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Abstract

In this paper we present an evaluation of
Carmel-Tools, a novebehavior orientedap-
proach to authoring and maintaining do-
main specific knowledge sources for ro-
bust sentence-level language understanding.
Carmel-Tools provides a layer of abstraction
between the author and the knowledge sources,
freeing up the author to focus on the desired
language processirgehaviorthat is desired in
the target system rather than the linguistic de-
tails of the knowledge sources that would make
this behavior possible. Furthermore, Carmel-
Tools offers greater flexibility in output rep-
resentation than the context-free rewrite rules
produced by previous semantic authoring tools,
allowing authors to design their own predicate
language representations.
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the knowledge source engineering process accessible to
a broader audience. Carmel-Tools is used to author do-

main specific semantic knowledge sources for the Carmel

Workbench (Rosé, 2000; Rosé et al., 2002) that con-

tains broad coverage domain general syntactic and lexical

knowledge sources for robust language understanding in

English. Our evaluation demonstrates how Carmel-Tools

can be used to interpret sentences in the physics domain
as part of a content-based approach to automatic essay
grading.

Sentence:The man is moving horizontally at a constant
velocity with the pumpkin.

Predicate Language Representation:

((velocity id1 man horizontal constant non-zero)
(velocity id2 pumpkin ?dir ?mag-change ?mag-zero)
(rel-value id3 id1 id2 equal))

Gloss: The constant, nonzero, horizontal velocity of the
man is equal to the velocity of the pumpkin.

One of the major obstacles that currently makes itimpragigure 1: Simple example of how Carmel-Tools builds

tical for language technology applications to make use &dnowledge sources capable of assigning representations
sophisticated approaches to natural language understargisentences that are not constrained to mirror the exact
ing, such as deep semantic analysis and domain level re@erding, structure, or literal surface meaning of the text.
soning, is the tremendous expense involved in authoring

and maintaining domain specific knowledge sources. In While much work has been done in the area of ro-
this paper we describe an evaluation of Carmel-Tools admist semantic interpretation, currentthoring toolsfor
proof of concept for a novddehavior orientechpproach building semantic knowledge sources (Cunningham et
to authoring and maintaining domain specific knowledgal., 2003; Jay et al., 1997) are tailored for informa-
sources for robust sentence-level language understarin extraction tasks that emphasize the identification of
ing. What we mean by behavior oriented is that Carmelhamed entities such as people, locations, and organiza-
Tools provides a layer of abstraction between the authdions. While regular expression based recognizers, such
and the knowledge sources, freeing up the author to fas JAPE (Cunningham et al., 2000), used for information
cus on the desired language procesdirbaviorthat is  extraction systems, are not strictly limited to these stan-
desired in the target system rather than the linguistic delard entity types, it is not clear how they would handle
tails of the knowledge sources that would make this bezoncepts expressing complex relationships between enti-
havior possible. Thus, Carmel-Tools is meant to makges, where the complexity in the meaning can be real-



ized with a much greater degree of surface syntactic vaniele of language in the learning process (Chi et al., 2001),
ation. Outside of the information extraction domain, aand because of the unique demands educational applica-
concept acquisition authoring environment called SGStuions place on the technology, especially where detailed
dio (Wang and Acero, 2003) offers similar functionalityfeedback based on student language input is offered to
to JAPE for building language understanding modules fastudents, educational applications present interesfing o
dialogue systems, with similar limitations. Carmel-Toolsportunities for this community.

is more flexible in that it allows a wider range of linguis- The area of automated essay grading has enjoyed a
tics expression that communicate the same idea to ma‘_tﬁpeat deal of success at applying shallow language pro-

against the same pattern. It accomplishes this byinduc”&ssing techniques to the problem of assigning general

patterns that match agamst a deep syntacUs: parse rat ality measures to student essays (Burstein et al., 1998;
than a stream of words, in order to normalize as muc

