
Interactive Machine Learning Techniques for Improving SLU Models

Lee Begeja
Bernard Renger

AT&T Labs-Research
180 Park Ave

Florham Park, NJ 07932
{lee,renger}

@research.att.com

David Gibbon
Zhu Liu

Behzad Shahraray
AT&T Labs-Research

200 Laurel Ave S
 Middletown, NJ 07748

{dcg, zliu, behzad}
@research.att.com

Abstract

Spoken language understanding is a critical
component of automated customer service ap-
plications. Creating effective SLU models is
inherently a data driven process and requires
considerable human intervention. We de-
scribe an interactive system for speech data
mining. Using data visualization and interac-
tive speech analysis, our system allows a User
Experience (UE) expert to browse and under-
stand data variability quickly. Supervised
machine learning techniques are used to cap-
ture knowledge from the UE expert. This cap-
tured knowledge is used to build an initial
SLU model, an annotation guide, and a train-
ing and testing system for the labelers. Our
goal is to shorten the time to market by in-
creasing the efficiency of the process and to
improve the quality of the call types, the call
routing, and the overall application.

1 Introduction

The use of spoken dialogue systems to automate ser-
vices in call centers is continually expanding. In one
such system, unconstrained speech recognition is used
in a limited domain to direct call traffic in customer call
centers (Gorin et al, 1997). The challenge in this envi-
ronment is not only the accuracy of the speech recogni-
tion but more importantly, the knowledge and
understanding of how the customer request is mapped to
the business requirement.

The first step of the process is to collect utterances
from customers, which are transcribed. This gives us a
baseline for the types of requests (namely, the user in-
tents) that customers make when they call a client. A
UE expert working with the business customer uses
either a spreadsheet or a text document to classify these
calls into call types. For example,

• “I want a refund” � REFUND
• “May I speak with an operator” �

GET_CUSTOMER_REP
The end result of this process is a document, the an-

notation guide, that describes the types of calls that may
be received and how to classify them. This guide is
then given to a group of “labelers” who are trained and
given thousands of utterances to label. The utterances
and labels are then used to create the SLU model for the
application. The call flow which maps the call types to
routing destinations (dialog trajectory) is finalized and
the development of the dialogue application begins.
After the field tests, the results are given to the UE ex-
pert, who then will refine the call types, create a new
annotation guide, retrain the labelers, redo the labels and
create new ones from new data and rebuild the SLU
model.

Previously, this knowledge was only captured in a
document and was not formalized until the SLU model
was generated. Our goal in creating our system is not
only to give the UE expert tools to classify the calls, but
to capture and formalize the knowledge that is gained in
the process and to pass it on to the labelers. We can
thus automatically generate training instances and test-
ing scenarios for the labelers, thereby creating more
consistent results. Additionally, we can use the SLU
model generated by our system to “pre-label” the utter-
ances. The labelers can then view these “pre-labeled”
utterances and either agree or disagree with the gener-
ated labels. This should speed up the overall labeling
process.

More importantly, this knowledge capture will en-
able the UE expert to generate and test a SLU model as
part of the process of creating the call types for the
speech data. The feedback from this initial SLU test
allows the UE expert to refine the call types and to im-
prove them without having to train a group of labelers
and to run a live test with customers. This results in an
improved SLU model and makes it easier to find prob-
lems before deployment, thus saving time and money.

Figure 1. System Diagram

At the same time, the process is more efficient due to
the increased uniformity in the way different UE experts
classify calls into call type labels.

We will describe Annomate, an interactive system
for speech data mining. In this system, we employ sev-
eral machine learning techniques such as clustering and
relevance feedback in concert with standard text search-
ing methods. We focus on interactive dynamic tech-
niques and visualization of the data in the context of the
application.

 The paper is organized as follows. The overview of
the system is presented in Section 2. Section 3 briefly
discusses the different components of the system. Some
results are given in Section 4. Finally, in Sections 5 and
6, we give conclusions and point to some future direc-
tions.

