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Abstract 

Spoken language understanding is a critical 
component of automated customer service ap-
plications.  Creating effective SLU models is 
inherently a data driven process and requires 
considerable human intervention.  We de-
scribe an interactive system for speech data 
mining.  Using data visualization and interac-
tive speech analysis, our system allows a User 
Experience (UE) expert to browse and under-
stand data variability quickly.  Supervised 
machine learning techniques are used to cap-
ture knowledge from the UE expert.  This cap-
tured knowledge is used to build an initial 
SLU model, an annotation guide, and a train-
ing and testing system for the labelers.  Our 
goal is to shorten the time to market by in-
creasing the efficiency of the process and to 
improve the quality of the call types, the call 
routing, and the overall application. 

1 Introduction 

The use of spoken dialogue systems to automate ser-
vices in call centers is continually expanding.  In one 
such system, unconstrained speech recognition is used 
in a limited domain to direct call traffic in customer call 
centers (Gorin et al, 1997).  The challenge in this envi-
ronment is not only the accuracy of the speech recogni-
tion but more importantly, the knowledge and 
understanding of how the customer request is mapped to 
the business requirement.   

The first step of the process is to collect utterances 
from customers, which are transcribed.  This gives us a 
baseline for the types of requests (namely, the user in-
tents) that customers make when they call a client.  A 
UE expert working with the business customer uses 
either a spreadsheet or a text document to classify these 
calls into call types.  For example, 

• “I want a refund” �  REFUND 
• “May I speak with an operator” � 

GET_CUSTOMER_REP 
The end result of this process is a document, the an-

notation guide, that describes the types of calls that may 
be received and how to classify them.  This guide is 
then given to a group of “labelers” who are trained and 
given thousands of utterances to label.  The utterances 
and labels are then used to create the SLU model for the 
application.  The call flow which maps the call types to 
routing destinations (dialog trajectory) is finalized and 
the development of the dialogue application begins.  
After the field tests, the results are given to the UE ex-
pert, who then will refine the call types, create a new 
annotation guide, retrain the labelers, redo the labels and 
create new ones from new data and rebuild the SLU 
model.   

Previously, this knowledge was only captured in a 
document and was not formalized until the SLU model 
was generated.  Our goal in creating our system is not 
only to give the UE expert tools to classify the calls, but 
to capture and formalize the knowledge that is gained in 
the process and to pass it on to the labelers.  We can 
thus automatically generate training instances and test-
ing scenarios for the labelers, thereby creating more 
consistent results.  Additionally, we can use the SLU 
model generated by our system to “pre-label” the utter-
ances.  The labelers can then view these “pre-labeled” 
utterances and either agree or disagree with the gener-
ated labels.  This should speed up the overall labeling 
process. 

More importantly, this knowledge capture will en-
able the UE expert to generate and test a SLU model as 
part of the process of creating the call types for the 
speech data.  The feedback from this initial SLU test 
allows the UE expert to refine the call types and to im-
prove them without having to train a group of labelers 
and to run a live test with customers.  This results in an 
improved SLU model and makes it easier to find prob-
lems before deployment, thus saving time and money. 



 
Figure 1. System Diagram 

 
At the same time, the process is more efficient due to 
the increased uniformity in the way different UE experts 
classify calls into call type labels. 

We will describe Annomate, an interactive system 
for speech data mining.  In this system, we employ sev-
eral machine learning techniques such as clustering and 
relevance feedback in concert with standard text search-
ing methods.  We focus on interactive dynamic tech-
niques and visualization of the data in the context of the 
application. 

 The paper is organized as follows.  The overview of 
the system is presented in Section 2.  Section 3 briefly 
discusses the different components of the system.  Some 
results are given in Section 4.  Finally, in Sections 5 and 
6, we give conclusions and point to some future direc-
tions. 

