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Abstract

As the amount of spoken communications ac-
cessible by computers increases, searching and
browsing is becoming crucial for utilizing such
material for gathering information. It is desir-
able for multimedia content analysis systems
to handle various formats of data and to serve
varying user needs while presenting a simple
and consistent user interface. In this paper,
we present a research system for searching and
browsing spoken communications. The system
uses core technologies such as speaker segmen-
tation, automatic speech recognition, transcrip-
tion alignment, keyword extraction and speech
indexing and retrieval to make spoken commu-
nications easy to navigate. The main focus is
on telephone conversations and teleconferences
with comparisons to broadcast news.

1 Introduction

Archiving and organizing multimedia communications
for easy user access is becoming more important as such
information sources are becoming available in amounts
that can easily overwhelm a user. As storage and ac-
cess become cheaper, the types of multimedia communi-
cations are also becoming more diverse. Therefore, it is
necessary for multimedia content analysis and navigation
systems to handle various forms of data.

In this paper we present SpeechLogger, a research sys-
tem for searching and browsing spoken communications,
or the spoken component of multimedia communications.
In general, the information contained in a spoken com-
munication consists of more than just words. Our goal is
to make use of all the information within a spoken com-
munication. Our system uses automatic speech recogni-
tion (ASR) to convert speech into a format which makes
word and phonetic searching of the material possible. It
also uses speaker segmentation to aid navigation.

We are interested in a wide range of spoken communi-
cations with different characteristics, including broadcast

material, lectures, meetings, interviews, telephone con-
versations, call center recordings, and teleconferences.
Each of these communication types presents interesting
opportunities, requirements and challenges. For example,
lectures might have accompanying material that can aid
ASR and navigation. Prior knowledge about the speakers
and the topic may be available for meetings. Call center
recordings may be analyzed to create aggregate reports.

Spoken document retrieval (SDR) for Broadcast News
type of content has been well studied and there are many
research and commercial systems. There has also been
some interest in the Voicemail domain (Hirschberg et al.,
2001) which consists of typically short duration human-
to-machine messages. Our focus here is on telephone
conversations and teleconferences with comparisons to
broadcast news.

The paper is organized as follows. In Section 2, we
motivate our approach by describing the user needs un-
der various conditions. Then we describe our system in
Section 3, giving the details of various components. Ex-
perimental results for some components are given in Sec-
tion 4. Finally, in Section 5 we present a summary.

2 User Needs

We are primarily interested in situations in which a per-
son needs to gather information from audio data but the
quality of that data is not always sufficient to produce
good ASR results. In the case of telephone conversations,
the information gatherer needs to know who was on the
call, how long the call was, what was said, a summary of
the call, the ability to listen to any part of the call based
on search parameters that s/he specifies, etc. Our users
want to be able to scan a database of many calls, across a
long period of time to look for specific phrases, speakers,
or patterns of speech.

In many cases, it is difficult to gather this type of infor-
mation from teleconference calls since the audio quality
is poor because of speaker phones, cell phones and line
noise. All of these combine to lower ASR results to a
point where the text of the call is not fully representative



of the conversation. Thus, using standard information re-
trieval techniques may not provide sufficient information
to the user. We focus on the navigation aspect of infor-
mation gathering with the goal of compensating for lower
ASR accuracy by presenting user interface elements rel-
evant to the specific task at hand (Stark et al., 2000).

Rather than looking at the recorded conversation as
merely audio information, we view it as a source of lin-
guistic information to which we can apply information
retrieval and data mining techniques. We use all avail-
able metadata to enhance the search and the presentation.

We wanted to have a set of interface elements that
would be useful no matter what the ASR accuracy was.
The main interface elements are:

• Timeline with tick marks indicates search hits within
the spoken document which allows for many search
results to be displayed without overwhelming the
user. This is particularly useful for cases where there
are many false positives.

• Keyword extraction summarizes a given communi-
cation, enables differentiation among a collection of
many spoken documents, and detects subtopics in a
large spoken document.

