
General Indexation of Weighted Automata –
Application to Spoken Utterance Retrieval

Cyril Allauzen and Mehryar Mohri and Murat Saraclar
AT&T Labs - Research

180 Park Avenue, Florham Park, NJ 07932
{allauzen, mohri, murat}@research.att.com

Abstract

Much of the massive quantities of digitized
data widely available, e.g., text, speech, hand-
written sequences, are either given directly,
or, as a result of some prior processing, as
weighted automata. These are compact rep-
resentations of a large number of alternative
sequences and their weights reflecting the un-
certainty or variability of the data. Thus,
the indexation of such data requires indexing
weighted automata.

We present a general algorithm for the index-
ation of weighted automata. The resulting in-
dex is represented by a deterministic weighted
transducer that isoptimalfor search: the search
for an input string takes time linear in the sum
of the size of that string and the number of
indices of the weighted automata where it ap-
pears. We also introduce a general framework
based on weighted transducers that general-
izes this indexation to enable the search for
more complex patterns including syntactic in-
formation or for different types of sequences,
e.g., word sequences instead of phonemic se-
quences. The use of this framework is illus-
trated with several examples.

We applied our general indexation algorithm
and framework to the problem of indexation of
speech utterances and report the results of our
experiments in several tasks demonstrating that
our techniques yield comparable results to pre-
vious methods, while providing greater gener-
ality, including the possibility of searching for
arbitrary patterns represented by weighted au-
tomata.

1 Motivation

Much of the massive quantities of digitized data widely
available is highly variable oruncertain. This uncertainty
affects the interpretation of the data and its computational
processing at various levels, e.g., natural language texts
are abundantly ambiguous, speech and hand-written se-
quences are highly variable and hard to recognize in pres-
ence of noise, biological sequences may be altered or in-
complete.

Searching or indexing such data requires dealing with
a large number of ranked or weighted alternatives. These
may be for example the different parses of an input text,
the various responses to a search engine or information
extraction query, or the best hypotheses of a speech or
hand-written recognition system. In most cases, alterna-
tive sequences can be compactly represented byweighted
automata. The weights may be probabilities or some
other weights used to rank different hypotheses.

This motivates our study of the general problem of
indexation of weighted automata. This is more general
than the classical indexation problems since, typically,
there are many distinct hypotheses or alternatives asso-
ciated with the same index, e.g., a specific input speech
or hand-written sequence may have a large number of dif-
ferent transcriptions according to the system and models
used. Moreover, the problem requires taking into con-
sideration the weight of each alternative, which does not
have a counterpart in classical indexation problems.

We describe a general indexation algorithm for
weighted automata. The resulting index is represented
by a deterministic weighted transducer that isoptimalfor
search: the search for an input string takes time linear
in the sum of the size of that string and the number of
indices of the weighted automata where it appears.

In some cases, one may wish to search using sequences
in some level, e.g. word sequences, different from the
level of the sequences of the index, e.g. phonemic se-
quences. One may also wish to search for complex se-
quences including both words and parts-of-speech, or re-

strict the search by either restricting the weights or proba-
bilities or the lengths or types of sequences. We describe
a general indexation framework covering all these cases.
Our framework is based on the use of filtering weighted
transducers for restriction or other transducers mapping
between distinct information levels or knowledge struc-
tures. We illustrate the use of this framework with sev-
eral examples that demonstrate its relevance to a number
of indexation tasks.

We applied our framework and algorithms to the par-
ticular problem of speech indexation. In recent years,
spoken document retrieval systems have made large
archives of broadcast news searchable and browsable.
Most of these systems use automatic speech recognition
to convert speech into text, which is then indexed us-
ing standard methods. When a user presents the system
with a query, documents that are relevant to the query are
found using text-based information retrieval techniques.

As speech indexation and retrieval systems move be-
yond the domain of broadcast news to more challenging
spoken communications, the importance for the indexed
material to contain more than just a simple text represen-
tation of the communication is becoming clear. Index-
ation and retrieval techniques must be extended to han-
dle more general representations including for example
syntactic information. In addition to the now familiar re-
trieval systems or search engines, other applications such
as data mining systems can be used to automatically iden-
tify useful patterns in large collections of spoken commu-
nications. Information extraction systems can be used to
gather high-level information such as named-entities.

