Scalable Construction-Based Parsing and Semantic Analysis

John Bryant
Department of Computer Science
University of California at Berkeley
Berkeley, CA 94720
j bryant @ csi . ber kel ey. edu

Abstract ECG formalism to perform deep, scalable construction-
based parsing and semantic analysis. It incorporates an
In ScaNaLU 2002, Chang et al presented a implementation of ECG’s semantic and constructional
scalable natural language formalism called  primitives as well as integrating scalable language anal-
Embodied Construction Grammar (ECG) ysis algorithms like level-based parsing (Abney, 1996).
(Chang et al., 2002). ECG makes deep un-  This system is called theonstructional analyzer and it
derstanding systems possible because it is a fitsinto alarger framework for scalabkemulation-based

rigorous, unified formalism that incorporates language understanding.
the semantic and pragmatic insights found In a simulation-based model of language understand-
in cognitive linguistics. The work described ing, interpretation of an utterance is split into two phases:

in this paper builds on (Chang et al., 2002)  analysis and enactment. Analysis is the process of map-
because it leverages the ECG formalism to  ping forms to context-independent meanings, providing
perform deep, scalable construction-based the input parameters for enactment. Enactment uses
parsing and semantic analysis. an active, simulation-based model to generate context-
specific inference. This process-level separation of anal-
. ysis and inference provides further scalability.

1 Introduction The next three sections describe the ECG formal-

As described by (Chang et al., 2002), the semantic arl@m, simulation-based understanding and partial parsing.

pragmatic insights provided by cognitive linguistics mustl hen the constructional analyzer is described along with

be incorporated into a language understanding system & example. The paper closes with a description of a lan-

fore deep understanding can take place. Embodied Co@lage analysis task requiring the deep semantic represen-

struction Grammar (ECG) (Chang et al., 2002), (Berget@tion afforded by the constructional analyzer.

and Chang, 2002) is a rigorous, formalism incorporat-

ing such insight. It provides formal mechanism for de2 The Embodied Construction Grammar

scribing cognitive primitives like linguistic constructions formalism

(Goldberg, 1995), image schemas (Lakoff, 1987), frames

(Fillmore, 1982), and mental spaces (Fauconnier anthe grammar formalism that makes constructional anal-

Turner, 2002), as well as cross-domain mappings. ysis possible is the Embodied Construction Grammar.
From a system-building point of view, however, theECG combines a syntax and knowledge representation

importance of ECG lies in its scalability. Within its in a unification-based framework. This allows both con-

unification-based framework, constructions, frames argiructions and frame-based, schematic knowledge to be

mental spaces are combined compositionally, yielding expressed succinctly in the same formalism.

network of entwined semantic and pragmatic structures As usual for construction grammar, the grammar

representing the overall interpretation. This makes it posules in ECG are pairs, mapping a particular lexi-

sible for ECG to scale to much more complex linguisticcal/morphological/syntactic pattern to a (partial) specifi-

data that previous formalisms would allow. cation of a situation. In ECG, this description of a situa-
The work described in this paper builds on this systention is known as a semantic specification (semspec). The

building perspective since it is a system that leverages tlsemspec combines embodied semantic primitives like



schema Container schema Into
subcase of Image-Schema subcase of Trajector-Landmark
roles evokes s as SPG
interior : roles
exterior : landmark : Container
portal : constraints
boundary : trajector <— s.trajector
s.source <— landmark.exterior
schema SPG s.goal <— landmark.interior
subcase of Image-Schema
roles
source : Figure 2: Thento schema.
path :
goal: construction IntoCxn
schema Trajector-Landmark subcase of Spatial-Relation
subcase of Image-Schema form : Word
roles selfs.orth «— “into”
trajector : meaning : Into
landmark :
Figure 1: Some image schemas in ECG notation. Figure 3: Thento lexical construction.

