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Abstract

Much of the massive quantities of digitized
data widely available, e.g., text, speech, hand-
written sequences, are either given directly,
or, as a result of some prior processing, as
weighted automata. These are compact rep-
resentations of a large number of alternative
sequences and their weights reflecting the un-
certainty or variability of the data. Thus,
the indexation of such data requires indexing
weighted automata.

We present a general algorithm for the index-
ation of weighted automata. The resulting in-
dex is represented by a deterministic weighted
transducer that isptimalfor search: the search
for an input string takes time linear in the sum
of the size of that string and the number of
indices of the weighted automata where it ap-
pears. We also introduce a general framework
based on weighted transducers that general-
izes this indexation to enable the search for
more complex patterns including syntactic in-
formation or for different types of sequences,
e.g., word sequences instead of phonemic se-
guences. The use of this framework is illus-
trated with several examples.

We applied our general indexation algorithm
and framework to the problem of indexation of
speech utterances and report the results of our
experiments in several tasks demonstrating that
our techniques yield comparable results to pre-
vious methods, while providing greater gener-
ality, including the possibility of searching for
arbitrary patterns represented by weighted au-
tomata.

nmur at }@ esearch. att.com

1 Motivation

Much of the massive quantities of digitized data widely
available is highly variable amncertain This uncertainty
affects the interpretation of the data and its computationa
processing at various levels, e.g., natural language texts
are abundantly ambiguous, speech and hand-written se-
guences are highly variable and hard to recognize in pres-
ence of noise, biological sequences may be altered or in-
complete.

Searching or indexing such data requires dealing with
a large number of ranked or weighted alternatives. These
may be for example the different parses of an input text,
the various responses to a search engine or information
extraction query, or the best hypotheses of a speech or
hand-written recognition system. In most cases, alterna-
tive sequences can be compactly representeuddighted
automata The weights may be probabilities or some
other weights used to rank different hypotheses.

This motivates our study of the general problem of
indexation of weighted automata. This is more general
than the classical indexation problems since, typically,
there are many distinct hypotheses or alternatives asso-
ciated with the same index, e.g., a specific input speech
or hand-written sequence may have a large number of dif-
ferent transcriptions according to the system and models
used. Moreover, the problem requires taking into con-
sideration the weight of each alternative, which does not
have a counterpart in classical indexation problems.

We describe a general indexation algorithm for
weighted automata. The resulting index is represented
by a deterministic weighted transducer thatjgimalfor
search: the search for an input string takes time linear
in the sum of the size of that string and the number of
indices of the weighted automata where it appears.

In some cases, one may wish to search using sequences
in some level, e.g. word sequences, different from the
level of the sequences of the index, e.g. phonemic se-
guences. One may also wish to search for complex se-
guences including both words and parts-of-speech, or re-



strict the search by either restricting the weights or prob&2  Preliminaries

bilities or the lengths or types of sequences. We descri _ — . .

a general indexation framework covering all these case 'ef!n;:|onj SAI systeml(glléé@z %O’ 1)6 IS a semmr:g

Our framework is based on the use of filtering weighte uich and salomaa, ) itK, ©,0) is a commuta-
e monoid with identity elemeft (K, ®, 1) is a monoid

transducers for restriction or other transducers mapping., . . ) — o -
bp ith identity element; ® distributes overd; and0 is an

between distinct information levels or knowledge struc- inilator for & for all K 0-0 ~0
tures. We illustrate the use of this framework with sey@nintatoriore:torall a € %,a ©0 =0 a = 0.
eral examples that demonstrate its relevance to a numbBhus, a semiring is a ring that may lack negation. Two

of indexation tasks. semirings often used in speech processing are:ldpe

We applied our framework and algorithms to the parSeMiNNgL = (R U {oo}, @1og, +, 00,0) (Mohri, 2002)
ticular problem of speech indexation. In recent yeardVhich is isomorphic to the familiar real or probability
spoken document retrieval systems have made larg§Mirng(Ry,+,x,0,1) via alog morphism with, for
archives of broadcast news searchable and browsab® ;b € RU {co}:

Most of these systems use automatic speech recognition
to convert spee)::h into text, which is ttrw)en indexeg us- @ @rog b = —log(exp(—a) + exp(-b))
ing standard methods. When a user presents the systgiy the convention that: exp(—oc) = 0 and

with a query, documents that are relevant to the query arejog(0) = oo, and thetropical semiring7 = (R, U
found using text-based information retrieval techniques.{oo}, min, +, 00, 0) which can be derived from the log
As speech indexation and retrieval systems move bsemiring using the Viterbi approximation.

yond the domain of broadcast news to more challengingefinition 2 A weighted finite-state transducgrover a
spoken communications, the importance for the 'ndexegemiringK is an 8-tupleT = (3,A,Q,1,F, B\ p)
material to contain more than just a simple text represetpere: 3 js the finite input alphabet of the transducer;
tation of the communication is becoming clear. Indexx js the finite output alphabe® is a finite set of states;
ation and retrieval techniques must be extended to hap- ~ O the set of initial statesF C Q the set of final

dle more general representations including for examplgtes-F Q% (SU{ed) x (AU{e}) x K x Q afinite
syntactic information. In addition to the now familiar re- ot of ,tran_sitions?\ . I — K the initial weight function:

trieval systems or search engines, other applications suaﬁdp . F — K the final weight function mapping to
as data mining systems can be used to automatically ideg-

tify useful patterns in large collections of spoken commu- ] ]
nications. Information extraction systems can be used f Weighted automatod = (X, @, I, F, E, A, p) is de-

gather high-level information such as named-entities. fined in a similar way by simply omitting the output la-
bels. We denote by.(4) C X* the set of strings ac-

For a given input speech utterance, aIarge—vocabuIa(r:yépted by an automatoA and similarly by L(X) the

spgech recognition system oft_en generatdattice, a .strings described by a regular expressi®n We denote
weighted automaton representing a range of alternatnbe

hypotheses with some associated weights or probabilitieg Al = Q| +|B| the size ofA.

used to rank them. When the accuracy of a system is rqI—GIVen a tranglt_lone < E,_we denote bylc] _|ts |npu_t
abel, p[e] its origin or previous state ande] its desti-

atively low as in many conversational speech recogmtlon(,i,[ion state or next stateye] its weight, o[e] its output

tasks, it is not safe to _rely only on the best hypo_the5|s ou%lbel (transducer case). Given a state Q, we denote
put by the system. It is then preferable to use instead the

: ; by Eq| the set of transitions leaving
full lattice output by the recognizer. _ . Apathr = e --- ey is an element of2* with con-
We report the results of our experiments in Sevgecytive transitionsnfe;_1] = ple], i = 2,..., k. We

eral tasks demonstrating that our techniques yieldxtendn andp to paths by settingn[r] = nlex] and
comparable results to the previous methods olg[w] = ple]. A cycle 7 is a path whose origin and
Saraclar and Sproat (2004), while providing greategestination states coincideqr] = p[x]. We denote by
generality, including the possibility of searching forp(q7q/) the set of paths from to ¢’ and by P(q, =, ¢')
arbitrary patterns represented by weighted automata. gpg P(q,z,y,q) the set of paths frony to ¢’ with in-
The paperis organized as follows. Section 2 introducgaut labelz € ¥* and output labe}; (transducer case).
the notation and the definitions used in the rest of the pd-hese definitions can be extended to sub&tB’ C Q,
per. Section 3 describes our general indexation algorithby: P(R,z,R') = User, ¢crP(q,2,q"). The label-
for weighted automata. The algorithm for searching thang functions: (and similarly o) and the weight func-
index is presented in Section 4 and our general index#ion w can also be extended to paths by defining the la-
tion framework is described and illustrated in Section 5bel of a path as the concatenation of the labels of its
Section 6 reports the results of our experiments in severabnstituent transitions, and the weight of a path as the
tasks. ®-product of the weights of its constituent transitions:



ilr] = ilex] - -ilex], w[n] = wle1] @ --- @ wlex]. We  precisely, letP; be the probability distribution defined by
also extendw to any finite set of path$l by setting: the weighted automatas; over the set of strings* and
w(Il] = @, cqw[r]. The output weight associated bylet C,(u) denote the number of occurrences of a factor