2 System Overview

In this section, we will give a system overview and
show how automation has sped up and improved the
existing process. The UE expert no longer needs to
keep track of utterances or call type labels in spread-
sheets. Our system allows the UE expert to more easily
and efficiently label collected utterances in order to
automatically build a SLU model and an electronic an-
notation guide (see System Diagram in Figure 1). The

box in Figure 1 contains the new components used in
the improved and more automated process of creating
SLU models and annotation guides.

After data collection, the Preprocessing steps (the
data reduction and clustering steps are described in
more detail below) reduce the data that the UE expert
needs to work with thus saving time and money. The
Processed Data, which initially only contains the tran-
scribed utterances but later will also contain call types,
is stored in an XML database which is used by the Web
Interface. At this point, various components of the Web
Interface are applied to create call types from utterances
and the Processed Data (utterances and call types) con-
tinue to get updated as these changes are applied. These
include the Clustering Tool to fine-tune the optimal
clustering performance by adjusting the clustering
threshold. Using this tool, the UE expert can easily
browse the utterances within each cluster and compare
the members of one cluster with those of its neighboring
clusters. The Relevance Feedback component is im-
plemented by the Call Type Editor Tool. This tool pro-
vides an efficient way to move utterances between two
call types and to search relevant utterances for a specific
call type. The Search Engine is used to search text in the
utterances in order to facilitate the use of relevance
feedback. It is also used to get a handle on utterance and

La-
belers Transcribed

Utterances

Annotation
Guide

Preprocessing

•Data Reduction

•Clustering

Processed

Data

Web-Enabled User Interface

Clustering

Relevance

Feedback

Search Engine

Report

Generation

Initial
SLU

User
Experience
Expert

SLU

Toolset

V
I
S
U
A
L
I
Z
A
T
I
O
N

call type proximity using utterance and cluster dis-
tances.

After a reasonable percentage of the utterances are
populated or labeled into call types, an initial SLU
model can be built and tested using the SLU Toolset.
Although a reduced dataset is used for labeling (see
discussion on clone families and reduced dataset be-
low), all the utterances are used when building the SLU
model in order to take advantage of more data and
variations in the utterances. The UE expert can itera-
tively refine the SLU model. If certain test utterances
are being incorrectly classified or are not providing suf-
ficient differentiability among certain call types (the
SLU metric described below is used to improve call
type differentiation), then the UE expert can go back
and modify the problem call types (by adding utterances
from other call types or by removing utterances using
the Web Interface). The updated Processed Data can
then be used to rebuild the SLU model and it can be
retested to ensure the desired result. This initial SLU
model can also be used as a guide in determining the
call flow for the application.

The Reporting component of the Web Interface can
automatically create the annotation guide from the
Processed Data in the XML database at any time using
the Annotation Guide Generation Tool. If changes are
made to utterances or call types, then the annotation
guide can be regenerated almost instantly. Thus, this
Web Interface allows the UE expert to easily and more
efficiently create the annotation guide in an automated
fashion unlike the manual process that was used before.

3 Components

Many SLU systems require data collection and some
form of utterance preprocessing and possibly utterance
clustering. Our system uses relevance feedback and
SLU tools to improve the SLU process.

3.1 Data Collection

Natural language data exists in a variety of forms such
as documents, e-mails, and text chat logs. We will focus
here on transcriptions of telephone conversations, and in
particular, on data collected in response to the first
prompt from an open dialogue system. The utterances
collected are typically short phrases or single sentences,
although in some cases, the caller may make several
statements. It is assumed that there may be multiple
intents for each utterance. We have also found that the
methods presented here work well when used with the
one-best transcription from a large vocabulary auto-
matic speech recognition system instead of manual tran-
scription.

3.2 Preprocessing

Our tools add structure to the raw collected data through
a series of preprocessing steps. Utterance redundancy
(and even repetition) is inherent in the collection proc-
ess and this is tedious for UE experts to deal with as
they examine and work with the dataset. This section
describes taking the original utterance set and reducing
the redundancy (using text normalization, named entity
extraction, and feature extraction) and thereby the vol-
ume of data to be examined. The end product of this
processing is a subset of the original utterances that
represents the diversity of the input data in a concise
way. Sets of identical or similar utterances are formed
and one utterance is selected at random to represent
each set (alternative selection methods are also possible,
see the Future Work section). UE experts may choose to
expand these clone families to view individual mem-
bers, but the bulk of the interaction needs to only in-
volve a single representative utterance from each set.

