
Scalable Construction-Based Parsing and Semantic Analysis

John Bryant
Department of Computer Science

University of California at Berkeley
Berkeley, CA 94720

jbryant@icsi.berkeley.edu

Abstract

In ScaNaLU 2002, Chang et al presented a
scalable natural language formalism called
Embodied Construction Grammar (ECG)
(Chang et al., 2002). ECG makes deep un-
derstanding systems possible because it is a
rigorous, unified formalism that incorporates
the semantic and pragmatic insights found
in cognitive linguistics. The work described
in this paper builds on (Chang et al., 2002)
because it leverages the ECG formalism to
perform deep, scalable construction-based
parsing and semantic analysis.

1 Introduction

As described by (Chang et al., 2002), the semantic and
pragmatic insights provided by cognitive linguistics must
be incorporated into a language understanding system be-
fore deep understanding can take place. Embodied Con-
struction Grammar (ECG) (Chang et al., 2002), (Bergen
and Chang, 2002) is a rigorous, formalism incorporat-
ing such insight. It provides formal mechanism for de-
scribing cognitive primitives like linguistic constructions
(Goldberg, 1995), image schemas (Lakoff, 1987), frames
(Fillmore, 1982), and mental spaces (Fauconnier and
Turner, 2002), as well as cross-domain mappings.

From a system-building point of view, however, the
importance of ECG lies in its scalability. Within its
unification-based framework, constructions, frames and
mental spaces are combined compositionally, yielding a
network of entwined semantic and pragmatic structures
representing the overall interpretation. This makes it pos-
sible for ECG to scale to much more complex linguistic
data that previous formalisms would allow.

The work described in this paper builds on this system-
building perspective since it is a system that leverages the

ECG formalism to perform deep, scalable construction-
based parsing and semantic analysis. It incorporates an
implementation of ECG’s semantic and constructional
primitives as well as integrating scalable language anal-
ysis algorithms like level-based parsing (Abney, 1996).
This system is called theconstructional analyzer and it
fits into a larger framework for scalable,simulation-based
language understanding.

In a simulation-based model of language understand-
ing, interpretation of an utterance is split into two phases:
analysis and enactment. Analysis is the process of map-
ping forms to context-independent meanings, providing
the input parameters for enactment. Enactment uses
an active, simulation-based model to generate context-
specific inference. This process-level separation of anal-
ysis and inference provides further scalability.

The next three sections describe the ECG formal-
ism, simulation-based understanding and partial parsing.
Then the constructional analyzer is described along with
an example. The paper closes with a description of a lan-
guage analysis task requiring the deep semantic represen-
tation afforded by the constructional analyzer.

2 The Embodied Construction Grammar
formalism

The grammar formalism that makes constructional anal-
ysis possible is the Embodied Construction Grammar.
ECG combines a syntax and knowledge representation
in a unification-based framework. This allows both con-
structions and frame-based, schematic knowledge to be
expressed succinctly in the same formalism.

As usual for construction grammar, the grammar
rules in ECG are pairs, mapping a particular lexi-
cal/morphological/syntactic pattern to a (partial) specifi-
cation of a situation. In ECG, this description of a situa-
tion is known as a semantic specification (semspec). The
semspec combines embodied semantic primitives like



schema Container
subcase of Image-Schema
roles

interior :
exterior :
portal :
boundary :

schema SPG
subcase of Image-Schema
roles

source :
path :
goal :

schema Trajector-Landmark
subcase of Image-Schema
roles

trajector :
landmark :

Figure 1: Some image schemas in ECG notation.

image schemas (Lakoff, 1987) and executing schemas
(Narayanan, 1997) with frame-based knowledge (Fill-
more, 1982) to completely specify the meaning of an ut-
terance.

Meaning in ECG is represented byschemas. Schemas,
much like frames, are schematic, role-based conceptual
and semantic structures. But as they are intended to de-
scribe an embodied, parameter-based representation of
language, the schema formalism is augmented by special
semantic operators that make cognitive linguistic insights
easier to express.

As an initial starting point into the formalism, figure 1
shows three canonical image schemas in ECG notation.
Each schema is initially defined by the keywordschema,
and after the name, an optionalsubcase of line denotes
the structures from which the current schema inherits.
Much like frames, ECG schemas (and constructions) are
arranged into a type hierarchy from which a schema can
inherit structure. In this case, each image schema inherits
from theImage-Schema type. Following thesubcase of,
comes the optional roles block, denoted by theroles key-
word. Just like the roles of a frame, the roles of a schema
are the parameters of the concept being described.