For a given input speech utterance, a large-vocabulary
speech recognition system often generates alattice, a
weighted automaton representing a range of alternative
hypotheses with some associated weights or probabilities
used to rank them. When the accuracy of a system is rel-
atively low as in many conversational speech recognition
tasks, it is not safe to rely only on the best hypothesis out-
put by the system. It is then preferable to use instead the
full lattice output by the recognizer.

We report the results of our experiments in sev-
eral tasks demonstrating that our techniques yield
comparable results to the previous methods of
Saraclar and Sproat (2004), while providing greater
generality, including the possibility of searching for
arbitrary patterns represented by weighted automata.

The paper is organized as follows. Section 2 introduces
the notation and the definitions used in the rest of the pa-
per. Section 3 describes our general indexation algorithm
for weighted automata. The algorithm for searching that
index is presented in Section 4 and our general indexa-
tion framework is described and illustrated in Section 5.
Section 6 reports the results of our experiments in several
tasks.

2 Preliminaries

Definition 1 A system (K,⊕,⊗, 0, 1) is a semiring
(Kuich and Salomaa, 1986) if:(K,⊕, 0) is a commuta-
tive monoid with identity element0; (K,⊗, 1) is a monoid
with identity element1; ⊗ distributes over⊕; and0 is an
annihilator for⊗: for all a ∈ K, a ⊗ 0 = 0 ⊗ a = 0.

Thus, a semiring is a ring that may lack negation. Two
semirings often used in speech processing are: thelog
semiringL = (R ∪ {∞},⊕log, +,∞, 0) (Mohri, 2002)
which is isomorphic to the familiar real or probability
semiring(R+, +,×, 0, 1) via a log morphism with, for
all a, b ∈ R ∪ {∞}:

a⊕log b = − log(exp(−a) + exp(−b))

and the convention that: exp(−∞) = 0 and
− log(0) = ∞, and thetropical semiringT = (R+ ∪
{∞}, min, +,∞, 0) which can be derived from the log
semiring using the Viterbi approximation.

Definition 2 A weighted finite-state transducerT over a
semiringK is an 8-tupleT = (Σ, ∆, Q, I, F, E, λ, ρ)
where: Σ is the finite input alphabet of the transducer;
∆ is the finite output alphabet;Q is a finite set of states;
I ⊆ Q the set of initial states;F ⊆ Q the set of final
states;E ⊆ Q× (Σ∪ {ε})× (∆∪ {ε})×K×Q a finite
set of transitions;λ : I → K the initial weight function;
andρ : F → K the final weight function mappingF to
K.

A Weighted automatonA = (Σ, Q, I, F, E, λ, ρ) is de-
fined in a similar way by simply omitting the output la-
bels. We denote byL(A) ⊆ Σ∗ the set of strings ac-
cepted by an automatonA and similarly byL(X) the
strings described by a regular expressionX . We denote
by |A| = |Q| + |E| the size ofA.

Given a transitione ∈ E, we denote byi[e] its input
label, p[e] its origin or previous state andn[e] its desti-
nation state or next state,w[e] its weight, o[e] its output
label (transducer case). Given a stateq ∈ Q, we denote
by E[q] the set of transitions leavingq.

A path π = e1 · · · ek is an element ofE∗ with con-
secutive transitions:n[ei−1] = p[ei], i = 2, . . . , k. We
extendn andp to paths by setting:n[π] = n[ek] and
p[π] = p[e1]. A cycle π is a path whose origin and
destination states coincide:n[π] = p[π]. We denote by
P (q, q′) the set of paths fromq to q′ and byP (q, x, q′)
andP (q, x, y, q′) the set of paths fromq to q′ with in-
put labelx ∈ Σ∗ and output labely (transducer case).
These definitions can be extended to subsetsR, R′ ⊆ Q,
by: P (R, x, R′) = ∪q∈R, q′∈R′P (q, x, q′). The label-
ing functionsi (and similarlyo) and the weight func-
tion w can also be extended to paths by defining the la-
bel of a path as the concatenation of the labels of its
constituent transitions, and the weight of a path as the
⊗-product of the weights of its constituent transitions:

i[π] = i[e1] · · · i[ek], w[π] = w[e1] ⊗ · · · ⊗ w[ek]. We
also extendw to any finite set of pathsΠ by setting:
w[Π] =