X e ! oltz et al., 1998). The problem of providing reliable, de-
surface syntactic variation as possible, and thus rGduﬁ‘iiled, content-based feedback to students is a more diffi-

ing the number of patterns that the learned rules mug}, i o onlem, however, that involves identifying individ-
account for. Furthermore, Carmel-Tools offers great€fy| hieces of content (Christie, 2003), sometimes called
flexibility in output representation than the context-free“,jmswer aspects” (Wiemer-Hastings et al., 1998). Previ-
rewrite rules produced by previous semantic authoringusw’ tutorial dialogue systems such asT-TUTOR
tools, allowing authors to design their own predicate lan(\Niemer-Hastings et al., 1998) and Research Methods
guage representations that are not constrained to fo"%tor (Malatesta et al. "2002) have used LSA to per-
the structure of the input text (See Figure 1 for a simplg, ., 4 analysis of the correct answer aspects present
example and Figure 2 foramore complexexample.). S§g oytended student explanations. While straightfor-
Sect_lon 3 and (Rose, 2,000’ Rose et al., 2002) for mogg, 4 applications of bag of words approaches such as
dptaﬂs about CARMEL's knowledge source representg-ga have performed successfully on the content analy-
tion. ) ) sis task in domains such as Computer Literacy (Wiemer-
_ Note that the predicate language representation Ufly,gtings et al., 1998), they have been demonstrated to
lized by Carmel-Tools is in the style of Davidsonian event, o trm noorly in causal domains such as research meth-
base‘?' semantics (_HObbS’ 1985). For examplg, In F,'gu[f('is (Malatesta et al., 2002) and physics (Rosé et al.,
1 notice that the first argument of each predicate is 88003) because they base their predictions only on the
identification token that represents the whole predicatg, < included in a text and not on the functional rela-
These |dent|f|cat|on_ tokens can then be bound to arg't'i'onships between them. Key phrase spotting approaches
ments of other predicates, and in that way be used t0 reQy 1, a5 (Christie, 2003) fall prey to the same problem. A
resent relationships between predicates. For example, a6 rje learning approach to classification involving
rel - yal ue predmate expresses the |de_a that the perb'oth statistical and symbolic features has been shown to
cates llndlcated byd1 andi d2 are equalin va_lue. i perform better than LSA and Naive Bayes classification
While language understanding systems with this stylg\;ccallum and Nigam, 1998) for content analysis in the
of analysis are not a new idea, the contribution of thig, sjcq domain (Rosé et al., 2003). Nevertheless, trained
work is a set of authoring tqols that simplify the Semant'%pproaches such as this perform poorly on low-frequency
knowledge sources authoring process. classes and can be too coarse grained to provide enough
information to the system for it to provide the kind of
detailed feedback human tutors offer students (Lepper et
ile the technology presented in this paper is not spe., unless an extensive hierarchy of classes that
While th hnol d in thi i el., 1993) unl ive hi hy of cl h
cific to any particular application area, this work is mo-represent subtle differences in content is used (Popescue
tivated by a need within a growing community of re-et al., 2003). Popescue et al. (2003) present impressive
searchers working on educational applications of Natuesults at using a symbolic classification approach involv-
ral Language Processing to extract detailed informaticimg hand-written rules for performing a detailed assess-
from student language input to be used for formulatingnent of student explanations in the Geometry domain.
specific feedback directed at the details of what the stiRule based approaches have also shown promise in non-
dent has uttered. Such applications include tutorial diducational domains. For example, an approach to adapt-
logue systems (Zinn et al., 2002; Popescue et al., 200B)g the generic rule based MACE system for informa-
and writing coaches that perform detailed assessmentstafn extraction has achieved an F-measure of 82.2% at
writing content (Rosé et al., 2003; Wiemer-Hastings ethe ACE task (Maynard et al., 2002). Authoring tools for
al., 1998; Malatesta et al., 2002) as opposed to just grarspeeding up and simplifying the task of writing symbolic
mar (Lonsdale and Strong-Krause, 2003), and providailes for assessing the content in student essays would
detailed feedback rather than just letter grades (Bursteinake it more practical to take advantage of the benefits
et al., 1998; Foltz et al., 1998). Because of the importamf rule based assessment approaches.

2 Motivation



3 Carmel-Tools Interpretation Framework sis reliably, the component of the grammar that performs
the deep syntactic analysis of verb argument functional

Sentence:During the fall of the elevator the man and relationships was generated automatically from a feature

the keys have the same constant downward acceleratiofgPresentation for each of 91 of COMLEX's verb subcat-

that the elevator has. egorization tags (Rosé et al., 2002). Altogether there are
519 syntactic configurations of a verb in relation to its ar-
Predicate Language Representation: guments covered by the 91 subcategorization tags, all of
((rel-time idO id1 id2 equal) which are covered by the CARMEL grammar.
(body-state id1 elevator freefall) CARMEL provides an interface to allow semantic in-
(and id2 id3 id4) terpretation to operate in parallel with syntactic intexpr
(rel-value id3 id5 id7 equal) tation at parse time in a lexicon driven fashion (Rosé,
(rel-value id4 id6 id6 equal) 2000). Domain specific semantic knowledge is encoded
(acceleration id5 man down constant non-zero) declaratively within a meaning representation specifica-
(acceleration id6 keys down constant non-zero) tion. Semantic constructor functions are compiled au-