2 System Overview 

In this section, we will give a system overview and 
show how automation has sped up and improved the 
existing process.  The UE expert no longer needs to 
keep track of utterances or call type labels in spread-
sheets. Our system allows the UE expert to more easily 
and efficiently label collected utterances in order to 
automatically build a SLU model and an electronic an-
notation guide (see System Diagram in Figure 1). The 

box in Figure 1 contains the new components used in 
the improved and more automated process of creating 
SLU models and annotation guides.  

After data collection, the Preprocessing steps (the 
data reduction and clustering steps are described in 
more detail below) reduce the data that the UE expert 
needs to work with thus saving time and money.  The 
Processed Data, which initially only contains the tran-
scribed utterances but later will also contain call types, 
is stored in an XML database which is used by the Web 
Interface.  At this point, various components of the Web 
Interface are applied to create call types from utterances 
and the Processed Data (utterances and call types) con-
tinue to get updated as these changes are applied.  These 
include the Clustering Tool to fine-tune the optimal 
clustering performance by adjusting the clustering 
threshold. Using this tool, the UE expert can easily 
browse the utterances within each cluster and compare 
the members of one cluster with those of its neighboring 
clusters.  The Relevance Feedback component is im-
plemented by the Call Type Editor Tool. This tool pro-
vides an efficient way to move utterances between two 
call types and to search relevant utterances for a specific 
call type. The Search Engine is used to search text in the 
utterances in order to facilitate the use of relevance 
feedback. It is also used to get a handle on utterance and 

La-
belers Transcribed 

Utterances 
 

Annotation 
Guide 

Preprocessing 

•Data Reduction 

•Clustering 

 
Processed 

Data 

Web-Enabled User Interface 

Clustering 

Relevance 

Feedback 

Search Engine 

 
Report 

Generation 

 
Initial 
SLU 

User  
Experience 
Expert 

SLU  

Toolset 

V 
I 
S 
U 
A 
L 
I 
Z 
A 
T 
I 
O 
N 
 



call type proximity using utterance and cluster dis-
tances.  

After a reasonable percentage of the utterances are 
populated or labeled into call types, an initial SLU 
model can be built and tested using the SLU Toolset. 
Although a reduced dataset is used for labeling (see 
discussion on clone families and reduced dataset be-
low), all the utterances are used when building the SLU 
model in order to take advantage of more data and 
variations in the utterances. The UE expert can itera-
tively refine the SLU model.  If certain test utterances 
are being incorrectly classified or are not providing suf-
ficient differentiability among certain call types (the 
SLU metric described below is used to improve call 
type differentiation), then the UE expert can go back 
and modify the problem call types (by adding utterances 
from other call types or by removing utterances using 
the Web Interface). The updated Processed Data can 
then be used to rebuild the SLU model and it can be 
retested to ensure the desired result.  This initial SLU 
model can also be used as a guide in determining the 
call flow for the application. 

The Reporting component of the Web Interface can 
automatically create the annotation guide from the 
Processed Data in the XML database at any time using 
the Annotation Guide Generation Tool. If changes are 
made to utterances or call types, then the annotation 
guide can be regenerated almost instantly.  Thus, this 
Web Interface allows the UE expert to easily and more 
efficiently create the annotation guide in an automated 
fashion unlike the manual process that was used before. 

3 Components 

Many SLU systems require data collection and some 
form of utterance preprocessing and possibly utterance 
clustering.  Our system uses relevance feedback and 
SLU tools to improve the SLU process. 

3.1 Data Collection 

Natural language data exists in a variety of forms such 
as documents, e-mails, and text chat logs. We will focus 
here on transcriptions of telephone conversations, and in 
particular, on data collected in response to the first 
prompt from an open dialogue system. The utterances 
collected are typically short phrases or single sentences, 
although in some cases, the caller may make several 
statements. It is assumed that there may be multiple 
intents for each utterance. We have also found that the 
methods presented here work well when used with the 
one-best transcription from a large vocabulary auto-
matic speech recognition system instead of manual tran-
scription.  