image schemas (Lakoff, 1987) and executing schema( the given alias. In this case, the evol&Rts schema
(Narayanan, 1997) with frame-based knowledge (Fillacts as the background frame, capturing’s notion of
more, 1982) to completely specify the meaning of an utnotion. This is the primary virtue of thevokes opera-
terance. tor. It provides a way to place concepts suchashelor
Meaning in ECG is represented bkshemas. Schemas, into the context of their larger background frames, as de-
much like frames, are schematic, role-based conceptugribed by (Fillmore, 1982).
and semantic structures. But as they are intended to de-After the roles block in thénto schema, comes the op-
scribe an embodied, parameter-based representationti@nal constraints block. Constraints act as the semantic
language, the schema formalism is augmented by spec@ie with the« identifying its two argument slots. When
semantic operators that make cognitive linguistic insight8 set of slots have been coindexed, a proposed filler to
easier to express. any one of those slots must satisfy the restrictions of all
As an initial starting point into the formalism, figure 1 0f them. In theinto schema, the locally definelend-
shows three canonical image schemas in ECG notatiol’ﬁ_ark.interiorl rOle2 is identified with the evoke&PG’s
Each schema is initially defined by the keywsptiema, goal role, while thdandmark.exterior role is coindexed
and after the name, an optiorsaibcase of line denotes with the SPG’s source role. These constraints schemati-
the structures from which the current schema inherit§2lly describe how the use aito suggests motion from
Much like frames, ECG schemas (and constructions) aftside some container to the inside of that container.
arranged into a type hierarchy from which a schema can Figure 3 shows thénto lexical construction. Every
inherit structure. In this case, each image schema inherfgnstruction starts with the keywomnstruction, fol-
from thelmage-Schema type. Following thesubcase of, lowed by the name of the construction. Then comes the
comes the optional roles block, denoted bytbies key- optionalsubcase of keyword that relates constructions to
word. Just like the roles of a frame, the roles of a schen{€ constructional type system. The ECG version of the
are the parameters of the concept being described. Into construction has a form a_nd meaning pole, notated
These simple image schemas do not show off all d#y the keywordgorm andmeaning. _
ECG'’s schema mechanism, however. For a more com- Constructions can type their form and meaning poles.
plete picture, we now focus on theto schema shown In the case of oumto construction, the form pole is of
in figure 2. Thelnto schema subcases tHesjector- ~SChema typavord® and the meaning pole is of typeto
Landmark schema, and thus inherits theijector and Schema. A typed meaning pole indicates that a particu-
landmark roles from its parent. Thinto schema further lar construction denotes an instance of that type. Thus
constramg théandmark role by constraining it to be of 1ECG uses slot chain notation.
type Container. _ 2Thelandmark role has arinterior role because it was con-
The Into schema also introduces the newokes op-  strained to be of typ€ontainer.
erator which makes the specified type locally accessible *Form in ECG is also represented with schemas.



our Into construction claims that the wordto means an
instance of the complex relation described by thie
schema.

Thelnto construction also exhibits the assignment op-
erator ¢). This operator fills a slot with an atomic value.
In our Into construction’s form pole, therth* feature
brought in from theNord schema is assigned the atomic
stringinto.

Figure 4 shows the clausa@aused-Motion construc-
tion, an example of which i$he basketball player threw
the ball into the basket. This construction has an agent
(the player) which acts upon a patient (throwing the
ball) thereby moving it along a path (into the basket).
Since theCaused-Motion construction links a particular
syntactic form, that of a referring expression, a force-
application verb, a referring expression and a path to a
Caused-Motion-Scene®, the construction is different from
the ones we have covered so far in that it has constituents
that are themselves constructions. Thus instead of typing
the form block, the form block has constraints relating
the constituents.

Each of the construction’s four constituents are defined
in the constructional block. Each constituent is assigned
a local name, and then after the colon, the constructional
type is defined. If necessary, like in the case of\theb
constituent, a semantic type is added in brackets.

The ordering of these constituents is specified by
adding form constraints to the form block. When the con-
structional analyzer searches for instances of a construc-
tion, these form constraints must be satisfied. The two
supported constraints abefore which requires that the
left argument be somewhere the left of the right argument
in the input, andneets which requires the left argument
to be directly before the right argument in the input.

In the Caused-Motion construction, the form con-
straints require that thagent be directly before theerb
and theverb be before thepath andpatient. Notice that

construction Caused-Motion
subcase of Clause
constructional
agent: REFExp
verb : VERB[APPLY-FORCE]
patient : REFExp
path : SPATIAL-PREDICATION
form
ar meets vy
vy beforep
vs bef ore pa,
meaning : Caused-Motion-Scene
self,,.action <— verb,,
agent,_ .category <— self,,.agent
patient,, .category <— self,,.patient
self,,.path <— path.m

schema Caused-Motion-Scene
subcase of Transitive-Scene
evokes c as Cause-Effect
roles
result-motion : Move
path : SPG
constraints
c.cause <—» action
c.effect +— result-motion
result-motion.executor <— patient
result-motion.path <— path
path.trajector <— patient

schema Transitive-Scene
subcase of Scene
evokes a as Apply-Force
roles

patient : Entity
constraints

action +— a

patient <— a.patient

the relative order of the path and patient is left unspec{ schema Scene schema Cause-Effect
ified®. Because ECG allows constituent order to be un-  roles roles

specified like this, ECG can express with one rule what 4 agent : Agent cause : Action