A to each input string: € X* is: x in u, then, for any factor: € ¥* and automaton index
1e{l,...,n}:
Al(z) = A ®@ wlr] ® p(n ,
[A](z) NGPE(?IIF) (p[r]) ® w[r] ® p(n[r]) [T1(z, ) = — log(En,[C.]) )

_ _ _ ~ Our algorithm for the construction of the index is simple,
[A](z) is defined to b&) when P(I, 2, F") = (. Simi- it is based on general weighted automata and transducer
larly, the output weight associated by a transducév a  a|gorithms. We describe the consecutive stages of the al-

pair of input-output strindz, y) is: gorithm.
This algorithm can be seen as a generalization to
[T)(z.y)= B  Aplr]) @ wlr] @ p(n[x]) weighted automata of the notion siiffix automatomand
meP(l,z,y,F) factor automatoror strings. The suffix (factor) automa-

_ ton of a stringu is the minimal deterministic finite au-
[T](z,y) = 0 whenP(I,z,y, F) = . A successful (omata recognizing exactly the set of suffixes (resp. fac-
pathin a weighted automaton or transducéris a path - ors) of, (Blumer et al., 1985; Crochemore, 1986). The

from an initial state to a final statd/ is unambiguousf ;¢ of hoth automata is linear in the lengthudnd both
forany stringz € X* there is at most one successful patfy g pe pyilt in linear time. These are classical repre-

labeled withz. Thus, an unambiguous transducer definegenations used in text indexation (Blumer et al., 1987;

a function. Crochemore, 1986).
For any transduceF, denote byll,(7") the automaton

obtained by projecting@ on its output, that is by omitting 3.1 Preprocessing

its input labels. When the automatal; are word or phone lattices out-

Note that the second operation of the tropical semiringut by a speech recognition or other natural language
and the log semiring as well as their identity elements alSrocessing system, the path weights correspond to joint
identical. Thus the weight of a path in an automatbn probabilites. We can apply tol; a general weight-
overthe.tropical semiring does not changaii'_s_viewed. pushing algorithm in the log semiring (Mohri, 1997)
as a weighted automaton over the log semiring or vic&ghich converts these weights into the desired (negative
versa. _ _ _ ~log of) posterior probabilities. More generally, the path

Given two strings: andv in 7, v is afactorof u if  \yeights in the resulting automata can be interpreted as
u = zvy for somexr andy in ¥} if y = e thenvis also  |oq.-likelihoods. We denote by, the corresponding
asuffixof u. More generallyy is afactor (resp.suffiy of  hropapility distribution. When the input automatdsp is
L ¥ if vis a suffix (resp. factor) of somee L. We  acyclic, the complexity of the weight-pushing algorithm
denote byz| the length of a string: € X*. is linear in its size Q(|A;|)). Figures 1(b)(d) illustrates
the application of the algorithm to the automata of Fig-
ures 1(a)(c).

This section presents an algorithm for the construction qu_z Construction of Transducer IndexT
an efficient index for a large set of speech utterances.