Text Normalization

There is a near continuous degree of similarity between
utterances. At one extreme are exact text duplicates
(data samples in which two different callers say the ex-
act same thing). At the next level, utterances may differ
only by transcription variants like “100” vs. “one hun-
dred” or “$50” vs. “fifty dollars.” Text normalization is
used to remove this variation. Moving further, utter-
ances may differ only by the inclusion of verbal pauses
or of transcription markup such as: “uh, eh, background
noise.” Beyond this, for many applications it is insig-
nificant if the utterances differ only by contraction: “I’d
vs. I would” or “I wanna” vs. “I want to.” Acronym
expansions can be included here: “I forgot my personal
identification number” vs. “I forgot my P I N.” Up to
this point it is clear that these variations are not relevant
for the purposes of intent determination (but of course
they are useful for training a SLU classifier). We could
go further and include synonyms or synonymous
phrases: “I want” vs. “I need.” Synonyms however,
quickly become too powerful at data reduction, collaps-
ing semantically distinct utterances or producing other
undesirable effects (“I am in want of a doctor.”) Also,
synonyms may be application specific.

Text normalization is handled by string replacement
mappings using regular expressions. Note that these
may be represented as context free grammars and com-
posed with named entity extraction (see below) to per-
form both operations in a single step. In addition to
one-to-one replacements, the normalization includes
many-to-one mappings (you ��������� ������� �	
���	�-
to-null mappings (to remove noise words).

Named Entity Extraction

Utterances that differ only by an entity value should
also be collapsed. For example “give me extension
12345” and “give me extension 54321” should be repre-
sented by “give me extension extension_value.” Named
entity extraction is implemented through rules encoded
using context free grammars in Backus-Naur form. A
library of generic grammars is available for such things
as phone numbers and the library may be augmented
with application-specific grammars to deal with account
number formats, for example. The grammars are view-
able and editable, through an interactive web interface.
Note that any grammars developed or selected at this
point may also be used later in the deployed application
but that the named entity extraction process may also be
data driven in addition to or instead of being rule based.

Feature Extraction

To perform processing such as clustering, relevance
feedback, or building prototype classifiers, the utter-
ances are represented by feature vectors. At the simplest
level, individual words can be used as features (i.e., a
unigram language model). In this case, a lexis or vo-
cabulary for the corpus of utterances is formed and each
word is assigned an integer index. Each utterance is then
converted to a vector of indices and the subsequent
processing operates on these feature vectors. Other
methods for deriving features include using bi-grams or
tri-grams as features, weighting features based upon the
number of times a word appears in an utterance or how
unusual the word is in the corpus (TF, TF-IDF), and
performing word stemming (Porter, 1980). When the
dataset available for training is very small (as is the case
for relevance feedback) it is best to use less restrictive
features to effectively amplify the training data. In this
case, we have chosen to use features that are invariant to
word position, word count and word morphology and
we ignore noise words. With this, the following two
utterances have identical feature vector representations:

• I need to check medical claim status
• I need check status of a medical claim
Note that while these features are very useful for the

process of initially analyzing the data and defining call
types, it is appropriate to use a different set of features
when training classifiers with large amounts of data
when building the SLU model to be fielded. In that case,
tri-grams may be used, and stemming is not necessary
since the training data will contain all of the relevant
morphological variations.

Clustering

After the data reductions steps above, we use clustering
as a good starting point to partition the dataset into clus-
ters that roughly map to call types.

Clustering is grouping data based on their intrinsic
similarities. After the data reduction steps described
above, clustering is used as a bootstrapping process to
create a reasonable set of call types.

