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Abstract

We propose a new method for detecting verb al-
ternations, by comparing the probability distri-
butions over WordNet classes occurring in two
potentially alternating argument positions. Ex-
isting distance measures compute only the dis-
tributional distance, and do not take into ac-
count the semantic similarity between Word-
Net senses across the distributions. Our method
compares two probability distributions over
WordNet by measuring the semantic distance
of the component nodes, weighted by their
probability. To incorporate semantic similarity,
we calculate the (dis)similarity between two
probability distributions as a weighted distance
“travelled” from one to the other through the
WordNet hierarchy. We evaluate the measure
on the causative alternation, and find that over-
all it outperforms existing distance measures.

1 Detecting Verb Alternations

Although patterns of verb alternations, as in (1) and (2),
may appear to be “mere” syntactic variation, the ability
of a verb to alternate has been shown to be highly related
to its semantic properties.

1. The sun melted the snow./The snow melted.

2. Kiva ate his lunch./Kiva ate./*His lunch ate.

For example, melt in (1) undergoes a causative alterna-
tion in which the transitive form is related to the intransi-
tive by the introduction of a Causal Agent (the sun) into
the event structure. The verb eat in (2), like melt, allows
both transitive and intransitive forms, but these are re-
lated by the unspecified object alternation, as opposed to
causativization.

Based largely on the influence of Levin (1993), it has
become widely accepted that alternations such as these
can serve as a basis for the formation of semantic classes
of verbs. Correspondingly, the relation between alter-
nation patterns and meaning is a key focus in the com-
putational study of the lexical semantics of verbs (e.g.,
Allen, 1997; Dang et al., 2000; Dorr and Jones, 2000;
Merlo and Stevenson, 2001; Schulte im Walde and Brew,
2002; Tsang et al., 2002). Furthermore, we note that re-
cent work indicates that verb alternations may also play
a role in automatic processing of language for applied
tasks, such as question-answering (Katz et al., 2001), de-
tection of text relations (Teufel, 1999), and determination
of verb-particle constructions (Bannard, 2002).

The theoretical and practical implications of alterna-
tions mean that it is important to identify verbs which
undergo an alternation, and to discover the range of al-
ternations. Manual annotation of verbs is labour inten-
sive, and new verbs (or new uses of known verbs) may
be encountered in any given domain. In response, some
researchers have begun to investigate ways to detect alter-
nations automatically in a corpus. Some of this work has
focused on subcategorization patterns as the clear syn-
tactic cue to an alternation (Lapata, 1999; Lapata and
Brew, 1999; Schulte im Walde and Brew, 2002). Other
work has observed, however, that detecting an alterna-
tion involves more than observing the use of particular
subcategorizations—it must also be determined whether
the semantic arguments are mapped to the appropriate po-
sitions.*

To address this issue, it has been suggested that, if a
verb participates in an alternation, then there should be
similarity in the kinds of nouns that show up in the syn-

1For example, melt (as in (1) above) undergoes a causative
alternation because the Theme argument that surfaces as subject
of the intransitive surfaces as object of the transitive, with the
addition of a Causal Agent as the subject of the latter. It is
not the case that any optionally intransitive verb undergoes this
alternation, as shown by eat in (2).



tactic positions (or slots) that alternate—such as snow oc-
curring as intransitive subject and transitive object in the
causative alternation in (1) (Merlo and Stevenson, 2001;
McCarthy, 2000). As a cue to this alternation, Merlo and
Stevenson (2001) create a bag of head nouns for each of
the two potentially alternating slots, and compare them.
In contrast to comparing head nouns directly, McCarthy
(2000) instead compares the selectional preferences for
each of the two slots (captured by a probability distribu-
tion over WordNet). This approach thereby generalizes
over the compared nouns, increasing performance over a
method similar to that of Merlo and Stevenson.