• Speaker segmentation and speaker identification
separate a long spoken document into inherently
useful pieces.

• Lattice search and phoneme search expand the pos-
sible search space.

In this paper we examine three classes of spoken doc-
uments and consider what tasks a user might want to per-
form on them.

• Broadcast News - excellent ASR conditions, one
speaker at a time, good audio quality and gener-
ally a good speaker. Task involves primarily inter-
document navigation. User needs to search text for
information with metadata possibly used to enhance
the search.

• Telephone Conversations - fair ASR conditions, two
speakers, decent quality audio. User needs to search
text but also wants speaker identification and some
classification (call type, urgency, importance).

• Teleconferences - poor ASR conditions, multiple
speakers, mixed to poor audio quality. Most time
is spent in intra-document navigation. User needs to
navigate through the calls and find relevant informa-
tion in the audio.

3 System Description

The system overview is shown in Figure 1. Our sys-
tem is flexible enough to support various forms of live
(via a VoiceXML Gateway) or prerecorded spoken com-
munications including the three classes of spoken docu-
ments discussed above. It can record the audio via tele-
phone for two-party or multi-party calls. Alternatively,
the system can support prerecorded audio input from var-
ious sources including telephone conversations or video
content in which case the audio is extracted from the
video. Once various speech processing techniques are ap-
plied and the speech is indexed, it is possible to search
and browse the audio content. Our system is scalable
and supports open source/industry standard components
(J2EE, VXML, XML, Microsoft SAMI, Microsoft Media
Player). It is also flexible enough to support other forms
of audio as input or to support new speech processing
techniques as they become available. The system was de-
signed with modularity in mind. For instance, it should
be possible to add a speaker identification module to the
processing.

Figure 1: System Overview

Once a new audio recording is available on the
File Server, the following processing steps can begin:
speaker segmentation, speech recognition, transcription
alignment, keyword extraction, audio compression, and
speech indexing. Each step will be described in more de-
tail below. We attempt to distinguish the different speak-
ers from each other in the speaker segmentation compo-
nent. The speech recognition component converts the au-
dio into a word or phone based representation including
alternative hypotheses in the form of a lattice. If a tran-
script is available, the transcript can be synchronized (or
aligned) in time with the speech recognition output. The
keyword extraction component generates the most salient
words found in the speech recognition output (one-best



word) or transcript (if available) and can be used to de-
termine the nature of the spoken communications. The
audio compression component compresses the audio file
and creates an MP3 audio file which is copied to the Me-
dia Server. The final step in the processing is text and
lattice indexing. This includes creating indices based on
one-best word and one-best phone strings or word and
phone lattices.

After processing, the user can search and browse the
audio using either the text index or the lattice index. The
audio is played back via media streaming. Alternatively,
the user can playback the audio file over the phone using
the VoiceGenie VoiceXML Gateway.

3.1 Speaker Segmentation

Speaker-based segmentation of multi-speaker audio data
has received considerable attention in recent years. Ap-
plications that have been considered include: indexing
archived recorded spoken documents by speaker to facil-
itate browsing and retrieval of desired portions; tagging
speaker specific portions of data to be used for adapt-
ing speech models in order to improve the quality of
automatic speech recognition transcriptions, and track-
ing speaker specific segments in audio streams to aid in
surveillance applications. In our system, speaker segmen-
tation is used for more effective visualization of the audio
document and speaker-based audio playback.

Figure 2 gives an overview of the speaker segmenta-
tion algorithm we developed. It consists of two steps:
preprocessing and iterative speaker segmentation. Dur-
ing the preprocessing step, the input audio stream is seg-
mented into frames and acoustic features are computed
for each frame. The features we extracted are energy, 12
Mel-frequency cepstral coefficients (MFCC), pitch, and
the first and second order temporal derivatives. Then,
all speaker boundary candidates are located, which in-
clude silent frames and frames with minimum energy in
a window of neighboring frames. The preprocessing step
generates a set of over-segmented audio segments, whose
durations may be as short as a fraction of a second to as
long as a couple of seconds.