We assume that for each speech utteramcef the L&t Bi = (5, Qi, i, Fi, Ei, Ai, p;) denote the result of
dataset considered,= 1,...,n, a weighted automaton the application of thg weight pqshlng algorithm to the au-
A; over the alphabeX and the log semiring, e.g., phoneomaton4;. The weight associated by; to each string
or word lattice output by an automatic speech recognizef,2CCepts can be interpreted as the log-likelihood of that
is given. The problem consists of creating a full indexString for the utterance; given the models used to gen-
that is one that can be used to search directly any factgfate the automata. More generaly;, defines a proba-
of any string accepted by these automata. Note that tHlity distribution P; over all strings: € 33* which is just
problem crucially differs from classical indexation prob-the sum of the probability of all paths @f; in which z
lems in that the input data is uncertain. Our algorithnilPPears. _
must make use of the weights associated to each string™0r €ach state € Q;, denote byi[¢] the shortest dis-
by the input automata. tance fromi; to ¢ (or —1c_>g of the forward probability) and

The main idea behind the design of the algorithm dely /1g] the shortest distance frogto F' (or -log of the
scribed is that the full index can be represented by Backward probability):
weighted finite-state transduc&r mapping each factor _ _

x to the set of indices of the automata in whicappears dla] = 169 (s (plm]) +wlr]) 2
and the negative log of the expected countzofMore ,repcziq)

3 Indexation Algorithm
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Figure 1: Weighted automata over the real semiringda)(b) B, obtained by applying weight pushing o, (c) A2
and (d)B; obtained by applying weight pushing #.

€1/1

flad= @ (wlrl + pinla]) ®)
lo
TFEP(S,F»;)
The shortest distancédq] and f[¢] can be computed for
all statesq € Q; in linear time O(|B;|)) when B; is
acyclic (Mohri, 2002). Then,

—log(Ep,[C]) = €D dlp + fnlxl] (4)

log
i[r]=z

From the weighted automatoB;, one can derive a
weighted transducéf; in two steps:

1. Factor Selection. In the general case we select all
the factors to be indexed in the following way:

e Replace each transitidp, a, w, q) € Q; x X x
RxQ;by(p,a,a,w,q) € QixEXEXRXQ;;

o Create a new state ¢ Qi and makes the  gigyre 2: Construction of; index of the weighted au-
unique initial state; tomataB; given Figure 1(b): (a) intermediary result after

o Create a new state ¢ Q; and makee the factor selection and (b) resulting weighted transddger
unique final state;

e Create a new transitiofs, ¢, ¢, d[q¢], ¢) for each

stateq € ;- 4 Search
e Create a new transitiofy, €, , f[q], ¢) foreach The full index represented by the weighted finite-state
stateg € Q;; transducefl’ is optimal. Indeed;" contains no transi-

tion with inpute other than the final transitions labeled
with an output index and it is deterministic. Thus, the
set of indicesl,, of the weighted automata containing a
factorx can be obtained i0(|z| + |I;|) by reading inT’
the unique path with input labeland then the transitions
with inpute which have each a distinct output label.
Itis clear from Equation 4 that for any factere >*: The user’s query is typically an unweighted string, but
[T3](z, i) = — log(Ep,[Ca]) (5) i_lt_hc_an be given as an arbitrary Weig_hted automalodn
is covers the case of Boolean queries or regular expres-

This construction is illustrated by Figures 2(a)(b). Oukjons which can be compiled into automata. The response

full index transducef’ is the constructed by to a queryX is computed using the general algorithm of

e taking the@log-sum (or union) of all the transducers composition of weighted transducers (Mohri et al., 1996)
T i=1,. followed by projection on the output:

2. Optimization. The resulting transducer can be o
timized by applying weighted-removal, weighted
determinization, and minimization over the log
semiring by viewing it as an acceptor, i.e., input-
output labels are encoded a single labels.

e defining T as the result of determinization (in the (X oT) (6)

log semiring) applied to that transducer. which is thene-removed and determinized to give di-
Figure 3 is illustrating this construction and optimizatio rectly the list of all indices and their corresponding log-



e Pronunciation Dictionary: a pronunciation dic-
tionary can be used to map word sequences into
€:2/1 . . .
e their phonemic transcriptions, thus transform word
lattices into equivalent phone lattices. This map-
ping can represented by a weighted transducer
Using an index based on phone lattices allows a
user to search for words that are not in the ASR
vocabulary. In this case, the inverse transduc-
tion F’ is a grapheme to phoneme converter, com-
monly present in TTS front-ends. Among others,
Witbrock and Hauptmann (1997) present a system
where a phonetic transcript is obtained from the
word transcript and retrieval is performed using both

