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Abstract

We propose one type of TOP (Tangent vector
Of the Posterior log-odds) kernel and apply it to
text categorization. In a number of categoriza-
tion tasks including text categorization, nega-
tive examples are usually more common than
positive examples and there may be several dif-
ferent types of negative examples. Therefore,
we construct a TOP kernel, regarding the prob-
abilistic model of negative examples as a mix-
ture of several component models respectively
corresponding to given categories. Since each
component model of our mixture model is ex-
pressed using a one-dimensional Gaussian-type
function, the proposed kernel has an advantage
in computational time. We also show that the
computational advantage is shared by a more
general class of models. In our experiments,
the proposed kernel used with Support Vector
Machines outperformed the linear kernel and
the Fisher kernel based on the Probabilistic La-
tent Semantic Indexing model.

1 Introduction

Recently, Support Vector Machines (SVMs) have been
actively studied because of their high generalization abil-
ity (Vapnik, 1998). In the formulation of SVMs, func-
tions which measure the similarity of two examples take
an important role. These functions are calledkernel func-
tions. The usual dot-product of two vectors respectively
corresponding to two examples is often used. Although
some variants to the usual dot-product are sometimes
used (for example, higher-order polynomial kernels and
RBF kernels), the distribution of examples is not taken
into account in such kernels.

However, new types of kernels have more recently
been proposed; they are based on the probability distri-
bution of examples. One is Fisher kernels (Jaakkola and
Haussler, 1998). The other is TOP (Tangent vector Of the
Posterior log-odds) kernels (Tsuda et al., 2002). While
Fisher kernels are constructed on the basis of a genera-
tive model of data, TOP kernels are based on the class-
posterior probability, that is, the probability that the pos-
itive class occurs given an example. However, in order to
use those kernels, we have to select a probabilistic model
of data. The selection of a model will affect categoriza-
tion result. The present paper provides one solution to
this issue. Specifically, we proposed one type of TOP
kernel, because it has been reported that TOP kernels per-
form better than Fisher kernels in terms of categorization
accuracy.

We briefly explain our kernel. We focus on negative
examples in binary classification. Negative examples are
usually more common than positive examples. There
may be several different types of negative examples. Fur-
thermore, the categories of negative examples are some-
times explicitly given (for example, the situation where
we are given documents, each of which has one of three
categories “sports”,”politics” and “economics”, and we
are to extract documents with “politics”). In such a situa-
tion, the probabilistic model of negative examples can be
regarded as a mixture of several component models. We
effectively use this property. Although many other mod-
els can be used, we propose a model based on the sepa-
rating hyperplanes in the original feature space. Specif-
ically, a one-dimensional Gaussian-type function normal
to a hyperplane corresponds to a category. The negative
class is then expressed as a kind of Gaussian mixture.
The reason for the selection of this model is that the re-
sulting kernel has an advantage in computational time.
The kernel based on this mixture model, what we call



Hyperplane-based TOP (HP-TOP) kernel, can be com-
puted efficiently in spite of its high dimensionality. We
later show that the computational advantage is shared by
a more general class of models.

In the experiments of text categorization, in which
SVMs are used as classifiers, our kernel outperformed
the linear kernel and the Fisher kernel based on the Prob-
abilistic Latent Semantic Indexing model proposed by
Hofmann (2000) in terms of categorization accuracy.

2 SVMs and Kernel Method

In this section, we explain SVMs and the kernel method,
which are the basis of our research. SVMs have achieved
high accuracy in various tasks including text categoriza-
tion (Joachims, 1998; Dumais et al., 1998).

Suppose a setDl of ordered pairs consisting of a fea-
ture vector and its label

Dl = {(x1, y1), (x2, y2), · · · , (xl, yl)},
(∀i, xi ∈ R|I|, yi ∈ {−1, 1}) (1)

is given.Dl is calledtraining data. I is the set of feature
indices. In SVMs, a separating hyperplane (f(x) = w ·
x − b) with the largest margin (the distance between the
hyperplane and its nearest vectors) is constructed.

Skipping the details of SVMs’ formulation, here we
just show the conclusion that, using some real numbers
α∗i (∀i) and b∗, the optimal hyperplane is expressed as
follows:

f(x) =
∑

i

α∗i yixi · x− b∗. (2)

We should note that only dot-products of examples are
used in the above expression.