In any clustering algorithm, we need to define the
similarity (or dissimilarity, which is also called distance)
between two samples, and the similarity between two
clusters of samples. Specifically, the data samples in our
task are call utterances. Each utterance is converted into
a feature vector, which is an array of terms and their
weights. The distance of two utterances is defined as the
cosine distance between corresponding feature vectors.
Assume x and y are two feature vectors, the distance
d(x,y) between them is given by

yx
yx

yx
⋅
•−= 1),(d

As indicated in the previous section, there are differ-
ent ways to extract a feature vector from an utterance.
The options include named entity extraction, stop word
removal, word stemming, N-gram on terms, and binary
or TF-IDF (Term frequency – inverse document fre-
quency) based weights. Depending on the characteris-
tics of the applications in hand, certain combinations of
these options are appropriate. For all the results pre-
sented in this paper, we applied named entity extraction,
stop word removal, word stemming, and 1-gram term
with binary weights to extract the feature vectors.

The cluster distance is defined as the maximum dis-
tance between any pairs of two utterances, one from
each cluster. Figure 2 illustrates the definition of the
cluster distance.

Figure 2. Illustration of Cluster Distance.

The range of utterance distance is from 0 to 1, and

the range of the cluster distance is the same. When the
cluster distance is 1, it means that there exists at least
one pair of utterances, one from each cluster, that are
totally different (sharing no common term).

The clustering algorithm we adopted is the Hierar-
chical Agglomerative Clustering (HAC) method. The

details of agglomerative hierarchical clustering algo-
rithm can be found in (Jan and Dubes, 1988). The fol-
lowing is a brief description of the HAC procedure.
Initially, each utterance is a cluster on its own. Then, for
each iteration, two clusters with a minimum distance
value are merged. This procedure continues until the
minimum cluster distance exceeds a preset threshold.
The principle of HAC is straightforward, yet the compu-
tational complexity and memory requirements may be
high for large size datasets. We developed an efficient
implementation of HAC by on-the-fly cluster/utterance
distance computation and by keeping track of the cluster
distances from neighboring clusters, such that the mem-
ory usage is effectively reduced and the speed is signifi-
cantly increased.

Our goal is to partition the dataset into call types
recognized by the SLU model and the clustering results
provide a good starting point. It is easier to transform a
set of clusters into call types than to create call types
directly from a large set of flat data. Depending on the
distance threshold chosen in the clustering algorithm,
the clustering results may either be conservative (with
small threshold) or aggressive (with large threshold). If
the clustering is conservative, the utterances of one call
type may be scattered into several clusters, and the UE
expert has to merge these clusters to create the call type.
On the other hand, if the cluster is aggressive, there may
be multiple call types in one cluster, and the UE expert
needs to manually split the mixture cluster into different
call types. In real applications, we tend to set a rela-
tively low threshold since it is easier to merge small
homogeneous clusters than to split one big heterogene-
ous cluster.

3.3 Relevance Feedback

Although clustering provides a good starting point, find-
ing all representative utterances belonging to one call
type is not a trivial task. Effective data mining tools are
desirable to help the UE expert speed up this manual
procedure. Our solution is to provide a relevance feed-
back mechanism based on support vector machine
(SVM) techniques for the UE expert to perform this
tedious task.

Relevance feedback is a form of query-free retrieval
where documents are retrieved according to a measure
of relevance to given documents. In essence, a UE ex-
pert indicates to the retrieval system that it should re-
trieve “more documents like the ones desired, not the
ones ignored.” Selecting relevant documents based on
UE expert’s inputs is basically a classification (rele-
vant/irrelevant) problem. We adopted support vector
machine as the classifier for to two reasons: First, SVM
efficiently handles high dimensional data, especially a
text document with a large vocabulary. Second, SVM
provides reliable performance with small amount of
training data. Both advantages perfectly match the task

at hand. For more details about SVM, please refer to
(Vapnik, 1998; Drucker et al, 2002).

Relevance feedback is an iterative procedure. The
UE expert starts with a cluster or a query result by cer-
tain keywords, and marks each utterance as either a
positive or negative utterance for the working call type.
The UE expert’s inputs are collected by the relevance
feedback engine, and they are used to build a SVM clas-
sifier that attempts to capture the essence of the call type.
The SVM classifier is then applied to the rest of the
utterances in the dataset, and it assigns a relevance score
for each utterance. A new set of the most relevant utter-
ances are generated and presented to the UE expert, and
the second loop of relevance feedback begins. During
each loop, the UE expert does not need to mark all the
given utterances since the SVM is capable of building a
reasonable classifier based on very few, e.g., 10, train-
ing samples. The superiority of relevance feedback is
that instead of going through all the utterances one by
one to create a specific call type, the UE expert only
needs to check a small percentage of utterances to create
a satisfactory call type.