(acceleration id7 elevator down constant non-zero)) tomatically from this specification and then linked into
lexical entries. Based on syntactic head/argument rela-
Gloss: The elevator is in a state of freefall at the same tionships assigned at parse time, the constructor func-
time when there is an equivalence between the elevatoitions enforce semantic selectional restrictions and assem
acceleration and the constant downward nonzero ble meaning representation structures by composing the
acceleration of both the man and the keys meaning representation associated with the constructor
function with the meaning representation of each of its

Figure 2: Example of how deep syntactic analysis facilidrguments. After the parser produces a semantic feature

tates uncovering complex relationships encoded syntacfitrUcture representation of the sentence, predicate map-
cally within a sentence ping rules then match against that representation in or-

der to produce a predicate language representation in the

One of the goals behind the design of Carmel-Tools i§tyle of Davidsonian event based semantics (Davidson,
to leverage off of the normalization over surface syntacl967; Hobbs, 1985), as mentioned above. The predicate
tic variation that deep syntactic analysis provides. Whil&apping stage is the key to the great flexibility in repre-
our approach is not specific to a particular framework fogentation that Carmel-Tools is able to offer. The mapping
deep syntactic analysis, we have chosen to build updhles perform two functions. First, they match a feature
the publicly available LCEEX robust parser (Rosé et al., Structure pattern to a predicate language representation.
2002), the CARMEL grammar and semantic interpretalNext, they express where in the feature structure to look
tion framework (Rosé, 2000), and the COMLEX lexiconfor the bindings of the uninstantiated variables that are
(Grishman et al., 1994). This same broad coverage, dgart of the associated predicate language representation.
main genera| interpretation framework has a_|ready bedpecause the rules match against feature structure patterns
used in a number of educational applications includingnd are thus above the word level, and because the pred-
(Zinn et al., 2002; VanLehn et al., 2002). icate language representations associated with them can

Syntactic feature structures produced by the CARMEP€ arbitrarily complex, the mapping process is decompo-
grammar normalize those aspects of Syntax that modiﬁjtional in manner but is not constrained to rlgldly follow
the surface realization of a sentence but do not chandfée structure of the text.
its deep functional analysis. These aspects include tenseFigure 2 illustrates the power in the pairing between
negation, mood, modality, and syntactic transformationdeep functional analyses and the predicate language rep-
such as passivization and extraction. Thus, a sentenasentation. The deep syntactic analysis of the sentence
and it's otherwise equivalent passive counterpart woulthakes it possible to uncover the fact that the expression
be encoded with the same set of functional relationship%onstant downward acceleration” applies to the acceler-
but the passive feature would be negative for the activation of all three entities mentioned in the sentence. The
version of the sentence and positive for the passive veteordination in the subject of the sentence makes it pos-
sion. A verb’s direct object is assigned tbbj role re- sible to infer that both the acceleration of the man and of
gardless of where it appears in relation to the verb. Futhe keys are individually in an equative relationship with
thermore, constituents that are shared between more thiwe acceleration of the elevator. The identification to-
one verb, for example a noun phrase that is the object &&n of theand predicate allows the whole representation
a verb as well as the subject of a relative clause modaf the matrix clause to be referred to in thel -ti me
fier, will be assigned both roles, in that way “undoing”predicate that represents the fact that the equative rela-
the relative clause extraction. In order to do this analytionships hold at the same time as the elevator is in a state
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of freefall. But individual predicates, each representinghe base lexical resources by either loading raw human
a part of the meaning of the whole sentence, can also betoring corpora or entering example texts by hand, and
referred to individually if desired using their own identi- annotating example texts with their corresponding rep-
fication tokens. resentation in the defined Predicate Language Defini-
tion. From this authored knowledge, CARMEL's se-
mantic knowledge sources can be generated and com-
iled. The knowledge source inference algorithm ensures
at knowledge coded redundantly across multiple exam-
o les is represented only once in the compiled knowledge
edge sources. If an _author were building knowledg ources. The authoring interface allows the author or au-
sources_by hand f_or_thls framework, the authorwo_uld bﬁmrs to test the compiled knowledge sources and then
responsible for building an ontology for the semantic fe_a'ontinue the authoring process by updating the Predicate
ture structure representation produced by the parset, lin anguage Definition, loading additional corpora, anno-

|ngdp0|qurs mtg_thf h|erarc_hy|nt|o enw'?r?g the I?)_i_'col"]tating additional examples, or modifying already anno-
and writing predicate mapping rules. With Carmel-Tools, . . ¢ examples.

