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Abstract 

This article proposes a hybrid statistical and 
structural semantic model for multi-stage 
spoken language understanding (SLU). The 
first stage of this SLU utilizes a weighted fi-
nite-state transducer (WFST)-based parser, 
which encodes the regular grammar of con-
cepts to be extracted. The proposed method 
improves the regular grammar model by in-
corporating a well-known n-gram semantic 
tagger. This hybrid model thus enhances the 
syntax of n-gram outputs while providing 
robustness against speech-recognition errors. 
With applications to a Thai hotel reservation 
domain, it is shown to outperform both indi-
vidual models at every stage of the SLU sys-
tem. Under the probabilistic WFST 
framework, the use of N-best hypotheses 
from the speech recognizer instead of the 1-
best can further improve performance requir-
ing only a small additional processing time. 

1 Introduction 

Automatic speech recognition (ASR) for Thai lan-
guage is still in the first stage, where Thai researchers 
in related fields have worked towards creating funda-
mental tools for language processing such as phono-
logical and morphological analyzers. Although Thai 
writing is an alphabetic system, a problem of writing 
without sentence markers or spaces between words has 
obstructed initiation of development of ASR. Pioneer-
ing a Thai spoken dialogue system has therefore be-
come a challenging task, where several unique 
components need to be developed specifically for a 
Thai system. 

Our prototype dialogue system, namely Thai Inter-
active Hotel Reservation Agent (TIRA), was created 
mainly by handcrafted rules. The first user evaluation 
(Wutiwiwatchai and Furui, 2003a) showed that the 
spoken language understanding (SLU) part of the sys-
tem proved the most problematic as it could not cover 

the variety of contents supplied by the users, especially 
when they talked in a mixed-initiative style. 

To rapidly improve performance, a trainable SLU 
model is preferable and it needs to be able to learn 
from a partially annotated corpus, where only essential 
keywords are given. This is particularly important for 
Thai where no large corpus is available. 

Recently, a novel multi-stage SLU model has been 
developed (Wutiwiwatchai and Furui, 2003b), which 
combines two different practices used for SLU-related 
tasks, robust semantic parsing and topic classification. 
The former paradigm was implemented in the concept 
extraction and concept-value recognition component, 
whereas the latter was applied for the goal identifica-
tion component. The concept extraction utilizes a set 
of weighted finite-state transducers (WFST) to encode 
possible word-syntax (or regular grammar) expressed 
for each concept. The concept WFST not only deter-
mines the existence of a concept in an input utterance, 
but also labels keywords used to construct its value in 
the concept-value recognition component. Given the 
extracted concepts, the goal of the utterance can be 
identified in the goal identification component using a 
generalized pattern classifier. 

This article reports an improvement of the concept 
extraction and concept-value recognition parts by con-
ducting a well-known statistical n-gram parser to com-
pensate for the concept expressions, which cannot be 
recognized by the ordinary concept WFST. The n-
gram modeling alone lacks structural information as it 
captures only up to n-word dependencies. Combining 
the statistical and structural model for SLU hence be-
comes a better alternative. Motivated by Béchet et al.  
(2002), we propose a strategic way called logical n-
gram modeling, which combines the statistical n-gram 
with the existing regular grammar. In contrast to the 
regular-grammar approach, the probabilistic model 
allows the SLU to deal with ASR N-best hypotheses, 
resulting in an increment of the overall performance. 

Some related works are reviewed in the next sec-
tion, followed by a description of our multi-stage SLU 
model. Section 4 explains the proposed hybrid model. 
Section 5 shows the evaluation results with a conclu-
sion in section 6. 



2 Related Works 

In the technology of trainable or data-driven SLU, two 
different practices for different applications have been 
widely investigated. The first practice aims to tag the 
words (or group of words) in the utterance with se-
mantic labels, which are later converted to a certain 
format of semantic representation. To generate such a 
semantic frame, words in the utterance are usually 
aligned to a semantic tree by a parsing algorithm such 
as a probabilistic context free grammar or a recursive 
network whose nodes represent semantic symbols of 
the words and arcs consist of transition probabilities. 
During parsing, these probabilities are summed up, 
and used to determine the most likely parsed tree. 
Many understanding engines have been successfully 
implemented based on this paradigm (Seneff, 1992; 
Potamianos et al., 2000; Miller et al., 1994). A draw-
back of this method is, however, the requirement of a 
large, fully annotated corpus, i.e. a corpus with seman-
tic tags on every word, to ensure training reliability. 