Since SVMs are linear classifiers, their separating abil-
ity is limited. To compensate for this limitation, the
kernel methodis usually combined with SVMs (Vapnik,
1998).

In the kernel method, the dot-products in (2) are re-
placed with more general inner-productsK(xi, x) (kernel
functions). The polynomial kernel(xi ·xj +1)d (d ∈ N+)
and the RBF kernelexp{−‖xi − xj‖2/2σ2} are often
used. Using the kernel method means that feature vectors
are mapped into a (higher dimensional) Hilbert space and
linearly separated there. This mapping structure makes
non-linear separation possible, although SVMs are basi-
cally linear classifiers.

Another advantage of the kernel method is that al-
though it deals with a high dimensional (possibly infinite)
space, explicit computation of high dimensional vectors
is not required. Only the general inner-products of two
vectors need to be computed. This advantage leads to a
relatively small computational overhead.

3 Kernels from Probabilistic Models

Recently new type of kernels which connect genera-
tive models of data and discriminative classifiers such as
SVMs, have been proposed: the Fisher kernel (Jaakkola
and Haussler, 1998) and the TOP (Tangent vector Of the
Posterior log-odds) kernel (Tsuda et al., 2002).

3.1 Fisher Kernel

Suppose we have a probabilistic generative modelp(x|θ)
of the data (we denote an example byx). The Fisher score
of x is defined as∇θ log p(x|θ), where∇θ means par-
tial differentiation with respect to the parametersθ. The
Fisher information matrix is denoted byI(θ) (this ma-
trix defines the geometric structure of the model space).
Then, the Fisher kernel at an estimateθ̂ is given by:

K(x1, x2)

= (∇θ log p(x1|θ̂))tI−1(θ̂)(∇θ log p(x2|θ̂)) (3)

The Fisher score of an example approximately indicates
how the model will change if the example is added to the
training data used in the estimation of the model. That
means, the Fisher kernel between two examples will be
large, if the influences of the two examples to the model
are similar and large (Tsuda and Kawanabe, 2002).

The matrixI(θ) is often approximated by the identity
matrix to avoid large computational overhead.

3.2 TOP Kernel

On the basis of a probabilistic model of the data, TOP
kernels are designed to extract feature vectorsfθ̂ which
are considered to be useful for categorization with a sep-
arating hyperplane.

We begin with the proposition that, between the gener-
alization errorR(fθ̂) and the expected error of the poste-
rior probabilityD(fθ̂), the relationR(fθ̂)−L∗ ≤ 2D(fθ̂)
holds, whereL∗ is the Bayes error. This inequality means
that minimizingD(fθ̂) leads to reducing the generaliza-
tion error R(fθ̂). D(fθ̂) is expressed, using a logistic
functionF (t) = 1/(1 + exp(−t)), as

D(fθ̂)
= min

w,b
Ex|F (w · fθ̂ − b)− P (y = +1|x, θ∗)|, (4)

where θ∗ denotes the actual parameters of the model.
The TOP kernel consists of features whichcanminimize
D(fθ̂). In other words, we would like to have feature vec-
torsfθ̂ that satisfy the following:

∀x, w · fθ̂(x)− b = F−1(P (y = +1|x, θ∗)). (5)

for certain values ofw andb.
For that purpose, we first define a functionv(x, θ):

v(x, θ) ≡ F−1(P (y = +1|x, θ))
= log P (y = +1|x, θ)− log P (y = −1|x, θ). (6)



The first-order Taylor expansion ofv(x, θ∗) around the
estimatêθ is

v(x, θ∗) ≈ v(x, θ̂) +
∑

i

(θ∗i − θ̂i)
∂v(x, θ̂)

∂θi
. (7)

If fθ̂ is of the following form:

fθ̂(x) =
(
v(x, θ̂), ∂v(x, θ̂)/∂θ1, · · · , ∂v(x, θ̂)/∂θp

)
,
(8)

and ifw andb are properly chosen as

w = (1, θ∗1 − θ̂1, · · · , θ∗p − θ̂p), b = 0, (9)

then (5) is approximately satisfied. Thus, the TOP kernel
is defined as

K(x1, x2) = fθ̂(x1) · fθ̂(x2). (10)

A detailed discussion of the TOP kernel and its theoreti-
cal analysis have been given by Tsuda et al (Tsuda et al.,
2002).