3.2 Preprocessing 

Our tools add structure to the raw collected data through 
a series of preprocessing steps. Utterance redundancy 
(and even repetition) is inherent in the collection proc-
ess and this is tedious for UE experts to deal with as 
they examine and work with the dataset. This section 
describes taking the original utterance set and reducing 
the redundancy (using text normalization, named entity 
extraction, and feature extraction) and thereby the vol-
ume of data to be examined. The end product of this 
processing is a subset of the original utterances that 
represents the diversity of the input data in a concise 
way. Sets of identical or similar utterances are formed 
and one utterance is selected at random to represent 
each set (alternative selection methods are also possible, 
see the Future Work section). UE experts may choose to 
expand these clone families to view individual mem-
bers, but the bulk of the interaction needs to only in-
volve a single representative utterance from each set.  

Text Normalization 

There is a near continuous degree of similarity between 
utterances. At one extreme are exact text duplicates 
(data samples in which two different callers say the ex-
act same thing). At the next level, utterances may differ 
only by transcription variants like “100” vs. “one hun-
dred” or “$50” vs. “fifty dollars.” Text normalization is 
used to remove this variation. Moving further, utter-
ances may differ only by the inclusion of verbal pauses 
or of transcription markup such as: “uh, eh, background 
noise.” Beyond this, for many applications it is insig-
nificant if the utterances differ only by contraction: “I’d 
vs. I would” or “I wanna” vs. “I want to.” Acronym 
expansions can be included here: “I forgot my personal 
identification number” vs. “I forgot my P I N.” Up to 
this point it is clear that these variations are not relevant 
for the purposes of intent determination (but of course 
they are useful for training a SLU classifier). We could 
go further and include synonyms or synonymous 
phrases: “I want” vs. “I need.”  Synonyms however, 
quickly become too powerful at data reduction, collaps-
ing semantically distinct utterances or producing other 
undesirable effects (“I am in want of a doctor.”)  Also, 
synonyms may be application specific.  

Text normalization is handled by string replacement 
mappings using regular expressions. Note that these 
may be represented as context free grammars and com-
posed with named entity extraction (see below) to per-
form both operations in a single step.  In addition to 
one-to-one replacements, the normalization includes 
many-to-one mappings (you ��������� ������� �	
���	�-
to-null mappings (to remove noise words). 



Named Entity Extraction 

Utterances that differ only by an entity value should 
also be collapsed. For example “give me extension 
12345” and “give me extension 54321” should be repre-
sented by “give me extension extension_value.” Named 
entity extraction is implemented through rules encoded 
using context free grammars in Backus-Naur form.  A 
library of generic grammars is available for such things 
as phone numbers and the library may be augmented 
with application-specific grammars to deal with account 
number formats, for example. The grammars are view-
able and editable, through an interactive web interface. 
Note that any grammars developed or selected at this 
point may also be used later in the deployed application 
but that the named entity extraction process may also be 
data driven in addition to or instead of being rule based.  

Feature Extraction 

To perform processing such as clustering, relevance 
feedback, or building prototype classifiers, the utter-
ances are represented by feature vectors. At the simplest 
level, individual words can be used as features (i.e., a 
unigram language model). In this case, a lexis or vo-
cabulary for the corpus of utterances is formed and each 
word is assigned an integer index. Each utterance is then 
converted to a vector of indices and the subsequent 
processing operates on these feature vectors. Other 
methods for deriving features include using bi-grams or 
tri-grams as features, weighting features based upon the 
number of times a word appears in an utterance or how 
unusual the word is in the corpus (TF, TF-IDF), and 
performing word stemming (Porter, 1980). When the 
dataset available for training is very small (as is the case 
for relevance feedback) it is best to use less restrictive 
features to effectively amplify the training data. In this 
case, we have chosen to use features that are invariant to 
word position, word count and word morphology and 
we ignore noise words. With this, the following two 
utterances have identical feature vector representations: 

• I need to check medical claim status 
• I need check status of a medical claim 
Note that while these features are very useful for the 

process of initially analyzing the data and defining call 
types, it is appropriate to use a different set of features 
when training classifiers with large amounts of data 
when building the SLU model to be fielded. In that case, 
tri-grams may be used, and stemming is not necessary 
since the training data will contain all of the relevant 
morphological variations. 

