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Abstract

In this paper we discuss the applicability of the
knowledge representation and reasoning lan-
guage AnsProlog for the design and implemen-
tation of query answering systems. We con-
sider a motivating example, and illustrate how
AnsProlog can be used to represent defaults,
causal relations, and other types of common-
sense knowledge needed to properly answer
non-trivial questions about the example’s do-
main.

1 Introduction and Motivation

Let us envision a query answering system (QAS) con-
sisting of asearch enginewhich searches diverse sources
for information relevant to the given query,Q; a natural
language processing module(NLPM), which translates
this information (including the query) into a theory,F ,
of some knowledge representation languageL; a gen-
eral knowledge base, KB, containing common-senses
and expert knowledge about various domains; and anin-
ference enginewhich takesF andKB as an input and
returns an answer toQ. Even though the choice of the
KR languageL is irrelevant for the first component of
the system it plays an increasingly important role in the
design of its other components. In this paper we hypothe-
size that AnsProlog - a language of logic programs under
the answer set semantics (Gelfond and Lifschitz, 1988;
Gelfond and Lifschitz, 1991) - is a good candidate for the
KR language of QAS. This is especially true if answer-
ing a queryQ requires sophisticated kinds of reasoning
including default, causal, and counterfactual reasoning,
reasoning about narratives, etc.

The list of attractive properties of AnsProlog include
its simplicity and expressive power, ability to reason
with incomplete information, existence of a well devel-

oped mathematical theory and programming methodol-
ogy (Baral, 2003), and the availability of rather efficient
reasoning systems such as SMODELS(Niemela and Si-
mons, 1997) and others as well(Eiter et al., 1997; Yu and
Maratea, 2004). AnsProlog allows its users to encode de-
faults, causal relations, inheritance hierarchies, and other
types of knowledge not readily available in other KR lan-
guages. In addition it supports construction of elabora-
tion tolerant knowledge bases, i.e., ability to accommo-
date new knowledge without doing large scale surgery.
The main drawback of the language is the inability of its
current inference engines to effectively deal with num-
bers and numerical computations1.

In this paper we illustrate the use of AnsProlog for query
answering via a simple example. Of course substantially
more work is needed to to prove (or disprove) our main
hypothesis.

Consider an analyst who would like to use his QAS to
answer simple queriesQ1 andQ2 about two people, John
and Bob:

• Q1 – Was John in the Middle East in mid-
December?

• Q2 – If so, did he meet Bob in the Middle East in
mid-December?

Let us assume that the search engine of QAS extracted
the following simple text relevant toQ1 andQ2:

1The current answer set solvers start their computation with
grounding the program, i.e. replacing its variables by possible
ground instantiations. The grounding algorithms are smart and
capable of eliminating many useless rules; answer sets can be
effectively computed even if the resulting program consists of
hundreds of thousands of rules. However, if several integer vari-
ables are used by the program rules, the size of the grounded
program becomes unmanageable. We hope however that this
problem will be remedied by the development of new reasoning
algorithms and systems.



John spent Dec 10 in Paris and took a plane to
Baghdad the next morning. He was planning to
meet Bob who was waiting for him there.

We will also assume that the NLP module of the QAS re-
alizes that to answer our queries it needs general knowl-
edge of geography, calendar, and human activities in-
cluding travel, meetings, and plans. In the next section
we outline how such knowledge can be represented in
AnsProlog.

2 Representing general knowledge

2.1 The “geography” moduleM1

The geography moduleM1 will contain a list

is(baghdad,city).
is(iraq,country).
...

of places and the definition of relation

in(P1, P2) - “P1 is located inP2”

The definition is given by a collection of facts:

in(baghdad, iraq).
in(iraq,middle_east).
in(paris,france).
in(france,western_europe).
in(western_europe,europe).
...

and the rule

in(P1,P3) :- in(P1,P2),
in(P2,P3).

For simplicity we assume that our information about re-
lation in is complete, i.e., ifin(p1, p2) is not known to be
true then it is false. This statement can be expressed by
the rule

-in(P1,P2) :- not in(P1,P2)

often referred to as the CWA- Closed World Assumption
(Reiter, 1978) (forin). Here−p stands for “p is false”
while not p says that “there is no reason to beliefp”.
Similar assumption can be written foris. The program
has unique answer set containingin(iraq,middle east),
-in(iraq, europe), etc. This answer set, (or its relevant
parts) can be computed by answer set solvers. Some-
times this will require small additions to the program. For
instance SMODELS, which require typing of variables,
will not be able to compile this program. This problem
can be remedied by adding a rule

position(P) :- is(P,C).

defining the type position and a statement

#domain position(P;P1;P2;P3)

declaring the type of the corresponding variables. Now
SMODELS will be able complete the computation.

