
Memory-Based Dependency Parsing

Joakim Nivre, Johan Hall and Jens Nilsson
School of Mathematics and Systems Engineering

Växjö University
SE-35195 Växjö

Sweden
firstname.lastname@msi.vxu.se

Abstract

This paper reports the results of experiments
using memory-based learning to guide a de-
terministic dependency parser for unrestricted
natural language text. Using data from a small
treebank of Swedish, memory-based classifiers
for predicting the next action of the parser are
constructed. The accuracy of a classifier as
such is evaluated on held-out data derived from
the treebank, and its performance as a parser
guide is evaluated by parsing the held-out por-
tion of the treebank. The evaluation shows that
memory-based learning gives a signficant im-
provement over a previous probabilistic model
based on maximum conditional likelihood esti-
mation and that the inclusion of lexical features
improves the accuracy even further.

1 Introduction

Deterministic dependency parsing has recently been pro-
posed as a robust and efficient method for syntactic pars-
ing of unrestricted natural language text (Yamada and
Matsumoto, 2003; Nivre, 2003). Dependency parsing
means that the goal of the parsing process is to construct
a dependency graph, of the kind depicted in Figure 1. De-
terministic parsing means that we always derive a single
analysis for each input string. Moreover, this single anal-
ysis is derived in a monotonic fashion with no redundancy
or backtracking, which makes it possible to parse natural
language sentences in linear time (Nivre, 2003).

In this paper, we report experiments using memory-
based learning (Daelemans, 1999) to guide the parser de-
scribed in Nivre (2003), using data from a small tree-
bank of Swedish (Einarsson, 1976). Unlike most pre-
vious work on data-driven dependency parsing (Eisner,
1996; Collins et al., 1999; Yamada and Matsumoto, 2003;

Nivre, 2003), we assume that dependency graphs are la-
beled with dependency types, although the evaluation
will give results for both labeled and unlabeled represen-
tations.

The paper is structured as follows. Section 2 gives
the necessary background definitions and introduces the
idea of guided parsing as well as memory-based learning.
Section 3 describes the data used in the experiments, the
evaluation metrics, and the models and algorithms used
in the learning process. Results from the experiments are
given in section 4, while conclusions and suggestions for
further research are presented in section 5.

2 Background

2.1 Dependency Graphs

The linguistic tradition of dependency grammar com-
prises a large and fairly diverse family of theories and for-
malisms that share certain basic assumptions about syn-
tactic structure, in particular the assumption that syntactic
structure consists oflexical nodeslinked by binary re-
lations calleddependencies(see, e.g., Tesnière (1959),
Sgall (1986), Mel’čuk (1988), Hudson (1990)). Thus,
the common formal property of dependency structures,
as compared to the representations based on constituency
(or phrase structure), is the lack of nonterminal nodes.

In a dependency structure, every word token is depen-
dent on at most one other word token, usually called its
heador regent, which means that the structure can be
represented as a directed graph, with nodes representing
word tokens and arcs representing dependency relations.
In addition, arcs may be labeled with specific dependency
types. Figure 1 shows a labeled dependency graph for a
simple Swedish sentence, where each word of the sen-
tence is labeled with its part of speech and each arc la-
beled with a grammatical function.

Formally, we define dependency graphs in the follow-
ing way:

PP

På

(In

� �

?

ADV

NN

60-talet

the-60’s

� �

?

PR

VB

målade
painted

PN

han

he

� �

?

SUB

JJ

djärva

bold

� �

?

ATT

NN

tavlor

pictures

� �

?

OBJ

HP

som
which

� �

?

ATT

VB

retade

annoyed

?

� �

SUB

PM

Nikita

Nikita

� �

?

OBJ

PM

Chrusjtjov.

Chrustjev.)

� �

?

ID

Figure 1: Dependency graph for Swedish sentence

1. LetR = {r1, . . . , rm} be the set of permissible de-
pendency types (arc labels).

2. A dependency graph for a string of wordsW =
w1· · ·wn is a labeled directed graphD = (W, A),
where

(a) W is the set of nodes, i.e. word tokens in the
input string,

(b) A is a set of labeled arcs(wi, r, wj) (where
wi, wj ∈ W andr ∈ R).

