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Abstract

This paper reports the results of experiments
using memory-based learning to guide a de-
terministic dependency parser for unrestricted
natural language text. Using data from a small
treebank of Swedish, memory-based classifiers
for predicting the next action of the parser are
constructed. The accuracy of a classifier as
such is evaluated on held-out data derived from
the treebank, and its performance as a parser
guide is evaluated by parsing the held-out por-
tion of the treebank. The evaluation shows that
memory-based learning gives a signficant im-
provement over a previous probabilistic model
based on maximum conditional likelihood esti-
mation and that the inclusion of lexical features
improves the accuracy even further.

I ntroduction

Nivre, 2003), we assume that dependency graphs are la-
beled with dependency types, although the evaluation

will give results for both labeled and unlabeled represen-

tations.

The paper is structured as follows. Section 2 gives
the necessary background definitions and introduces the
idea of guided parsing as well as memory-based learning.
Section 3 describes the data used in the experiments, the
evaluation metrics, and the models and algorithms used
in the learning process. Results from the experiments are
given in section 4, while conclusions and suggestions for
further research are presented in section 5.

2 Background
2.1 Dependency Graphs

The linguistic tradition of dependency grammar com-
prises a large and fairly diverse family of theories and for-
malisms that share certain basic assumptions about syn-
tactic structure, in particular the assumption that sytitac
structure consists dexical nodedinked by binary re-

Deterministic dependency parsing has recently been priations calleddependencie¢see, e.g., Tesniere (1959),
posed as a robust and efficient method for syntactic par§gall (1986), Mel'Cuk (1988), Hudson (1990)). Thus,
ing of unrestricted natural language text (Yamada anéte common formal property of dependency structures,
Matsumoto, 2003; Nivre, 2003). Dependency parsingS compared to the representations based on constituency
means that the goal of the parsing process is to constrdét’ phrase structure), is the lack of nonterminal nodes.

a dependency graph, of the kind depicted in Figure 1. De- In a dependency structure, every word token is depen-
terministic parsing means that we always derive a singlgent on at most one other word token, usually called its
analysis for each input string. Moreover, this single anakhead or regent which means that the structure can be
ysis is derived in a monotonic fashion with no redundancgepresented as a directed graph, with nodes representing
or backtracking, which makes it possible to parse natursord tokens and arcs representing dependency relations.
language sentences in linear time (Nivre, 2003).

In addition, arcs may be labeled with specific dependency

In this paper, we report experiments using memorytypes. Figure 1 shows a labeled dependency graph for a

based learning (Daelemans, 1999) to guide the parser démple Swedish sentence, where each word of the sen-
scribed in Nivre (2003), using data from a small treetence is labeled with its part of speech and each arc la-
bank of Swedish (Einarsson, 1976). Unlike most prebeled with a grammatical function.

vious work on data-driven dependency parsing (Eisner, Formally, we define dependency graphs in the follow-
1996; Collins et al., 1999; Yamada and Matsumoto, 2003ng way:
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P& 60-talet malade han djarva tavilor som retade Nikita Chrusitjov.
(In the-60's painted he bold pictures which annoyedNikita Chrustjev.)

Figure 1: Dependency graph for Swedish sentence

1. LetR = {r1,...,m} be the set of permissible de- arc relation for the dependency graph. Given an input
pendency types (arc labels). stringW, the parser is initialized ttil, W, ) and termi-
. nates when it reaches a configuratidhnil, A) (for any
2. A dependency graph for a string of wortls = it g and set of arcsl). The input stringV is accepted

wi--wy is a labeled directed graph = (W, 4),  the dependency graph = (W, A) given at termination

where is well-formed; otherwiséV’ is rejected The behavior of
(a) W is the set of nodes, i.e. word tokens in thethe parser is defined by the transitions defined in Figure

input string, 3 (wherew;, w; andwy, are arbitrary word tokens, and

(b) A'is a set of labeled arcgw;,r,w;) (where ands are arbitrary dependency relations):

wi, w; € Wandr € R). 1. The transitiorLeft-Arc (LA) adds an araw; — w;
from the next input tokem; to the tokenw; on top