4 Related Work

Hofmann (2000) applied Fisher kernels to text catego-
rization under the Probabilistic Latent Semantic Indexing
(PLSI) model (Hofmann, 1999).

In PLSI, the joint probability of documentd and word
w is :

P (d, w) =
∑

k

P (zk)P (d|zk)P (w|zk), (11)

where variableszk correspond to latent classes. After
the estimation of the model using the EM algorithm, the
Fisher kernel for this model is computed. The average
log-likelihood of documentd normalized by the docu-
ment length is given by

l(d) =
∑

j

P̂ (wj |d) log
∑

k

P (wj |zk)P (zk|d), (12)

where

P̂ (wj |d) =
freq(wj , d)∑
m freq(wm, d)

. (13)

They usespherical parameterization(Kass and Vos,
1997) instead of the original parameters in the model.
They define parametersρjk = 2

√
P (wj |zk) andρk =

2
√

P (zk), and obtained

∂l(d)
∂ρjk

=
P̂ (wj |d)P (zk|d, wj)√

P (wj |zk)
, (14)

∂l(d)
∂ρk

≈ P (zk|d)√
P (zk)

. (15)

Thus, the Fisher kernel for this model is obtained as de-
scribed in Appendix A.

The first term of (31) corresponds to the similarity
through latent spaces. The second term corresponds to
the similarity through the distribution of each word. The
number of latent classeszk can affect the value of the
kernel function. In the experiment of (Hofmann, 2000),
they computed the kernels with the different numbers (1
to 64) of zk and added them together to make a robust
kernel instead of deciding one specific number of latent
classeszk.

They concluded that the Fisher kernel based on PLSI
is effective when a large amount of unlabeled examples
are available for the estimation of the PLSI model.

5 Hyperplane-based TOP Kernel

In this section, we explain our TOP kernel.

5.1 Derivation of HP-TOP kernel

Suppose we have obtained the parameterswc and bc

of the separating hyperplane for each categoryc ∈
Ccategory in the original feature space, whereCcategory

denotes the set of categories.
We assume that the class-posteriorsPc(+1|d) and

Pc(−1|d) are expressed as1

Pc(+1|d) =
P (c)q(d|c)∑
c′ P (c′)q(d|c′) , (16)

Pc(−1|d) =

∑
e 6=c P (e)q(d|e)∑
c′ P (c′)q(d|c′) (17)

where, for any categoryx, component functionq(d|x) is
of Gaussian-type:

q(d|x) =
1√

2πσ2
x

exp{− ((wx · d− bx)− µx)2

2σ2
x

},
(18)

with the meanµx of a random variablewx · d − bx and
the varianceσx. Those parameters are estimated with the
maximum likelihood estimation, as follows:

µx =

∑
(d,y)∈Dl,y=x

{wx·d−bx}
|{(d,y)∈Dl|y=x}| , (19)

σx =

∑
(d,y)∈Dl,y=x

{wx·d−bx−µx}2

|{(d,y)∈Dl|y=x}| . (20)

We choose the Gaussian-type function as an exam-
ple.However, this choice is open to argument, since some
other models also have the same computational advan-
tage as described in Section 5.4.

We setθx1 = µx/σ2
x, θx2 = −1/2σ2

x. Althoughθx1

and θx2 are not the natural parameters of this model,
1We cannot sayq(d|x) is a generative probability ofd given

classx, because it is one-dimensional and not valid as a proba-
bility density in the original feature space.



we parameterize this model using the parametersθx1,
θx2, wx, bx and P (x) (∀x ∈ Ccategory) for simplic-
ity. Using this probabilistic model,we compute func-
tion v(d, θ) as described in Appendix B (θ denotes
{wx, bx, θx1, θx2|x ∈ Ccategory} andwxi denotes thei-
th element of the weight vectorwx).

The partial derivatives of this function with respect to
the parameters are in Appendix C.

Then we can follow the definition (10) to obtain our
version of the TOP kernel. We call this new kernel a
hyperplane-based TOP (HP-TOP)kernel.