We write wi < wj to express thatwi precedeswj

in the stringW (i.e., i < j); we writewi
r
→ wj to

say that there is an arc fromwi to wj labeledr, and
wi → wj to say that there is an arc fromwi to wj

(regardless of the label); we use→∗ to denote the
reflexive and transitive closure of the unlabeled arc
relation; and we use↔ and↔∗ for the correspond-
ing undirected relations, i.e.wi ↔ wj iff wi → wj

or wj → wi.

3. A dependency graphD = (W, A) is well-formed iff
the five conditions given in Figure 2 are satisfied.

For a more detailed discussion of dependency graphs
and well-formedness conditions, the reader is referred to
Nivre (2003).

2.2 Parsing Algorithm

The parsing algorithm presented in Nivre (2003) is in
many ways similar to the basic shift-reduce algorithm for
context-free grammars (Aho et al., 1986), although the
parse actions are different given that no nonterminal sym-
bols are used. Moreover, unlike the algorithm of Yamada
and Matsumoto (2003), the algorithm considered here ac-
tually uses a blend of bottom-up and top-down process-
ing, constructing left-dependencies bottom-up and right-
dependencies top-down, in order to achieve incremental-
ity. For a similar but nondeterministic approach to depen-
dency parsing, see Obrebski (2003).

Parser configurations are represented by triples
〈S, I, A〉, whereS is the stack (represented as a list),I is
the list of (remaining) input tokens, andA is the (current)

arc relation for the dependency graph. Given an input
stringW , the parser is initialized to〈nil, W, ∅〉 and termi-
nates when it reaches a configuration〈S,nil, A〉 (for any
list S and set of arcsA). The input stringW is acceptedif
the dependency graphD = (W, A) given at termination
is well-formed; otherwiseW is rejected. The behavior of
the parser is defined by the transitions defined in Figure
3 (wherewi, wj andwk are arbitrary word tokens, andr
andr′ are arbitrary dependency relations):

1. The transitionLeft-Arc (LA) adds an arcwj
r
→wi

from the next input tokenwj to the tokenwi on top
of the stack and reduces (pops)wi from the stack.

2. The transitionRight-Arc (RA) adds an arcwi
r
→wj

from the tokenwi on top of the stack to the next in-
put tokenwj , and shifts (pushes)wj onto the stack.

3. The transitionReduce (RE) reduces (pops) the to-
kenwi on top of the stack.

4. The transitionShift (SH) shifts (pushes) the next in-
put tokenwi onto the stack.

The transitionsLeft-Arc and Right-Arc are subject to
conditions that ensure that the graph conditionsUnique
label andSingle head are satisfied. By contrast, theRe-
duce transition can only be applied if the token on top of
the stack already has a head. ForShift, the only condition
is that the input list is non-empty.

As it stands, this transition system is nondeterminis-
tic, since several transitions can often be applied to the
same configuration. Thus, in order to get a deterministic
parser, we need to introduce a mechanism for resolving
transition conflicts. Regardless of which mechanism is
used, the parser is guaranteed to terminate after at most
2n transitions, given an input string of lengthn (Nivre,
2003). This means that as long as transitions can be per-
formed in constant time, the running time of the parser
will be linear in the length of the input. Moreover, the
parser is guaranteed to produce a dependency graph that
is acyclic and projective (and satisfies the unique-label
and single-head constraints). This means that the depen-
dency graph given at termination is well-formed if and
only if it is connected (Nivre, 2003).

Unique label (wi
r
→wj ∧ wi

r′

→wj) ⇒ r = r′

Single head (wi→wj ∧ wk →wj) ⇒ wi = wk

Acyclic ¬(wi→wj ∧ wj →∗wi)

Connected wi↔∗wj

Projective (wi↔wk ∧ wi <wj<wk) ⇒ (wi→∗wj ∨ wk→∗wj)

Figure 2: Well-formedness conditions on dependency graphs

Initialization 〈nil, W, ∅〉

Termination 〈S,nil, A〉

Left-Arc 〈wi|S, wj |I, A〉 → 〈S, wj |I, A ∪ {(wj , r, wi)}〉 ¬∃wk∃r′(wk, r′, wi) ∈ A

Right-Arc 〈wi|S, wj |I, A〉 → 〈wj |wi|S, I, A ∪ {(wi, r, wj)}〉 ¬∃wk∃r′(wk, r′, wj) ∈ A

