anism to interview users about their behavior. We can,
however, speculate that the errorful sequences were due
to the non-intuitive nature of spelling with a telephone
keypad, a user’s unfamiliarity with the spelling of a given
word, typos, or a user’s confusion as to what qualified
as an acceptable entry (e.g., Are abbreviations and nick-
names allowed?).

We must also acknowledge the fact that what qualifies
as a valid keypad sequence depends on the spelling cor-
rection capabilities of the system. Even a simple spelling
checker (not utilized during the MERCURY data collec-
tion) could potentially allow the system to make sense of
an errorful keypad sequence.

In the case of a time-out, it is difficult to know what
each user was thinking as he waited. It is likely that the
user was hoping for a return to speech mode after the
time-out. The user may have hesitated for fear of send-
ing the system down an even more divergent path. It is
also possible that users were inattentive when the system
instructed them to terminate with the pound key, and that
they therefore entered the entire city, but without a termi-
nation code. Clearly a strategic modification to automat-
ically generate a ‘#’ after a significant pause might help
reduce this type of error.

The reason for a hang-up is more obvious, given the
dialogue context. For example, if the user had repeatedly
said that he wanted to fly to Anchorage and the system
had already hypothesized three other cities, it is under-
standable that he would have hung up in frustration.

The telephone keypad would seem to be a very prac-
tical mode of information entry given its physical acces-
sibility and limited ambiguity per key. This small set of
data in the flight domain, however, suggests that it is con-
fusing, annoying, or simply intimidating to many users.
The next challenge, then, is to utilize a similar error re-
covery strategy, but to adopt a different mode of informa-
tion entry, one that is more intuitive and less intimidating.
We discuss such an option in the next section.

5 Spoken Spelling

Allowing a user to spell a word has several benefits,
including maintaining a single mode of communication
(i.e., speech), as well as being less taxing, more efficient,

and more intuitive. Our goal is to make the user feel con-
fident that spelling a city name is a plausible request and
that it can be the most effective path to task completion.

Undeniably, spelling recognition comes with its own
set of problems, especially misrecognition of the spoken
letters. One way to minimize such errors is to incorpo-
rate limited spelling checking, such as allowing a single
insertion, deletion, or substitution per word. For example,
a spelling sequence recognized as “T E N V E R” could
be mapped to “D E N V E R” as the closest match in the
database. Obviously, a trade-off exists where overgener-
ous spelling correction could lead to a false hypothesis.

A great challenge in developing conversational sys-
tems is that dialogue strategies can only evolve through
extensive experimentation, which requires a large amount
of data, particularly for situations that occur rarely in ac-
tual dialogues. To expedite development and evaluation
of the recovery strategy, we decided to make use of sim-
ulated user data to artificially continue MERCURY dia-
logues beyond the point where the system had originally
asked for a keypad entry, as described in the next section.

6 User Simulation

To streamline exploration of alternative dialogue strate-
gies for error recovery, we have implemented a simulated
user that speaks and spells a city name using DECTalk.
A block diagram of our simulated user system is shown
in Figure 3. Each synthesized waveform3 contains a pro-
nunciation of the city name that a user was trying to com-
municate in the original dialogue, immediately followed
by a spoken spelling of that city name (e.g., “Boston
B O S T O N”). The waveform is passed to a first stage
speech recognizer, which treats the spoken word as an un-
known word and proposes an N -best list of hypothesized
spellings for the synthesized letter sequence. For speech
recognition, we use the SUMMIT framework (Glass et
al., 1996), and the unknown word is modeled according
to techniques described in (Bazzi and Glass, 2002).

Following the first stage recognition, a two-stage
matching process first consults a list of “cities in focus”
that were extracted as hypotheses from the original user’s
final utterance before the keypad turn. Subsequently, if a
match or conservative partial match is not found from the
short list, a large database of 17,000 city and state names
is consulted for a match or a partial match. In this case a
confirmation subdialogue ensues.