The second practice has been utilized in applica-
tions such as call classification (Gorin et al., 1997). In 
this application, the understanding module aims to 
classify an input utterance to one of predefined user 
goals (if an utterance is supposed to have one goal) 
directly from the words contained in the utterance. 
This problem can be considered a simple pattern clas-
sification task. An advantage of this method is the 
need for training utterances tagged only with their 
goals, one for each utterance. However, another proc-
ess is required if one needs to obtain more detailed 
information. Our motivation for combining the two 
practices described above is that this allows the use of 
an only partially annotated corpus, while still allowing 
the system to capture sufficient information. The idea 
of combination has also been investigated in other 
works such as Wang et al. (2002). 

Another issue related to this article is the combina-
tion of a statistical and rule-based approach for SLU, a 
system which is expected to improve the overall per-
formance over both individual approaches. The closest 
approach to our work was proposed by Béchet et al.  
(2002), aiming to extract named-entities (NEs) from 
an input utterance. NE extraction is performed in two 
steps, detecting the NEs by a statistical tagger and ex-
tracting NE values using local models. Estève et al. 
(2003) proposed a tighter coupling method that em-
beds conceptual structures into the ASR decoding 
network. Wang et al. (2000), and Hacioglu and Ward 
(2001) proposed similar ideas for unified models that 
incorporated domain-specific context-free grammars 
(CFGs) into domain-independent n-gram models. The 
hybrid models thus improved the generalized ability of 
the CFG and specificity of the n-gram. With the exist-
ing regular grammar model in a weighted finite-state 

transducer (WFST) framework, we propose another 
strategy to incorporate the statistical n-gram model 
into the concept extraction and concept-value recogni-
tion components of our multi-stage SLU. 

3 Multi-Stage SLU 

In the design of our spoken dialogue system, the dia-
logue manager decides to respond to the user after 
perceiving the user goal. In some types of goal, infor-
mation items contained in the utterance are required 
for communication. For example the goal “request for 
facilities” must come with the facilities the user is ask-
ing for, and the goal “request for prerequisite keys” 
aims to have the user state the reserved date and the 
number of participants. Hence, the SLU module must 
be able to identify the goal and extract the required 
information items. 

We proposed a novel SLU model (Wutiwiwatchai 
and Furui, 2003b) that processes an input utterance in 
three stages, concept extraction, goal identification, 
and concept-value recognition. Figure 1 illustrates the 
overall architecture of the SLU model, in which its 
components are described in detail as follows: 

 

 
Figure 1. Overall architecture of the multi-stage SLU. 

3.1 Concept extraction 

The function of concept extraction is similar to that of 
other works, aiming to extract a set of concepts from 
an input utterance. However, our way to define a con-
cept is rather different. • A concept has a unique semantic meaning. • The order of concepts is not important. • Each type of concept occurs only once in an ut-

terance. • The semantic meaning of a concept can be inter-
preted from a sequence of words arbitrarily 
placed in the utterance (the sequence can overlap 
or cross each other). 

Examples of utterances and concepts contained in the 
utterances are shown in Table 1. A word sequence or 
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substring corresponding to the concept is presented in 
the form of a label sequence. The ‘ε’ and two-alphabet 
symbols such as ‘fd’ denote the words required to in-
dicate the concept. The two-alphabet symbols addi-
tionally specify keywords used for concept-value 
recognition. The ‘-’ is for other words not related to 
the concept. As defined above, a concept such as 
‘reqprovide’ (asking whether something is provided) is 
expressed by the substring “there is … right”, which 
contains two separated strings, “there is” and “right”. 
In the same utterance, another concept ‘yesnoq’ (ask-
ing by a yes-no question) also possesses the word 
‘right’. We considered this method of definition to 
have more impact for presenting the meaning of con-
cepts, compared to what has been defined in other 
works. It must be noted that some concepts contain 
values such as the concept ‘numperson’ (the number of 
people), whereas some do not, such as the concept 
‘yesnoq’. 

 

 
 

Figure 2. A portion of regular grammar WFST for the 
concept ‘numperson’ (the number of people). 