The iterative speaker segmentation step, as depicted in
the bigger dotted rectangle in Figure 2, detects all seg-
ments of each speaker in an iterative way and then marks
the boundaries where speakers change. At the beginning,
all segments produced by the preprocessing step are un-
labeled. Assuming that the features within each segment
follow a Gaussian distribution, we compute the distances
between each pair of segments using the Kullback Leibler
distance (KLD) (Cover and Thomas, 1991). Here, we just
consider features extracted from voiced frames since only
voiced frames have pitch information. Based on the seg-
ment distance matrix, a hierarchical agglomerative clus-
tering (HAC) (Jain and Dubes, 1988) algorithm is applied

Figure 2: Overview of the Speaker Segmentation Algo-
rithm.

to all unlabeled segments. The biggest cluster will be hy-
pothesized as the set of segments for a new speaker and
the rest of the segments will be considered as background
audio. Accordingly, each unlabeled segment is labeled as
either the target speaker or background. Then an embed-
ded speaker segment refinement substep is activated to
iteratively refine the segments of the target speaker.

The refinement substep is depicted in the smaller dot-
ted rectangle in Figure 2. For each iteration, two Gaus-
sian mixture models (GMM) are built based on current
segment labels, one for the target speaker, one for back-
ground audio. Then all segments are relabeled as either
the target speaker or background audio using the maxi-
mum likelihood method based on the two GMM models.
If the set of segments for the target speaker converges
or the refinement iteration number reaches its maximum,
the refinement iteration stops. Otherwise, a new itera-
tion starts. Before the refinement substep terminates, it
assigns a new speaker label for all segments of the tar-
get speaker, and sets the background audio as unlabeled.
Then the iterative speaker segmentation step needs to test
for more speakers or needs to stop. The termination cri-
teria could be the given number of speakers (or major
speakers) in an audio document, the percentage of unla-
beled segments to the number of all segments, or the max-
imum distance among all pairs of unlabeled segments. If
any of the criteria are met, the speaker segmentation algo-
rithm merges all adjacent segments if their speaker labels
are the same, and then outputs a list of audio segments
with corresponding speaker labels.

Obviously, one advantage of our speaker segmentation
method is that the speaker labels are also extracted. Al-
though the real speaker identities are not available, the



Figure 3: Presentation of Speaker Segmentation Results.

labels are very useful for presenting, indexing, and re-
trieving audio documents. For more detailed description
of the speaker segmentation algorithm, please refer to
Rosenberg et al. (2002).

Figure 3 illustrates a graphic interface for presenting
the speaker segmentation results. The audio stream is
shown in colored blocks along a timeline which goes
from top to bottom, and from left to right. Color is used to
differentiate the speaker labels. There are two layers for
each line: the bottom layer shows the manually labeled
speaker segments and the top layer displays the automat-
ically generated segments. This allows the segmentation
performance to be clearly observed.

3.2 Automatic Speech Recognition

We use two different state-of-the-art HMM based large
vocabulary continuous speech recognition (LVCSR) sys-
tems for telephone and microphone recordings. In both
cases the front-end uses 9 frames of 12 MFCC compo-
nents and energy summarized into a feature vector via
linear discriminant analysis. The acoustic models consist
of decision tree state clustered triphones and the output
distributions are mixtures of Gaussians. The models are
discriminatively trained using maximum mutual informa-
tion estimation. The language models are pruned backoff
trigram models.

For narrow-band telephone recordings we use the first
pass of the Switchboard evaluation system developed
by Ljolje et al. (2002). The calls are automatically seg-
mented prior to ASR. The acoustic models are trained on
265 hours of speech. The recognition vocabulary of the
system has 45K words.

For wide-band recordings, we use the real-time
Broadcast News transcription system developed by
Saraclar et al. (2002). The acoustic models are trained on
140 hours of speech. The language models are estimated
on a mixture of newspaper text, closed captions and high-
accuracy transcriptions from LDC. Since the system was
designed for SDR, the recognition vocabulary of the sys-
tem has over 200K words.