If a match is found, a geography server determines
whether the name is ambiguous. If so, a disambiguating
item (e.g., state name) is requested by the dialogue man-
ager. The simulated user then randomly chooses from

3While DECTalk speech is artificial, we have not explicitly
trained our recognizer on it, and thus we argue that it can serve
as an effective stand-in for real human speech.

a list of candidate state names provided by the geogra-
phy server. This utterance is currently also processed as
a speak-and-spell utterance, mainly because we are inter-
ested in obtaining more data on the performance of our
speak-and-spell system.

If no match is found in either the short list or the
external lexicon of known city names, another recogni-
tion cycle is initiated, in which the phonetic content of
the spoken word is used to enhance the performance of
the spelling recognizer, following procedures described
in (Chung et al., 2003). A letter-to-sound model is used
to map from a graph of letter hypotheses proposed by
the first stage recognizer to their corresponding plausi-
ble pronunciations, using techniques described in (Sen-
eff et al., 1996). The final set of hypotheses is obtained
by merging hypotheses produced from both halves of the
user utterance. Once again, both the short list and the
large lexicon are searched for a match.

The idea is that this second stage should only be in-
voked upon failure, in order to reduce the amount of com-
putation time required. An alternative strategy would be
for the system to unconditionally execute a second recog-
nition to obtain a potentially more correct hypothesis.
Such a strategy, however, would increase the system’s
overall processing time.

6.1 Results and Discussion

The simulation was performed on a total of 97 user ut-
terances, all of which MERCURY had designated as trou-
ble situations in the original dialogues. The utterances
utilized are those for which the system’s hypotheses con-
tained city names, whether or not the user had actually
mentioned a city name.

The simulation results are shown in Table 3. Out of
97 problematic sources and destinations generated by the
simulated user, 58 required disambiguation with a state
name (e.g., “Boston in Georgia”). Therefore, 155 speak-
and-spell utterances were ultimately passed through the
synthesize-and-recognize simulation cycle. All but one
of the state names were correctly recognized. This high
performance is likely due to the correct state’s guaranteed
existence in the short list used by the spelling checker.

Our algorithm dictates that a second pass, which
integrates the spoken name portion of the waveform
with letter-to-sound hypotheses derived from the spoken
spelling portion, be omitted if a match is found in the first
pass. One question to ask is whether the system is being
overconfident in this strategy. The results in the table sup-
port the notion of using the second pass sparingly. In 68
cases, the system was sufficiently confident with its hy-
pothesized city after the first recognition pass to omit the
second pass; it made no errors in these decisions.

About a third of the time (29 cases), the system, find-
ing no match, initiated a second pass to incorporate pro-

Simulated
User

"Boston B−O−S−T−O−N"
"Iowa I−O−W−A"

City
Context

from
Mercury

Context
from

State

Geography
Server

Recognize
Unknown Word

and Letter Sequence

Rerecognize Using

Additional Information
the Unknown Word as

Spell Check
N−Best Hypotheses

on City/State Context

Large Database of
Spell Check on

Geographical Names
Match? Match?

Second
Pass?

Accepted
by User?

Geographically
Ambiguous?

CONTINUE

Choose
Best

Hypothesis

Hypothesis
with User

Confirm

NO

YES

YES YES

NONO

YES

NO

NO

YES

Figure 3: Flow chart detailing the two-pass dialogue strategy for recovering from a problematic source or destination.

Description Count Percentage

correct city after pass 1 68/68 100%
correct city after pass 2:

short list match 2/2 100%
database match 11/14 78.6%
no match (last resort) 5/13 38.5%

total cities correct 86/97 88.7%

Table 3: Simulation results for 97 speak-and-spell city names
showing the number of correct cities hypothesized by the sys-
tem, after each of two recovery passes. For pass 2, a match was
found on the short list or in the geographic database. No match
resulted in resorting to the best recognition hypothesis.

nunciation information. There were two instances where
the second-pass hypothesized city was found on the short
list of focus cities from the original user utterance; both
were correct. For the remainder, the large database was
consulted. The system proposed the correct city in nearly
79% of the cases. After failing to find any match, the sys-
tem attempted its last resort of proposing the best hypoth-
esis from the second-stage recognizer. Not surprisingly,
the system determined the correct city name in only 39%
of these cases. Nevertheless, this percentage suggests that
it is certainly better to perform the confirmation rather
than to simply tell the user that the city is unknown, given
that the recognizer may be correct without the aid of any
external lexicon.