We implemented the concept extraction component 
by using weighted finite-state transducers (WFSTs). 
Similar to the implementation of salient grammar 
fragments in Gorin et al. (1997), the possible word 
sequences expressed for a concept are encoded in a 
WFST, one for each type of concept. Figure 2 demon-
strates a portion of WFST for the concept ‘numperson’. 
Each arc or transition of the WFST is labeled with an 
input word (or word class) followed after a colon by 
an output semantic label, and enclosed after a slash by 
a weight. A special symbol ‘NIL’ represents any word 
not included in the concept. The transitions, linking 
between the start and end node, characterize the ac-
ceptable word syntax. Weights of these transitions, 
except those containing ‘NIL’, are assigned to be -1. 
The rest are assigned to have zero weights. The output 
labels indicate keywords as shown in Table 1. These 
labels will be used later by the concept-value recogni-
tion component. 

In the training step, each concept WFST was cre-
ated separately. The training utterances were tagged by 
marking just the words required by the concept. Then 
the WFST was constructed by: 

1. replacing the unmarked words in each training  
utterance by the symbols ‘NIL’, 

2. making an individual FST for the preprocessed 
utterance, 

3. performing the union operation of all FSTs and 
determinizing the resulting FST, 

4. attaching the recursive-arcs of every word to 
the start and end node as illustrated in Fig. 2, 

5. assigning the weights to the transitions as  
described previously. 

In the parsing step, an input utterance is fed to 
every concept WFST in parallel. For each WFST, the 
words in the utterance that are not included in the 
WFST are replaced by the symbols ‘NIL’ and the pre-
processed word string is parsed by the WFST using the 
composition operation. By minimizing the cumulative 
weight, the longest accepted substring is chosen. A 
concept is considered to exist if at least one substring 
is accepted. Since this model is a kind of word-
grammar representation for a particular concept, we 
have called it the concept regular grammar or ‘Reg’ 
model in short. 

 

                               “two  nights  from  the  sixth  of  July” 
Concept Keyword labels of accepted substring 
(1) reservedate     -        -          ε      ε       fd     ε    fm 
(2) numnight    nn      ε          -       -       -       -     - 

Goal inform_prerequisite-keys 
Label sequence  2:nn    2:ε     1:ε    1:ε   1:fd  1:ε  1:fm 

 

                               “there   is    a   pool,  right?” 
Concept Keyword labels of accepted substring 
(1) reqprovide      ε      ε      -      -        ε 
(2) facility      -       -     ε      fc       -  
(3) yesnoq      -       -      -      -        ε 

Goal request_facility 
Label sequence    1:ε   1:ε   2:ε  2:fc  1:ε,3:ε 

 

Table 1. Examples of defined goals, concepts and their 
corresponding substrings presented by keyword labels. 

3.2 Goal identification 

Having extracted the concepts, the goal of the utter-
ance can be identified. The goal in our case can be 
considered as a derivative of the dialogue act coupled 
with additional information. As the examples show in 
Table 1, the goal ‘request_facility’ means a request 
(dialogue act) for some facilities (additional informa-
tion). Since we observed in our largest corpus that 
only 1.1% were multiple-goal utterances, an utterance 
could be supposed to have only one goal. 

The goal identification task can be viewed as a 
simple pattern classification problem, where a goal is 
identified given an input vector of binary values indi-
cating the existence of predefined concepts. Our previ-
ous work (Wutiwiwatchai and Furui, 2003b) showed 
that this task could be efficiently achieved by the sim-
ple multi-layer perceptron type of artificial neural net-
work (ANN). 
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3.3 Concept-value recognition 

Recall again that some concepts contain values such as 
the concept ‘numperson’, whose value is the number 
of people, whereas some concepts do not, such as the 
concept ‘yesnoq’. Given an input utterance, the SLU 
module must be able to identify the goal and extract 
information items such as the reserved date, the num-
ber of people, the name of facility, etc. The concepts 
extracted in the first stage are not only used to identify 
the goal, but also strongly related to the described in-
formation items, that is, the values of concepts are 
actually the required information items. Hence, ex-
tracting the information items is to recognize the con-
cept values. 