5.2 Properties of HP-TOP kernel

In the derivatives (39), which provide the largest number
of features, original featuresdi are accompanied by other
factors computed from probability distributions. This
form suggests that two vectors are considered to be more
similar, if they have similar distributions over categories.
In other words, an occurrence of a word can have dif-
ferent contribution to the classification result, depending
on the context (i.e., the other words in the document).
This property of the HP-TOP kernel can lead to the ef-
fect of word sense disambiguation, because “bank” in a
financial document is treated differently from “bank” in a
document related to a river-side park.

The derivatives (34) and (35) correspond to the first-
order differences, respectively for the positive class and
the negative class. Similarly, the derivatives (36) and (37)
for the second-order differences. The derivatives (40) and
(41) are for the first-order differences normalized by the
variances.

The derivatives other than (38) and (38) directly de-
pend on the distance from a hyperplane, rather than on
the value of each feature. These derivatives enrich the
feature set, when there are fewactive words, by which
we mean the words that do not occur in the training data.
For this reason, we expect that the HP-TOP kernel works
well for a small training dataset.

5.3 Computational issue

Computing the kernel in this form is time-consuming, be-
cause the number of components of type (39) can be very
large:

O(|I| × |Ccategory|), (21)

whereI denotes the set of indices for original features.
However, we can avoid this heavy computational cost

as follows. Let us compute the dot-product of deriva-
tives (39) of two vectorsd1 andd2, which is shown in
Appendix D. The last expression (45) is regarded as the
scalar product of two dot-products. Thus, by preserving
vectorsd and
(
−P (e)q(d|e)

P−c(d)
µe − (we · d− be)

σ2
e

)

e 6=c,e∈Ccategory

, (22)

we can efficiently compute the dot-product in (39); the
computational complexity of a kernel function is

O(|I|), (23)

on the condition that the original dimension is larger than
the number of categories. Thus, from the viewpoint of
computational time, our kernel has an advantage over
some other kernels such as the PLSI-based Fisher kernel
in Section 4, which requires the computational complex-
ity of O(|I| × |Ccluster|), whereCcluster denotes the set
of clusters.

In the PLSI-based Fisher kernel, each word has a prob-
ability distribution over latent classes. In this sense, the
PLSI-based Fisher kernel is more detailed, but detailed
models are sometimes suffer overfitting to the training
data and have the computational disadvantage as men-
tioned above.

The PLSI-based Fisher kernel can be extended to a
TOP kernel by using given categories as latent classes.
However, the problem of computational time still re-
mains.

5.4 General statement about the computational
advantage

So far, we have discussed the computational time for
the kernel constructed on the Gaussian mixture. How-
ever, the computational advantage of the kernel, in fact,
is shared by a more general class of models.

We examine the required conditions for the computa-
tional advantage. Suppose the class-posteriors have the
mixture form as Equations (16) and (17), but function
q(d|x) does not have to be a Gaussian-type function. In-
stead, functionq(d|x) is supposed to be represented using
some functionr parametrized bywe andb, as:

q(d|x) = r(fx(d)|x), (24)

wherefx is a scalar function. Then, let us obtain the
derivative ofv(d, θ) with respect towei, which is the bot-
tleneck of kernel computation:

∂v(d, θ)
∂wei

=
−P (e)q(d|e)

P−c(d)
∂r(fe(d)|e)

∂wei

=
−P (e)q(d|e)

P−c(d)
∂r(fe(d)|e)

∂fe(d)
∂fe(d)
∂wei

. (25)

The first two factors of (25) do not depend oni. There-
fore, if the last factor of (25) is variable-separable with
respect toe andi:

∂fe(d)
∂wei

= S(e)T (i), (26)



whereS and T are some function, then the derivative
(25) is also variable-separable. In such cases, the effi-
cient computation described in Section 5.3 is possible by
preserving the vectors:

(
T (i)

)
i∈I

, (27)
(
−P (e)q(d|e)

P−c(d)

∂r(fe(d)|e)
∂fe(d)

S(e)

)

e 6=c,e∈Ccategory

. (28)

We have now obtained the required conditions for the
efficient computation: Equation (24) and the variable-
separability.