⊕
π∈Π w[π]. The output weight associated by

A to each input stringx ∈ Σ∗ is:

[[A]](x) =
⊕

π∈P (I,x,F)

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π])

[[A]](x) is defined to be0 whenP (I, x, F) = ∅. Simi-
larly, the output weight associated by a transducerT to a
pair of input-output string(x, y) is:

[[T]](x, y) =
⊕

π∈P (I,x,y,F)

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π])

[[T]](x, y) = 0 whenP (I, x, y, F) = ∅. A successful
path in a weighted automaton or transducerM is a path
from an initial state to a final state.M is unambiguousif
for any stringx ∈ Σ∗ there is at most one successful path
labeled withx. Thus, an unambiguous transducer defines
a function.

For any transducerT , denote byΠ2(T) the automaton
obtained by projectingT on its output, that is by omitting
its input labels.

Note that the second operation of the tropical semiring
and the log semiring as well as their identity elements are
identical. Thus the weight of a path in an automatonA

over the tropical semiring does not change ifA is viewed
as a weighted automaton over the log semiring or vice-
versa.

Given two stringsu andv in Σ∗, v is a factor of u if
u = xvy for somex andy in Σ∗; if y = ε thenv is also
asuffixof u. More generally,v is afactor (resp.suffix) of
L ⊆ Σ∗ if v is a suffix (resp. factor) of someu ∈ L. We
denote by|x| the length of a stringx ∈ Σ∗.

3 Indexation Algorithm

This section presents an algorithm for the construction of
an efficient index for a large set of speech utterances.

We assume that for each speech utteranceui of the
dataset considered,i = 1, . . . , n, a weighted automaton
Ai over the alphabetΣ and the log semiring, e.g., phone
or word lattice output by an automatic speech recognizer,
is given. The problem consists of creating a full index,
that is one that can be used to search directly any factor
of any string accepted by these automata. Note that this
problem crucially differs from classical indexation prob-
lems in that the input data is uncertain. Our algorithm
must make use of the weights associated to each string
by the input automata.

The main idea behind the design of the algorithm de-
scribed is that the full index can be represented by a
weighted finite-state transducerT mapping each factor
x to the set of indices of the automata in whichx appears
and the negative log of the expected count ofx. More

precisely, letPi be the probability distribution defined by
the weighted automatonAi over the set of stringsΣ∗ and
let Cx(u) denote the number of occurrences of a factor
x in u, then, for any factorx ∈ Σ∗ and automaton index
i ∈ {1, . . . , n}:

[[T]](x, i) = − log(EPi
[Cx]) (1)

Our algorithm for the construction of the index is simple,
it is based on general weighted automata and transducer
algorithms. We describe the consecutive stages of the al-
gorithm.

This algorithm can be seen as a generalization to
weighted automata of the notion ofsuffix automatonand
factor automatonfor strings. The suffix (factor) automa-
ton of a stringu is the minimal deterministic finite au-
tomata recognizing exactly the set of suffixes (resp. fac-
tors) ofu (Blumer et al., 1985; Crochemore, 1986). The
size of both automata is linear in the length ofu and both
can be built in linear time. These are classical repre-
sentations used in text indexation (Blumer et al., 1987;
Crochemore, 1986).

3.1 Preprocessing

When the automataAi are word or phone lattices out-
put by a speech recognition or other natural language
processing system, the path weights correspond to joint
probabilities. We can apply toAi a general weight-
pushing algorithm in the log semiring (Mohri, 1997)
which converts these weights into the desired (negative
log of) posterior probabilities. More generally, the path
weights in the resulting automata can be interpreted as
log-likelihoods. We denote byPi the corresponding
probability distribution. When the input automatonAi is
acyclic, the complexity of the weight-pushing algorithm
is linear in its size (O(|Ai|)). Figures 1(b)(d) illustrates
the application of the algorithm to the automata of Fig-
ures 1(a)(c).