Since the keywords within a concept have already 
been labeled by WFST composition in the concept 
extraction step, recognizing the concept-value is just a 
matter of converting the labeled keywords to a certain 
format. For sake of explanation, let’s consider the ut-
terance “two nights from the sixth of July” in Table 1. 
After parsing by the ‘reservedate’ (the reserved date) 
concept WFST, the substring “from the sixth of July” 
is accepted with the words “sixth” and “July” labeled 
by the symbols ‘fd’ and ‘fm’ respectively. These label 
symbols are specifically defined for each type of con-
cept and have their unique meanings, e.g. ‘fd’ for the 
check-in date, ‘fm’ for the check-in month, etc. The 
labeled keywords are then converted to a predefined 
format for the concept value. The value of ‘reserve-
date’ concept is in a form of <fy-fm-fd_ty-tm-td>, and 
thus the labeled keywords “sixth(fd) July(fm)” is con-
verted to <04-07-06_ty-tm-td>. It must be noted that 
although the check-in year is not stated in the utterance, 
the concept-value recognition process under its knowl-
edge-base inherently assigns the value ‘04’ (the year 
2004) to the ‘fy’. This process can greatly help in solv-
ing anaphoric expressions in natural conversation. Ta-
ble 2 gives more examples of substrings accepted and 
labeled by ‘reservedate’ WFST, and their correspond-
ing values. Currently, this conversion task is per-
formed by simple rules. 

 

Accepted substring Concept-value 
 

“sixth(fd) to eighth(td) of July(tm)” 
 

“check-in tomorrow(fd)” 
 

“until next Tuesday(td)” 

 

<04-07-06_04-07-08> 
 

<04-06-10_ty-tm-td> 
 

<fy-fm-fd_04-06-18> 
 

 

Table 2. Examples of substrings accepted by the ‘re-
servedate’ WFST with their corresponding values. 

4 Hybrid Statistical and Structural Se-
mantic Modeling 

Although the Reg model described in Sect. 3.1 has an 
ability to capture long-distant dependencies for seen 

grammar, it certainly fails to parse an unseen-grammar 
utterance, especially when it is distorted by speech 
recognition errors. This article thus presents an effort 
to improve concept extraction and concept-value 
recognition by incorporating a statistical approach. 

4.1 N-gram modeling 

We can view the concept extraction process as a se-
quence labeling task, where a label sequence L = (l1 … 
lT) as shown in the “Label sequence” lines of Table 1 
is determined given a word string W = (w1…wT). Each 
label, in the form of {c:l}, refers to the cth-concept 
with keyword label l. A word is allowed to be in mul-
tiple concepts, hence having multiple keyword labels 
such as {1:ε,3: ε} as shown in the last line of Table 1. 
Finding the most probable sequence L is equivalent to 
maximizing the joint probability P(W,L), which can be 
simplified using n-gram modeling (n = 2 for bigram) 
as follows: ∏= −−== T

t
tttt

LL
lwlwPLWPL

1
11 ),|,(maxarg),(maxarg

~
 

 (1) 

The described n-gram model, called ‘Ngram’ 
hereafter, can be implemented also by a WFST, whose 
weights are the smoothed n-gram probabilities. Parsing 
an utterance by the Ngram WFST is performed simply 
by applying the WFST composition in the same way 
as operated with the Reg model. 

4.2 Logical n-gram modeling 

Although the n-gram model can assign a likelihood 
score to any input utterance, it cannot distinguish be-
tween valid and invalid grammar structure. On the 
other hand, the regular grammar model can give se-
mantic tags to an utterance that is permitted by the 
grammar, but always rejects an ungrammatical utter-
ance. Thus, another probabilistic approach that inte-
grates the advantages of both models is optimum. 

Our proposed model, motivated mainly by (Béchet 
et al. 2002), combines the statistical and structural 
models in two-pass processing. Firstly, the conven-
tional n-gram model is used to generate M-best hy-
potheses of label sequences given an input word string. 
The likelihood score of each hypothesis is then en-
hanced once its word-and-label syntax is permitted by 
the regular grammar model. By rescoring the M-best 
list using the modified scores, the syntactically valid 
sequence that has the highest n-gram probability is 
reordered to the top. Even if no label sequence is per-
mitted by the regular grammar, the hybrid model is 
still able to output the best sequence based on the 
original n-gram scores. Since the proposed model aims 
to enhance the logic of n-gram outputs, it is named the 
logical n-gram model. 