Reduce 〈wi|S, I, A〉 → 〈S, I, A〉 ∃wj∃r(wj , r, wi) ∈ A

Shift 〈S, wi|I, A〉 → 〈wi|S, I, A〉

Figure 3: Parser transitions

2.3 Guided Parsing

One way of turning a nondeterministic parser into a deter-
ministic one is to use aguide(or oracle) that can inform
the parser at each nondeterministic choice point; cf. Kay
(2000), Boullier (2003). Guided parsing is normally used
to improve the efficiency of a nondeterministic parser,
e.g. by letting a simpler (but more efficient) parser con-
struct a first analysis that can be used to guide the choice
of the more complex (but less efficient) parser. This is the
approach taken, for example, in Boullier (2003).

In our case, we rather want to use the guide to im-
prove the accuracy of a deterministic parser, starting from
a baseline of randomized choice. One way of doing this
is to use a treebank, i.e. a corpus of analyzed sentences, to
train a classifier that can predict the next transition (and
dependency type) given the current configuration of the
parser. However, in order to maintain the efficiency of the
parser, the classifier must also be implemented in such a
way that each transition can still be performed in constant
time.

Previous work in this area includes the use of memory-
based learning to guide a standard shift-reduce parser
(Veenstra and Daelemans, 2000) and the use of sup-
port vector machines to guide a deterministic depen-
dency parser (Yamada and Matsumoto, 2003). In the

experiments reported in this paper, we apply memory-
based learning within a deterministic dependency parsing
framework.

2.4 Memory-Based Learning

Memory-based learning and problem solving is based on
two fundamental principles: learning is the simple stor-
age of experiences in memory, and solving a new problem
is achieved by reusing solutions from similar previously
solved problems (Daelemans, 1999). It is inspired by the
nearest neighbor approach in statistical pattern recogni-
tion and artificial intelligence (Fix and Hodges, 1952), as
well as the analogical modeling approach in linguistics
(Skousen, 1989; Skousen, 1992). In machine learning
terms, it can be characterized as a lazy learning method,
since it defers processing of input until needed and pro-
cesses input by combining stored data (Aha, 1997).

Memory-based learning has been successfully applied
to a number of problems in natural language process-
ing, such as grapheme-to-phoneme conversion, part-
of-speech tagging, prepositional-phrase attachment, and
base noun phrase chunking (Daelemans et al., 2002).
Most relevant in the present context is the use of memory-
based learning to predict the actions of a shift-reduce
parser, with promising results reported in Veenstra and

Daelemans (2000).
The main reason for using memory-based learning in

the present context is the flexibility offered by similarity-
based extrapolation when classifying previously unseen
configurations, since previous experiments with a proba-
bilistic model has shown that a fixed back-off sequence
does not work well in this case (Nivre, 2004). Moreover,
the memory-based approach can easily handle multi-class
classification, unlike the support vector machines used by
Yamada and Matsumoto (2003).

For the experiments reported in this paper, we have
used the software package TiMBL (Tilburg Memory
Based Learner), which provides a variety of metrics, al-
gorithms, and extra functions on top of the classicalk

nearest neighbor classification kernel, such as value dis-
tance metrics and distance weighted class voting (Daele-
mans et al., 2003).

3 Method

3.1 Target Function and Approximation

The function we want to approximate is a mappingf

from parser configurations to parser actions, where each
action consists of a transition and (unless the transition is
Shift or Reduce) a dependency type:

f : Config → {LA, RA, RE, SH} × (R ∪ {nil})

HereConfig is the set of all possible parser configura-
tions andR is the set of dependency types as before.
However, in order to make the problem tractable, we try
to learn a functionf̂ whose domain is a finite space of
parserstates, which are abstractions over configurations.
For this purpose we define a number of features that can
be used to define different models of parser state. The
features used in this study are listed in Table 1.

The first five features (TOP–TOP.RIGHT) deal with
properties of the token on top of the stack. In addition to
the word form itself (TOP), we consider its part-of-speech
(as assigned by an automatic part-of-speech tagger in a
preprocessing phase), the dependency type by which it is
related to its head (which may or may not be available in
a given configuration depending on whether the head is
to the left or to the right of the token in question), and
the dependency types by which it is related to its leftmost
and rightmost dependent, respectively (where the current
rightmost dependent may or may not be the rightmost de-
pendent in the complete dependency tree).