3.2 Construction of Transducer IndexT

Let Bi = (Σ, Qi, Ii, Fi, Ei, λi, ρi) denote the result of
the application of the weight pushing algorithm to the au-
tomatonAi. The weight associated byBi to each string
it accepts can be interpreted as the log-likelihood of that
string for the utteranceui given the models used to gen-
erate the automata. More generally,Bi defines a proba-
bility distributionPi over all stringsx ∈ Σ∗ which is just
the sum of the probability of all paths ofBi in which x

appears.
For each stateq ∈ Qi, denote byd[q] the shortest dis-

tance fromIi to q (or -log of the forward probability) and
by f [q] the shortest distance fromq to F (or -log of the
backward probability):

d[q] =
⊕

log

π∈P (Ii,q)

(λi(p[π]) + w[π]) (2)

0

1a
2b

b
3a 0

1a/0.5
2b/0.5

b/1
3/1a/1

(a) (b)

0

1b/1
2a/2

a/1
3/1b/1 0

1b/0.333
2a/0.666

a/1
3/1b/1

(c) (d)

Figure 1: Weighted automata over the real semiring (a)A1, (b)B1 obtained by applying weight pushing toA1, (c)A2

and (d)B2 obtained by applying weight pushing toA2.

f [q] =
⊕

log

π∈P (q,Fi)

(w[π] + ρi(n[π])) (3)

The shortest distancesd[q] andf [q] can be computed for
all statesq ∈ Qi in linear time (O(|Bi|)) when Bi is
acyclic (Mohri, 2002). Then,

− log(EPi
[Cx]) =

⊕

log

i[π]=x

d[p[π]] + w[π] + f [n[π]] (4)

From the weighted automatonBi, one can derive a
weighted transducerTi in two steps:

1. Factor Selection. In the general case we select all
the factors to be indexed in the following way:

• Replace each transition(p, a, w, q) ∈ Qi×Σ×
R×Qi by (p, a, a, w, q) ∈ Qi×Σ×Σ×R×Qi;

• Create a new states 6∈ Qi and makes the
unique initial state;

• Create a new statee 6∈ Qi and makee the
unique final state;

• Create a new transition(s, ε, ε, d[q], q) for each
stateq ∈ Qi;

• Create a new transition(q, ε, i, f [q], e) for each
stateq ∈ Qi;

2. Optimization. The resulting transducer can be op-
timized by applying weightedε-removal, weighted
determinization, and minimization over the log
semiring by viewing it as an acceptor, i.e., input-
output labels are encoded a single labels.

It is clear from Equation 4 that for any factorx ∈ Σ∗:

[[Ti]](x, i) = − log(EPi
[Cx]) (5)

This construction is illustrated by Figures 2(a)(b). Our
full index transducerT is the constructed by

• taking the⊕log-sum (or union) of all the transducers
Ti, i = 1, . . . , n;

• definingT as the result of determinization (in the
log semiring) applied to that transducer.

Figure 3 is illustrating this construction and optimization.

0
1

a:ε/0.5

2

b:ε/0.5

5/1

ε:1/1

b:ε/1
ε:1/1

ε:1/1

3
a:ε/1

ε:1/1
4

ε:ε/1

ε:ε/0.5

ε:ε/1

ε:ε/1

(a)

0 1/1

ε:1/3.5

2a:ε/1.5

3
b:ε/1

ε:1/1
b:ε/0.333 ε:1/1

4

a:ε/1 ε:1/1

(b)

Figure 2: Construction ofT1 index of the weighted au-
tomataB1 given Figure 1(b): (a) intermediary result after
factor selection and (b) resulting weighted transducerT1.

4 Search

The full index represented by the weighted finite-state
transducerT is optimal. Indeed,T contains no transi-
tion with input ε other than the final transitions labeled
with an output index and it is deterministic. Thus, the
set of indicesIx of the weighted automata containing a
factorx can be obtained inO(|x| + |Ix|) by reading inT
the unique path with input labelx and then the transitions
with input ε which have each a distinct output label.