the author never has to deal directly with these knowledge
sources. The Carmel-Tools authoring process involves The Carmel-Tools authoring process was designed to
designing a Predicate Language Definition, augmentingliminate the most time-consuming parts of the authoring

4 Carmel-Tools Authoring Process

The purpose of Carmel-Tools is to insulate the auth
from the details of the underlying domain specific knowl-
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process. In particular, its GUI interface guides authors inition page of the Carmel-Tools interface, displayed in
such a way as to prevent them from introducing inconsid=igure 3. The author is free to develop a representation
tencies between knowledge sources, which is particularlgnguage that is as simple or complex as is required by the
crucial when multiple authors work together. For examtype of reasoning, if any, that will be applied to the output
ple, a GUI interface for entering propositional representaepresentations by the tutoring system as it formulates its
tions for example texts insures that the entered represamsponse to the student’s natural language input.

tation is consistent with the author’s Predicate Language The interface includes facilities for defining a list of
Definition. Compiled knowledge sources contain pointpredicates and Tokens to be used in constructing proposi-
ers back to the annotated examples that are responsikitsnal analyses. Each predicate is associated with a basic
for their creation. Thus, it is also able to provide troupredicate type, which is a associated with a list of argu-
bleshooting facilities to help authors track down potdntiaments. Each basic predicate type argument is itself asso-
sources for incorrect analyses generated from compileglated with a type that defines the range of atomic values,
knowledge sources. When changes are made to the Preghich may be tokens or identifier tokens referring to in-
icate Language Definition, Carmel-Tools tests whethestantiated predicates, that can be bound to it. Thus, to-
each proposed change would cause conflicts with any akens also have types. Each token has one or more basic
notated example texts. An example of such a changeken types. Besides basic predicate types and basic to-
would be deleting an argument from a predicate typken types, we also allow the definition of abstract types
where some example has as part of its analysis an instahat can subsume other types.

tiation of a predicate with that type where that argument

is bound. If so, it lists these example texts for the authot.2 Generating Lexical Resources and Annotating

and requires the author to modify the annotated examples Example Sentences

firstin such a way that the proposed change will not cau
a conflict, in this case that would mean uninstantiating th

variable that the author desires to remove. In cases whelg <t SteP IS to generate the domain specific lexical re-

changes would not cause any conflict, such as adding gpurees and annotate_ example S(_anten_ces with t_heir corre-
argument to a predicate type, renaming a predicate tSpondmg representation within this defined predicate lan-

. . uage. The author begins this process on the Example
ken, or type, or removing an argument that is not boun . T2
: . . o ap Page, displayed in Figure 4.
in any instantiated proposition, these changes are made ) Ny )
throughout the database automatically. Carmel_—TooIs prowdes facilities for loading a raw hu_—
man tutoring corpus file. Carmel-Tools then makes a list
of each unique morpheme it finds in the file and then aug-
ments both its base lexicon (using entries from COM-
The author begins the authoring process by designingeX), in order to include all morphemes found in the
the propositional language that will be the output repretranscript file that were not already included in the base
sentation from CARMEL using the authored knowledgédexicon, and the spelling corrector’s word list, so that it

sources. This is done on the Predicate Language Defircludes all morphological forms of the new lexical en-

hen the predicate language definition is defined, the

4.1 Defining the Predicate Language Definition



tries. It also segments the file into a list of student sercomplishes is that all paraphrases listed can be inteigbrete
tence strings, which are then loaded into a Corpus Exoy CARMEL as having the same meaning so that they
amples list, which appears on the right hand side of thean be treated as interchangeable in the context of this
interface. Searching and sorting facilities are provided ttemplate. A paraphrase can be entered either as a specific
make it easy for authors to find sentences that have cestring or as a Defined Type, including any type defined
tain things in common in order to organize the list of senin the Predicate Language Definition. What this means is
tences extracted from the raw corpus file in a conveniethat the selected span of text can be replaced by any span
way. For example, &ort By Sinilarity button of text that can be interpreted in such a way that its pred-
causes Carmel-Tools to sort the list of sentences accotidate representation’s type is subsumed by the indicated
ing to their respective similarity to a given text string actype.