CFG might have to express with an exponential numbe action : Action effect : Action

of rules. schema Apply-Force
The meaning pole of the construction uses the seman- subcase of Action

tic machinery that has already been described. It links roles

theagent,,’s category to theagent of the scene as well as patient : Entity

settingpatient,,.category to thetrajector of the specified
path. Notice that the constraints use theandf sub- Figure 4: TheCaused-Motion Construction and related
scripts when referring to the constructional constituentschemas.

40rth is short fororthography.

5A caused motion scene is one where the agent applies force
to the patient resulting in a shift in the position of the pati

5This might be a partial solution for dealing with what are
calledheavy NPs.



form and meaning poles, respectively, and can be appligl  Syntactic Chunking

to any construction as if they were just dotting into the. | o ) ) )
structure. Traditional chunking is a simple parsing algorithm where
each syntax rule is transformed into a finite state rec-

With a formal language for describing constructions,

many avenues are opened. The most important for fognizer. The recognizers are arranged into levels, con-

sake of this work, is that it is possible to translate Ecérolling the order of the reductions. A chunker starts at

descriptions into feature structures. For the most patllhe lowest level (and hopefully most-certain reductions)

this translation is straightforward. For example, sc:hema@'hICh are done by the part of speech tagger. Then it

constructions are represented as feature structures 8Cie(tjts up the levels trtl)ward the Iess gertalun_ reductut)lns.
their roles are represented (unsurprisingly) as roles. 's bottom up approach assumes (obviously incorrectly)

; . that reductions can be made locally and bottom-up with-
The evokes operator, however, requires a little morée . . :

. : .out any notion of global context, giving the algorithm
care to properly model its nonlocal semantics. In this

case, the evoked type is generated outside of the evo?gsﬁgl;ng ;[:tleeslae\\//ggtsﬁe reductions are done areedil
ing structure. The evoked structure’s alias is represent 9 ' 9 Y-

as a local role coindexed with the nonlocal strucfure oing left to right through the input, whenever a particu-
lar pattern is recognized, the longest match of that pattern

. . is reduced. Figure 5 shows the steps that an Abney chun-
3 SmUIatlon',Based Language ker goes through for the sentend@&e woman in the lab
Under standing coat thought you were sleeping.

Simulation-based language understanding draws infer; Tth_flgutrhe exposkes bOtS the \ﬂ:tufes ??: \f{Vfr?knessesf of
ences about actions and events by executing an acticgun INg—Ine weakness being e fact that Ine parse for

model. The active models are callaesch (short %e sentence does not attach the prepositional phnase

for executing schemas) which are extensions to stocha@—e lab coat, treating itinstead as a sister to theworman

tic petri nets. In order to draw inferences about an aCtiOQO:tre]rgri?] ut?]'athl\;I:lilltee:Eeo 'Irlgrsrfﬁish;hsen?mzt?oersrzgz(t:re]z
like walking, the system performssamulation by exe- yl tive. it still " iq bels th tacti |
cuting its internal model of walking. relative, it still correctly labels the syntactic groups. In

To tailor the inference to a particular scenario, the simc-)ther words, the incompleteness of the grammar does not

ulator needs to set thaer ers of the x-schema rep- cause phrases to be rejected since there is no requirement

i . that a successful parse converge to a complete sentence.
resentation appropriately. These parameters are the ft. . ;
; ; : us such a parser is well-suited for spoken language
variables that control how the simulation executes. For,. . o
. Hinrichs et al., 2000), where Hinrichs, et al were able

example, the walking x-schema would have paramete

S @ 1) 3 H H -
for who the walker is and for the path (or direction) of 0 get 936"correctness™ at finding the various syntactic
motion. So in the sentendg¢arry walked into the cafe,

groups from an error prone spoken language input. Un-
the walker would beHarry and the path would binto surprisingly without any semantics, they were only able
the cafe.

to achieve 5%"“correctness” when generating the com-
But before a language understanding system can u

Rlete parse tree from the chunk analysis.

lize the virtues of such a model, the parameters must b§
extracted from the utterance. This is where the construc-
tional analyzer comes in. If the constructions have feaBecause the approach to constructional analysis we de-
tures designed to interact with the simulator, each corscribe in this report uses a level-based processing model,
structional analysis will provide the parameters to thét can be considered a relative of such shallow informa-
simulation, and the analyzer and simulator will interaction extraction tools. But instead of doing shallow se-
to understand the utterance. mantic analysis for the purposes of information extrac-