®) Erl/l. word and phone indices.

e Vocabulary Restriction: in some cases using a full
index can be prohibitive and unnecessary. It might
be desirable to do partial indexing by ignoring some
words (or phones) in the input. For example, we

b:€/0.600 o
0 €:1/0.600
€:2/0.400

Figure 3: Weighted transducéf obtained by index- might wish to index only “named entities”, or just
ing the weighted automat®; and B, given in Fig- the consonants. This is mostly motivated by the
ures 1(b)(d) reduction of the size of the index while retaining

the necessary information. A similar approach is
to apply a many to one mapping to index groups of
phones, or metaphones (Amir et al., 2001), to over-
come phonetic errors.

likelihoods. The final result can be pruned to include only
the most likely responses. The pruning threshold may be
used to vary the number of responses.

5 G lInd ion E K e Reweighting: a weighted transducer can be used
eneral Indexation Framewor to emphasize some words in the input while de-

The indexation technique just outlined can be easily ex- €mphasizing other. The weights, for example might
tended to include many of the techniques used for speech correspond to TF-IDF weights. Another reweight-
indexation. This can be done by introducing a transducer ~ ing method might involve edit distance or confusion
F that converts between different levels of information ~ Statistics.

sources or structures, or that filters out or reweights index .
entries. The filte” can be applied (i) before, (ii) during

or (iii) after the construction of the index. For case (ig th
filter is used directly on the input and the indexation algo-
rithm is applied to the weighted automéfdo A;)1<i<n.

For case (ii), filtering is done after the factor selection
step of the algorithm and the filter applies to the factors,
typically to restrict the factors that will be indexed. For e Length Restriction: a common way of indexing
case (iii), the filter is applied to the index. Obviously phone strings is to index fixed length overlapping
different filters can be used in combination at different  phone strings (Logan et al., 2002). This results in a

Classification: an extreme form of summarizing the
information contained in the indexed material is to
assign a class label, such as a topic label, to each
input. The query would also be classified and all
answers with the same class label would be returned
as relevant.

stages. partial index with only fixed length strings. More
When such afilter is used, the response to a gieiy generally a minimum and maximum string length

obtained using another transdudér and the following may be imposed on the index. An example restric-

composition and projection: tion automaton is given in Figure 4. In this case,

/ the filter applies to the factors and has to be applied
(X o FoT) (7) during or after indexation. The restricted index will

Since composition is associative, it does not impose a be smaller in size but contains less information and

specific order to its application. However, in practice, =~ may result in degradation in retrieval performance,

it is often advantageous to computeo I’ before appli- especially for long queries.

cation of T'. The following are examples of some filter

transducers that can be of interest in many applications The length restriction filter requires a modification of

the search procedure. Assume a fixed — saylength
In most casesk” is the inverse of". restriction filter and a string query of length If £ < r,



Since, we take the system described there as our base-
line, we give a brief review of the basic indexation al-
gorithm used there. The algorithm uses the same pre-
processing step. For each label3h an index file is
constructed. For each arcthat appears in the prepro-
cessed weighted automatd?), the following informa-

tion is stored:(i, p[a], nla], d[p[a]], w[a]). Since the pre-
processing ensures thélly] = 0 for all ¢ in B;, it is pos-

sible to compute- log(Ep,[C,]) as in Equation 4 using

the information stored in the index.