2.2 The “travelling” module M2

This module describes the effects of a person travelling
from one place to another. We are mainly interested in
locations of people and in various travelling events which
change these locations. Construction ofM2 is based on
the theory of dynamic systems () which views the world
as a transition diagram whose states are labelled by flu-
ents (propositions whose values depend on time) and arcs
are labelled by actions. For instance, states of the di-
agram,D, can contain locations of different people; a
transition〈σ0, {a1, a2}, σ1〉 ∈ D iff σ1 is a possible state
of the domain after the concurrent execution of actions
a1 anda2 in σ0. There is a well developed methodol-
ogy of representing dynamic domain in AnsProlog (Baral
and Gelfond, 2000; Turner, 1997) which, in its simplified
form, will be used in the construction ofM2.

The language ofM2 will contain time-steps from[0, n],
fluent loc(P,X, T ) - “placeP is a location of personX
at stepT ”. Various types of travelling events -fly, drive,
etc., will be recorded by the list:

instance_of(fly,travel).
instance_of(drive,travel).
...

Description of an event type will contain the event’s name
and attributes. The following is a generic description of
John flying to Baghdad.

event(a1).
type(a1,fly).
actor(a1,john).
destination(a1,baghdad).

An actual event of this type will be recorded by a state-
ment

occurs(a1, i).

(wherei is a time-step in the history of the world) pos-
sibly accompanied by the actual time ofi. In addition,
M2 will import relation in(P1, P2) from the geography
moduleM1.

The transition diagram,D, of M2 will be described by ??
groups of axioms.

•. The first group consists ofstate constraintsestablish-
ing the relationship between the domain fluents. In our
case it is sufficient to have the rules:



loc(P2,X,T) :- loc(P1,X,T),
in(P2,P1).

disjoint(P1,P2) :- -in(P1,P2),
-in(P2,P1),
neq(P1,P2).

-loc(P2,X,T) :- loc(P1,X,T),
disjoint(P1,P2).

Hereneq stands for the inequality. The first rule allows
us to conclude that if at stepT of the domain historyX
is in Iraq then he is also in the Middle East. The second
two rules guarantee thatX is not in Europe.

•. The second group containscausal lawsdescribing di-
rect effects of actions. For our example it suffices to have
the rules

loc(P,X,T+1) :- occurs(E,T),
type(E,travel),
actor(E,X),
destination(E,P),
-interference(E,T).

-interference(E,T) :-
not interference(E,T).

The first rule says that, in the absence of interference, a
traveller will arrive at his destination. The second - the
CWA for interference - states that the interference is
an unusual event which normally does not happen.

•. The third group consists of executability conditions for
actions, which have the form

-occurs(E,T) :- cond(T).

which says that it is impossible for an eventE occur at
time stepT if at that time step the domain is in a state
satisfying conditioncond.

Causal laws and state constraints determine changes
caused by execution of an action. To complete the def-
inition of the transition diagram of the domain we need
to specify what fluents do not change as the results of ac-
tions. This is a famous Frame Problem from (McCarthy
and Hayes, 1969) where the authors suggested to solve it
by formalizing the Inertia Axiom which says that “things
tend to stay as they are”. This is a typical default which
can be easily represented in AnsProlog. In our particular
case it will have a form:

loc(P,X,T+1) :- loc(P,X,T),
not -loc(P,X,T+1).

-loc(P,X,T+1) :- -loc(P,X,T),
not loc(P,X,T+1).

The above representation is a slightly simplified version
of AnsProlog theory of dynamic domains which gives no-
tation for causal relations of the domain, includes general

(fluent independent) formulation of the inertia, explains
how the set of causal relations define the corresponding
transition diagram, etc. We used this version to simple
save space. Given the following history of the domain

loc(paris,john,0).
loc(baghdad,bob,0).
occurs(a1,0).

information contained inM1 and M2 is sufficient to
conclude loc(baghdad, john, 1), loc(baghdad, bob, 1),
loc(middle east, john, 1), -loc(paris, john, 1), etc. To
answer the original queries we now need to deal with tim-
ing our actions. Let us assume, for instance, that the tim-
ing of John’s departure from Paris is recorded by state-
ments:

time(0,day,11).
time(0,month,12).
time(0,year,03).