Researchers have integrated the constructional artéen, it utilizes both the semantic richness of construc-
lyzer with a simulation engine, creating a unique andion grammar and extended computational mechanisms
powerful method for language understanding. Such a syss do full constructional analysis, resulting in both a com-
tem would even be able to do “exotic” metaphorical inplete syntactic analysis and a deep semantic analysis. The
ference with ease, since metaphorical inference is justamnstructional analyzer integrates the following computa-
special kind of parameterizatitin tional capabilities to make deep analysis possible.

The Constructional Analyzer

"With this implementation, ECG does not require any exten- e Support for unification
sions to standard unification algorithms.

8See (Narayanan, 1997) for more information about °They do not give a notion of what correctness means in
metaphorical inference. their paper.
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the woman in the lab coat thought you were sleeping

Figure 5: A Partial Parse from (Abney, 1996). Since this processiogel is bottom up, first the level O reductions
are performed, then the level 1 reductions, then level 2 and finally levaltBe nonterminals is used (for group)
instead ofp (for phrase) to clearly indicate that these are non-recursive chunks. Eatimgir symbol spans all the
input to its left until another grammar is encountered.

e Support for multiple concurrent analyses with a O- Lexical constructions

chart Noun noun compounds

e Support for the more flexible form relations found

i ECG Adjectives

e Support for ECG’s semantic expressiveness Referring expressions
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5.1 TheBasicsof the Constructional Analyzer Spatial Predications

Since ECG is a unification-based formalism, supporting 5. Clausal constructions
unification is a necessary first step. Along with unifica-

tion, a chart is employed by the system to keep track of Figure 6: The levels used in the example analysis.
the many possible analyses generated during rule-based

language analys.ls' _ construction Noun-Noun-Compound
On the form side, the analyzer cannot use finite state subcase of Category

machines or even context free grammars to do matching constructional

because of ECG’s more relaxed notion of form. ECG a: CATEGORY

does not require the grammar writer to specify a total b: CATEGORY

ordering on a construction’s constituents, and thus rec- foémmeet sb

ognizers requiring a total ordering (like CFG parsers) in mefaning f

each rule are unusable. The constructional analyzer in- self,, +— b,

stead uses a computational unit callezbastruction rec-

ognizer.

A construction recognizer is the chunk of active knowl—':'gu.re 7oA Gener|¢\louq-Noun-Compound construction
edge into which a construction gets transformed. Eac[ﬁ1at Just sets the meaning of the construction as a whole
construction recognizer is designed to check both tHe be that of the second constituent. It relies on the struc-
form and meaning constraints of just the construction Iu:et_meréy?vg\;/ proiﬁsstv\(sr)t/ant, 2003)&0 mfter the correct
models. In other words, instead of a monolithic parserre ation between the ategory constituents.

that takes the grammar rules as input, the constructional

analyzer itself is a collection of active construction rec- Figure 7 shows an example houn-noun compound con-
ognizers working together to generate the constructiong|,tion ysed in the analysis that puts constituents of

analysis. type category'® together to generate an instance of type

52 AnExample Noun-Noun-Compouqd Which.is its_elf.subtype otate-
ory. Thus the rule is recursive with itself and any other
ategory requiring rule. Notice that it is on the same level

that all othercategory constructions are assigned. The

M'Tlt 1on cqgstr_u?;}onbgge(se;:gltiledl earlltehr. TTE sbzlnltt_entce W&onstructional analyzer allows the constructions assigned
Wi consider 1S The all prayer threw the MO to the same level to be mutually recursive.

thebasket. Given a grammar that can handle simple refer- After the Cateqory constructions are processed. simple
ring expressions of the form (Det) Adj* Noun+ (making gory P ' P
sure to add the appropriate semantics) and spatial phrases’*OAn instance of thecategory construction can either be

we can arrange the rules into levels (see figure 6)_ and geRnat is usually considered a noun lideg or a noun-noun com-
erate analyses that use theused-Motion construction.  pound likevinyl siding salesman or gas meter turn-off valve.

In order to make the previous discussion more concret
let's analyze an example sentence using Caeised-



constituent that satisfies the form and semantic con-
straints updates the constituent graph and the in-progress
partial semspec. The final result for a successful match
has the agent of the caused motion scene to be the player,
the patient being the ball, and the goal of the path being
the interior of the basket.