The user’s query is typically an unweighted string, but
it can be given as an arbitrary weighted automatonX .
This covers the case of Boolean queries or regular expres-
sions which can be compiled into automata. The response
to a queryX is computed using the general algorithm of
composition of weighted transducers (Mohri et al., 1996)
followed by projection on the output:

Π2(X ◦ T) (6)

which is thenε-removed and determinized to give di-
rectly the list of all indices and their corresponding log-

0

1

a:ε/2.5

2b:ε/2.333

3/1ε:1/3.5
ε:2/3.333

ε:1/0.600
ε:2/0.400

4b:ε/0.600

ε:1/0.428

ε:2/0.571

5a:ε/0.571

ε:1/0.333

ε:2/0.666

6
a:ε/0.333

ε:1/0.75

ε:2/0.25

7b:ε/0.25

8/1ε:1/1

9/1ε:2/1

Figure 3: Weighted transducerT obtained by index-
ing the weighted automataB1 and B2 given in Fig-
ures 1(b)(d)

likelihoods. The final result can be pruned to include only
the most likely responses. The pruning threshold may be
used to vary the number of responses.

5 General Indexation Framework

The indexation technique just outlined can be easily ex-
tended to include many of the techniques used for speech
indexation. This can be done by introducing a transducer
F that converts between different levels of information
sources or structures, or that filters out or reweights index
entries. The filterF can be applied (i) before, (ii) during
or (iii) after the construction of the index. For case (i), the
filter is used directly on the input and the indexation algo-
rithm is applied to the weighted automata(F ◦Ai)1≤i≤n.
For case (ii), filtering is done after the factor selection
step of the algorithm and the filter applies to the factors,
typically to restrict the factors that will be indexed. For
case (iii), the filter is applied to the index. Obviously
different filters can be used in combination at different
stages.

When such a filter is used, the response to a queryX is
obtained using another transducerF ′ 1 and the following
composition and projection:

Π2(X ◦ F ′ ◦ T) (7)

Since composition is associative, it does not impose a
specific order to its application. However, in practice,
it is often advantageous to computeX ◦ F ′ before appli-
cation ofT . The following are examples of some filter
transducers that can be of interest in many applications.

1In most cases,F ′ is the inverse ofF .

• Pronunciation Dictionary: a pronunciation dic-
tionary can be used to map word sequences into
their phonemic transcriptions, thus transform word
lattices into equivalent phone lattices. This map-
ping can represented by a weighted transducerF .
Using an index based on phone lattices allows a
user to search for words that are not in the ASR
vocabulary. In this case, the inverse transduc-
tion F ′ is a grapheme to phoneme converter, com-
monly present in TTS front-ends. Among others,
Witbrock and Hauptmann (1997) present a system
where a phonetic transcript is obtained from the
word transcript and retrieval is performed using both
word and phone indices.

• Vocabulary Restriction: in some cases using a full
index can be prohibitive and unnecessary. It might
be desirable to do partial indexing by ignoring some
words (or phones) in the input. For example, we
might wish to index only “named entities”, or just
the consonants. This is mostly motivated by the
reduction of the size of the index while retaining
the necessary information. A similar approach is
to apply a many to one mapping to index groups of
phones, or metaphones (Amir et al., 2001), to over-
come phonetic errors.

• Reweighting: a weighted transducer can be used
to emphasize some words in the input while de-
emphasizing other. The weights, for example might
correspond to TF-IDF weights. Another reweight-
ing method might involve edit distance or confusion
statistics.

• Classification: an extreme form of summarizing the
information contained in the indexed material is to
assign a class label, such as a topic label, to each
input. The query would also be classified and all
answers with the same class label would be returned
as relevant.

• Length Restriction: a common way of indexing
phone strings is to index fixed length overlapping
phone strings (Logan et al., 2002). This results in a
partial index with only fixed length strings. More
generally a minimum and maximum string length
may be imposed on the index. An example restric-
tion automaton is given in Figure 4. In this case,
the filter applies to the factors and has to be applied
during or after indexation. The restricted index will
be smaller in size but contains less information and
may result in degradation in retrieval performance,
especially for long queries.