These simple image schemas do not show off all of
ECG’s schema mechanism, however. For a more com-
plete picture, we now focus on theInto schema shown
in figure 2. TheInto schema subcases theTrajector-
Landmark schema, and thus inherits thetrajector and
landmark roles from its parent. TheInto schema further
constrains thelandmark role by constraining it to be of
typeContainer.

The Into schema also introduces the newevokes op-
erator which makes the specified type locally accessible

schema Into
subcase of Trajector-Landmark
evokes s as SPG
roles

landmark : Container
constraints

trajector  ! s.trajector
s.source  ! landmark.exterior
s.goal  ! landmark.interior

Figure 2: TheInto schema.

construction IntoCxn
subcase of Spatial-Relation
form : Word

selff .orth  � “into”
meaning : Into

Figure 3: TheInto lexical construction.

via the given alias. In this case, the evokedSPG schema
acts as the background frame, capturinginto’s notion of
motion. This is the primary virtue of theevokes opera-
tor. It provides a way to place concepts such asbachelor
into the context of their larger background frames, as de-
scribed by (Fillmore, 1982).

After the roles block in theInto schema, comes the op-
tional constraints block. Constraints act as the semantic
glue with the$ identifying its two argument slots. When
a set of slots have been coindexed, a proposed filler to
any one of those slots must satisfy the restrictions of all
of them. In theInto schema, the locally definedland-
mark.interior1 role2 is identified with the evokedSPG’s
goal role, while thelandmark.exterior role is coindexed
with theSPG’s source role. These constraints schemati-
cally describe how the use ofinto suggests motion from
outside some container to the inside of that container.

Figure 3 shows theInto lexical construction. Every
construction starts with the keywordconstruction, fol-
lowed by the name of the construction. Then comes the
optionalsubcase of keyword that relates constructions to
the constructional type system. The ECG version of the
Into construction has a form and meaning pole, notated
by the keywordsform andmeaning.

Constructions can type their form and meaning poles.
In the case of ourInto construction, the form pole is of
schema typeWord3 and the meaning pole is of typeInto
schema. A typed meaning pole indicates that a particu-
lar construction denotes an instance of that type. Thus

1ECG uses slot chain notation.
2The landmark role has aninterior role because it was con-

strained to be of typeContainer.
3Form in ECG is also represented with schemas.



our Into construction claims that the wordinto means an
instance of the complex relation described by theInto
schema.

The Into construction also exhibits the assignment op-
erator ( ). This operator fills a slot with an atomic value.
In our Into construction’s form pole, theorth4 feature
brought in from theWord schema is assigned the atomic
stringinto.

Figure 4 shows the clausalCaused-Motion construc-
tion, an example of which isThe basketball player threw
the ball into the basket. This construction has an agent
(the player) which acts upon a patient (throwing the
ball) thereby moving it along a path (into the basket).
Since theCaused-Motion construction links a particular
syntactic form, that of a referring expression, a force-
application verb, a referring expression and a path to a
Caused-Motion-Scene5, the construction is different from
the ones we have covered so far in that it has constituents
that are themselves constructions. Thus instead of typing
the form block, the form block has constraints relating
the constituents.

Each of the construction’s four constituents are defined
in the constructional block. Each constituent is assigned
a local name, and then after the colon, the constructional
type is defined. If necessary, like in the case of theVerb
constituent, a semantic type is added in brackets.

The ordering of these constituents is specified by
adding form constraints to the form block. When the con-
structional analyzer searches for instances of a construc-
tion, these form constraints must be satisfied. The two
supported constraints arebefore which requires that the
left argument be somewhere the left of the right argument
in the input, andmeets which requires the left argument
to be directly before the right argument in the input.

In the Caused-Motion construction, the form con-
straints require that theagent be directly before theverb
and theverb be before thepath andpatient. Notice that
the relative order of the path and patient is left unspec-
ified6. Because ECG allows constituent order to be un-
specified like this, ECG can express with one rule what a
CFG might have to express with an exponential number
of rules.