cording to an LSA match between the example string and

each corpus sentence. The interface also includes the o3 Compiling Knowledge Sources

ken List gnd the Predicate List, with QII deflned_ token%ach template that is created during the authoring pro-
and predicates that are par'F of the deflneo! predicate la@éss corresponds to one or more elements of each of
guage. When the author clicks on a predicate or tokefe required domain specific knowledge sources, namely
the Examples list beside it will display the I!st of anNo-yhe ontology, the lexicon with semantic pointers, and the
tated _e>§amples that have begn annotated with an analyﬁ%dicate mapping rules. Using the automatically gener-
containing that token or predicate. ated knowledge sources, most of the “work” for mapping
Figure 5 displays how individual texts are annotateds novel text onto its predicate language representation is
The Analysis box displays the propositional representatone either by the deep syntactic analysis, where a lot of
tion of the example text. This analysis is constructedyrface syntactic variation is factored out, and during the
using theAdd Token, Del ete, Add Predicate, predicate mapping phase, where feature structure patterns
andMbdi fy Predi cat e buttons, as well as their sub- are mapped onto their corresponding predicate language
windows, which are not shown. Once the analysis is effepresentations. The primary purpose of the sentence
tered, the author may indicate the compositional breakgyeg| ontology that is used to generate a semantic fea-
down of the example text by associating spans of texfyre structure at parse time is primarily for the purpose of
with parts of the analysis by means of tipti onal |imiting the ambiguity produced by the parser. Very little
Mat ch and Mandat ory Mat ch buttons. For exam- generalization is obtained by the semantic feature struc-
ple, the noun phrase “the man” corresponds torth@  tures created by the automatically generated knowledge
token, which is bound in two places. Each time a matcBources over that provided by the deep syntactic analysis
takes place, the Carmel-Tools internal data structures crggne. By default, the automatically generated ontology
ate one or more templates that show how pieces of sy@ontains a semantic concept corresponding to each word
tactic analyses corresponding to spans of text are matchggpearing in at least one annotated example. A semantic
up with their corresponding propositional representatiomyointer to that concept is then inserted into all lexical en-
From this match Carmel-Tools infers both that “the mantries for the associated word that were used in one of the
is a way of expressing the meaning of tien token in  annotated examples. An exception occurs where para-
text and that the subject of the vérbl d can be boundto phrases are entered into feature structure represerstation
the?body 1 argument of théecone predicate. By de- |n this case, a semantic pointer is entered not only into the
composing example texts in this way, Carmel-Tools corentry for the word from the sentence, but also the words
structs templates that are general and can be reusedfigm the paraphrase list, allowing all of the words in the
multiple annotated examples. Itis these created templatggraphrase list to be treated as equivalent at parse time.
that form the basis for all compiled semantic knowledgehe process is a bit more involved in the case of verbs.
sources. Thus, even if mappings are represented redyR-this case it is necessary to infer based on the parses of
dantly in annotated examples, they will not be reprethe examples where the verb appears which set of sub-
sented redundantly in the compiled knowledge sourncegategorization tags are consistent, thus limiting the set
The list of templates that indicates the hierarchical brealpf verb entries for each verb that will be associated with
down of this example text are displayed in the Templateg semantic pointer, and thus which entries can be used
list on the rlght hand side of Figure 5. Note that while th%t parse time in semantic interpretation mode. Carmel-
author matches spans to text to portions of the meaningols makes this choice by considering both which argu-
representation, the tool stores mappings betwieature ments are present with that verb in the complete database
structuresand portions of meaning representation, whictyf annotated examples as well as how the examples were
is a more general mapping. broken down at the matching stage. All non-extracted
Templates can be generalized by entering paraphrasaguments are considered mandatory. All extracted argu-
for portions of template patterns. Internally what this acments are considered optional. Each COMLEX subcat