() 6.1 Evaluation Metrics

) ) o ) For evaluating retrieval performance we use precision
Figure 4: (a) FiltetI” restricting to strings of length 2. (b) ang recall with respect to manual transcriptions. Let
Restrict_ed in_de>£ o T, whereT is the weighted trans- Correct(q) be the number of times the quegyis found
ducer given in Figure 3(b). correctly, Answer(q) be the number of answers to the

queryq, andReference(q) be the number of timeg is

then we need to pad the input to lengthvith X7 If found in the reference.

k > r, then we must search for all substrings of length Correct(q)

in the index. A string is present in a certain lattice if al it Precision(q) = Answer(q)
substrings are (and not vice versa). So, the results of each

substring search must be intersected. The probability of Correct(q)
each substring™" ! fori € {1,....,k+1—r}isan Recall(q) = Reference(q)

upper bound on the probability of the string, and the
count of each substring is an upper bound on the count
the string, sofok € {1,...,k+1—r}

gye compute precision and recall rates for each query and
report the average over all queries. The set of quépies
includes all the words seen in the reference except for a

Ep[C(z%)] < Ep [C(x?»rfl)]. stoplist of 100 most common words.
. 1 .
Therefore, the intersection operation must use minimum Precision = Q] Z Precision(q)
for combining the expected counts of substrings. In other q€Q
words, the expected count of the string is approximated 1
by the minimum of the probabilities of each of its sub- Recall = — Z Recall(q)
strings, @l q€Q
EnlC(2F)] ~ . EnlC(z 1Y, For lattice based retrieval methods, different operating
plC(z1)] 1§z‘g1k1£17r PlC(; ) points can be obtained by changing the threshold. The

N . ] precision and recall at these operating points can be plot-
In addition to a filter transducer, pruning can be aped as a curve.

plied at different stages of the algorithm to reduce the | aqdition to individual precision-recall values we
size of the index. Pruning eliminates least likely paths iR gq compute the F-measure defined as

a weighted automaton or transducer. Applying pruning

to A; can be seen as part of the process that generates the P 2 x Precision x Recall

uncertain input data. When pruning is appliedg only " Precision + Recall

the more likely alternatives will be indexed. If pruning is )

applied toT}, or to T, pruning takes the expected counts2nd report the maximum F-measure (maxF) to summa-
into consideration and not the probabilities. Note that thé2€ the information in a precision-recall curve.

threshold used for this type of pruning is directly compag » Corpora

rable to the threshold used for pruning the search results

in Section 4 since both are thresholds on expected coun

e use three different corpora to assess the effectiveness
of different retrieval techniques.

The first corpus is the DARPA Broadcast News cor-
pus consisting of excerpts from TV or radio programs
Our task is retrieving the utterances (or short audio sedacluding various acoustic conditions. The test set is
ments) that a given query appears in. The experimenttdde 1998 Hub-4 Broadcast News (hub4e98) evaluation
setup is identical to that of Saraclar and Sproat (2004)est set (available from LDC, Catalog no. LDC2000S86)

6 Experimental Results



which is 3 hours long and was manually segmented intithe one obtained with the previous method. Comparison
940 segments. It contains 32411 word tokens and 48&8 the maximum F-measure for both methods is given in
word types. For ASR we use a real-time system (Saracldable 2.

et al.,, 2002). Since the system was designed for SDR, i i

the recognition vocabulary of the system has over 200K_12SK | Previous Method Partial Index|

words. Broadcast News 86.0 86.1
The second corpus is the Switchboard corpus consist- Switchboard 60.5 60.8

ing of two party telephone conversations. The test set is Teleconferences 52.8 52.7