5.3 Computational Complexity

At its core, the constructional analyzer is just a unifica-

tion parser that needs to support the quirks of a particu-
lar grammar formalism. The quirk that most affects the

computational complexity of the constructional analyzer

is ECG’s support for partial constituent order.

Barton (1985) showed that parsing with unordered

FG rules is NP-complete. Since an ECG grammar can

Figure 8: The constituent graph structure for Gzeised-
Motion construction. Each constituent corresponds to 8
node in the constituent graph. At any particular point, th . :

. >ntgrap yp b ?eave all constituency unordered, the worst case runtime
construction recognizer is only allowed to search for con-

stituents with no incoming edges. When a constituent st be exponential with respect to the utterance. An ac-

found, its node is removed from the graph along with an%t)"al grammar of this sort is unlikely, however, and thus

outgoing edges from that node. After removing a nod t is useful to symbolically bound the runtime of the ana-

: o }'/zer in terms of the number of unifications it performs.
the construction recognizer is now allowed to search fo F f1h lexit Vsi Il th
different, newly-released constituents or if there are n or purposes ot the complexity analysis, call the num-

nodes left, then a valid instance of the construction ( er of levelsl, the n_umber of recognizers at each I_evel
r, and assume an input &f words. Further assuming

least with respect to the form constraints) has been found. .
P ) that there aré (k) states in each chart entry, and that the

number of constituent orderings allowed by a grammar

referring expressions are generated. After the referrirﬂq:e is j for the max ofc constituents used in any rule.
expressionsSpatial-Predication constructions are recog- | € worst-case runtime would then Birk*’) since
nized on the next level, and the constructional analyzdhere would be:® combinations of unifications for each
is finally ready to match theaused-Motion construction. of thej constituent orderings associated with a particular

Figures 8 and 9 (and the rest of this section) describe tfigC0ognizer.
matching process schematically. Clearly any product o¢ andj much over 2 makes the
In frame A of figure 9, the construction recognizer idlgorithm intractable for all but the smallest grammars.

in its initial state and it has not found any of the con-Consequently, an open area of research is a mechanism

stituents for theCaused-Motion construction. In B, the O concentrating effort on the most promising syntactic
recognizer has found a referring expression corresponﬁ[‘(_j semantlc combinations using methods of the sort de-
ing to the basketball player, and since it unifies with the scribed in (Narayanan and Jurafsky, 1998) and (Bryant,

agent role of the Caused-Motion construction, it is ac- 2003).
cepted as the first constituent. Notice how the node in t

h N
graph corresponding to thegent is removed indicating g Applications

that it has been found. The constructional analyzer is currently being put to use
In frames C and D, the same scenario takes place exr two tasks that require the deep semantics that it pro-

cept it is the verlthrew and the referring expressighe  vides. The first task is that &mulation-Based Language

ball that satisfy the form and meaning requirements ofjnderstanding (Narayanan, 1997) has already been de-

their corresponding constituents. Notice in C that thecribed. The second is the task of inductive learning of
construction recognizer is now allowed to find either thehild constructions (Chang and Maia, 2001).

patient or the path since both nodes have no incoming
edges. In E, we see a completely matcBadsed-Motion 6.1 Child Language L earning

construction wi;h a complet_eaL_Jseql-Motion scene and _The language learning model used by Chang (Chang and
an empty constituent graph indicating that a complete Naia, 2001) is a comprehension-based model of language

stance of this construction has been found. learning built on the following assumptions:
In short, the construction recognizer builds up a graph

data structure to keep track of the constituents and an in-e There is significant prior knowledge going into the
progress semspec to keep track of the semantics. Each learning process.
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Caused-Motion Caused-Motion
agent verb | |patient| | path agent verb | |patient| | path
I
the
basketball
player

Caused-Motion Scene
agent:
action:

(wm)>()
patient:
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Caused-Motion Scene
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action:
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Caused-Motion Scene
agent: the player

agent | | verb | |patient| | path action: threw
\ path: into the basket
the basketball threw the ball into the patient: the ball
player basket path.trajector: the basket

Figure 9: Snapshots of the internal state of@la@sed-Motion construction recognizer on the sentefibe basketball

player threw the ball into the basket.
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The work is far from over, however. While the current

system does (theoretically) scale with respect to linguistic

coverage, it still does not scale with respect to computa-

tional performance. Thus further computational work is

necessary. The deep semantics must be leveraged to make

the systems computationally faster and more robust. Ini-

tial work in this direction has already begun (Narayanan

and Jurafsky, 1998) (Bryant, 2003).