Both systems use the same Finite State Machine (FSM)
based LVCSR decoder (Allauzen et al., 2003). The out-

put of the ASR system is represented as a FSM and may
be in the form of a one-best hypothesis string or a lattice
of alternate hypotheses. The lattices are normalized so
that the probability of the set of all paths leading from
any state to the final state is 1. The labels on the arcs of
the FSM may be words or phones and the conversion be-
tween the two can easily be done using FSM composition
using the AT&T FSM Library (Mohri et al., 1997). The
costs on the arcs of the FSM are negative log likelihoods.
Additionally, timing information can also be present in
the output.

3.3 Alignment with Transcripts

Manual transcriptions of spoken communications are
available for certain application domains such as medical
diagnosis, legal depositions, television and radio broad-
casts. Most audio and video teleconferencing providers
offer transcription as an optional service. In these
cases, we can take advantage of this additional informa-
tion to create high quality multimedia representations of
the archived spoken communications using parallel text
alignment techniques (Gibbon, 1998). The obvious ad-
vantage is increased retrieval accuracy due to the lower
word error rate (manual transcriptions are seldom com-
pletely error free.) What is more compelling, however, is
that we can construct much more evolved user interfaces
for browsing speech by leveraging the fact that the tran-
scription is by its nature readable whereas the one-best
hypothesis from ASR is typically useful only in small
segments to establish context for a search term occur-
rence.

There are several methods for aligning text with
speech. We use dynamic programming techniques to
maximize the number or word correspondences between
the manual transcription and the one-best ASR word hy-
pothesis. For most applications, finding the start and end
times of the transcript sentences is sufficient; but we do
alignment at the word level and then derive the sentence
alignment from that. In cases where the first or last word
of a sentence is not recognized, we expand to the near-
est recognized word to avoid cropping even though we
may include small segments from neighboring sentences
during playback. The accuracy of the resulting align-
ment is directly related to the ASR word error rate; more
precisely it can be thought of as a sentence error rate
where we impose a minimum percentage of correspond-
ing words per sentence (typically 20%) before declar-
ing a sentence a match to avoid noise words triggering
false matches. For sentences without correspondences,
we must fall back to deriving the timings from the near-
est neighboring sentences with correspondences.



Figure 4: Illustration of Keyword Extraction.

3.4 Keyword Extraction

Playing back a spoken document or linearly skimming
the corresponding text transcript, either from automatic
speech recognition or manual transcription, is not an ef-
ficient way for a user to grasp the central topics of the
document within a short period of time. A list of repre-
sentative keywords, which serve as a dense summary for a
document, can effectively convey the essence of the docu-
ment to the user. The keywords have been widely used for
indexing and retrieval of documents in large databases. In
our system, we extract a list of keywords for each audio
document based on its transcript (ASR or manual tran-
script).

There are different ways to automatically extract key-
words for a text document within a corpus. A popular
approach is to select keywords that frequently occur in
one document but do not frequently occur in other doc-
uments based on the term frequency - inverse document
frequency (TF-IDF) feature. Our task is slightly differ-
ent. We are interested in choosing keywords for a sin-
gle document, independent of the remaining documents
in the database. Accordingly, we adopt a different fea-
ture, which is term frequency - inverse term probability
(TF-ITP) to serve our purpose. The term probability mea-
sures the probability that a term may appear in a general
document and it is a language dependent characteristic.
Assuming that a termTk occurstfk times in a docu-
ment, and its term probability istpk, the TF-ITP ofTk is
defined aswk = tfk/tpk.