In our work, we have developed a new method for
comparing WordNet probability distributions, called “se-
lectional profile distance” (SPD), which combines the
benefits of each of the above approaches for detecting
alternations. The method used by Merlo and Steven-
son (2001) has the advantage of directly capturing sim-
ilarity between slots (in terms of use of identical nouns
[lemmas]), but fails to generalize over the nouns, lend-
ing itself to sparse data problems. The approach of Mc-
Carthy (2000), on the other hand, addresses the gener-
alization problem by comparing probability distributions
over WordNet. However, her comparison measure ab-
stracts over distances between nodes (classes of nouns)
in WordNet: it rewards probability mass that occurs in
the same subtree across two distributions, but does not
take into account the distance between the classes that
carry the probability mass. Thus, this approach only cap-
tures similarity among the noun arguments across slots
at a very coarse level. Our new SPD method integrates
a comparison of probability distributions over WordNet
with a node similarity measure, successfully capturing
both of the advantageous properties of generalization and
word (class) similarity. SPD thus enables us to calcu-
late a meaningful similarity measure over the patterns of
classes of nouns across two syntactic slots.

Our evaluation of the SPD measure for alternation de-
tection also covers some interesting experimental condi-
tions that have not been explored previously. For com-
parison to previous methods, we investigate these issues
in the context of classifying verbs according to whether
they undergo the causative alternation. We experiment
with randomly selected verbs, for both our alternating and
non-alternating (filler) classes, and use both relatively ho-
mogeneous and heterogeneous sets of filler verbs. We
find that our method performs about the same on each
set, indicating that it is insensitive to variation in the filler
verbs. Moreover, we experiment with equal numbers of
verbs in different frequency bands, and show that split-
ting verbs into high and low frequency (of slot occur-
rence) can improve performance. By classifying the high
and low frequency verbs separately, our method achieves
an accuracy of 70% overall on unseen test verbs, in a

task with a baseline of 50%. (For comparison, McCarthy
(2000) achieves 73% on her set of hand-selected verbs,
but our implementation of her method yields much lower
performance on our randomly selected test verbs.)

In the next section, we present background work on
capturing selectional preferences in WordNet, and on us-
ing them to detect alternations. In Section 3, we describe
our new SPD measure, and show how it captures both
the general differences between WordNet probability dis-
tributions, as well as the fine-grained semantic distances
between the nodes that comprise them. Section 4 presents
our corpus methodology and experimental set-up. In Sec-
tion 5, we compare SPD to a range of distance measures,
and evaluate the different effects of our experimental fac-
tors, such as the precise distance functions we use in SPD
and the division of our verbs into frequency bands. We
summarize our findings in Section 6 and point to direc-
tions in our on-going work.

2 The Use of Selectional Preferences

Selectional preference refers to the general notion of how
much a verb favours (or disfavours) a particular noun as
a semantic argument. For example, informally we would
say that eat has a strong selectional preference for nouns
of type food as its Theme argument. Formalization of
this notion has been difficult, but several computational
methods have now been proposed that capture selectional
preference of a verb as a probability distribution over
the WordNet hierarchy (Resnik, 1993; Li and Abe, 1998;
Clark and Weir, 2002).? The key task that each of these
proposals address is how to generalize appropriately from
counts of observed nouns in the relevant verb argument
position (in a corpus), to a probabilistic representation of
selectional strength over classes. We will refer in the re-
mainder of the paper to such a probability distribution
over WordNet as a “selectional profile.”

As mentioned above, McCarthy (2000) suggested the
use of selectional profiles to capture generalizations over
argument slots, so that two argument slots could be ef-
fectively compared for detecting alternations. After ex-
tracting the argument heads of the target slots of each
verb (e.g., the intransitive subject and the transitive object
for the causative alternation), she then determined their
selectional profiles using a minimum description length
tree cut model (Li and Abe, 1998).3 The two slot pro-
files were compared using skew divergence (a variant of

2Resnik’s proposed measure is not actually a probability dis-
tribution, but a difference between probability distributions.

3A tree cut for tree T is a set of nodes C in T such that every
leaf node of T has exactly one member of C on a path between
it and the root. As a selectional profile, a tree cut will have
a non-zero probability associated with every node in C, and a
zero probability for all other nodes in T. Figure 1 below has
examples of two tree cuts.
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Figure 1. An example of two selectional profiles; profile;
in square boxes, and profiles in ovals. Probability values
of zero are not shown.

KL divergence, proposed by Lee, 2001) as a probability
distance measure. The value of the distance measure was
compared to a threshold, which determined classification
of a verb as causative (the two profiles were similar) or
non-causative (the two profiles were dissimilar), leading
to best performance of 73% accuracy.

In McCarthy (2000), an error analysis reveals that
the best method has more false positives than false
negatives—some slots are considered overly similar be-
cause the selectional profiles are compared at a coarse-
grained level, losing fine semantic distinctions.