The meaning pole of the construction uses the seman-
tic machinery that has already been described. It links
theagentm’s category to theagent of the scene as well as
settingpatientm.category to thetrajector of the specified
path. Notice that the constraints use them and f sub-
scripts when referring to the constructional constituents’

4Orth is short fororthography.
5A caused motion scene is one where the agent applies force

to the patient resulting in a shift in the position of the patient.
6This might be a partial solution for dealing with what are

calledheavy NPs.

construction Caused-Motion
subcase of Clause
constructional

agent : RefExp
verb : Verb[Apply-Force]
patient : RefExp
path : Spatial-Predication

form
af meets vf
vf before pf
vf before paf

meaning : Caused-Motion-Scene
selfm.action  ! verbm
agentm.category  ! selfm.agent
patientm.category  ! selfm.patient
selfm.path  ! path.m

schema Caused-Motion-Scene
subcase of Transitive-Scene
evokes c as Cause-Effect
roles

result-motion : Move
path : SPG

constraints
c.cause  ! action
c.effect  ! result-motion
result-motion.executor  ! patient
result-motion.path  ! path
path.trajector  ! patient

schema Transitive-Scene
subcase of Scene
evokes a as Apply-Force
roles

patient : Entity
constraints

action  ! a
patient  ! a.patient

schema Scene
roles

agent : Agent
action : Action

schema Cause-Effect
roles

cause : Action
effect : Action

schema Apply-Force
subcase of Action
roles

patient : Entity

Figure 4: TheCaused-Motion Construction and related
schemas.



form and meaning poles, respectively, and can be applied
to any construction as if they were just dotting into the
structure.

With a formal language for describing constructions,
many avenues are opened. The most important for the
sake of this work, is that it is possible to translate ECG
descriptions into feature structures. For the most part,
this translation is straightforward. For example, schemas,
constructions are represented as feature structures and
their roles are represented (unsurprisingly) as roles.

The evokes operator, however, requires a little more
care to properly model its nonlocal semantics. In this
case, the evoked type is generated outside of the evok-
ing structure. The evoked structure’s alias is represented
as a local role coindexed with the nonlocal structure7.

3 Simulation-Based Language
Understanding

Simulation-based language understanding draws infer-
ences about actions and events by executing an active
model. The active models are calledx-schemas (short
for executing schemas) which are extensions to stochas-
tic petri nets. In order to draw inferences about an action
like walking, the system performs asimulation by exe-
cuting its internal model of walking.

To tailor the inference to a particular scenario, the sim-
ulator needs to set theparameters of the x-schema rep-
resentation appropriately. These parameters are the free
variables that control how the simulation executes. For
example, the walking x-schema would have parameters
for who the walker is and for the path (or direction) of
motion. So in the sentenceHarry walked into the cafe,
the walker would beHarry and the path would beinto
the cafe.

But before a language understanding system can uti-
lize the virtues of such a model, the parameters must be
extracted from the utterance. This is where the construc-
tional analyzer comes in. If the constructions have fea-
tures designed to interact with the simulator, each con-
structional analysis will provide the parameters to the
simulation, and the analyzer and simulator will interact
to understand the utterance.

Researchers have integrated the constructional ana-
lyzer with a simulation engine, creating a unique and
powerful method for language understanding. Such a sys-
tem would even be able to do “exotic” metaphorical in-
ference with ease, since metaphorical inference is just a
special kind of parameterization8.

7With this implementation, ECG does not require any exten-
sions to standard unification algorithms.

8See (Narayanan, 1997) for more information about
metaphorical inference.

4 Syntactic Chunking

Traditional chunking is a simple parsing algorithm where
each syntax rule is transformed into a finite state rec-
ognizer. The recognizers are arranged into levels, con-
trolling the order of the reductions. A chunker starts at
the lowest level (and hopefully most-certain reductions)
which are done by the part of speech tagger. Then it
proceeds up the levels toward the less certain reductions.
This bottom up approach assumes (obviously incorrectly)
that reductions can be made locally and bottom-up with-
out any notion of global context, giving the algorithm
speed and state savings.

Within a single level, the reductions are done greedily.
Going left to right through the input, whenever a particu-
lar pattern is recognized, the longest match of that pattern
is reduced. Figure 5 shows the steps that an Abney chun-
ker goes through for the sentence,The woman in the lab
coat thought you were sleeping.