The following three features (NEXT–NEXT.LEFT) refer
to properties of the next input token. In this case, there are
no features corresponding toTOP.DEP and TOP.RIGHT,
since the relevant dependencies can never be present at
decision time. The final feature (LOOK) is a simple looka-
head, using the part-of-speech of the next plus one input
token.

In the experiments reported below, we have used
two different parser state models, one called thelexical
model, which includes all nine features, and one called
the non-lexical model, where the two lexical features
TOP and NEXT are omitted. For both these models, we
have used memory-based learning with different parame-
ter settings, as implemented TiMBL.

For comparison, we have included an earlier classifier
that uses the same features as the non-lexical model, but
where prediction is based on maximum conditional likeli-
hood estimation. This classifier always predicts the most
probable transition given the state and the most probable
dependency type given the transition and the state, with
conditional probabilities being estimated by the empiri-
cal distribution in the training data. Smoothing is per-
formed only for zero frequency events, in which case the
classifier backs off to more general models by omitting
first the featuresTOP.LEFT and LOOK and then the fea-
turesTOP.RIGHT and NEXT.LEFT; if even this does not
help, the classifier predictsReduce if permissible and
Shift otherwise. This model, which we will refer to as the
MCLE model, is described in more detail in Nivre (2004).

3.2 Data

It is standard practice in data-driven approaches to nat-
ural language parsing to use treebanks both for training
and evaluation. Thus, the Penn Treebank of American
English (Marcus et al., 1993) has been used to train and
evaluate the best available parsers of unrestricted English
text (Collins, 1999; Charniak, 2000). One problem when
developing a parser for Swedish is that there is no com-
parable large-scale treebank available for Swedish.

For the experiments reported in this paper we have
used a manually annotated corpus of written Swedish,
created at Lund University in the 1970’s and consisting
mainly of informative texts from official sources (Einars-
son, 1976). Although the original annotation scheme is
an eclectic combination of constituent structure, depen-
dency structure, and topological fields (Teleman, 1974),
it has proven possible to convert the annotated sentences
to dependency graphs with fairly high accuracy.

In the conversion process, we have reduced the orig-
inal fine-grained classification of grammatical functions
to a more restricted set of 16 dependency types, which
are listed in Table 2. We have also replaced the origi-
nal (manual) part-of-speech annotation by using the same
automatic tagger that is used for preprocessing in the
parser. This is a standard probabilistic tagger trained on
the Stockholm-Umeå Corpus of written Swedish (SUC,
1997) and found to have an accuracy of 95–96% when
tested on held-out data.

Since the function we want to learn is a mapping from
parser states to transitions (and dependency types), the
treebank data cannot be used directly as training and test

Feature Description
TOP The token on top of the stack
TOP.POS The part-of-speech ofTOP

TOP.DEP The dependency type ofTOP (if any)
TOP.LEFT The dependency type ofTOP’s leftmost dependent (if any)
TOP.RIGHT The dependency type ofTOP’s rightmost dependent (if any)
NEXT The next input token
NEXT.POS The part-of-speech ofNEXT

NEXT.LEFT The dependency type ofNEXT’s leftmost dependent (if any)
LOOK.POS The part-of-speech of the next plus one input token

Table 1: Parser state features

data. Instead, we have to simulate the parser on the tree-
bank in order to derive, for each sentence, the transition
sequence corresponding to the correct dependency tree.
Given the result of this simulation, we can construct a
data set consisting of pairs〈s, t〉, wheres is a parser state
and t is the correct transition from that state (including
a dependency type if applicable). Unlike standard shift-
reduce parsing, the simulation of the current algorithm is
almost deterministic and is guaranteed to be correct if the
input dependency tree is well-formed.

The complete converted treebank contains 6316 sen-
tences and 97623 word tokens, which gives a mean sen-
tence length of 15.5 words. The treebank has been di-
vided into three non-overlapping data sets: 80% for train-
ing 10% for development/validation, and 10% for final
testing (random samples). The results presented below
are all from the validation set. (The final test set has not
been used at all in the experiments reported in this paper.)

When talking about test and validation data, we make
a distinction between thesentence data, which refers to
the original annotated sentences in the treebank, and the
transition data, which refers to the transitions derived by
simulating the parser on these sentences. While the sen-
tence data for validation consists of 631 sentences, the
corresponding transition data contains 15913 instances.
For training, only transition data is relevant and the train-
ing data set contains 371977 instances.