Clustering 

After the data reductions steps above, we use clustering 
as a good starting point to partition the dataset into clus-
ters that roughly map to call types. 

Clustering is grouping data based on their intrinsic 
similarities. After the data reduction steps described 
above, clustering is used as a bootstrapping process to 
create a reasonable set of call types. 

In any clustering algorithm, we need to define the 
similarity (or dissimilarity, which is also called distance) 
between two samples, and the similarity between two 
clusters of samples. Specifically, the data samples in our 
task are call utterances. Each utterance is converted into 
a feature vector, which is an array of terms and their 
weights. The distance of two utterances is defined as the 
cosine distance between corresponding feature vectors. 
Assume x and y are two feature vectors, the distance 
d(x,y) between them is given by 

yx
yx

yx
⋅
•−= 1),(d  

As indicated in the previous section, there are differ-
ent ways to extract a feature vector from an utterance. 
The options include named entity extraction, stop word 
removal, word stemming, N-gram on terms, and binary 
or TF-IDF (Term frequency – inverse document fre-
quency) based weights. Depending on the characteris-
tics of the applications in hand, certain combinations of 
these options are appropriate. For all the results pre-
sented in this paper, we applied named entity extraction, 
stop word removal, word stemming, and 1-gram term 
with binary weights to extract the feature vectors. 

The cluster distance is defined as the maximum dis-
tance between any pairs of two utterances, one from 
each cluster. Figure 2 illustrates the definition of the 
cluster distance.  

 

 
 

Figure 2. Illustration of Cluster Distance. 
 
The range of utterance distance is from 0 to 1, and 

the range of the cluster distance is the same. When the 
cluster distance is 1, it means that there exists at least 
one pair of utterances, one from each cluster, that are 
totally different (sharing no common term).  

The clustering algorithm we adopted is the Hierar-
chical Agglomerative Clustering (HAC) method. The 



details of agglomerative hierarchical clustering algo-
rithm can be found in (Jan and Dubes, 1988).  The fol-
lowing is a brief description of the HAC procedure. 
Initially, each utterance is a cluster on its own. Then, for 
each iteration, two clusters with a minimum distance 
value are merged. This procedure continues until the 
minimum cluster distance exceeds a preset threshold. 
The principle of HAC is straightforward, yet the compu-
tational complexity and memory requirements may be 
high for large size datasets. We developed an efficient 
implementation of HAC by on-the-fly cluster/utterance 
distance computation and by keeping track of the cluster 
distances from neighboring clusters, such that the mem-
ory usage is effectively reduced and the speed is signifi-
cantly increased. 

Our goal is to partition the dataset into call types 
recognized by the SLU model and the clustering results 
provide a good starting point. It is easier to transform a 
set of clusters into call types than to create call types 
directly from a large set of flat data. Depending on the 
distance threshold chosen in the clustering algorithm, 
the clustering results may either be conservative (with 
small threshold) or aggressive (with large threshold). If 
the clustering is conservative, the utterances of one call 
type may be scattered into several clusters, and the UE 
expert has to merge these clusters to create the call type. 
On the other hand, if the cluster is aggressive, there may 
be multiple call types in one cluster, and the UE expert 
needs to manually split the mixture cluster into different 
call types. In real applications, we tend to set a rela-
tively low threshold since it is easier to merge small 
homogeneous clusters than to split one big heterogene-
ous cluster.  

3.3 Relevance Feedback 

Although clustering provides a good starting point, find-
ing all representative utterances belonging to one call 
type is not a trivial task. Effective data mining tools are 
desirable to help the UE expert speed up this manual 
procedure. Our solution is to provide a relevance feed-
back mechanism based on support vector machine 
(SVM) techniques for the UE expert to perform this 
tedious task.  