This figure exposes both the virtues and weaknesses of
chunking–the weakness being the fact that the parse for
the sentence does not attach the prepositional phrasein
the lab coat, treating it instead as a sister to thethe woman
noun group. But it also illustrates the robustness of the
system in that while the grammar has no rule for reduced
relative, it still correctly labels the syntactic groups. In
other words, the incompleteness of the grammar does not
cause phrases to be rejected since there is no requirement
that a successful parse converge to a complete sentence.
Thus such a parser is well-suited for spoken language
(Hinrichs et al., 2000), where Hinrichs, et al were able
to get 93% “correctness”9 at finding the various syntactic
groups from an error prone spoken language input. Un-
surprisingly without any semantics, they were only able
to achieve 54% “correctness” when generating the com-
plete parse tree from the chunk analysis.

5 The Constructional Analyzer

Because the approach to constructional analysis we de-
scribe in this report uses a level-based processing model,
it can be considered a relative of such shallow informa-
tion extraction tools. But instead of doing shallow se-
mantic analysis for the purposes of information extrac-
tion, it utilizes both the semantic richness of construc-
tion grammar and extended computational mechanisms
to do full constructional analysis, resulting in both a com-
plete syntactic analysis and a deep semantic analysis. The
constructional analyzer integrates the following computa-
tional capabilities to make deep analysis possible.� Support for unification

9They do not give a notion of what correctness means in
their paper.



L3 S SL2 NG PG V NG VL1 NG P NG V NG VL0 D N P D N N V tns Pron Aux V ingthe woman in the lab coat thought you were sleeping
Figure 5: A Partial Parse from (Abney, 1996). Since this processingmodel is bottom up, first the level 0 reductions
are performed, then the level 1 reductions, then level 2 and finally level 3.In the nonterminals,G is used (for group)
instead ofp (for phrase) to clearly indicate that these are non-recursive chunks. Each grammar symbol spans all the
input to its left until another grammar is encountered.� Support for multiple concurrent analyses with a

chart� Support for the more flexible form relations found
in ECG� Support for ECG’s semantic expressiveness

5.1 The Basics of the Constructional Analyzer

Since ECG is a unification-based formalism, supporting
unification is a necessary first step. Along with unifica-
tion, a chart is employed by the system to keep track of
the many possible analyses generated during rule-based
language analysis.

On the form side, the analyzer cannot use finite state
machines or even context free grammars to do matching
because of ECG’s more relaxed notion of form. ECG
does not require the grammar writer to specify a total
ordering on a construction’s constituents, and thus rec-
ognizers requiring a total ordering (like CFG parsers) in
each rule are unusable. The constructional analyzer in-
stead uses a computational unit called aconstruction rec-
ognizer.

A construction recognizer is the chunk of active knowl-
edge into which a construction gets transformed. Each
construction recognizer is designed to check both the
form and meaning constraints of just the construction it
models. In other words, instead of a monolithic parser
that takes the grammar rules as input, the constructional
analyzer itself is a collection of active construction rec-
ognizers working together to generate the constructional
analysis.

5.2 An Example

In order to make the previous discussion more concrete,
let’s analyze an example sentence using theCaused-
Motion construction described earlier. The sentence we
will consider isThe basketball player threw the ball into
the basket. Given a grammar that can handle simple refer-
ring expressions of the form (Det) Adj* Noun+ (making
sure to add the appropriate semantics) and spatial phrases,
we can arrange the rules into levels (see figure 6) and gen-
erate analyses that use theCaused-Motion construction.

0. Lexical constructions

1. Noun noun compounds

2. Adjectives

3. Referring expressions

4. Spatial Predications

5. Clausal constructions

Figure 6: The levels used in the example analysis.

construction Noun-Noun-Compound
subcase of Category
constructional

a : Category
b : Category

form
af meets bf

meaning
selfm  ! bm

Figure 7: A GenericNoun-Noun-Compound construction
that just sets the meaning of the construction as a whole
to be that of the second constituent. It relies on the struc-
ture merging process (Bryant, 2003) to infer the correct
relation between the twoCategory constituents.

Figure 7 shows an example noun-noun compound con-
struction used in the analysis that puts constituents of
type category10 together to generate an instance of type
Noun-Noun-Compound which is itself subtype ofcate-
gory. Thus the rule is recursive with itself and any other
category requiring rule. Notice that it is on the same level
that all othercategory constructions are assigned. The
constructional analyzer allows the constructions assigned
to the same level to be mutually recursive.