Figure 4 illustrates the keyword extraction method that
we have developed. For the transcript of a given doc-
ument, we first apply the Porter stemming algorithm
(Porter, 1980) to remove word variations. Then, the stop
words, which are common words that have no impact on
the document content (also called noise words), are re-
moved. Here we use two lists of noise words, one for gen-
eral purposes, which apply to all varieties of documents,
and one for specific domains, which can be customized
by the user when prior knowledge about the document is
available. For each remaining term in the document, a
value of TF-ITP is calculated. A vocabulary is created

based on the transcripts of 600 hours of broadcast news
data and corresponding term probabilities are estimated
using the same corpus. If a term in the document is not
in the vocabulary, and its term frequency is more than
2, then a default term probability valuetpd will be used.
The tpd we use is the minimum term probability in the
vocabulary. After we get a list of terms and their TF-ITP
values, we sort the terms based on their TF-ITP values,
such that the most representative terms (highest TF-ITP
values) are on the top of the list. Depending on certain
criteria, for example, the number of keywords desired or
the minimum TF-ITP value required, a list of keywords
can be chosen from the top of the term list. In our sys-
tem, we choose the top ten terms as the keywords for a
document.

3.5 Speech Indexing and Retrieval

Two different indexing and retrieval modules are uti-
lized depending on the type of ASR output. In
the case of one-best word or phone strings, we use
an off-the-shelf text-based index server called Lucene
(http://jakarta.apache.org/lucene). In the case of word
and phone lattices, we use the method described in
Saraclar and Sproat (2004). Here we give a brief descrip-
tion of the latter.

The lattice output is a compact representation of likely
alternative hypotheses of an ASR system. Each path in
the lattice corresponds to a word (or phone) string and
has a probability attached to it. The expected count for
a substring can be defined as the sum of the probabilities
of all paths which contain that substring. Lattice based
retrieval makes the system more robust to recognition er-
rors, whereas phonetic search allows for retrieving words
that are not in the vocabulary of the recognizer.

The lattice index is similar to a standard inverted index
but contains enough information to compute the expected
count of an arbitrary substring for each lattice. This can
be achieved by storing a set of index files, one for each
label (word or phone)l. For each arc labeled withl in a
lattice, the index file forl records the lattice number, the
previous and next states of the arc, along with the prob-
ability mass leading to the previous state of the arc and
the probability of the arc itself. For a lattice, which is
normalized so that the probability of the set of all paths
leading from any state to the final state is 1, the poste-
rior probability of an arc is given by the multiplication of
the probability mass leading to the previous state and the
probability of the arc itself. The expected count of a label
given a lattice is equal to the sum of the posterior proba-
bilities of all arcs in the index for that label with the same
lattice number.

To search for a multi-label expression (e.g., a multi-
word phrase)w1w2 . . . wn we seek on each label in the
expression and then for each(wi, wi+1) join the next



states ofwi with the matching previous states ofwi+1.
In this way, we retrieve just those path segments in each
lattice that match the entire multi-label expression. The
probability of each match is defined as the multiplication
of the probability mass leading to the previous state of
the first arc and the probabilities of all the arcs in the path
segment. The expected count of a multi-label expression
for the lattice is computed as above.

The answer to a query contains an audio segment only
if the expected count of the query for the lattice corre-
sponding to that audio segment is higher than a threshold.

3.6 User Interface

The user interface description will apply for the three
types of spoken communications (Telephone Conversa-
tions, Teleconferences, Broadcast News) although the au-
dio and speaker quality do vary for each of these types
of spoken communications. Once the user has found the
desired call (or spoken communication) using one of the
retrieval modules (one-best word, one-best phone string,
word lattice, phone lattice, or both word and phone lat-
tice), the user can navigate the call using the user inter-
face elements described below.