The length restriction filter requires a modification of
the search procedure. Assume a fixed – sayr – length
restriction filter and a string query of lengthk. If k < r,

0 1a
b

2a
b

(a)

0
1a:ε/2.5

4
b:ε/2.333

2b:ε/0.600

5a:ε/0.571
3/1

ε:1/0.333

ε:2/0.666

ε:1/0.75

ε:2/0.25

(b)

Figure 4: (a) FilterF restricting to strings of length 2. (b)
Restricted indexF ◦ T , whereT is the weighted trans-
ducer given in Figure 3(b).

then we need to pad the input to lengthr with Σr−k. If
k ≥ r, then we must search for all substrings of lengthr

in the index. A string is present in a certain lattice if all its
substrings are (and not vice versa). So, the results of each
substring search must be intersected. The probability of
each substringxi+r−1

i for i ∈ {1, . . . , k + 1 − r} is an
upper bound on the probability of the stringxk

1 , and the
count of each substring is an upper bound on the count of
the string, so fori ∈ {1, . . . , k + 1 − r}

EP [C(xk
1)] ≤ EP [C(xi+r−1

i)].

Therefore, the intersection operation must use minimum
for combining the expected counts of substrings. In other
words, the expected count of the string is approximated
by the minimum of the probabilities of each of its sub-
strings,

EP [C(xk
1)] ≈ min

1≤i≤k+1−r
EP [C(xi+r−1

i)].

In addition to a filter transducer, pruning can be ap-
plied at different stages of the algorithm to reduce the
size of the index. Pruning eliminates least likely paths in
a weighted automaton or transducer. Applying pruning
to Ai can be seen as part of the process that generates the
uncertain input data. When pruning is applied toBi, only
the more likely alternatives will be indexed. If pruning is
applied toTi, or toT , pruning takes the expected counts
into consideration and not the probabilities. Note that the
threshold used for this type of pruning is directly compa-
rable to the threshold used for pruning the search results
in Section 4 since both are thresholds on expected counts.

6 Experimental Results

Our task is retrieving the utterances (or short audio seg-
ments) that a given query appears in. The experimental
setup is identical to that of Saraclar and Sproat (2004).

Since, we take the system described there as our base-
line, we give a brief review of the basic indexation al-
gorithm used there. The algorithm uses the same pre-
processing step. For each label inΣ, an index file is
constructed. For each arca that appears in the prepro-
cessed weighted automatonBi, the following informa-
tion is stored:(i, p[a], n[a], d[p[a]], w[a]). Since the pre-
processing ensures thatf [q] = 0 for all q in Bi, it is pos-
sible to compute− log(EPi

[Cx]) as in Equation 4 using
the information stored in the index.

6.1 Evaluation Metrics

For evaluating retrieval performance we use precision
and recall with respect to manual transcriptions. Let
Correct(q) be the number of times the queryq is found
correctly, Answer(q) be the number of answers to the
queryq, andReference(q) be the number of timesq is
found in the reference.

Precision(q) =
Correct(q)

Answer(q)

Recall(q) =
Correct(q)

Reference(q)

We compute precision and recall rates for each query and
report the average over all queries. The set of queriesQ

includes all the words seen in the reference except for a
stoplist of 100 most common words.

Precision =
1

|Q|

∑

q∈Q

Precision(q)

Recall =
1

|Q|

∑

q∈Q

Recall(q)

For lattice based retrieval methods, different operating
points can be obtained by changing the threshold. The
precision and recall at these operating points can be plot-
ted as a curve.

In addition to individual precision-recall values we
also compute the F-measure defined as

F =
2 × Precision× Recall

Precision + Recall

and report the maximum F-measure (maxF) to summa-
rize the information in a precision-recall curve.

6.2 Corpora

We use three different corpora to assess the effectiveness
of different retrieval techniques.