3.3 Evaluation

The output of the memory-based learner is a classifier that
predicts the next transition (including dependency type),
given the current state of the parser. The quality of this
classifier has been evaluated with respect to bothpredic-
tion accuracyandparsing accuracy.

Prediction accuracy refers to the quality of the clas-
sifier as such, i.e. how well it predicts the next transition
given the correct parser state, and is measured by the clas-
sification accuracy on unseen transition data (using a 0-1
loss function). We use McNemar’s test for statistical sig-
nificance.

Parsing accuracy refers to the quality of the classifier
as a guide for the deterministic parser and is measured
by the accuracy obtained when parsing unseen sentence
data. More precisely, parsing accuracy is measured by
the attachment score, which is a standard measure used
in studies of dependency parsing (Eisner, 1996; Collins
et al., 1999). The attachment score is computed as the
proportion of tokens (excluding punctuation) that are as-
signed the correct head (or no head if the token is a root).
Since parsing is a sentence-level task, we believe that
the overall attachment score should be computed as the
mean attachment scoreper sentence, which gives an es-
timate of the expected attachment score for an arbitrary
sentence. However, since most previous studies instead
use the mean attachment scoreper word (Eisner, 1996;
Collins et al., 1999), we will give this measure as well.
In order to measure label accuracy, we also define ala-
beled attachment score, where both the head and the label
must be correct, but which is otherwise computed in the
same way as the ordinary (unlabeled) attachment score.
For parsing accuracy, we use a pairedt-test for statistical
significance.

4 Results

Table 3 shows the prediction accuracy achieved with
memory-based learning for the lexical and non-lexical
model, with two different parameter settings for the
learner. The results in the first column were obtained with
the default settings of the TiMBL package, in particular:

• The IB1 classification algorithm (Aha et al., 1991).

• The overlap distance metric.

• Features weighted by Gain Ratio (Quinlan, 1993).

• k = 1, i.e. classification based on a single nearest
neighbor.1

1In TiMBL, the value ofk in fact refers tok nearest dis-
tances rather thank nearest neighbors, which means that, even
with k = 1, the nearest neighbor set can contain several in-

Label Dependency Type
ADV Adverbial modifier
APP Apposition
ATT Attribute
CC Coordination (conjunction or second conjunct)
DET Determiner
ID Non-first element of multi-word expression
IM Infinitive dependent on infinitive marker
IP Punctuation mark dependent on lexical head
INF Infinitival complement
OBJ Object
PR Complement of preposition
PRD Predicative complement
SUB Subject
UK Main verb of subordinate clause dependent on complementizer
VC Verb chain (nonfinite verb dependent on other verb)
XX Unclassifiable dependent

Table 2: Dependency types in Swedish treebank

Model Default Maximum
Non-lexical 86.8 87.4
Lexical 88.4 89.7

Table 3: Prediction accuracy for MBL models

The second column shows the accuracy for the best pa-
rameter settings found in the experiments (averaged over
both models), which differ from the default in the follow-
ing respects:

• Overlap metric replaced by the modified value dis-
tance metric (MVDM) (Stanfill and Waltz, 1986;
Cost and Salzberg, 1993).

• No weighting of features.

• k = 5, i.e. classification based on 5 nearest neigh-
bors.

• Distance weighted class voting with inverse distance
weighting (Dudani, 1976).

For more information about the different parameters and
settings, the reader is referred to Daelemans et al. (2003).

The results show that the lexical model performs con-
sistently better than the non-lexical model, and that the
difference increases with the optimization of the learning
algorithm (all differences being significant at the .0001
level according to McNemar’s test). This confirms pre-
vious results from statistical parsing indicating that lex-
ical information is crucial for disambiguation (Collins,

stances that are equally distant to the test instance. This is dif-
ferent from the originalIB1 algorithm, as described in Aha et
al. (1991).

1999; Charniak, 2000). As regards optimization, we may
note that although there is a significant improvement for
both models, the magnitude of the difference is relatively
small.