For the one-best word index, the Web page in Fig-
ure 5 shows the user interface for searching, browsing,
and playing back this call. The user can browse the call
at any time by clicking on the timeline to start playing at
that location on the timeline. The compressed audio file
(MP3) that was created during the processing would be
streamed to the user. The user can at any time either enter
a word (or word phrase) in the Search box or use one of
the common keywords generated during the keyword ex-
traction process. The text index would be queried and the
results of the search would be shown. The timeline plot
at the top would show all the hits or occurrences of the
word as thin tick marks. The list of hits would be found
under the keyword list. In this case, the word “chap-
ter” was found 4 times and the time stamps are shown.
The time stamps come from the results of the automatic
speech recognition process when the one-best words and
time stamps were generated. The search term “chapter”
is shown in bold with 5 context words on either side. The
user can click on any of these 4 hits to start playing where
the hit occurred. The solid band in the timeline indicates
the current position of the audio being played back. The
entire call, in this case, is 9:59 minutes long and the au-
dio is playing at the beginning of the fourth hit at 5:20
minutes. As part of the processing, caption data is gener-
ated in Microsoft’s SAMI (Synchronized Accessible Me-
dia Interchange) format from the one-best word output in
order to show caption text during the playback. The cap-
tion text under the timeline will be updated as the audio
is played. At this point in the call, the caption text is “but
i did any chapter in a”. This caption option can be dis-

Figure 5: User Interface for ASR One-Best Word Search.

Figure 6: User Interface for Lattice Search.

abled by clicking on the CC icon and can be enabled by
clicking on the CC icon again. The user can also speed
up or slow down the playback at any time by using the
“Speed” button. The speed will toggle from 50% (slow)
to 100% to 150% (fast) to 200% (faster) and then start
over at 50%. The speed, which is currently “fast”, will be
shown next to the current time above the “Stop” button.
This allows the user to more quickly peruse the audio file.

A similar Web page in Figure 6 shows the user inter-
face for searching a lattice index. Note that for the same
audio file (or call) and the same search term “chapter”,
the results of the query show 6 hits compared to the 4
hits in the text index in Figure 5. In this particular case,
the manual transcript does indeed contain these 6 occur-
rences of the word “chapter”. The search terms were
found in audio segments, which is why the time of the
hit is a time range. The information in brackets is the ex-
pected count and can exceed 1.0 if the search term occurs
more than once in the audio segment. The time range is
reflected in the timeline since the thin tick marks have
been replaced with colored segments. The colors of the
segments correspond to the colors of the hits in the list.
The darker the color, the higher the count and the lighter



the color, the lower the count. Finally, the search can be
refined by altering the threshold using the “Better Hits”
and “More Hits” buttons. In this example, the threshold
is set to 0.2 as can be seen under the timeline. If the
user clicks on the “Better Hits” button, the threshold is
increased so that only better hits are shown. If the “More
Hits” button is used, the threshold is decreased so more
hits are shown although the hits may not be as good. The
lattice index only returns hits where each hit has a count
above the threshold.

The lattice search user interface allows the user to more
easily find what the user wants and has additional controls
(threshold adjustments) and visual feedback (colored seg-
ments/hits) that are not possible for the text search user
interface.

4 Experimental Results

We used three different corpora to assess the effectiveness
of different techniques.

The first corpus is the DARPA Broadcast News cor-
pus consisting of excerpts from TV or radio programs
including various acoustic conditions. The test set is
the 1998 Hub-4 Broadcast News (hub4e98) evaluation
test set (available from LDC, Catalog no. LDC2000S86)
which is 3 hours long and was manually segmented into
940 segments. It contains 32411 word tokens and 4885
word types.

The second corpus is the Switchboard corpus consist-
ing of two-party telephone conversations. The test set is
the RT02 evaluation test set which is 5 hours long, has
120 conversation sides and was manually segmented into
6266 segments. It contains 65255 word tokens and 3788
word types.

The third corpus is namedTeleconferencesince it con-
sists of multi-party teleconferences on various topics. A
test set of six teleconferences (about 3.5 hours) was tran-
scribed. It contains 31106 word tokens and 2779 word
types. Calls are automatically segmented into a total of
1157 segments prior to ASR.