Relevance feedback is a form of query-free retrieval 
where documents are retrieved according to a measure 
of relevance to given documents. In essence, a UE ex-
pert indicates to the retrieval system that it should re-
trieve “more documents like the ones desired, not the 
ones ignored.” Selecting relevant documents based on 
UE expert’s inputs is basically a classification (rele-
vant/irrelevant) problem. We adopted support vector 
machine as the classifier for to two reasons: First, SVM 
efficiently handles high dimensional data, especially a 
text document with a large vocabulary. Second, SVM 
provides reliable performance with small amount of 
training data. Both advantages perfectly match the task 

at hand. For more details about SVM, please refer to 
(Vapnik, 1998; Drucker et al, 2002).  

Relevance feedback is an iterative procedure. The 
UE expert starts with a cluster or a query result by cer-
tain keywords, and marks each utterance as either a 
positive or negative utterance for the working call type. 
The UE expert’s inputs are collected by the relevance 
feedback engine, and they are used to build a SVM clas-
sifier that attempts to capture the essence of the call type. 
The SVM classifier is then applied to the rest of the 
utterances in the dataset, and it assigns a relevance score 
for each utterance. A new set of the most relevant utter-
ances are generated and presented to the UE expert, and 
the second loop of relevance feedback begins. During 
each loop, the UE expert does not need to mark all the 
given utterances since the SVM is capable of building a 
reasonable classifier based on very few, e.g., 10, train-
ing samples. The superiority of relevance feedback is 
that instead of going through all the utterances one by 
one to create a specific call type, the UE expert only 
needs to check a small percentage of utterances to create 
a satisfactory call type.  

 

 
 
Figure 3. The Interface for Relevance Feedback. 

 
The relevance feedback engine is implemented by 

the Call Type Editor Tool. This tool provides an inte-
grated environment for the UE expert to create a variety 
of call types and assign relevant utterances to them.  
The tool provides an efficient way to move utterances 
between two call types and to search relevant utterances 
for a specific call type. The basic search function is to 
search a keyword or a set of keywords within the dataset 
and retrieve all utterances containing these search terms. 
The UE expert can then assign these utterances into the 
appropriate call types. Relevance feedback serves as an 
advanced searching option. Relevance feedback can be 
applied to the positive and negative utterances of a clus- 



 
Table 1. Data Reduction Results 

 

ter or call type or can be applied to utterances, from a 
search query, which are marked as positive or negative. 
The interface for the relevance feedback is shown in 
Figure 3. In the interface, the UE expert can mark the 
utterances as positive or negative samples. The UE ex-
pert can also control the threshold of the relevance value 
such that the relevance feedback engine only returns 
utterances with high enough relevance values. In the 
tool, we are using an internally developed package for 
learning large margin classifiers to implement the SVM 
classifier (Haffner et al, 2003). 

   

3.4 SLU Toolset 

The SLU toolset is based on an internally developed 
NLU Toolset. The underlying boosting algorithm for 
text classification used, BoosTexter, is described else-
where (Freund and Schapire, 1999; Schapire and Singer, 
2000; Rochery et al, 2002). We added interactive input 
and display capabilities via a Web interface allowing the 
UE expert to easily build and test SLU models. 

Named entity grammars are constructed as described 
above. About 20% of the labeled data is set aside for 
testing. The remaining data is used to build the initial 
SLU model which is used to test the utterances set aside 
for testing. The UE expert can interactively test utter-
ances typed into a Web page or can evaluate the test 
results of the test data.  For each of the tested utterances 
in the test data, test logs show the classification confi-
dence scores for each call type. The confidence scores 
are replaced by probability thresholds that have been 
computed using a logistic function.  These scores are 
then used to calculate a simple metric which is a meas-
ure of call type differentiability. If the test utterance 
labeled by the UE expert is correctly classified, then the 
call type is the truth call type. The SLU metric is calcu-
lated as follows and it is averaged over the utterances: 

• if the call type is the truth, the score is the dif-
ference (positive) between the truth probability 
and the next highest probability 