We write w; < w; to express thab; precedesy; of the stack and reduces (pops)from the stack.

in the stringW’ (i.e.,i < 7); we writew; — w; to
say that there is an arc from, to w; labeledr, and 2. The transitiorRight-Arc (RA) adds an arey; - w;
w; — wj to say that there is an arc from; to w; from the tokerw; on top of the stack to the next in-
(regardless of the label); we use* to denote the put tokernw;, and shifts (pushes); onto the stack.
reflexive and transitive closure of the unlabeled arc
relation; and we use» and«—* for the correspond-
ing undirected relations, i.eu; «— w; iff w; — w;
orw; — w;. 4. The transitiorshift (SH) shifts (pushes) the nextin-
put tokenw; onto the stack.

3. The transitiorReduce (RE) reduces (pops) the to-
kenw; on top of the stack.

3. Adependency graph = (W, A) is well-formed iff . . )
the five conditions given in Figure 2 are satisfied. 1he transitions.eft-Arc and Right-Arc are subject to

conditions that ensure that the graph conditibimsque
For a more detailed discussion of dependency graphabel andSingle head are satisfied. By contrast, tie-
and well-formedness conditions, the reader is referred tuce transition can only be applied if the token on top of

Nivre (2003). the stack already has a head. Bhift, the only condition
_ ) is that the input list is non-empty.
2.2 Parsing Algorithm As it stands, this transition system is nondeterminis-

The parsing algorithm presented in Nivre (2003) is irtic, since several transitions can often be applied to the
many ways similar to the basic shift-reduce algorithm fosame configuration. Thus, in order to get a deterministic
context-free grammars (Aho et al., 1986), although thparser, we need to introduce a mechanism for resolving
parse actions are different given that no nonterminal syntransition conflicts. Regardless of which mechanism is
bols are used. Moreover, unlike the algorithm of Yamadased, the parser is guaranteed to terminate after at most
and Matsumoto (2003), the algorithm considered here a@n transitions, given an input string of length(Nivre,
tually uses a blend of bottom-up and top-down proces2003). This means that as long as transitions can be per-
ing, constructing left-dependencies bottom-up and righformed in constant time, the running time of the parser
dependencies top-down, in order to achieve incrementadill be linear in the length of the input. Moreover, the
ity. For a similar but nondeterministic approach to deperparser is guaranteed to produce a dependency graph that
dency parsing, see Obrebski (2003). is acyclic and projective (and satisfies the unique-label

Parser configurations are represented by triplesnd single-head constraints). This means that the depen-
(S,I,A), whereS is the stack (represented as a ligt)s  dency graph given at termination is well-formed if and
the list of (remaining) input tokens, andis the (current) only if it is connected (Nivre, 2003).



Unique label (w; S w; A wii»wj) =r=r

Single head (w; —w; A wi—w;) = w; =wg

Acyclic —(w; —w; A wj—*w;)

Connected w; —* w;

Projective (wy = w A w <wj<wg) = (w; —*w; V wg—"w;)

Figure 2: Well-formedness conditions on dependency graphs

Initialization  (nil, W, ()

Termination (S, nil, 4)

Left-Arc (wi| S, w; | I, Ay — (S, w;|I, AU{(w;,r,w;)}) —Jwy I (wg, ', w;) € A
Right-Arc (wi| S, w; I, A) — (wj|w;|S, I, AU {(ws,r,w;)})  —FweIr' (wg, v, w;j) € A
Reduce (w;]S, I, Ay — (S,I,A) Fw;Ir(w;, r,w;) € A

Shift (S, w;|I, A) — (w;|S, I, A)

Figure 3: Parser transitions

2.3 Guided Parsing experiments reported in this paper, we apply memory-
based learning within a deterministic dependency parsing