4.1 Speaker Segmentation

The performance of the speaker segmentation is evalu-
ated as follows. For an audio document, assume there
areN true boundaries, and the algorithm generatesM
speaker boundaries. If a detected boundary is within
1 second of a true boundary, it is a correctly detected
boundary, otherwise it is a falsely detected boundary. Let
C denote the number of correctly detected boundaries,
the recall and precision of the boundary detection can be
computed asR = C/N andP = C/M , respectively.
We can combine these two values using the F-measure
F = 2 × P × R/(P + R) to measure the speaker seg-
mentation performance.

We evaluated the developed method on three different
types of audio documents: Broadcast News recordings
(16KHz sampling rate, 16 bits/sample), two-party tele-
phone conversations (8KHz, 16bps), and multi-party tele-
conference recordings (8KHz, 16bps). Due to the high
audio quality and well controlled structure of the broad-
cast news program, the achieved F-measure for broadcast
news data is91%. Teleconference data has the worst au-
dio quality given the various devices (headset, speaker-
phone, etc.) used and different channels (wired and wire-
less) involved. There are also a lot of spontaneous speech
segments less than 1 second long, for example, “Yes”,
“No”, “Uh”, etc. These characteristics make the telecon-
ference data the most challenging one to segment. The
F-measure we achieved for this type of data is70%. The
F-measure for two-party telephone conversations is in the
middle at82%.

4.2 Automatic Speech Recognition

For evaluating ASR performance, we use the standard
word error rate (WER) as our metric. Since we are in-
terested in retrieval, we use OOV (Out Of Vocabulary)
rate by type to measure the OOV word characteristics.

In Table 1, we present the ASR performance on these
three tasks as well as the OOV Rate by type of the cor-
pora. It is important to note that the recognition vocabu-
lary for the Switchboard and Teleconference tasks are the
same and no data from the Teleconference task was used
while building the ASR systems.

Task WER OOV Rate by Type

Broadcast News ∼20% 0.6%
Switchboard ∼40% 6%
Teleconference ∼50% 12%

Table 1: Word Error Rate and OOV Rate Comparison.

4.3 Retrieval

Our task is to retrieve the audio segments in which the
user query appears. For evaluating retrieval performance,
we use precision and recall with respect to manual tran-
scriptions. LetC(q) be the number of times the query
q is found correctly,M(q) be the number of answers
to the queryq, andN(q) be the number of timesq is
found in the reference. We compute precision and re-
call rates for each query asP (q) = C(q)/M(q) and
R(q) = C(q)/N(q). We report the average of these
quantities over a set of queriesQ, P =

∑
q∈Q P (q)/|Q|

andR =
∑

q∈Q R(q)/|Q|. The set of queriesQ includes
all the words seen in the reference except for a stop list of
the 100 most common words.

For lattice based retrieval methods, different operating
points can be obtained by changing the threshold. The



precision and recall at these operating points can be plot-
ted as a curve. In addition to individual precision-recall
values we also compute the F-measure defined above and
report the maximum F-measure (maxF) to summarize the
information in a precision-recall curve.

In Table 2, a comparison of the maximum F-measure
(maxF) is given for various corpora. Using word lattices
yields a relative gain of 3-5% in maxF over using one-
best word hypotheses. Using both word and phone lat-
tices, the relative gain over the baseline increases to 8-
12%. In this approach, we first search the word index;
if no matches are found then we search the phone index.
This allows the system to return matches even if the user
query is not in the ASR vocabulary.

Task System
1-best W Lats W+P Lats

Broadcast News 84.0 84.8 86.0
Switchboard 57.1 58.4 60.5
Teleconference 47.4 50.3 52.8

Table 2: Maximum F-measure Comparison.

In Figure 7, we present the precision-recall curves.
The gain from using better techniques utilizing word
and phone lattices increases as retrieval performance gets
worse.
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Figure 7: Precision vs Recall Comparison.

5 Summary

We presented a system for searching and browsing spo-
ken communications. The system is flexible enough to
support various forms of spoken communications. In this
paper, our focus was on telephone conversations and tele-
conferences. We also presented experimental results for
the speaker segmentation, ASR and retrieval components
of the system.
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