After theCategory constructions are processed, simple

10An instance of thecategory construction can either be
what is usually considered a noun likedog or a noun-noun com-
pound likevinyl siding salesman or gas meter turn-off valve.



path

patient

agent verb

Figure 8: The constituent graph structure for theCaused-
Motion construction. Each constituent corresponds to a
node in the constituent graph. At any particular point, the
construction recognizer is only allowed to search for con-
stituents with no incoming edges. When a constituent is
found, its node is removed from the graph along with any
outgoing edges from that node. After removing a node,
the construction recognizer is now allowed to search for
different, newly-released constituents or if there are no
nodes left, then a valid instance of the construction (at
least with respect to the form constraints) has been found.

referring expressions are generated. After the referring
expressions,Spatial-Predication constructions are recog-
nized on the next level, and the constructional analyzer
is finally ready to match theCaused-Motion construction.
Figures 8 and 9 (and the rest of this section) describe the
matching process schematically.

In frame A of figure 9, the construction recognizer is
in its initial state and it has not found any of the con-
stituents for theCaused-Motion construction. In B, the
recognizer has found a referring expression correspond-
ing to the basketball player, and since it unifies with the
agent role of theCaused-Motion construction, it is ac-
cepted as the first constituent. Notice how the node in the
graph corresponding to theagent is removed indicating
that it has been found.

In frames C and D, the same scenario takes place ex-
cept it is the verbthrew and the referring expressionthe
ball that satisfy the form and meaning requirements of
their corresponding constituents. Notice in C that the
construction recognizer is now allowed to find either the
patient or the path since both nodes have no incoming
edges. In E, we see a completely matchedCaused-Motion
construction with a completeCaused-Motion scene and
an empty constituent graph indicating that a complete in-
stance of this construction has been found.

In short, the construction recognizer builds up a graph
data structure to keep track of the constituents and an in-
progress semspec to keep track of the semantics. Each

constituent that satisfies the form and semantic con-
straints updates the constituent graph and the in-progress
partial semspec. The final result for a successful match
has the agent of the caused motion scene to be the player,
the patient being the ball, and the goal of the path being
the interior of the basket.

5.3 Computational Complexity

At its core, the constructional analyzer is just a unifica-
tion parser that needs to support the quirks of a particu-
lar grammar formalism. The quirk that most affects the
computational complexity of the constructional analyzer
is ECG’s support for partial constituent order.

Barton (1985) showed that parsing with unordered
CFG rules is NP-complete. Since an ECG grammar can
leave all constituency unordered, the worst case runtime
must be exponential with respect to the utterance. An ac-
tual grammar of this sort is unlikely, however, and thus
it is useful to symbolically bound the runtime of the ana-
lyzer in terms of the number of unifications it performs.

For purposes of the complexity analysis, call the num-
ber of levelsl, the number of recognizers at each levelr, and assume an input ofk words. Further assuming
that there areO(k) states in each chart entry, and that the
number of constituent orderings allowed by a grammar
rule is j for the max ofc constituents used in any rule.
The worst-case runtime would then beO(lrkcj) since
there would bekc combinations of unifications for each
of thej constituent orderings associated with a particular
recognizer.

Clearly any product ofc andj much over 2 makes the
algorithm intractable for all but the smallest grammars.
Consequently, an open area of research is a mechanism
for concentrating effort on the most promising syntactic
and semantic combinations using methods of the sort de-
scribed in (Narayanan and Jurafsky, 1998) and (Bryant,
2003).

6 Applications

The constructional analyzer is currently being put to use
in two tasks that require the deep semantics that it pro-
vides.The first task is that ofSimulation-Based Language
Understanding (Narayanan, 1997) has already been de-
scribed. The second is the task of inductive learning of
child constructions (Chang and Maia, 2001).

6.1 Child Language Learning

The language learning model used by Chang (Chang and
Maia, 2001) is a comprehension-basedmodel of language
learning built on the following assumptions:� There is significant prior knowledge going into the

learning process.



A

Caused-Motion Scene
agent: the player
action: 
path: 
patient: 
path.trajector: 

the
basketball

player

B

Caused-Motion Scene
agent: the player
action: threw
path: 
patient: the ball
path.trajector: the ball

the
basketball

player

threw the ball

D

Caused-Motion Scene
agent: the player
action: threw
path: 
patient: 
path.trajector: 

the
basketball

player

threw

C

Caused-Motion Scene
agent: the player
action: threw
path: into the basket
patient: the ball
path.trajector: the basket

the basketball
player

threw into the
basket

the ball

E

Caused-Motion

agent verb pathpatient

Caused-Motion

agent verb pathpatient

Caused-Motion

agent verb pathpatient

Caused-Motion

agent verb pathpatient

Caused-Motion Scene
agent: 
action: 
path: 
patient: 
path.trajector: 

agent verb
patient

path
verb

patient

path

patient

path path

Caused-Motion

agent verb pathpatient

Figure 9: Snapshots of the internal state of theCaused-Motion construction recognizer on the sentenceThe basketball
player threw the ball into the basket.