One way of turning a nondeterministic parser into a dete?ramework

ministic one is to use guide(or oracle) that can inform
the parser at each nondeterministic choice point; cf. Ka
(2000), Boullier (2003). Guided parsing is normally use
to improve the efficiency of a nondeterministic parsemviemory-based learning and problem solving is based on
e.g. by letting a simpler (but more efficient) parser contwo fundamental principles: learning is the simple stor-
struct a first analysis that can be used to guide the choigge of experiences in memory, and solving a new problem
of the more complex (but less efficient) parser. This is thg achieved by reusing solutions from similar previously
approach taken, for example, in Boullier (2003). solved problems (Daelemans, 1999). It is inspired by the
In our case, we rather want to use the guide to imnaearest neighbor approach in statistical pattern recogni-
prove the accuracy of a deterministic parser, starting froition and artificial intelligence (Fix and Hodges, 1952), as
a baseline of randomized choice. One way of doing thiwell as the analogical modeling approach in linguistics
is to use a treebank, i.e. a corpus of analyzed sentences(&kousen, 1989; Skousen, 1992). In machine learning
train a classifier that can predict the next transition (anterms, it can be characterized as a lazy learning method,
dependency type) given the current configuration of thsince it defers processing of input until needed and pro-
parser. However, in order to maintain the efficiency of theesses input by combining stored data (Aha, 1997).
parser, the classifier must also be implemented in such aMemory-based learning has been successfully applied
way that each transition can still be performed in constand a number of problems in natural language process-
time. ing, such as grapheme-to-phoneme conversion, part-
Previous work in this area includes the use of memoryef-speech tagging, prepositional-phrase attachment, and
based learning to guide a standard shift-reduce pardefise noun phrase chunking (Daelemans et al., 2002).
(Veenstra and Daelemans, 2000) and the use of sultostrelevantinthe present contextis the use of memory-
port vector machines to guide a deterministic deperbased learning to predict the actions of a shift-reduce
dency parser (Yamada and Matsumoto, 2003). In thgarser, with promising results reported in Veenstra and

4 Memory-Based Learning



Daelemans (2000). In the experiments reported below, we have used
The main reason for using memory-based learning itwo different parser state models, one called ltheécal
the present context is the flexibility offered by similarity model, which includes all nine features, and one called
based extrapolation when classifying previously unseahe non-lexical model, where the two lexical features
configurations, since previous experiments with a proba-op andNEXT are omitted. For both these models, we
bilistic model has shown that a fixed back-off sequenckave used memory-based learning with different parame-
does not work well in this case (Nivre, 2004). Moreoverter settings, as implemented TiMBL.
the memory-based approach can easily handle multi-classFor comparison, we have included an earlier classifier
classification, unlike the support vector machines used lifiat uses the same features as the non-lexical model, but
Yamada and Matsumoto (2003). where prediction is based on maximum conditional likeli-
For the experiments reported in this paper, we havieood estimation. This classifier always predicts the most
used the software package TiMBL (Tilburg Memoryprobable transition given the state and the most probable
Based Learner), which provides a variety of metrics, aldependency type given the transition and the state, with
gorithms, and extra functions on top of the classical conditional probabilities being estimated by the empiri-
nearest neighbor classification kernel, such as value digal distribution in the training data. Smoothing is per-
tance metrics and distance weighted class voting (Daelfsrmed only for zero frequency events, in which case the

mans et al., 2003). classifier backs off to more general models by omitting
first the featureSOP.LEFT andLOOK and then the fea-
3 Method turesTOP.RIGHT andNEXT.LEFT; if even this does not

help, the classifier predictReduce if permissible and
Shift otherwise. This model, which we will refer to as the

The function we want to approximate is @ mappifig MCLE model, is described in more detail in Nivre (2004).
from parser configurations to parser actions, where each

action consists of a transition and (unless the transifion 8.2 Data
Shift or Reduce) a dependency type:

3.1 Target Function and Approximation

It is standard practice in data-driven approaches to nat-

f: Config — {LA,RA,RE,SH} x (RU {nil}) ural language parsing to use treebanks both for training
and evaluation. Thus, the Penn Treebank of American
Here Config is the set of all possible parser configura-English (Marcus et al., 1993) has been used to train and
tions andR is the set of dependency types as beforegvaluate the best available parsers of unrestricted Englis
However, in order to make the problem tractable, we trjext (Collins, 1999; Charniak, 2000). One problem when
to learn a function/ whose domain is a finite space ofdeveloping a parser for Swedish is that there is no com-
parserstates which are abstractions over configurationsparable large-scale treebank available for Swedish.
For this purpose we define a number of features that canFor the experiments reported in this paper we have
be used to define different models of parser state. Thesed a manually annotated corpus of written Swedish,
features used in this study are listed in Table 1. created at Lund University in the 1970’s and consisting
The first five features TOP-TORRIGHT) deal with mainly of informative texts from official sources (Einars-
properties of the token on top of the stack. In addition t¢on, 1976). Although the original annotation scheme is
the word form itself foP), we consider its part-of-speech an eclectic combination of constituent structure, depen-
(as assigned by an automatic part-of-speech tagger irdency structure, and topological fields (Teleman, 1974),
preprocessing phase), the dependency type by which itithas proven possible to convert the annotated sentences
related to its head (which may or may not be available ito dependency graphs with fairly high accuracy.
a given configuration depending on whether the head is In the conversion process, we have reduced the orig-
to the left or to the right of the token in question), andnal fine-grained classification of grammatical functions
the dependency types by which it is related to its leftmogb a more restricted set of 16 dependency types, which
and rightmost dependent, respectively (where the curreate listed in Table 2. We have also replaced the origi-
rightmost dependent may or may not be the rightmost deal (manual) part-of-speech annotation by using the same
pendent in the complete dependency tree). automatic tagger that is used for preprocessing in the
The following three featuresiEXT-NEXT.LEFT) refer  parser. This is a standard probabilistic tagger trained on
to properties of the next input token. In this case, there atbe Stockholm-Umea Corpus of written Swedish (SUC,
no features corresponding tP.DEP and TORRIGHT, 1997) and found to have an accuracy of 95-96% when
since the relevant dependencies can never be presentested on held-out data.
decision time. The final feature@ok) is a simple looka- Since the function we want to learn is a mapping from
head, using the part-of-speech of the next plus one inpparser states to transitions (and dependency types), the
token. treebank data cannot be used directly as training and test



Feature Description

TOP The token on top of the stack

TOPPOS The part-of-speech afop

TOP.DEP The dependency type abp (if any)

TOPLEFT The dependency type obP's leftmost dependent (if any)
TORRIGHT  The dependency type abP's rightmost dependent (if any)
NEXT The next input token

NEXT.POS  The part-of-speech ofEXT

NEXT.LEFT The dependency type afeXT’s leftmost dependent (if any)
LOOK.POS The part-of-speech of the next plus one input token