Table 4 shows the parsing accuracy obtained with the
optimized versions of the MBL models (lexical and non-
lexical), compared to the MCLE model described in sec-
tion 3. We see that MBL outperforms the MCLE model
even when limited to the same features (all differences
again being significant at the .0001 level according to
a pairedt-test). This can probably be explained by the
fact that the similarity-based smoothing built into the
memory-based approach gives a better extrapolation than
the fixed back-off sequence in the MCLE model. We
also see that the lexical MBL model outperforms both
the other models. If we compare the labeled attachment
score to the prediction accuracy (which also takes depen-
dency types into account), we observe a substantial drop
(from 89.7 to 81.7 for the lexical model, from 87.4 to
76.5 for the non-lexical model), which is of course only
to be expected. The unlabeled attachment score is natu-
rally higher, and it is worth noting that the relative differ-
ence between the MBL lexical model and the other two
models is much smaller. This indicates that the advan-
tage of the lexical model mainly concerns the accuracy in
predicting dependency type in addition to transition.

Model Labeled Unlabeled
MCLE 74.7 (72.3) 81.5 (79.7)
MBL non-lexical 76.5 (74.7) 82.9 (81.7)
MBL lexical 81.7 (80.6) 85.7 (84.7)

Table 4: Parsing accuracy for MCLE and MBL models, attachment score per sentence (per word in parentheses)

If we compare the results concerning parsing accuracy
to those obtained for other languages (given that there
are no comparable results available for Swedish), we note
that the best unlabeled attachment score is lower than for
English, where the best results are above 90% (attach-
ment score per word) (Collins et al., 1999; Yamada and
Matsumoto, 2003), but higher than for Czech (Collins et
al., 1999). This is encouraging, given that the size of
the training set in our experiments is fairly small, only
about 10% of the standard training set for the Penn Tree-
bank. One reason why our results nevertheless compare
reasonably well with those obtained with the much larger
training set is probably that the conversion to dependency
trees is more accurate for the Swedish treebank, given the
explicit annotatation of grammatical functions. More-
over, the fact that our parser uses labeled dependencies
is probably also significant, since the possibility of us-
ing information from previously assigned (labeled) de-
pendencies during parsing seems to have a positive effect
on accuracy (Nivre, 2004).

Finally, it may be interesting to consider the accuracy
for individual dependency types. Table 5 gives labeled
precision, labeled recall and unlabeled attachment score
for four of the most important types with the MBL lex-
ical model. The results indicate that subjects have the
highest accuracy, especially when labels are taken into
account. Objects and predicative complements have com-
parable attachment accuracy, but are more often misclas-
sified with respect to dependency type. For adverbial
modifiers, finally, attachment accuracy is lower than for
the other dependency types, which is largely due to the
notorious PP-attachment problem.

5 Conclusion

In this paper we have shown that a combination of
memory-based learning and deterministic dependency
parsing can be used to construct a robust and efficient
parser for unrestricted natural language text, achieving a
parsing accuracy which is close to the state of the art even
with relatively limited amounts of training data. Clas-
sifiers based on memory-based learning achieve higher
parsing accuracy than previous probabilistic models, and
the improvement increases if lexical information is added
to the model.

Suggestions for further research includes the further

exploration of alternative models and parameter settings,
but also the combination of inductive and analytical
learning to impose high-level linguistic constraints, and
the development of new parsing methods (e.g. involving
multiple passes over the data). In addition, it is important
to evaluate the approach with respect to other languages
and corpora in order to increase the comparability with
other approaches.

Acknowledgements

The work presented in this paper was supported by a
grant from the Swedish Research Council (621-2002-
4207). The memory-based classifiers used in the experi-
ments were constructed using the Tilburg Memory-Based
Learner (TiMBL) (Daelemans et al., 2003). We are grate-
ful to three anonymous reviewers for constructive com-
ments on the preliminary version of the paper.

References

D. W. Aha, D. Kibler and M. Albert. 1991. Instance-
based Learning Algorithms.Machine Learning6, 37–
66.

D. Aha. 1997.Lazy Learning. Dordrecht: Kluwer.

A. V. Aho, R. Sethi and J. D. Ullman. 1986.Compilers:
Principles Techniques, and Tools. Addison Wesley.

P. Boullier. 2003. Guided Earley Parsing. In G. van No-
ord (ed.)Proceedings of the 8th International Work-
shop on Parsing Technologies (IWPT 03), Nancy,
France, pp. 43–54.

E. Charniak. 2000. A Maximum-Entropy-Inspired
Parser. InProceedings NAACL-2000.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. PhD Thesis, University of
Pennsylvania.