This idea can be implemented efficiently in the 
framework of WFST as depicted in Fig. 3. At first, the 
concept-specific Reg WFST is modified from the one 
shown in Fig. 2 by replacing the weight -1 by a vari-
able -λ, which can be empirically adjusted to gain the 
best result. An unknown word string in the form of a 
finite state machine is parsed by the Ngram WFST, 
producing a WFST of M-best label-sequence hypothe-
ses. Concepts are detected in the top hypothesis. Then, 
the concept-value recognition process is applied for 
each detected concept separately. In the concept-value 
recognition process, the M-best WFST is intersected 
by the concept-specific Reg WFST. Rescoring the 
result offers a new WFST of P-best (P < M) hypothe-
ses with a score in logarithmic domain for each hy-
pothesis assigned by 
 ∑= −− += T

t
ttttt lwlwPScore

1
11 )),|,((log λ , (2) 

where }0,{λλ ∈t . If λ is set to 0, the intersection op-
eration is just to filter out the hypotheses that violate 
the regular grammar, while the original scores from n-
gram model are left unaltered. If a larger λ is used, the 
hypothesis that contains a longer valid syntax is given 
a higher score. When no hypothesis in the M-best list 
is permitted by the grammar (P = 0), the top hypothe-
sis of the M-best list is outputted. It is noted that the 
strategy of eliminating unacceptable paths of n-gram 
due to syntactical violation has also successfully been 
used in a WFST-based speech recognition system 
(Szarvas and Furui, 2003). Hereafter, we will refer to 
the logical n-gram modeling as ‘LNgram’. 

4.3 The use of ASR N-best hypotheses 

The probabilistic model allows the use of N-best hy-
potheses from the automatic speech recognition (ASR) 
engine. As described in Sect. 4.1, our Ngram semantic 
model produces a joint probability P(W,L), which in-
dicates the chance that the semantic-label sequence L 
occurs with the word hypothesis W. When the N-best 
word hypotheses generated from the ASR are fed into 
the Ngram semantic parser, the parsed scores are 
combined with the ASR likelihood scores in a log-
linear interpolation fashion (Klakow, 1998) as shown 
in Eq. 3. θθ −Φ∈≈ 1

,
),(),(maxarg

~
LWPWAPL

NWL
 (3) 

where A is an acoustic speech signal, and P(A,W) is a 
product of an acoustic score P(A|W) and a language 
score P(W). ΦN denotes the N-best list and θ is an in-
terpolation weight, which can be adjusted experimen-
tally to give the best result. This interpolation method 
can be easily implemented in a WFST framework 
compared to normal linear interpolation. 

An N-best list can be used in the LNgram using 
the same criterion as well. The only necessary precau-
tion is an appropriate size of M in the M-best seman-
tic-label list, which is rescored in the second pass to 
improve the concept-value result. 

 

 

Figure 5. Logical n-gram modeling. 

5 Evaluation and Discussion 

5.1 Corpora 

Collecting and annotating a corpus is an especially 
serious problem for language like Thai, where only 
few databases are available. To shorten the collection 
time, we created a specific web page simulating our 
expected conversational dialogues, and asked Thai 
native users to answer the dialogue questions by typ-
ing. As we asked the users to try answering the ques-
tions using spoken language, we could obtain a fairly 
good corpus for training the SLU. 

Currently, 5,869 typed-in utterances from 150 us-
ers have been completely annotated. To reduce the 
effort of manual annotation, we conducted a semi-
automatic annotation method. The prototype rule-
based SLU was used to roughly tag each utterance 
with a goal and concepts, which were then manually 
corrected. Words or phases that were relevant to the 
concept were marked automatically based on their 
frequencies and information mutual to the concept. 
Finally the tags were manually checked and the key-
words within each concept were additionally marked 
by the defined label symbols. 

All 5,869 utterances described above were used as 
a training set (TR) for the SLU system. We also col-
lected a set of speech utterances during an evaluation 
of our prototype dialogue system. It contained 1,101 
speech utterances from 96 dialogues. By balancing the 
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occurrence of goals, we reserved 500 utterances for a 
development set (DS), which was used for tuning pa-
rameters. The remaining 601 utterances were used for 
an evaluation set (ES). Table 3 shows the characteris-
tics of each data set. From the TR set, 75 types of con-
cepts and 42 types of goals were defined. The out-of-
goal and out-of-concept denote goals and concepts that 
are not defined in the TR set, and thus cannot be rec-
ognized by the trained SLU. Since concepts that con-
tain no value are not counted for concept-value 
evaluation, Table 3 also shows the number of concepts 
that contain values in the line “# Concept-values”. 