tag is associated with a set of licensed arguments. Thusere generated, but they contained errorfull functional
subcat tags are considered consistent if the set of licensedationships between constituents. Partial indicatat th
arguments contains at least all mandatory arguments and parse was generated that covered the entire sentence,
doesn't license any arguments that are not either mandatthe portions that were completely correct for at least
tory or optional. Predicate mapping rules are generatazhe interpretation of the sentence. Acceptable indicates
for each template by first converting the correspondinthat a complete parse was built that contained no incor-
syntactic feature structure into the semantic representact functional relationships. If any word of the sentence
tion defined by the automatically generated ontology andias not covered, it was one that would not change the
lexicon with semantic pointers. Predicate mapping rulesieaning of the sentence. For example, “he had the same
are then created that map the resulting semantic featurelocity as you had” is the same as “he had the same ve-
structure into the associated predicate language represéatity as you”, so if “did” was not part of the final parse

tation. but other than that, the parse was fine, it was counted as
) Acceptable. Overall the coverage of the grammar was
5 Evaluation very good. 166 sentences were graded Acceptable, which

A preliminary evaluation was run for the physics domain!S 800Ut 83% of the corpus. 8 received a grade of Partial,

We used for our evaluation a corpus of essays written b%/6 Bad, and 1 None.
students in response to 5 simple qualitative physics ques-We then applied the same set of grades to the quality of
tions such as “If a man is standing in an elevator holdthe predicate language output. Note that that the grade as-
ing his keys in front of his face, and if the cable hold-signed to an analysis represents the correctness and com-
ing the elevator snaps and the man then lets go of thigeteness of the predicate representation the system ob-
keys, what will be the relationship between the positioiained for that sentence. In this case, a grade of Accept-
of the keys and that of the man as the elevator falls to th&ble meant that all aspects of intended meaning were ac-
ground? Explain why.” A predicate language definitioncounted for, and no misleading information was encoded.
was designed consisting of 40 predicates, 31 predicaRartial indicated that some non-trivial part of the inteshde
types, 160 tokens, 37 token types, and 15 abstract typggeaning was communicated. Any interpretation contain-
The language was meant to be able to represent phy8g any misleading information was counted as Bad. If
ical objects mentioned in our set of physics problems)o predicate language representation was returned, the
body states (e.g., freefall, contact, non-contact), quansentence was graded as None. As expected, grades for
ties that can be measured (e.g., force, velocity, acceletemantic interpretation were not as high as for syntactic
ation, speed, etc.), features of these quantities (e.g., dinalysis. In particular, 107 were assigned a grade of Ac-
rection, magnitude, etc.), comparisons between quangieptable, 45 were assigned a grade of Partial, 36 were
ties (equivalence, non-equivalence, relative size, iwelat assigned a grade of Bad, and 14 received a nil interpre-
time, relative location), physics laws, and dependency réation. Our evaluation demonstrates that knowledge gen-
lations. An initial set of 250 example sentences was thegrated from annotated examples can be used to interpret
annotated, including sentences from each of a set of®vel sentences, however, there are still gaps in the cov-
physics problems. erage of the automatically generated knowledge sources
Next a set of 202 novel test sentences, each betweerihat need to be filled in with new annotated examples.
and 64 words long, was extracted from the corpus. Sindeurthermore, the small but noticeable percentage of bad
comparisons, such as between the accelerations of objeistierpretations indicates that some previously annotated
in freefall together, are important for the reasoning in alexamples need to be modified in order to prevent these
of the questions used for corpus collection, we focuseldad interpretations from being generated.
the coverage evaluation specifically on sentences pertain-
ing to comparisons, such as in Figures 1 and 2. The goal . .
ofgthe evalﬂation was to test the gextent to which kno%vl-8 Current Directions
edge generated from annotated examples generalizes to
novel examples. In this paper we have introduced Carmel-Tools, a tool
Since obtaining the correct predicate language repréet for quick authoring of semantic knowledge sources.
sentation requires obtaining a correct syntactic parse, fUr evaluation demonstrates that the semantic knowledge
first evaluated CARMEL's syntactic coverage over théources inferred from examples annotated using Carmel-
corpus of test sentences to obtain an upper bound for ekools generalize to novel sentences. We are continuing
pected performance. We assigned the syntactic interpr@- Work to enhance the ability of Carmel-Tools to learn
tation of each sentence a score of None, Bad, Partial, 8eneralizable knowledge from examples as well as to im-
Acceptable. A grade of None indicates that no interpretd2rove the user friendliness of the interface.
tion was built by the grammar. Bad indicates that parses
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