In the next section, we propose an alternative method
of comparing selectional profiles, which addresses the
problem of insufficient discrimination of profile similar-
ity in WordNet. Furthermore, the approach applies gener-
ally to any probability distribution over WordNet, unlike
McCarthy’s method which is specific to profiles that are
tree cuts.

3 Selectional Profile Distance

Our measure of selectional profile distance (SPD) is de-
signed to meet two criteria. First, it should allow easy
comparison between selectional profiles as probability
scores spread throughout a hierarchical ontology (such as
WordNet), not just between tree cuts. Second, it should
capture fine-grained semantic similarity between profiles.
To achieve these two goals, we measure the distance as a
tree distance between the two profiles within the hierar-
chy, weighted by the probability scores.

(Note that we formulate a distance measure, while re-
ferring to a component of semantic similarity. We assume
throughout the paper that WordNet distance is the inverse
of WordNet similarity, and indeed the similarity measures
we use are directly invertible.)

We illustrate with an example the differences between
our measure and both McCarthy’s (2000) method and
general vector distance measures. Consider the two selec-

tional profiles in Figure 1, with profile; in square boxes,
and profiles in ovals.* To calculate the vector distance
between profile; and profileg, we need two vectors of
equal dimension. In this example, one can propagate the
distributions to the lowest common subsumers (i.e., B, C,
and D) as in McCarthy (2000). The vectors representing
the two profiles become:

profile; =[0.5,0.2,0.3]
profiles =[0.5,0.2,0.3]

Alternately, one can also increase the dimension of each
profile to include all nodes in the hierarchy (or just the
union of the profile nodes). The two profiles become:

profile; =10,0.5,0.2,0,0,0,0,0.2,0.1]
profiles = [0,0,0,0.3,0.3,0.2,0.2, 0, 0]

In the first method (that of McCarthy, 2000), the two
profiles become identical. By generalizing the profiles
to the lowest common subsumers, we lose information
about the semantic specificity of the profile nodes and can
no longer distinguish the semantic distance between the
nodes across profiles. In the second method, the informa-
tion about the hierarchical structure (of WordNet) is lost
by treating each profile as a vector of nodes. Hence, vec-
tor distance measures fail to capture any semantic simi-
larity across different nodes (e.g., the value of node B in
profile; is not directly compared to the value of its child
nodes E and F in profilez).

To remedy such shortcomings, our goal is to design a
new distance measure that (i) compares the distributional
differences between two profiles (somewhat similar to ex-
isting vector distances), and also (ii) captures the seman-
tic distance between profiles. Intuitively, we can think of
the profile distance as how far one profile (source) needs
to “travel” to reach the other profile (destination). For-
mally, we define SPD as:

SPD(profilesre, profiledest) =
Z amount(s, d) * distance(s, d) (1)

sEprofilegre
deprofile jeg

where amount(s, d) is the portion of the profile score at
node s in profiles,. that travels to node d in profileges:,
and distance(s, d) is the semantic distance between node
s and node d in the hierarchy. For now, it can be as-
sumed that amount(s, d) is score(s), the entire proba-
bility score at node s. Note that we design the distance
to be symmetric, so that the distance remains the same
regardless of which profile is source and which is desti-
nation. (We present our distance measures below.)

“Note that these are both tree cuts, so that we can compare
McCarthy’s method, but keep in mind that our method—as well
as traditional vector distances—will apply to any probability
distribution over a tree.



In the current example, we can propagate profiles
(source) to profile; (destination) by moving its probabil-
ities in this manner:

1. probabilities at nodes E and F to node B
2. probability at node G to node C
3. probability at node D to nodes H and |

The first two steps are straightforward—whenever there
is one destination node in a propagation path, we
simply multiply the amount moved by the distance
of the path (distance(s,d)). For example, step 1
yields a contribution to SPD(profilesyc, profilegest) of
score(E)dist(E, B) + score(F)dist(F, B).