 

Characteristic TR DS ES 
# Utterances 5,869 500 601 
# Words / utterance 7.3 6.2 5.8 
# Goal types 42 40 40 
# Concept types 75 58 57 
# Concept-value types 20 18 18 
# Concepts 10,041 791 949 
# Concept-values 6,365 366 439 
% Out-of-goal  5.2 5.3 
% Out-of-concept  2.8 3.3 
% Word accuracy  77.2 79.0 
 

Table 3. Characteristics of data sets 

5.2 Evaluation measures 

Four measures were used for evaluation: 
1. Word accuracy (WAcc) – the standard measure 

for evaluating the ASR, 
2. Concept F-measure (ConF) – the F-measure of 

detected concepts, 
3. Goal accuracy (GAcc) – the number of 

utterances with correctly identified goals, 
divided by the total number of test utterances, 

4. Concept-value accuracy (CAcc) – the number 
of concepts, whose values are correctly 
matched to their references, divided by the total 
number of concepts that contain values. 

5.3 The use of logical n-gram modeling 

The first experiment was to inspect improvement 
gained after conducting the statistical approaches for 
concept extraction and concept-value recognition. 
Only the 1-best word hypothesis from the ASR was 
experimented in this section. The AT&T generalized 
FSM library (Mohri et al., 1997) was used to construct 
and operate all WFSTs, and the SNNS toolkit (Zell et 
al., 1994) was used to create the ANN classifiers for 
the goal identification task. 

The baseline system utilized the Reg model for 
concept extraction and concept-value recognition, and 
the multi-layer perceptron ANN for goal identification. 
75 WFSTs corresponding to the number of defined 
concepts were created from the TR set. The ANN con-

sisted of a 75-node input layer, a 100-node hidden 
layer (Wutiwiwatchai and Furui, 2003b), and a 42-
node output layer equal to the number of goals to be 
identified. 
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Figure 4. CAcc results with respect to values of M in 

an oracle test for the DS set. 
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Figure 5. CAcc results with variation of λ for the DS 
set when M is set to 80. 

Recognition Orthography Measure 
Reg Ngram LNgram Reg LNgram 

ConF 76.5 88.6 78.9 91.4 
GAcc 71.4 76.0 81.2 83.5 
CAcc 65.1 52.4 67.2 75.7 76.8 

 

Table 4. Evaluation results for the ES set using the 
Reg, Ngram, and LNgram models. 

Another WFST was constructed for the n-gram 
semantic parser (n = 2 in our experiment), which was 
used for the Ngram model and the first pass of the 
LNgram model. Two parameters, M and λ, in the 
LNgram approach need to be adjusted. To determine 
an appropriate value of M, we plotted in an oracle 
mode the CAcc of the DS set with respect to M, as 
shown in Figure 4. According to the graph, an M of 80 
was considered optimum and set for the rest of the 
experiments. Figure 5 then shows the CAcc obtained 
for rescored M-best hypotheses when the weight λ as 
defined in Eq. 2 is varied. Here, the larger value of λ 
means to assign a higher score to the hypothesis that 
contains longer valid word-and-label syntax. Hence, 
we concluded by Fig. 5 that reordering the hypotheses, 



which contain longer valid syntaxes, could improve 
the CAcc significantly. Since the CAcc results become 
steady when the value of λ is greater than 0.7, a λ of 
1.0 is used henceforth to ensure the best performance. 

The overall evaluation results on the ES set are 
shown in Table 4, where M and λ in the LNgram 
model are set to 80 and 1.0 respectively. ‘Recognition’ 
denotes the experiments on automatic speech-
recognized utterances (at 79% WAcc), whereas ‘Or-
thography’ means their exact manual transcriptions. It 
is noted that the LNgram approach utilizes the same 
process of Ngram in its first pass, where the concepts 
are determined. Therefore, the ConF and GAcc results 
of both approaches are the same. 

According to the results, the Ngram tagger worked 
well for the concept extraction task as it increased the 
ConF by over 10%. The improvement mainly came 
from reduction of redundant concepts often accepted 
by the Reg model. The better extraction of concepts 
could give better goal identification accuracy reasona-
bly. However, as we expected, the conventional 
Ngram model itself had no syntactic information and 
thus often produced a confusing label sequence, espe-
cially for ill-formed utterances. A typical error oc-
curred for words that could be tagged with one of 
several semantic labels, such as the word ‘MNT’ (re-
ferring to the name of the month), which could be 
identified as ‘check-in month’ or ‘check-out month’. 
These two alternatives could only be clarified by a 
context word, which sometimes located far from the 
word ‘MNT’. This problem could be solved by using 
the Reg model. The Reg model, however, could not 
provide a label sequence to any out-of-syntax sentence. 
The LNgram as an integration of both models thus 
obviously outperformed the others. 