Table 1: Parser state features

data. Instead, we have to simulate the parser on the tree-Parsing accuracy refers to the quality of the classifier
bank in order to derive, for each sentence, the transiticas a guide for the deterministic parser and is measured
sequence corresponding to the correct dependency trég.the accuracy obtained when parsing unseen sentence
Given the result of this simulation, we can construct alata. More precisely, parsing accuracy is measured by
data set consisting of paifs, t), wheres is a parser state the attachment scorewhich is a standard measure used
andt is the correct transition from that state (includingin studies of dependency parsing (Eisner, 1996; Collins
a dependency type if applicable). Unlike standard shiftet al., 1999). The attachment score is computed as the
reduce parsing, the simulation of the current algorithm iproportion of tokens (excluding punctuation) that are as-
almost deterministic and is guaranteed to be correct if th&@gned the correct head (or no head if the token is a root).
input dependency tree is well-formed. Since parsing is a sentence-level task, we believe that
The complete converted treebank contains 6316 sethie overall attachment score should be computed as the
tences and 97623 word tokens, which gives a mean semean attachment scoper sentencewhich gives an es-
tence length of 15.5 words. The treebank has been dimate of the expected attachment score for an arbitrary
vided into three non-overlapping data sets: 80% for trairsentence. However, since most previous studies instead
ing 10% for development/validation, and 10% for finaluse the mean attachment scger word (Eisner, 1996;
testing (random samples). The results presented beldollins et al., 1999), we will give this measure as well.
are all from the validation set. (The final test set has ndt order to measure label accuracy, we also defife a
been used at all in the experiments reported in this papehgled attachment scaorehere both the head and the label
When talking about test and validation data, we makgust be correct, but which is otherwise computed in the
a distinction between theentence datavhich refers to same way as the ordinary (unlabeled) attachment score.
the original annotated sentences in the treebank, and ther parsing accuracy, we use a paiteést for statistical
transition data which refers to the transitions derived bysignificance.
simulating the parser on these sentences. While the sen-
tence data for validation consists of 631 sentences, tKe Results

corresponding transition data contains 15913 instanCegpe 3 shows the prediction accuracy achieved with
Fortrammg, only tran3|t|on da_ta is relevant and the t”ra'nmemory-based learning for the lexical and non-lexical
ing data set contains 371977 instances. model, with two different parameter settings for the
: learner. The results in the first column were obtained with
3.3 Evaluation ; ) . . )
the default settings of the TIMBL package, in particular:
The output of the memory-based learner is a classifier that
predicts the next transition (including dependency type), ® TheiB1 classification algorithm (Aha et al., 1991).
given the current state of the parser. The quality of this
classifier has been evaluated with respect to paotilic-
tion accuracyandparsing accuracy e Features weighted by Gain Ratio (Quinlan, 1993).
Prediction accuracy refers to the quality of the clas- ) o _
sifier as such, i.e. how well it predicts the next transition ® ¥ = 1, i.e. classification based on a single nearest
given the correct parser state, and is measured by the clas- neighbor:

sification accuracy on unseen transition data (using a 0-I 1, TiMBL. the value of in fact refers tok nearest dis-

loss function). We use McNemar's test for statistical sigtances rather thah nearest neighbors, which means that, even
nificance. with k& = 1, the nearest neighbor set can contain several in-

e The overlap distance metric.



Label Dependency Type
ADV  Adverbial modifier
APP  Apposition

ATT  Attribute

CcC Coordination (conjunction or second conjunct)
DET  Determiner

ID Non-first element of multi-word expression

IM Infinitive dependent on infinitive marker

IP Punctuation mark dependent on lexical head
INF Infinitival complement

OBJ Object

PR Complement of preposition

PRD  Predicative complement

SUB  Subject

UK Main verb of subordinate clause dependent on complememnti
VC Verb chain (nonfinite verb dependent on other verb)

XX Unclassifiable dependent

Table 2: Dependency types in Swedish treebank

M ode€l Default Maximum
Non-lexical 86.8 87.4
Lexical 88.4 89.7

Table 3: Prediction accuracy for MBL models

The second column shows the accuracy for the best pA999; Charniak, 2000). As regards optimization, we may
rameter settings found in the experiments (averaged oveote that although there is a significant improvement for
both models), which differ from the default in the follow- both models, the magnitude of the difference is relatively
ing respects: small.