In case of Gaussian-type functions, functionfe and its
derivative with respect towei are

fe(d) = we · d− be, (29)

∂fe(d)
∂wei

= di. (30)

Thus, the conditions are satisfied.

6 Experiments

Through experiments of text categorization, we empiri-
cally compare the HP-TOP kernel with the linear kernel
and the PLSI-based Fisher kernel. We use Reuters-21578
dataset2 with ModApte-split (Dumais et al., 1998). In ad-
dition, we delete some texts from the result of ModApte-
split, because those texts have no text body. After the
deletion, we obtain 8815 training examples and 3023 test
examples. The words that occur less than five times in the
whole training set are excluded from the original feature
set.

We do not use all the 8815 training examples. The
size of the actual training data ranges from 1000 to 8000.
For each dataset size, experiments are executed 10 times
with different training sets.The result is evaluated with F-
measures for the most frequent 10 categories (Table 1).
The total number of categories is actually 116. How-
ever, for small categories, reliable statistics cannot be ob-
tained. For this reason, we regard the remaining cate-
gories other than the 10 most frequent categories as one
category. Therefore, the model for negative examples is
a mixture of 10 component models (9 out of the 10 most
frequent categories and the new category consisting of the
remaining categories).

We assume uniform priors for categories as in (Tsuda
et al., 2002). We computed the Fisher kernels with differ-
ent numbers (10, 20 and 30) of latent classes and added
them together to make a robust kernel (Hofmann, 2000).
After the learning in the original feature space, the param-
eters for the probability distributions are estimated with

2Available from
http://www.daviddlewis.com/resources/.

Table 1: The categories and their sizes of Reuters-21578

category training texts test texts
earn 2725 1051
acq 1490 644

money-fx 464 141
grain 399 135
crude 353 164
trade 339 133

interest 291 100
ship 197 87

wheat 199 66
corn 161 48

maximum likelihood estimation as in Equations (19) and
(20), followed by the learning with the proposed kernel.

We used an SVM package, TinySVM3, for SVM com-
putation. The soft-margin parameterC was set to 1.0
(other values ofC showed no significant changes in re-
sults).

The result is shown in Figure 1 (for macro-average)
and Figure 2 (for micro-average). The HP-TOP kernel
outperforms the linear kernel and the PLSI-based Fisher
kernel for every number of examples.

At each number of examples, we conducted a
Wilcoxon Signed Rank test with 5% significance-level,
for the HP-TOP kernel and the linear kernel, since these
two are better than the other. The test shows that the dif-
ference between the two methods is significant for the
training data sizes 1000 to 5000. The superiority of the
HP-TOP kernel for small training datasets supports our
expectation that the enrichment of feature set will lead to
better performance for few active words. Although we
also expected that the effect of word sense disambigua-
tion would improve accuracy for large training datasets,
the experiments do not provide us with an empirical ev-
idence for the expectation. One possible reason is that
Gaussian-type functions do not reflect the actual distribu-
tion of data. We leave its further investigation as future
research.

In this experimental setting, the PLSI-based Fisher ker-
nel did not work well in terms of categorization accuracy.
However, this Fisher kernel will perform better when the
number of labeled examples is small and a number of
unlabeled examples are available, as reported by Hof-
mann (2000).

We also measured computational time of each method
(Figure 3). The vertical axis indicates the average com-
putational time over 100 runs of experiments (10 runs for
each category). Please note that training time in this fig-

3Available from
http://cl.aist-nara.ac.jp/˜taku-ku/software/TinySVM/.
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Figure 3: Computational time of each method

ure does not include the computational time required for
feature extraction4. This result empirically shows that the
HP-TOP kernel outperforms the PLSI-based Fisher ker-
nel in terms of computational time as theoretically ex-
pected in Section 5.3.

7 Conclusion

We proposed a TOP kernel based on separating hy-
perplanes. The proposed kernel is created from one-
dimensional Gaussians along the normal directions of the
hyperplanes. We showed that the computational advan-
tage that the proposed kernel has is shared by a more
general class of models. We empirically showed that the
proposed kernel outperforms the linear kernel in text cat-
egorization.