Hereday, month, andyear are thebasic time measuring
units.

Finally we may need to specify typical durations of ac-
tions, e.g.

time(T+1,day,D) :- occurs(E,T),
type(E,fly),
time(T,day,D),
not -time(T+1,day,D).

where1 ≤ D ≤ 31.

To reason about thetime relation we need to include a
new module,M3, which will allow us to change granu-
larity of our time measure.

2.3 M3 - measuring time

The module contains types for basic measuring units, e.g.

day(1..31).
month(1..12).
part(start).
part(end).
part(middle).
...

and rules translating from one granularity measure to an-
other, e.g.

time(T,part,middle) :- time(T,d,D),
10 < D < 20.

time(T,season,summer):- time(T,month,M),
5 < M < 9.

...



M3 presented in this paper is deliberately short. It
includes very little knowledge beyond that needed to
answer our query. Ideally it should be much bigger
and include a formalization of the calendar. Among
other things the module should allow us to prove state-
ments like next(date(10, 12, 03), date(11, 12, 03) and
next(date(31, 12, 03), date(1, 1, 04).

Now let us assume thatNLP module of our QAS trans-
lated

(a) information about John’s flight to Baghdad by a his-
tory

loc(paris,john,0).
loc(baghdad,bob,0).
occurs(a1,0).
time(0,day,11).
time(0,month,12).

(b) the queryQ1 by

? loc(middle_east,john,T),
time(T,month,12),
time(T,part,middle).

ModulesM1, M2 andM3 have enough information to
correctly answerQ1.

2.4 Planning the meeting -M4

To answer the second question we need an additional
module about the event meet. The event type formeet
will be similar to the previously discussed flying event
a1. It may look like:

event(a2).
type(a2,meet).
actor(a2,john).
actor(a2,bob).
place(a2,baghdad).

Notice however that the story contains no information
about actual occurrence of this event. All we know is
thata2 is plannedto occur at time step one. We encode
this by simply stating:

planned(a2,1).

Note that to give a positive answer to the question
Q2 –”Did John meet Bob in the Middle East in mid-
December? “ we need to reason about planned events. It
seems that our positive answer to this question is obtain
by using a default: “people normally follow their plans”.
Again this is a typical default statement which, according
to the general knowledge representation methodology of
AnsProlog could be expressed by the rule:

occurs(E,T) :- planned(E,T),
not -occurs(E).

In a slightly more complex situation we may need to as-
sume that people take their plans seriously – they persist
with their plans until the planned event actually happen.
This is encoded as follows:

planned(E,T+1) :- planned(E,T),
-occurs(E,T).

Unlike traveling, the meeting event does not seem to have
any obvious causal effects. It, however, has the following
executability condition relevant to our story.

-occurs(E,T) :- type(E,meet),
actor(E,X),
place(E,P),
-loc(P,X,T).

Now we have enough information to answer our second
query, which can be encoded as

? occurs(E,T),
type(E,meet),
actor(E,john),
actor(E,bob),
loc(middle_east,john,T),
time(T,month,12),
time(T,part,middle).

As expected the answer will be positive. There are sev-
eral ways to obtain this answer. It can of course be ex-
tracted from the unique answer set of our program. With
small additions of types and declaration of variables sim-
ilar to that we used to defineposition in M1 this answer
set can be found by SMODELS or any other answer set
solver. This method however may not scale. The problem
is caused the calendar. Its integer variables for months,
days, etc, in conjunction with a longer history (and there-
fore a larger number of time steps) may cause an unman-
ageable increase in the number of ground rules of the pro-
gram. It seems however that in many interesting cases
(including ours), the computation can be made substan-
tially more efficient by properly combining answer set
finding algorithms with the traditional resolution of Pro-
log. The way of doing this will be illustrated in the full
paper. We also plan to expand our modules especially
those dealing with time and reasoning about plans.

3 FrameNet and Events

Our vision of the NLPM is that it will translate both our
short text and also the queries into AnsProlog sentences.
There is a body of literature on translating or parsing
English sentences into a semantic representation such as
First Order Logic. See (Blackburn and Bos, 2003) for a
recent survey of such techniques. The semantic represen-
tation makes use of symbols based upon the lexicon of
English.