� The learning is incremental and based on experi-
ence.� The learning is tied to language use. i.e. Frequency
of language data affects the learning.

The model analyzes the incoming utterance using the
current set of constructions that have been learned. If
the current analysis generated by the constructional an-
alyzer cannot explain all of the semantic content found
in the current scenario associated with the utterance, the
model hypothesizes new constructions. This hypothesis
process pairs up the unused form relations with the miss-
ing semantic relations to produce constructions that fill
in the semantic/pragmatic gap. Since the hypothesis pro-
cess is under-constrained, the model generates multiple
constructions in an attempt to explain the same missing
semantic content. The more useful of these constructions
in later analyses are the ones that get reinforced while the
others wither away.

This model of learning depends on the language an-
alyzer to initially try and explain the semantics of the
scene. But for such an analyzer to be useful it needs
to be semantically focused. It also needs to be capa-
ble of incremental analysis as well as tolerant of noise
and missing constructions. These requirements line up
perfectly with the constructional analyzer’s virtues pri-
marily because the language learning task heavily influ-
enced the design of the constructional analyzer. In effect,
the constructional analyzer was built on the assumption
that all grammars, not just grammars in the process of
being learned, will lack coverage when faced with real
language.

7 Conclusion

Cognitive linguistics has provided the theoretical basis
for turning natural language systems into broad coverage
systems, but a formal mechanism to describe these the-
ories was a necessary first step before natural language
systems could take advantage. ECG stepped in to provide
such formal mechanism, and the first system to profit is
the constructional analyzer.

The work is far from over, however. While the current
system does (theoretically) scale with respect to linguistic
coverage, it still does not scale with respect to computa-
tional performance. Thus further computational work is
necessary. The deep semantics must be leveraged to make
the systems computationally faster and more robust. Ini-
tial work in this direction has already begun (Narayanan
and Jurafsky, 1998) (Bryant, 2003).

References

Steven Abney. 1996. Partial parsing via finite-state cas-
cades. InProceedings of the ESSLLI ’96 Robust Pars-
ing Workshop.

Benjamin Bergen and Nancy Chang. 2002. Embodied
construction grammar in simulation-based language
understanding. Technical Report TR-02-004, ICSI. To
appear in Oestman and Reid, eds., Construction Gram-
mar(s): Cognitive and Cross Lingusitic Dimensions.
John Benjamins.

John Bryant. 2003. Constructional analysis. Master’s
thesis, UC Berkeley.

Nancy Chang and Tiago Maia. 2001. Learning grammat-
ical constructions. InProceedings of the Conference of
the Cognitive Science Society.

Nancy Chang, Jerome Feldman, Robert Porzel, and
Keith Sanders. 2002. Scaling cognitive linguis-
tics:formalisms for language understanding.

Gilles Fauconnier and Mark Turner. 2002.The Way
We Think:Conceptual Blending and The Mind’s Hid-
den Complexities. Basic Books.

Charles Fillmore. 1982. Frame semantics. InLinguis-
tics in the Morning Calm, pages 111–138. Linguistics
Society of Korea.

Adele Goldberg. 1995.Constructions: A Construction
Grammar Approach to Argument Structure. University
of Chicago Press.

Erhard Hinrichs, Sandra Huebler, Valia Kordoni, and
Frank Mueller. 2000. Robust chunk parsing for spon-
taneous speech. In Wolfgang Wahlster, editor,Verb-
mobil:Foundations of Speech-to-Speech Translation,
pages 163–182. Springer.

George Lakoff. 1987. Women, Fire, and Dangerous
Things. University of Chicago Press.

Srini Narayanan and Daniel Jurafsky. 1998. Bayesian
models of sentence processing. InProceedings of the
Conference of the Cognitive Science Society.

Srini Narayanan. 1997.Knowledge-Based Action Rep-
resentations for Metaphor and Aspect. Ph.D. thesis,
University of California at Berkeley.