The majority of incorrect city hypotheses were due to
limitations in the spelling checker and the absence of in-
ternational names in the geographic database. The cur-

rent spelling checker, while quite powerful, allows only a
single insertion, deletion, or substitution of a letter, or
a swap of two letters. We believe that a more robust
spelling checker can minimize many of these errors.

The system’s performance in hypothesizing the correct
candidate for nearly 89% of the problematic city names
is encouraging. These results show that this error recov-
ery strategy is largely successful in the synthesize-and-
recognize user simulation cycle. The simulated results
are, of course, biased in that the simulated user was co-
operative with all system requests. The results of the
MERCURY analysis in Section 4 show that an errorful or
nonexistent response from a user is a very likely possibil-
ity. The installation of this strategy in a real system will
require that user behavior be carefully monitored.

Although the prospects for the speak-and-spell input
mode are promising, we would not want to entirely aban-
don the use of the telephone keypad. It has been and re-
mains a convenient and effective means by which to spell
words. A more appropriate use of the keypad could be
as a back-off strategy after the spoken spelling has failed,
or in very noisy environments, where speech would be
nearly impossible. One advantage of the keypad is that,
barring mistakes, the system can be confident that when
‘3’ is pushed, one of the letters, ‘D’, ‘E’, or ‘F’, is in-
tended. When combined with the spoken word being
spelled, such keypad ambiguity can be reduced even fur-
ther (Chung et al., 2003).

7 Future Work

While we feel that the speak-and-spell subdialogue inter-
action represents a promising strategy for error recovery

in situations of compromised recognition performance, it
remains to be seen whether it will work well in real user
dialogues. An obvious next step is to incorporate this
strategy into our MERCURY system in place of the key-
pad entry request, and then to assess how well users are
able to recover from errors and complete their dialogue
interactions.

We are quite encouraged by the effectiveness of the
strategy of involving DECTalk to simulate user utter-
ances, and we believe this idea has merit far beyond the
experiments conducted here. For example, we are inter-
ested in developing a new CSAIL Information domain,
which would allow users to call up and ask about the
phone number, e-mail address, etc., for the 800 members
of our laboratory. Many of these people have foreign-
derived names, which would likely be difficult to pro-
nounce, both for users and for DECTalk. However, it
would be straightforward to process all 800 first and last
names through simulated dialogues, and to obtain a list
of those names that failed to be understood by the sys-
tem. Developers’ attention could then be drawn toward
the task of assuring these names are included explicitly
and are correctly pronounced in the main recognizer, as
well as augmenting the letter-to-sound system to include
those problematic words in its training corpus. It would
even be feasible to lexicalize difficult names within the
first stage of the speak-and-spell recognizer, such that an
explicit word hypothesis could be extracted from the spo-
ken word at that point.

References
J.G. Bauer and J. Junkawitsch. 1999. Accurate recognition of

city names with spelling as a fall back strategy. In Proc.
Eurospeech, volume 1, pages 263–266, Budapest, Hungary.

I. Bazzi and J. Glass. 2002. A multi-class approach for
modelling out-of-vocabulary words. In Proc. ICSLP, pages
1613–1616, Denver, Colorado.

G. Chung, S. Seneff, and C. Wang. 2003. Automatic acquisi-
tion of names using speak and spell mode in spoken dialogue
systems. In Proc. HLT-NAACL ’03, pages 32–39.