The success of our endeavor requires that there be an
axiomatization of the relationship between the symbols
representing functions and predicate symbols in our vari-
ous AnsProlog theories (e.g., M1 – M4) and the symbols
(based upon the lexicon of English) used in the seman-
tic representation of the English queries and the narrative
texts. The online lexical database, FrameNet(Baker et al.,
1998) provides such a connection, especially for events.
This is done through the notion of frame semantics that
underlies FrameNet.

Frame semantics assumes that lexical items draw their
meaning from conceptual structures orframesthat pro-
vide an abstract or scematic description of particular
types of events. The frames are structured into an inheri-
tance hierarchy. Each frame includes a number offrame
elements(FEs) or roles that make up the conceptual struc-
ture.

For example, our “travelling” moduleM2 closely corre-
sponds to the related FrameNet framesTravel, Move,
andRide Vehicle. The frames relate the various frame
elements of Area (where the travelling takes place), Goal
(where the travellers end up), Path (route of the travel),
Source (starting point of the trip), and the Traveller (the
living being which travels).

Consider the phrasetook a planeused to express the trav-
elling activity. The verbtakeis associated with the frame
Ride Vehicle. This information allows the connection
with the axiomatization of flying events inM2. On the
other hand FrameNet does not have entries for the verb
spendas inspent Dec 10. But WordNet(Fellbaum, 1998)
has 3 senses for the verbspend. Sense 1 is “pass – (pass
(time) in a specific way. ‘How are you spending your
summer vacation?’). ” Unfortunately, neitherpassnor
timeallows us to index a useful frame for just being in a
place. The coverage of FrameNet is not sufficient. It will
be necessary to augment our use of FrameNet with other
online sources such as WordNet and to also increase the
number of frames within FrameNet.

There has been some related work on using the frame of
FrameNet for reasoning (Chang et al., 2002) and also on
the automatic annotation of English texts with regard to
the relevant frames (Gildea and Jurafsky, 2000) and frame
elements.

4 Syntax and Semantics of AnsProlog

An AnsProlog knowledge base consists of rules of the
form:

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (4.1)

where each of thelis is a literal, i.e. an atom,a, or its clas-
sical negation, -a andnot is a logical connective called

negation as failureor default negation. While -a states
that a is false, an expressionnot l says that there is no
reason to believe inl.

The answer set semantics of a logic programΠ assigns to
Π a collection ofanswer sets– consistent sets of ground
literals corresponding to beliefs which can be built by a
rational reasoner on the basis of rules ofΠ. In the con-
struction of these beliefs the reasoner is guided by the
following informal principles:

• He should satisfy the rules ofΠ, understood as con-
straints of the form:If one believes in the body of a
rule one must belief in its head.

• He should adhere to therationality principlewhich
says thatone shall not believe anything he is not
forced to believe.

The precise definition of answer sets is first given for pro-
grams whose rules do not contain default negation. LetΠ
be such a program andX a consistent set of ground liter-
als. SetX is closedunderΠ if, for every rule (4.1) ofΠ,
l0 ∈ X whenever for every1 ≤ i ≤ m, li ∈ X and for
everym + 1 ≤ j ≤ n, lj 6∈ X.

Definition 1 (Answer set – part one)
A stateX of σ(Π) is ananswer setfor Π if X is minimal
(in the sense of set-theoretic inclusion) among the sets
closed underΠ.

To extend this definition to arbitrary programs, take any
programΠ, and consistent setX of ground literals. The
reduct, ΠX , of Π relative toX is the set of rules

l0 ← l1, . . . , lm

for all rules (4.1) inΠ such thatlm+1, . . . , ln 6∈ X. Thus
ΠX is a program without default negation.

Definition 2 (Answer set – part two)
X is an answer set forΠ if X is an answer set forΠX .

Definition 3 (Entailment)
A programΠ entails a literall (Π |= l) if l belongs to all
answer sets ofΠ.
TheΠ’s answer to a queryl is yesif Π |= l, no if Π |= l,
andunknownotherwise.

5 Summary

In conclusion, we feel that the features of AnsProlog are
well suited to form the foundations for an inference en-
gine supporting a QAS. Our future work will develop the
support tools and implementation needed to demonstrate
this hypothesis.
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