In conclusion, the LNgram model could improve 
the ConF, GAcc, and CAcc by 15.8%, 6.4%, and 3.2% 
relative to the baseline Reg model. Moreover, if we 
considered the orthography result an upperbound of 
the underlying model, the GAcc and CAcc results pro-
duced by the LNgram model are relatively closer to 
their upperbounds compared to the Reg model. This 
verifies robustness improvement of the proposed 
model against speech-recognition errors. 

5.4 The use of ASR N-best hypotheses 

To incorporate N-best hypotheses from the ASR to the 
LNgram model, we need to firstly determine an ap-
propriate value of N. An oracle test that measures 
WAcc and ConF for the DS set with variation of N is 
shown in Fig. 6. Although we can select a proper value 
of N by considering only the WAcc, we also examine 
the ConF to ensure that the selected N provides possi-
bility to improve the understanding performance as 
well. According to Fig. 6, the ConF highly correlates 

to the WAcc, and an N of 50 is considered optimum 
for our task. At this operating point, we plot another 
curve of ConF for the DS set with a variation of θ, the 
interpolation weight in Eq. 3, as shown in Fig. 7. The 
appropriate value of θ is 0.6, as the highest ConF is 
obtained at this point. The last parameter we need to 
adjust is the value of M. Although we have tuned the 
value of M for the case of 1-best word hypothesis, the 
appropriate value of M may change when the N-best 
hypotheses are used instead. However, in our trial, we 
found that the optimum value of M is again in the 
same range as that operated for the 1-best case. A 
probable reason is that rescoring the N-best word hy-
potheses by the Ngram model can reorder the good 
hypotheses to a certain upper portion of the N-best list, 
and thus rescoring in the second pass of the LNgram 
is independent to the value of N. Consequently, an M 
of 80 as that selected for the 1-best hypothesis is also 
used for the N-best case. 
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Figure 6. WAcc and ConF results with respect to val-

ues of N in an oracle test for the DS set. 
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Figure 7. ConF results with variation of θ for the DS 
set when N is set to 50. 

Given all tuned parameters, an evaluation on the 
ES set is carried out as shown in Fig. 8. With the Reg 
model as a baseline system, the use of N-best hypothe-
ses further improves the the ConF, GAcc, and CAcc 
by 0.9%, 0.6%, and 3.9% from the only 1-best, and 
hence reduces the gap between the speech-recognized 



test set and the orthography test set by 25%, 5.3%, and 
26% respectively. 

Finally, we would like to note that the proposed 
LNgram approach provided the significant advantage 
of a much smaller computational time compared to the 
original Reg approach. While the Reg model requires 
C times (C denotes the number of defined concepts) of 
WFST operations to determine concepts, the LNgram 
needs only D+1 times (D << C), where D is the num-
ber of concepts appearing in the top hypothesis pro-
duced by the n-gram semantic model. Moreover, under 
the framework of WFST, incorporating ASR N-best 
hypotheses required only a small increment of addi-
tional processing time compared to the use of 1-best. 
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Figure 8. Comparative results for the ES set between 

the use of ASR 1-best and N-best (N = 50) hypotheses. 

6 Conclusion and Future Works 

Recently, a multi-stage spoken language understanding 
(SLU) approach has been proposed for the first Thai 
spoken dialogue system. This article reported an im-
provement on the SLU system by replacing the regular 
grammar-based semantic model by a hybrid n-gram 
and regular grammar approach, which not only cap-
tures long-distant dependencies of word syntax, but 
also provides robustness against speech-recognition 
errors. The proposed model, called logical n-gram 
modeling, obviously improved the performance in 
every SLU stage, while reducing the computational 
time compared to the original regular-grammar ap-
proach. Under the probabilistic WFST framework, the 
system was improved further by using N-best word-
hypotheses from the ASR, requiring only a small addi-
tional processing time compared to the use of 1-best. 

Further improvement of overall speech understand-
ing as well as a spoken dialogue system in the future 
can be expected by introducing dialogue-state depend-
ent modeling in the ASR and/or the SLU. A better way 
to utilize the first P-best goal hypotheses produced by 
the goal identifier instead of 1-best would also en-
hance the understanding performance. 
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