The first corpus is the DARPA Broadcast News cor-
pus consisting of excerpts from TV or radio programs
including various acoustic conditions. The test set is
the 1998 Hub-4 Broadcast News (hub4e98) evaluation
test set (available from LDC, Catalog no. LDC2000S86)

which is 3 hours long and was manually segmented into
940 segments. It contains 32411 word tokens and 4885
word types. For ASR we use a real-time system (Saraclar
et al., 2002). Since the system was designed for SDR,
the recognition vocabulary of the system has over 200K
words.

The second corpus is the Switchboard corpus consist-
ing of two party telephone conversations. The test set is
the RT02 evaluation test set which is 5 hours long, has
120 conversation sides and was manually segmented into
6266 segments. It contains 65255 word tokens and 3788
word types. For ASR we use the first pass of the evalua-
tion system (Ljolje et al., 2002). The recognition vocab-
ulary of the system has over 45K words.

The third corpus is namedTeleconferencessince it con-
sists of multi-party teleconferences on various topics. A
test set of six teleconferences (about 3.5 hours) was tran-
scribed. It contains 31106 word tokens and 2779 word
types. Calls are automatically segmented into a total of
1157 segments prior to ASR. We again use the first pass
of the Switchboard evaluation system for ASR.

We use the AT&T DCD Library (Allauzen et al., 2003)
as our ASR decoder and our implementation of the algo-
rithm is based on the AT&T FSM Library (Mohri et al.,
2000), both of which are available for download.

6.3 Results

We implemented some of the proposed techniques and
made comparisons with the previous method used by
Saraclar and Sproat (2004). The full indexing method
consumed too much time while indexing Broadcast News
lattices and used too much memory while indexing phone
lattices for Teleconferences. In the other cases, we con-
firmed that the new method yields identical results. In
Table 1 we compare the index sizes for full indexing and
partial indexing with the previous method. In both cases,
the input lattices are pruned so that the cost (negative log
probability) difference between two paths is less than six.
Although the new method results in much smaller index
sizes for the string case (i.e. nbest=1), it can result in very
large index sizes for full indexing of lattices (cost=6).
However, partial indexing by length restriction solves this
problem. For the results reported in Table 1, the length of
the word strings to be indexed was restricted to be less
than or equal to four, and the length of the phone strings
to be indexed was restricted to be exactly four.

In Saraclar and Sproat (2004), it was shown that using
word lattices yields a relative gain of 3-5% in maxF over
using best word hypotheses. Furthermore, it was shown
that a “search cascade” strategy for using both word and
phone indices increases the relative gain over the baseline
to 8-12%. In this strategy, we first search the word index
for the given query, if no matches are found we search
the phone index. Using the partial indices, we obtained
a precision recall performance that is almost identical to

the one obtained with the previous method. Comparison
of the maximum F-measure for both methods is given in
Table 2.

Task Previous Method Partial Index

Broadcast News 86.0 86.1
Switchboard 60.5 60.8
Teleconferences 52.8 52.7

Table 2: Comparison of maximum F-measure for three
corpora.

As an example, we used a filter that indexes only con-
sonants (i.e. maps the vowels toε). The resulting index
was used instead of the full phone index. The size of
the consonants only index was 370MB whereas the size
of the full index was 431MB. In Figure 5 we present the
precision recall performance of this consonant only in-
dex.

30 40 50 60 70 80
30

40

50

60

70

80

Precision

R
ec

al
l

Word Index
Word and Phone Index
Word and Phone (consonants only) Index

Figure 5: Comparison of Precision vs Recall Perfor-
mance for Switchboard.

7 Conclusion

We described a general framework for indexing uncer-
tain input data represented as weighted automata. The
indexation algorithm utilizes weighted finite-state algo-
rithms to obtain an index represented as a weighted finite-
state transducer. We showed that many of the techniques
used for speech indexing can be implemented within this
framework. We gave comparative results to a previous
method for lattice indexing.