Figure 3. The Interface for Relevance Feedback.

The relevance feedback engine is implemented by

the Call Type Editor Tool. This tool provides an inte-
grated environment for the UE expert to create a variety
of call types and assign relevant utterances to them.
The tool provides an efficient way to move utterances
between two call types and to search relevant utterances
for a specific call type. The basic search function is to
search a keyword or a set of keywords within the dataset
and retrieve all utterances containing these search terms.
The UE expert can then assign these utterances into the
appropriate call types. Relevance feedback serves as an
advanced searching option. Relevance feedback can be
applied to the positive and negative utterances of a clus-

Table 1. Data Reduction Results

ter or call type or can be applied to utterances, from a
search query, which are marked as positive or negative.
The interface for the relevance feedback is shown in
Figure 3. In the interface, the UE expert can mark the
utterances as positive or negative samples. The UE ex-
pert can also control the threshold of the relevance value
such that the relevance feedback engine only returns
utterances with high enough relevance values. In the
tool, we are using an internally developed package for
learning large margin classifiers to implement the SVM
classifier (Haffner et al, 2003).

3.4 SLU Toolset

The SLU toolset is based on an internally developed
NLU Toolset. The underlying boosting algorithm for
text classification used, BoosTexter, is described else-
where (Freund and Schapire, 1999; Schapire and Singer,
2000; Rochery et al, 2002). We added interactive input
and display capabilities via a Web interface allowing the
UE expert to easily build and test SLU models.

Named entity grammars are constructed as described
above. About 20% of the labeled data is set aside for
testing. The remaining data is used to build the initial
SLU model which is used to test the utterances set aside
for testing. The UE expert can interactively test utter-
ances typed into a Web page or can evaluate the test
results of the test data. For each of the tested utterances
in the test data, test logs show the classification confi-
dence scores for each call type. The confidence scores
are replaced by probability thresholds that have been
computed using a logistic function. These scores are
then used to calculate a simple metric which is a meas-
ure of call type differentiability. If the test utterance
labeled by the UE expert is correctly classified, then the
call type is the truth call type. The SLU metric is calcu-
lated as follows and it is averaged over the utterances:

• if the call type is the truth, the score is the dif-
ference (positive) between the truth probability
and the next highest probability

• if the call type is not the truth, the score is the
difference (negative) between the truth prob-
ability and the highest probability

This metric allows the UE expert to easily spot prob-
lem call types or those that might give potential prob-
lems in the field. It is critical that call types are easily
differentiable in order to properly route the call. The
UE expert can iteratively build and test the initial SLU
models until the UE expert has a set of self-consistent
call types before creating the final annotation guide.
The final annotation guide would then be used by the
labelers to label all the utterance data needed to build
the final SLU model. Thus, the SLU Toolset is critical
for creating the call types defined in the annotation
guide which in turn is needed to label the data for creat-
ing the final SLU.

Alternatively, the labeled utterances can easily be
exported in a format compatible with the internally de-
veloped NLU Toolset if further SLU model tuning is to
be performed by the NLU expert using just the com-
mand line interface.

3.5 Reporting

One of the reporting components is the Annotation
Guide Generation Tool. The UE expert can use this at
any time to automatically generate the annotation guide
from the Processed Data. Other reporting components
include summary statistics and spreadsheets containing
utterance and call type information.

4 Results

The performance of the preprocessing techniques has
been evaluated on several datasets from various industry
sectors. Approximately 10,000 utterances were col-
lected for each application and the results of the data
reduction at each processing stage are shown in Table 1.
The Redundancy R is given by

N

U
R −= 1

where U is the number of unique utterances after feature
extraction and N is the number of original utterances.