• if the call type is not the truth, the score is the 
difference (negative) between the truth prob-
ability and the highest probability 

This metric allows the UE expert to easily spot prob-
lem call types or those that might give potential prob-
lems in the field.  It is critical that call types are easily 
differentiable in order to properly route the call.  The 
UE expert can iteratively build and test the initial SLU 
models until the UE expert has a set of self-consistent 
call types before creating the final annotation guide.  
The final annotation guide would then be used by the 
labelers to label all the utterance data needed to build 
the final SLU model.  Thus, the SLU Toolset is critical 
for creating the call types defined in the annotation 
guide which in turn is needed to label the data for creat-
ing the final SLU. 

Alternatively, the labeled utterances can easily be 
exported in a format compatible with the internally de-
veloped NLU Toolset if further SLU model tuning is to 
be performed by the NLU expert using just the com-
mand line interface. 

3.5 Reporting 

One of the reporting components is the Annotation 
Guide Generation Tool.  The UE expert can use this at 
any time to automatically generate the annotation guide 
from the Processed Data.  Other reporting components 
include summary statistics and spreadsheets containing 
utterance and call type information. 

4 Results 

The performance of the preprocessing techniques has 
been evaluated on several datasets from various industry 
sectors. Approximately 10,000 utterances were col-
lected for each application and the results of the data 
reduction at each processing stage are shown in Table 1. 
The Redundancy R is given by 

N

U
R −= 1  

where U is the number of unique utterances after feature 
extraction and N is the number of original utterances.  

Industry 
Sector 

Original 
Utterances 

Unique 
Utterances 

Unique  
Utterances after 

Text  
Normalization 

Unique 
Utterances  
after Entity 
Extraction 

Unique 
Utterances  

after Feature 
Extraction 

Redundancy 

Financial 11,623 10,021 9,670 9,165 7,929 31.8% 
Healthcare 12,080 10,255 9,452 9,382 7,946 34.2% 
Insurance 12,109 8,865 8,103 7,963 6,530 46.1% 

Retail 10,240 4,956 4,392 4,318 3,566 65.2% 



Initial UE experts of the tools have been successful 
in producing annotation guides more quickly and with 
very good initial F-measures.  

recallprecision

recallprecision
F

+
••= 2

 

They have also reported that the task is much less 
tedious and that they have done a better job of covering 
all of the significant utterance clusters. Further studies 
are required to generate quantitative measures of the 
performance of the toolset. 

5 Future Work 

In the future, the system could be improved using other 
representative utterance selection algorithms (e.g., se-
lecting the utterance with the minimum string edit dis-
tance to all others).  

The grammars for entity extraction were not tuned 
for these applications and it is expected that further data 
reduction will be obtained with improved grammars. 

6 Conclusions 

We presented an interactive speech data analysis system 
for creating and testing spoken language understanding 
systems.  Spoken language understanding is a critical 
component of automated customer service applications.  
Creating effective SLU models is inherently a data 
driven process and requires considerable human inter-
vention.  The fact that this process relies heavily on hu-
man expertise prevents a total automation of the 
process. Our experience indicates that augmenting the 
human expertise with interactive data analysis tech-
niques made possible by machine learning techniques 
can go a long way towards increasing the efficiency of 
the process and the quality of the final results.  The 
automatic preprocessing of the utterance data prior to its 
use by the UE expert results in a considerable reduction 
in the number of utterances that needs to be manually 
examined. Clustering uncovers certain structures in the 
data that can then be refined by the UE expert. Super-
vised machine learning capabilities provided by interac-
tive relevance feedback tend to capture the knowledge 
of the UE expert to create the guidelines for labeling the 
data.  The ability to test the generated call types during 
the design process helps detect and remove problematic 
call types prior to their inclusion in the SLU model.  
This tool has been used to create the labeling guide for 
several applications by different UE experts.  Aside 
from the increased efficiency and improved quality of 
the generated SLU systems, the tool has resulted in in-
creased uniformity in the way different UE experts clas-
sify calls into call type labels.  
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