The same idea and framework can be used for indexa-
tion in natural language processing or other areas where
uncertain input data is given as weighted automata. The
complexity of the index construction algorithm can be
improved in some general cases using techniques simi-
lar to classical string matching ones (Blumer et al., 1985;

Task Type Pruning Previous Method Full Index Partial Index

Broadcast News word nbest=1 29 2.7 –
Broadcast News word cost=6 91 – 25
Broadcast News phone cost=6 27 – 14

Switchboard word nbest=1 18 4.7 –
Switchboard word cost=6 90 99 88
Switchboard phone cost=6 97 431 41

Teleconferences word nbest=1 16 2.6 –
Teleconferences word cost=6 142 352 184
Teleconferences phone cost=6 146 – 69

Table 1: Comparison of Index Sizes in MegaBytes.

Crochemore, 1986; Blumer et al., 1987). Various prun-
ing techniques can be applied to reduce the size of the
index without significantly degrading performance. Fi-
nally, other types of filters that make use of the general
framework can be investigated.

Acknowledgments

We wish to thank our colleague Richard Sproat for useful
discussions and the use of the lattice indexing software
(lctools) used in our baseline experiments.

References

Cyril Allauzen, Mehryar Mohri, and Michael Ri-
ley. 2003. DCD Library - Decoder Library.
http://www.research.att.com/sw/tools/dcd.

Arnon Amir, Alon Efrat, and Savitha Srinivasan. 2001.
Advances in phonetic word spotting. InProceedings
of the Tenth International Conference on Information
and Knowledge Management, pages 580–582, Atlanta,
Georgia, USA.

Anselm Blumer, Janet Blumer, Andrzej Ehrenfeucht,
David Haussler, and Joel Seiferas. 1985. The smallest
automaton recognizing the subwords of a text.Theo-
retical Computer Science, 40(1):31–55.

Anselm Blumer, Janet Blumer, David Haussler, Ross Mc-
Connel, and Andrzej Ehrenfeucht. 1987. Complete
inverted files for efficient text retrieval and analysis.
Journal of the ACM, 34(3):578–595.

Maxime Crochemore. 1986. Transducers and repeti-
tions. Theoretical Computer Science, 45(1):63–86.

Werner Kuich and Arto Salomaa. 1986.Semirings,
Automata, Languages. Number 5 in EATCS Mono-
graphs on Theoretical Computer Science. Springer-
Verlag, Berlin, Germany.

Andrej Ljolje, Murat Saraclar, Michiel Bacchiani,
Michael Collins, and Brian Roark. 2002. The AT&T

RT-02 STT system. InProc. RT02 Workshop, Vienna,
Virginia.

Beth Logan, Pedro Moreno, and Om Deshmukh. 2002.
Word and sub-word indexing approaches for reducing
the effects of OOV queries on spoken audio. InProc.
HLT.

Mehryar Mohri, Fernando C. N. Pereira, and Michael Ri-
ley. 1996. Weighted Automata in Text and Speech
Processing. InProceedings of the 12th biennial Euro-
pean Conference on Artificial Intelligence (ECAI-96),
Workshop on Extended finite state models of language,
Budapest, Hungary.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 2000. The Design Principles of a
Weighted Finite-State Transducer Library. The-
oretical Computer Science, 231:17–32, January.
http://www.research.att.com/sw/tools/fsm.

Mehryar Mohri. 1997. Finite-State Transducers in Lan-
guage and Speech Processing.Computational Lin-
guistics, 23:2.

Mehryar Mohri. 2002. Semiring Frameworks and Algo-
rithms for Shortest-Distance Problems.Journal of Au-
tomata, Languages and Combinatorics, 7(3):321–350.

Murat Saraclar and Richard Sproat. 2004. Lattice-based
search for spoken utterance retrieval. InProc. HLT-
NAACL.

Murat Saraclar, Michael Riley, Enrico Bocchieri, and
Vincent Goffin. 2002. Towards automatic closed cap-
tioning: Low latency real-time broadcast news tran-
scription. InProceedings of the International Confer-
ence on Spoken Language Processing (ICSLP), Den-
ver, Colorado, USA.

Michael Witbrock and Alexander Hauptmann. 1997. Us-
ing words and phonetic strings for efficient informa-
tion retrieval from imperfectly transcribed spoken doc-
uments. In2nd ACM International Conference on Dig-
ital Libraries (DL’97), pages 30–35, Philadelphia, PA,
July.