However, the last step, step 3, has multiple destination
nodes (H and 1), and the probability of the source node,
D, must be appropriately apportioned between them. We
take this into account in the amount function, by includ-
ing a weight component:

amount(s,d) = weight(d) * portion(s) (2)

where weight(d) is the weight of the destination node
d and portion(s) is the portion of score(s) that we
are moving. (For this example, we continue to assume
that the full amount of score(s) is moved; we discuss
portion(s) further below.) The weight of each des-
tination node d is calculated as the proportion of its
score in the sum of the scores of its siblings. Thus,
in step 1 above, weight(B) and weight(C) are both
1, and the full amount of E, F, and G are moved up.
In the last step, however, the sibling nodes H and |
have to split the input from node D: node H has weight
score(H)/(score(H) + score(I)) = 0.2/(0.2+0.1) =
2/3, and node | analogously has weight 1/3.°

Hence, the SPD propagating from profiles to profile;
can be calculated as:

SPD(profiles, profile1) = score(E)dist(E, B)
+ score(F)dist(F, B) + score(G)dist(G,C)

+ %score(D)dist(D, H)
+ %score(D)dist(D, I)

For simplicity, we designed this example such that the
two profiles are very similar. As a result, we end up
propagating the entire source profile by propagating the

SWe have described the algorithm as moving one profile
to another. Conceptually, there are cases, as illustrated in the
example, where we are propagating profile scores downwards
in the hierarchy. Moving scores downwards can be computa-
tionally expensive because one may need to search through the
whole subtree rooted at the source node for destination nodes.
We implemented an alternative by moving all the scores up-
wards. Since we keep track of the source and destination nodes,
the two methods are equivalent.

full score of each of its nodes. In practice, for most
profile comparisons, we only move the portion of the
score at each node necessary to make one profile re-
semble the other. Hence, portion(s) in the formula for
amount(s, d) in equation 2 captures the difference be-
tween probabilities at node s across the source and desti-
nation profiles.

So far we have discussed very little the calcula-
tion of semantic distance between profile nodes (i.e.,
distance(s, d) in equation 1). Recall that one impor-
tant goal in designing SPD is to capture semantic sim-
ilarity between WordNet nodes. Naturally, we look to
the current research comparing semantic similarity be-
tween word senses (e.g., Budanitsky and Hirst, 2001;
Lin, 1998). We choose to implement two straightfor-
ward methods. For one, we invert (to obtain distance) the
WordNet similarity measure of Wu and Palmer (1994),
yielding:

__depth(ni) + depth(nz)
dup (m1,12) = 2depth(LCS(n1,n2)) ’

®)

where LCS(ny, ng) is the lowest common subsumer of
ny and no. The other method we use is the simple edge
distance between nodes, dealge.6

Thus far, we have defined SPD as a sum of propa-
gated profile scores multiplied by the distance “travelled”
(equation 1). We have also considered propagating other
values as a function of profile scores. Let’s return to the
same example but redistribute some of the probability
mass of profiles: node E goes from a probability of 0.3
to 0.45, and node F goes from 0.2 to 0.05. As a result, the
distribution of the scores at the node B subtree is more
skewed towards node E than in the original profiles.

For both the original and modified profile,, SPD has
the same value because we are moving a total probabil-
ity mass of 0.5 from E and F to B, with the same se-
mantic distance (since E and F are at the same level in
the tree). However, we consider that, at the node B sub-
tree, profile; is less similar to the skewed profile, than to
the original, more evenly distributed profiles. To reflect
this observation, we can propagate the “inverse entropy”
in order to capture how evenly distributed the probabili-
ties are in a subtree. We define an alternative version of
amount (s, d) as:

amount. (s, d) = weight(d) * entropyiny () 4

where we replace portion(s) with inverse entropy,
entropyiny (8), which we define as:

1
~ portion(s)log, portion(s)

entropyiny (8) = (5)

We also implemented the WordNet edge distance measure
of Leacock and Chodorow (1998). Since it did not influence our
results, we omit discussion of it here.



By propagating inverse entropy, we penalize cases where
the distribution of source scores is “skewed.” In this
work, we will experiment with both methods of propa-
gation (with and without inverse entropy).

4 Materials and Methods

4.1 CorpusData

Our materials are drawn from a 6M-word corpus of med-
ical texts, which we mined for a related project. The
texts are medical journal abstracts and articles obtained
by querying the PubMed Central search engine (ht t p:

/ I ww. pubmedcentral . ni h. gov/). Query terms
were taken from entries listed under the “Medical En-
cyclopedia” and “Drug Information” sections of the
MedlinePlus website (ht t p: / / www. nl m ni h. gov/
medl i nepl us/). The text is parsed using the RASP
parser (Briscoe and Carroll, 2002), and subcategoriza-
tions are extracted using the system of Briscoe and Car-
roll (1997). The subcategorization frame entry of each
verb includes the frequency count and a list of argument
heads per slot. The target slots in this work are the subject
of the intransitive and the object of the transitive.