Industry
Sector

Original
Utterances

Unique
Utterances

Unique
Utterances after

Text
Normalization

Unique
Utterances
after Entity
Extraction

Unique
Utterances

after Feature
Extraction

Redundancy

Financial 11,623 10,021 9,670 9,165 7,929 31.8%
Healthcare 12,080 10,255 9,452 9,382 7,946 34.2%
Insurance 12,109 8,865 8,103 7,963 6,530 46.1%

Retail 10,240 4,956 4,392 4,318 3,566 65.2%

Initial UE experts of the tools have been successful
in producing annotation guides more quickly and with
very good initial F-measures.

recallprecision

recallprecision
F

+
••= 2

They have also reported that the task is much less
tedious and that they have done a better job of covering
all of the significant utterance clusters. Further studies
are required to generate quantitative measures of the
performance of the toolset.

5 Future Work

In the future, the system could be improved using other
representative utterance selection algorithms (e.g., se-
lecting the utterance with the minimum string edit dis-
tance to all others).

The grammars for entity extraction were not tuned
for these applications and it is expected that further data
reduction will be obtained with improved grammars.

6 Conclusions

We presented an interactive speech data analysis system
for creating and testing spoken language understanding
systems. Spoken language understanding is a critical
component of automated customer service applications.
Creating effective SLU models is inherently a data
driven process and requires considerable human inter-
vention. The fact that this process relies heavily on hu-
man expertise prevents a total automation of the
process. Our experience indicates that augmenting the
human expertise with interactive data analysis tech-
niques made possible by machine learning techniques
can go a long way towards increasing the efficiency of
the process and the quality of the final results. The
automatic preprocessing of the utterance data prior to its
use by the UE expert results in a considerable reduction
in the number of utterances that needs to be manually
examined. Clustering uncovers certain structures in the
data that can then be refined by the UE expert. Super-
vised machine learning capabilities provided by interac-
tive relevance feedback tend to capture the knowledge
of the UE expert to create the guidelines for labeling the
data. The ability to test the generated call types during
the design process helps detect and remove problematic
call types prior to their inclusion in the SLU model.
This tool has been used to create the labeling guide for
several applications by different UE experts. Aside
from the increased efficiency and improved quality of
the generated SLU systems, the tool has resulted in in-
creased uniformity in the way different UE experts clas-
sify calls into call type labels.

Acknowledgements

We would like to thank Harris Drucker, Patrick Haffner,
Steve Lewis, Maria Alvarez-Ryan, Barbara Hollister,
Harry Blanchard, Liz Alba, Elliot Familant, Greg Pulz,
David Neeves, Uyi Stewart, and Lan Zhang for their
contributions to this work.

References

Harris Drucker, Behzad Shahraray, and David C. Gib-

bon, 2002. Support Vector Machines: Relevance
Feedback and Information Retrieval, Information
Processing and Management, 38(3):305-323.

Yaov Freund and Robert Schapire, 1999. A Short Intro-
duction to Boosting, Journal of Japanese Society for
Artificial Intelligence, 14(5):771-780.

Patrick Haffner, Gokhan Tur, and Jerry Wright, 2003.
Optimizing SVMs for complex Call Classification,
ICASSP 2003.

A. L. Gorin, G. Riccardi, and J. H. Wright. 1997. How
May I Help You? Speech Communication, 23:113-
127.

A. K. Jan and R. C. Dubes, 1988. Algorithms for Clus-
tering Data, Prentice Hall.

M. F. Porter, 1980. An Algorithm For Suffix Stripping,
Program, 14(3):130-137.

M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Ric-
cardi, S. Bangalore, H. Alshawi and S. Douglas,
2002. Combining prior knowledge and boosting for
call classification in spoken language dialogue,
ICASSP 2002.

SAS Institute Press Release, 2002. New SAS® Text Min-
ing Software Surfaces Intelligence beyond the Num-
bers, 1/21/02.

Robert Schapire and Yoram Singer, 2000. BoosTex-
ter: A Boosting-based System for Text Categorization,
Machine Learning, 39(2/3):135-168.

Gokhan Tur, Robert E. Schapire, and Dilek Hakkani-
Tür, 2003. Active Learning for Spoken Language
Understanding, Proceedings of International Confer-
ence on Acoustics, Speech and Signal Processing,
ICASSP 2003.

V. N. Vapnik, 1998. Statistical Learning Theory, John
Wiley & Sons, Inc.