* Overlap metric replaced by the modified value dis- Tapje 4 shows the parsing accuracy obtained with the
tance metric (MVDM) (Stanfill and Waltz, 1986; optimized versions of the MBL models (lexical and non-
Cost and Salzberg, 1993). lexical), compared to the MCLE model described in sec-

tion 3. We see that MBL outperforms the MCLE model

even when limited to the same features (all differences

e k =5, i.e. classification based on 5 nearest neighagain being significant at the .0001 level according to
bors. a pairedt-test). This can probably be explained by the

Eact that the similarity-based smoothing built into the

memory-based approach gives a better extrapolation than

the fixed back-off sequence in the MCLE model. We

For more information about the different parameters andlso see that the lexical MBL model outperforms both

settings, the reader is referred to Daelemans et al. (200&)e other models. If we compare the labeled attachment
The results show that the lexical model performs conscore to the prediction accuracy (which also takes depen-

sistently better than the non-lexical model, and that théency types into account), we observe a substantial drop
difference increases with the optimization of the learningfrom 89.7 to 81.7 for the lexical model, from 87.4 to
algorithm (all differences being significant at the .000176.5 for the non-lexical model), which is of course only
level according to McNemar's test). This confirms preto be expected. The unlabeled attachment score is natu-
vious results from statistical parsing indicating that-lexrally higher, and it is worth noting that the relative differ
ical information is crucial for disambiguation (Collins, ence between the MBL lexical model and the other two
stances that are equally distant to the test instance. 3 ki-i models is much smaller. This indicates that the advan-

ferent from the originals 1 algorithm, as described in Aha et tage of the lexical model mainly concerns the accuracy in
al. (1991). predicting dependency type in addition to transition.

e No weighting of features.

¢ Distance weighted class voting with inverse distanc
weighting (Dudani, 1976).



M odel Labeled Unlabeled

MCLE 74.7 (72.3) 81.5(79.7)
MBL non-lexical 76.5(74.7) 82.9(81.7)
MBL lexical 81.7 (80.6) 85.7(84.7)

Table 4: Parsing accuracy for MCLE and MBL models, attachraeore per sentence (per word in parentheses)

If we compare the results concerning parsing accura@xploration of alternative models and parameter settings,
to those obtained for other languages (given that thetmut also the combination of inductive and analytical
are no comparable results available for Swedish), we nokearning to impose high-level linguistic constraints, and
that the best unlabeled attachment score is lower than fire development of new parsing methods (e.g. involving
English, where the best results are above 90% (attachultiple passes over the data). In addition, it is important
ment score per word) (Collins et al., 1999; Yamada antb evaluate the approach with respect to other languages
Matsumoto, 2003), but higher than for Czech (Collins eand corpora in order to increase the comparability with
al., 1999). This is encouraging, given that the size obther approaches.
the training set in our experiments is fairly small, only
about 10% of the standard training set for the Penn Treﬁcknowledgements
bank. One reason why our results nevertheless compare
reasonably well with those obtained with the much largeFhe work presented in this paper was supported by a
training set is probably that the conversion to dependen@fant from the Swedish Research Council (621-2002-
trees is more accurate for the Swedish treebank, given t4807). The memory-based classifiers used in the experi-
explicit annotatation of grammatical functions. More-ments were constructed using the Tilburg Memory-Based
over, the fact that our parser uses labeled dependencledrner (TiMBL) (Daelemans et al., 2003). We are grate-
is probably also significant, since the possibility of usful to three anonymous reviewers for constructive com-
ing information from previously assigned (labeled) dements on the preliminary version of the paper.
pendencies during parsing seems to have a positive effect
on accuracy (Nivre, 2004).

Finally, it may be interesting to consider the accuracyREf€r ences
for individual dependency types. Table 5 gives labeleg, \y ana, D. Kibler and M. Albert. 1991. Instance-
precision, labeled recall and unlabeled attachment scorepased Learning Algorithmaviachine Learnings, 37—
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parable attachment accuracy, but are more often miSdaS.'PrincipIes Techniques, and Tooladdison Wesley.
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5 Conclusion E. Charniak. 2000. A Maximum-Entropy-Inspired
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Dependency type Precision Recall Attachment

SUB 84.3 82.7 89.2
OBJ 74.7 78.8 87.0
PRD 75.1 71.4 84.2
ADV 76.2 74.6 78.3

Table 5: Dependency type accuracy, MBL lexical model; labgirecision, labeled recall, unlabeled attachment score
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