4.2 Verb Selection

We evaluate our method on the causative alternation in
order for comparison to the earlier methods of McCarthy
(2000) and Merlo and Stevenson (2001). We selected tar-
get verbs by choosing classes (not individual verbs) from
Levin (1993) that are expected to undergo the causative
alternation. We refer to these as causative verbs. For our
first development set, we chose filler (non-alternating)
verbs from a small set of classes that are not expected to
exhibit the causative alternation. These are the restricted-
class verbs. For our second development set, we did not
restrict the classes of the fillers, except to avoid classes
that allow a subject/object alternation as in the causative.
These are the broad-class verbs.

(Note that we did not hand-verify that individual
verbs allowed or disallowed the alternation, as McCarthy
(2000) had done, because we wanted to evaluate our
method in the presence of noise of this kind.)

Verbs that occur a minimum of 10 times per frame
are chosen. We randomly select 36 causative verbs and
36 filler verbs for development, forming two sets of 18
causative and 18 filler verbs. The first development set
uses 18 restricted-class filler verbs, and the second uses
18 broad-class filler verbs. We also randomly select 20
causative verbs and 20 broad-class verbs for testing. (The
20 filler test verbs are all drawn from the same classes
as the broad-class development verbs, so that we could
directly compare performance between the second devel-
opment set and the test set.)

Each set of verbs is further divided into a high fre-
quency band (with at least 90 instances of one target slot),
and a low frequency band (with between 20 and 80 in-
stances of one target slot). These bands have 10 and 8
verbs, respectively, in the development sets, and equal
numbers of verbs (10 each) in the test set. For each of
the development and testing phases, we experiment with
individual frequency bands (i.e., high band and low band,
separately), and with mixed frequencies (i.e., all verbs).

4.3 Experimental Set-Up

For each verb, we extracted the argument heads of the
target slots from the corpus. Using (verb,slot,noun) fre-
quencies, we experimented with several ways of building
selectional profiles of each verb’s argument slot (Resnik,
1993; Li and Abe, 1998; Clark and Weir, 2002).” In our
development work, we found that the method of Clark
and Weir (2002) overall gave better performance, and so
we limit our discussion here to the results on their model.
It is worth noting that the method of Clark and Weir
(2002) does not yield a tree cut, but instead generally pop-
ulates the WordNet hierarchy with non-zero probabilities.
This means that the kind of straightforward propagation
method used by McCarthy (2000) is not applicable to se-
lectional profiles of this type.

We compare SPD to a number of other measures, ap-
plied directly to the (unpropagated) probability profiles
given by the Clark-Weir method: the probability distri-
bution distances given by skew divergence (skew) and
Jensen-Shannon divergence (JS) (Lee, 2001), as well as
the general vector distances of cosine (cos), Manhattan
distance (L1 norm), and euclidean distance (L2 norm).

To determine whether a verb participates in the
causative alternation, we adopt McCarthy’s method of
using a threshold over the calculated distance measures,
testing both the mean and median distances as possi-
ble thresholds. In our case, verbs with slot-distances
below the threshold (smaller distances) are classified as
causative, and those above the threshold as non-causative.
Accuracy is used as the performance measure.

5 Experimental Evaluation

We evaluate the SPD method on selectional profiles cre-
ated using the method of Clark and Weir (2002), with
comparison to the other distance measures as explained
above. In the calculation of SPD, we compare the two
node distance measures, d,,, (Wu and Palmer, 1994) and
deage, and the two ways of propagating selectional pro-
files, without entropy (e0) and with entropy (el), as de-

"Recall that a selectional profile is a probability distribution
over WordNet. Although Resnik’s measure is not a probability
distribution, his method for populating the WordNet hierarchy
from corpus counts does yield a probability distribution.