M. Collins, J. Hajic, E. Brill, L. Ramshaw and C. Till-
mann. 1999. A Statistical Parser of Czech. InPro-
ceedings of 37th ACL Conference, University of Mary-
land, College Park, USA, pp. 505–512.

S. Cost and S. Salzberg. 1993. A Weighted Nearest
Neighbor Algorithm for Learning with Symbolic Fea-
tures.Machine Learning10, 57–78.

Dependency type Precision Recall Attachment
SUB 84.3 82.7 89.2
OBJ 74.7 78.8 87.0
PRD 75.1 71.4 84.2
ADV 76.2 74.6 78.3

Table 5: Dependency type accuracy, MBL lexical model; labeled precision, labeled recall, unlabeled attachment score

W. Daelemans. 1999. Memory-Based Language Pro-
cessing. Introduction to the Special Issue.Journal
of Experimental and Theoretical Artificial Intelligence
11(3), 287–292.

W. Daelemans, A. van den Bosch, J. Zavrel. 2002. For-
getting Exceptions is Harmful in Language Learning.
Machine Learning34, 11–43.

W. Daelemans, J. Zavrel, K. van der Sloot and
A. van den Bosch, . 2003. TiMBL: Tilburg Memory
Based Learner, version 5.0, Reference Guide. Techni-
cal Report ILK 03-10, Tilburg University.

S. A. Dudani. 1976. The Distance-WeightedK-nearest
Neighbor Rule.IEEE Transactions on Systems, Man,
and CyberneticsSMC-6, 325–327.

J. Einarsson. 1976. Talbankens skriftsprkskonkordans.
Lund University.

J. M. Eisner. 1996. Three New Probabilistic Models for
Dependency Parsing: An Exploration. InProceedings
of COLING-96, Copenhagen.

E. Fix and J. Hodges. 1952. Discriminatory Analy-
sis: Nonparametric Discrimination: Consistency Prop-
erties. Technical Report 21-49-004-11, USAF School
of Aviation Medicine, Randolph Field, Texas.

R. A. Hudson. 1990.English Word Grammar. Black-
well.

M. Kay. 2000. Guides and Oracles for Linear-Time Pars-
ing. In Proceedings of the 6th International Workshop
on Parsing Technologies (IWPT 00), Trento, Italy, pp.
6–9.

M. P. Marcus, B. Santorini and M. A. Marcinkiewics.
1993. Building a Large Annotated Corpus of English:
The Penn Treebank.Computational Linguistics19,
313–330.

I. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

J. Nivre. 2003. An Efficient Algorithm for Projective De-
pendency Parsing. In G. van Noord (ed.)Proceedings
of the 8th International Workshop on Parsing Tech-
nologies (IWPT 03), Nancy, France, pp. 149–160.

J. Nivre. 2004. Inductive Dependency Parsing. Techni-
cal Report, Växjö University.

T. Obrebski. 2003. Dependency Parsing Using Depen-
dency Graph. In G. van Noord (ed.)Proceedings of
the 8th International Workshop on Parsing Technolo-
gies (IWPT 03), Nancy, France, pp. 217–218.

J. R. Quinlan. 1993. C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

P. Sgall, E. Hajicová and J. Panevová. 1986.The Mean-
ing of the Sentence in Its Pragmatic Aspects. Reidel.

R. Skousen. 1989.Analogical Modeling of Language.
Dordrecht: Kluwer.

R. Skousen. 1992.Analogy and Structure. Dordrecht:
Kluwer.

C. Stanfill and D. Waltz. 1986. Toward Memory-Based
Reasoning. Communications of the ACM29(12),
1213–1228.

SUC 1997. Stockholm Umeå Corpus. Version 1.0. Pro-
duced by Department of Linguistics, Umeå University
and Department of Linguistics, Stockholm University.

U. Teleman. 1974.Manual f̈or grammatisk beskrivning
av talad och skriven svenska. Studentlitteratur.

L. Tesnière. 1959.Eléments de syntaxe structurale. Edi-
tions Klincksieck

J. Veenstra and W. Daelemans. 2000. A Memory-Based
Alternative for Connectionist Shift-Reduce Parsing.
Technical Report ILK-0012, University of Tilburg.

H. Yamada and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines. In
G. van Noord (ed.)Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT 03),
Nancy, France, pp. 195–206.