Although the superiority of the proposed method to the
linear kernel was shown, the proposed method has to be
further investigated. Firstly, for large data sizes (namely
7000 and 8000), the proposed method was not signifi-
cantly better than the linear kernel. The effectiveness of
the proposed method should be confirmed by more ex-
periments and theoretical analysis. Secondly, we have to
compare the proposed method with other kernels in or-
der to check the effectiveness of the kernel function con-
sisting of one-dimensional Gaussians normal to the hy-
perplanes. The use of Gaussians is open to argument,
because their symmetric form is somewhat against our

4If the computational time required for feature extraction is
included, the HP-TOP kernel cannot be faster than the linear
kernel.



intuition.
This model can be extended to incorporate unlabeled

examples, for example, using the EM algorithm. In that
sense, the combination of PLSI and the semi-supervised
EM algorithm is also one promising model. When the
category structure of the negative examples is not given,
the proposed method is not applicable. We should inves-
tigate whether unsupervised clustering can substitute for
the category structure.
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A Fisher Kernel based on PLSI

K(d1, d2) =
∑

k

P (zk|d1)P (zk|d2)

P (zk)
+

∑
j

P̂ (wj |d1)P̂ (wj |d2)
∑

k

P (zk|d1, wj)P (zk|d2, wj)

P (wj |zk)
, (31)

where P (zk|d, wj) =
P (zk)P (d|zk)P (wj |zk)∑

l
P (zl)P (d|zl)P (wj |zl)

(
=

P (zk)P (d|zk)P (wj |zk)

P (d, wj)

)
. (32)

B Function v for HP-TOP Kernel

v(d, α, w, b) = log P (+1|d)− log P (−1|d)

= log
P (c)q(d|c)∑
c′ P (c′)q(d|c′) − log

∑
e6=c

P (e)q(d|e)∑
c′ P (c′)q(d|c′)

= log P (c)q(d|c)− log
∑
e6=c

P (e)q(d|e)

= log P (c) exp{θc1(wc · d) + θc2(wc · d)2 +
θ2

c1

4θc2
− 1

2
log

−π

θc2
}

− log
∑
e6=c

P (e) exp{θe1(we · d) + θe2(we · d)2 +
θ2

e1

4θe2
− 1

2
log

−π

θe2
}, (33)

whereθx1 = µx/σ2
x, θx2 = −1/2σ2

x.

C Partial Derivatives

∂v(d, θ)

∂θc1
= wc · d− bc − µc, (34)

∂v(d, θ)

∂θe1
= − P (e)q(d|e)∑

c′ 6=c
P (c′)q(d|c′) (we · d− be − µe), (35)

∂v(d, θ)

∂θc2
= (wc · d− bc)

2 − µ2
c − σ2

c , (36)

∂v(d, θ)

∂θe2
= − P (e)q(d|e)∑

c′ 6=c
P (c′)q(d|c′){(we · d− be)

2 − µ2
e − σ2

e}, (37)

∂v(d, θ)

∂wci
=

µc − (wc · d− bc)

σ2
c

di, (38)

∂v(d, θ)

∂wei
= − P (e)q(d|e)∑

c′ 6=c
P (c′)q(d|c′)

µe − (we · d− be)

σ2
e

di, (39)

∂v(d, θ)

∂bc
=

wc · d− bc − µc

σ2
c

, (40)

∂v(d, θ)

∂be
= − P (e)q(d|e)∑

c′ 6=c
P (c′)q(d|c′)

we · d− be − µe

σ2
e

, (41)

∂v(d, θ)

P (c)
=

1

P (c)
, (42)

∂v(d, θ)

P (e)
= − P (d|e)∑

c′ 6=c
P (c′)q(d|c′) . (43)

D Dot-product of Derivatives (39) in Appendix C

∑
e6=c

∑
i

∂v(d1, θ)

∂wei

∂v(d2, θ)

∂wei
=

∑
e6=c

∑
i

P (e)2q(d1|e)q(d2|e)
P−c(d1)P−c(d2)

µe − (we · d− be)

σ2
e

µe − (we · d− be)

σ2
e

d1
i d

2
i (44)

=

(∑
e6=c

P (e)2q(d1|e)q(d2|e)
P−c(d1)P−c(d2)

µe − (we · d− be)

σ2
e

µe − (we · d− be)

σ2
e

)
d1 · d2, (45)

whereP−c(d) denotes
∑

c′ 6=c
P (c′)q(d|c′).