the RTO2 evaluation test set which is 5 hours long, has ) )
120 conversation sides and was manually segmented intgP!€ 2: Comparison of maximum F-measure for three
6266 segments. It contains 65255 word tokens and 37§8Pora.
word types. For ASR we use the first pass of the evalua- ) )
tion system (Ljolje et al., 2002). The recognition vocab- AS an example, we used a filter that indexes only con-
ulary of the system has over 45K words. sonants (|.§. maps the vowelsdp Th_e resulting md_ex
The third corpus is nameléleconferencesince it con-  Was used instead of_the full phone index. The size _of
sists of multi-party teleconferences on various topics. A€ consonants only index was 370MB whereas the size
test set of six teleconferences (about 3.5 hours) was tra@t the full index was 431MB. In Figure 5 we present the
scribed. It contains 31106 word tokens and 2779 worBrecision recall performance of this consonant only in-
types. Calls are automatically segmented into a total stex.
1157 segments prior to ASR. We again use the first pa~g,
of the Switchboard evaluation system for ASR.
We use the AT&T DCD Library (Allauzen et al., 2003)
as our ASR decoder and our implementation of the algc  ,q1
rithm is based on the AT&T FSM Library (Mohri et al.,
2000), both of which are available for download.

60r
6.3 Results
We implemented some of the proposed techniques aix
made comparisons with the previous method used k 50|
Saraclar and Sproat (2004). The full indexing metho

ecall

consumed too much time while indexing Broadcast New S
lattices and used too much memory while indexing phon  “°—— Word index |
lattices for Teleconferences. In the other cases, we co -~ Word and Phone Index

firmed that the new method yields identical results. It 3 —°~ Word and Phone (consonants only) Index

Table 1 we compare the index sizes for full indexing ani 30 40 50Precisi0n60 70 80

partial indexing with the previous method. In both cases,
the input lattices are pruned so that the cost (negative Iggqyre 5. Comparison of Precision vs Recall Perfor-
probability) difference between two paths is less than siX,ance for Switchboard.
Although the new method results in much smaller index
sizes for the string case (i.e. nbest=1), it can result ig ver,
large index sizes for full indexing of lattices (cost=6).
However, partial indexing by length restriction solvesthi We described a general framework for indexing uncer-
problem. For the results reported in Table 1, the length d&in input data represented as weighted automata. The
the word strings to be indexed was restricted to be lesadexation algorithm utilizes weighted finite-state algo-
than or equal to four, and the length of the phone stringsthms to obtain an index represented as a weighted finite-
to be indexed was restricted to be exactly four. state transducer. We showed that many of the techniques
In Saraclar and Sproat (2004), it was shown that usingsed for speech indexing can be implemented within this
word lattices yields a relative gain of 3-5% in maxF ovefframework. We gave comparative results to a previous
using best word hypotheses. Furthermore, it was shownethod for lattice indexing.
that a “search cascade” strategy for using both word and The same idea and framework can be used for indexa-
phone indices increases the relative gain over the baselitien in natural language processing or other areas where
to 8-12%. In this strategy, we first search the word indexncertain input data is given as weighted automata. The
for the given query, if no matches are found we searcbomplexity of the index construction algorithm can be
the phone index. Using the partial indices, we obtainennproved in some general cases using technigues simi-
a precision recall performance that is almost identical téar to classical string matching ones (Blumer et al., 1985;

Conclusion



| Task

Type | Pruning| Previous Method Full Index | Partial Index|

Broadcast News word | nbest=1 29 2.7 -
Broadcast News word cost=6 91 - 25
Broadcast Newg phone| cost=6 27 - 14
Switchboard word | nbest=1 18 4.7 -
Switchboard word cost=6 90 99 88
Switchboard phone| cost=6 97 431 41
Teleconferences word | nbest=1 16 2.6 -
Teleconferences word cost=6 142 352 184
Teleconferences phone| cost=6 146 - 69

Table 1: Comparison of Index Sizes in MegaBytes.

Crochemore, 1986; Blumer et al., 1987). Various prun- RT-02 STT system. liProc. RT02 Workshqgp/ienna,
ing techniques can be applied to reduce the size of the Virginia.

index without S|gn|f|cgntly degrading performance. Fi- eth Logan, Pedro Moreno, and Om Deshmukh. 2002.
nally, other types of filters that make use of the genera Word and sub-word indexing approaches for reducing

framework can be investigated. the effects of OOV queries on spoken audio.Pimc.
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