Dev 1 (with Restricted Class Fillers)
Average Threshold Median Threshold

all high  Tow all high  Tow
0.64 065 0.62 || 0.67 0.7 0.75
SPD SPD cos SPD SPD cos
cos

Dev 2 (with Broad Class Fillers)
Average Threshold Median Threshold

all high  Tow all high  Tow
0.69 065 0.75 || 0.67 0.7 0.75
SPD SPD SPD || SPD L1 SPD
L1 c0S L2 c0S
skew skew
JS

Table 1: The best accuracy achieved in each condition
(development set and threshold), along with the mea-
sure(s) that produce that result. SPD refers to SPD with-
out entropy, using either dy,, or degqe. “all”, “high”, and
“low” refer to the different frequency bands.

scribed in Section 3. These settings are mentioned when
relevant to distinguishing the results.

5.1 Development Results

On the two development sets, SPD generally performs
better than the other measures. In particular, our mea-
sure achieves a best accuracy of 69% (random baseline of
50%, broad class fillers, all verbs). The best performance
is compiled in Table 1. Observe that in each condition,
SPD (without entropy, using either d,, or deqq.) is al-
ways the best (or tied for best) at classifying all verbs,
and at classifying at least one other frequency band. No
other measure performs consistently as well as SPD. In-
deed, on closer examination, in the cases where SPD is
not the best, it has the second best performance. Interest-
ingly, we also discover that cosine works well in the low
frequency band.

There is only a small difference in the SPD perfor-
mance between the two development sets. Recall that
broad class fillers contain non-causatives from a wider
variety of classes than restricted class fillers, which we
thought would make the classification task harder, be-
cause of more variation in the data. However, not only
is the broad class performance not lower, there are some
cases in which it surpasses the restricted class perfor-
mance. At least for these verbs, amount of variation in
the classes has little impact.

SPD with entropy does not perform best on develop-
ment verbs. However, in comparison to the vector dis-
tance measures (which yield below chance accuracies in
most cases), SPD with entropy does achieve reasonable
accuracies. It is always above chance, and sometimes
second best.

Generally, across both development sets, using a me-

Unseen Test Verbs
all high low
Best 0.65 0.7 0.8
SPD¢1 cos SPD¢1
c0S
2nd 0.6 0.6 0.7
Best | SPD.y SPD.g cos
SPDe1 skew

Table 2: The best and second best accuracy achieved in
testing, along with the measure(s) that produced the re-
sult, using a median threshold. “all”, “high”, and “low”
refer to the different frequency bands.

dian threshold works somewhat better than an average
threshold. To focus our testing phase, we use only the
median threshold.

5.2 Test Results

Table 2 shows both the best and second best results in the
testing phase. Here, similarly to the development results,
SPD is the best (or tied for best) at classifying all verbs,
and verbs in the low frequency band. In cases where it is
not the best, it is the second best.

Contrary to the development results, SPD measures
with entropy, SPD.;, fare somewhat better than those
without entropy, SPD.o. To examine the difference in
performance, we do a pairwise comparison of the actual
verb classification. In the “all” frequency case, SPD with
entropy has 7 false positives,® and SPD without entropy
has 8 false positives, 5 of which are misclassified by both.
Furthermore, with the exception of one verb, the remain-
ing false positives are quite near the threshold. The trends
in the low frequency band are quite similar—there is con-
siderable overlap between SPD., and SPD.; false posi-
tives. Given the similarity of the classifications, we con-
clude that the propagation methods (with or without en-
tropy) would likely be comparable on larger sets of verbs.

Recall that we also experiment with two different node
distance measures (dyp and deqqe). Interestingly, the
performance between the two is remarkably similar. In
fact, the actual classifications themselves are very simi-
lar. Note that Wu and Palmer (1994) designed their mea-
sure such that shallow nodes are less similar than nodes
that are deeper in the WordNet hierarchy. This property is
certainly lacking in the edge distance measure. Here we
can only speculate that perhaps our selectional profiles
are relatively similar in terms of depth, so that taking rel-
ative depth into account in the distance measure has little
impact.

For comparison, we replicate McCarthy’s method,®

8Hence, 14 are misclassified, since we use median, which

splits the verbs exactly in half into the two classes.
We replicate McCarthy’s method using tree cuts produced



which only achieves above chance performance in a few
cases: on the development verbs with restricted fillers
(56%, low frequency verbs, average threshold), and on
the development verbs with broad class fillers (58%, all
verbs, average threshold; and 62%, low frequency verbs,
median threshold). This result is very different from her
reported results. One major difference between our ex-
perimental set-up and hers is the selection of verbs. We
do not hand-select our causative verbs to ensure they un-
dergo the causative alternation. We speculate that there
is more noise in our data than in McCarthy’s and our
method is less sensitive to that.