N. Dahlback, A. Flycht-Eriksson, A. Jonsson, and P. Qvarfordt.
1999. An architecture for multi-modal natural dialogue sys-
tems. In Proc. of ESCA Tutorial and Research Workshop
(ETRW) on Interactive Dialogue in Multi-Modal Systems.

J.R. Davis. 1991. Let your fingers do the spelling: Implicit
disambiguation of words spelled with the telephone keypad.
Avios Journal, 9:57–66.

M. Denecke. 2002. Rapid prototyping for spoken dialogue
systems. In Proc. COLING.

W. Eckert, E. Levin, and R. Pieraccini. 1997. User modelling
for spoken dialogue system evaluation. In Proc. IEEE ASR
Workshop.

J. Glass and S. Seneff. 2003. Flexible and personalizable
mixed-initiative dialogue systems. In HLT-NAACL 2003
Workshop on Research Directions in Dialogue Processing,
Edmonton, Canada.

J. Glass, J. Chang, and M. McCandless. 1996. A probabilistic
framework for feature-based speech recognition. In Proc.
ICSLP, pages 1–4, Philadelphia, PA.

A. Gorin, G. Riccardi, and J. Wright. 1997. How may i help
you. Speech Communication, 23:113–127.

M. Lundeberg J. Gustafson, N. Lindberg. 1999. The august
spoken dialogue system. In Proc. Eurospeech ’99.

I.S. MacKenzie, H. Kober, D. Smith, T. Jones, and E. Skepner.
2001. Letterwise: Prefix-based disambiguation for mobile
text input. In Proc. UIST, pages 111–120, Orlando, FL.

M. Marx and C. Schmandt. 1994. Putting people first: Specify-
ing proper names in speech interfaces. In Proc. UIST, pages
29–37, Marina del Rey, CA.

R. Pieraccini, E. Levin, and W. Eckert. 1997. AMICA: The
AT&T mixed initiative conversational architecture. In Proc.
EUROSPEECH, pages 1875–1878.

J. Polifroni and G. Chung. 2002. Promoting portability in dia-
logue management. In Proc. ICSLP, pages 2721–2724.

H. Quast, T. Scheideck, P. Geutner, A. Korthauer, and R. Bosch.
2003. Robodima: A dialogue-object based natural language
speech dialog system. In Proc. ASRU Workshop, pages 174–
179, Saint Thomas, Virgin Islands.

H. Schramm, B. Rueber, and A. Kellner. 2000. Strategies for
name recognition in automatic directory assistance systems.
Speech Communication, 31(4):329–338.

S. Seneff and J. Polifroni. 2000. Dialogue management in the
mercury flight reservation system. In Proc. ANLP-NAACL
2000, Satellite Workshop, pages 1–6.

S. Seneff, R. Lau, and H. Meng. 1996. ANGIE: A new frame-
work for speech analysis based on morpho-phonological
modelling. In Proc. ICSLP ’96, pages 110–113.

S. Seneff, G. Chung, and C. Wang. 2003. Empowering end
users to personalize dialogue systems through spoken inter-
action. In Proc. EUROSPEECH, pages 749–752.

S. Seneff. 2002. Response planning and generation in the mer-
cury flight reservation system. Computer Speech and Lan-
guage, 16:283–312.

M. Walker, J. Aberdeen, J. Boland, E. Bratt, J. Garofolo,
L. Hirschman, A. Le, S. Lee, S. Narayanan, K. Papineni,
B. Pellom, J. Polifroni, A. Potamianos, P. Brabhu, A. Rud-
nicky, G. Sanders, S. Seneff, D. Stallard, and S. Whittaker.
2001. Darpa communicator dialog travel planning systems:
The June 2000 data collection. In Proc. EUROSPEECH,
pages 1371–1374.

V. Zue and J. Glass. 2000. Conversational interfaces: Advances
and challenges. Proc. IEEE, 88(11):1166–1180.

V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J. Hazen, and
L. Hetherington. 2000. Jupiter: A telephone-based conver-
sational interface for weather information. IEEE Transac-
tions on Speech and Audio Processing, 8(1):85–96.