One puzzle in the pattern of results is the cosine
performance—cosine has the best or second best accu-
racy across all bands in the test data, while it is best
mostly in the low band in development. We are a bit sur-
prised that cosine works well at all. In the future, we
intend to examine the conditions where cosine is a suffi-
cient discriminator.

5.3 Frequency Bands

Somewhat surprisingly, we often get better performance
with both the low and high frequency bands individually
than we do with all verbs together. By inspection, we ob-
serve that low frequency verbs tend to have smaller dis-
tances between two slots and high frequency verbs tend
to have larger distances. As a result, the threshold for
all verbs is in between the thresholds for each of the fre-
quency bands. When classifying both types of verbs, the
frequency effect may result in more false positives for
low frequency verbs, and more false negatives for high
frequency verbs.

We examine the combined performance of the individ-
ual frequency bands, in comparison to the performance
on all verbs. Here, we define “combined performance” as
the average of the accuracies from each frequency band.
(The averages are weighted averages if each band con-
tains a different number of verbs.) We find that SPD;
attains an averaged accuracy of 70%, an improvement of
5% over the best accuracy classifying all verbs together.
Separating the frequency bands is an effective way to re-
move the frequency effect.0

Stemming from this analysis, a possible refinement to
separating the frequency bands is to use a different clas-
sifier in each frequency band, then combine their perfor-
mance. We observe that combining the best accuracies
gives us an accuracy of 75% (best low band accuracy of
80% and best high band accuracy of 70%), outperform-

by Li and Abe’s technique, which are propagated to their lowest
common subsumers and their distance measured by skew diver-
gence.

1 Another method is to use some type of “expected distance”
as a normalizing factor (Paola Merlo, p.c.). However, it is yet
unclear how we would calculate this number.

ing the “all verbs” best accuracy by 10%. Althoughin our
current results there is no one classifier that is clearly the
best overall for a particular frequency band, we plan to
examine further the relationship between verb frequency
and various distance measures.

6 Conclusions

We have proposed a new method for comparing Word-
Net probability distributions, which we call selectional
profile distance (SPD). Given any pair of probability dis-
tributions over WordNet (which we call a selectional pro-
file), SPD captures in a single measure the aggregate se-
mantic distance of the component nodes, weighted by
their probability. The method addresses conceptual prob-
lems of an earlier measure proposed by McCarthy (2000),
which was limited to tree cut models (Li and Abe, 1998)
and failed to distinguish detailed semantic differences be-
tween them. Our approach is more general, since it can
work on the result of any model that populates Word-
Net with probability scores. Moreover, the integration of
a WordNet distance measure into the formula enables it
to take semantic distances directly into account and bet-
ter capture meaningful distinctions between the distribu-
tions.

We have shown that SPD yields practical advantages
as well, in demonstrating improved performance in the
ability to detect a verb alternation through comparison
of the selectional profiles of potentially alternating slots.
SPD achieves a best performance of 70% accuracy (base-
line 50%) on unseen test verbs, and no other measure we
tested performed consistently as well as it did, achieving
best performance (alone or tied) in 9 of 12 development
experiments, and best or second best in all three test sce-
narios. By comparison, McCarthy (2000) attained 73%
accuracy on her set of hand-selected test verbs in a sim-
ilar task; however, when applied to our various sets of
randomly selected verbs, our replication of her method
performed very poorly, rarely reaching above chance per-
formance. We believe that the randomly selected verbs in
our experiments may show a wider variation, than verbs
that are hand-selected, in whether and how much they al-
ternate, and thus constitute a more difficult but more real-
istic scenario for testing the usefulness of these measures
in practice.

Interestingly, we found that separating verbs into low
and high frequency bands improved performance, and our
best performance of 70% in fact results from an aver-
age of SPD results on the individual frequency bands.
Perhaps even more interesting is the underlying reason
for this: causative verbs in the low frequency band show
greater similarity (lower SPD scores) across the slots than
those in the high frequency band. In on-going work,
we are extending our experiments to a larger corpus (the
BNC), so that we can investigate a larger range and num-



ber of verbs to explore this issue, which will enable us to
better elucidate the reasons for this interaction.
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