
A Semantic Kernel for Predicate Argument Classification

Alessandro Moschitti and Cosmin Adrian Bejan
University of Texas at Dallas

Human Language Technology Research Institute
Richardson, TX 75083-0688, USA

alessandro.moschitti@utdallas.edu
ady@hlt.utdallas.edu

Abstract

Automatically deriving semantic structures
from text is a challenging task for machine
learning. The flat feature representations, usu-
ally used in learning models, can only partially
describe structured data. This makes difficult
the processing of the semantic information that
is embedded into parse-trees.

In this paper a new kernel for automatic clas-
sification of predicate arguments has been de-
signed and experimented. It is based on sub-
parse-trees annotated with predicate argument
information from PropBank corpus. This ker-
nel, exploiting the convolution properties of
the parse-tree kernel, enables us to learn which
syntactic structures can be associated with the
arguments defined in PropBank. Support Vec-
tor Machines (SVMs) using such a kernel clas-
sify arguments with a better accuracy than
SVMs based on linear kernel.

1 Introduction

Several linguistic theories, e.g. (Jackendoff, 1990), claim
that semantic information in natural language texts is
connected to syntactic structures. Hence, to deal with nat-
ural language semantics, the learning algorithm should be
able to represent and process structured data. The classi-
cal solution adopted for such tasks is to convert syntax
structures in a flat feature representation, which is suit-
able for a given learning model. The main drawback is
structures may not be properly represented by flat fea-
tures as: (1) these latter may not be able to capture the
required properties or (2) the feature designer may not
know what structure properties enable the processing of
semantic information.

In particular, these problems arise for semantic infor-
mation represented via predicate argument structures de-

fined on syntactic parse trees. For example, Figure 1
shows the parse tree of the sentence:"Paul gives
a lecture in Rome" along with the annotation of
predicate arguments.

A predicate may be a verb or a noun or an adjective
whereas generally Arg 0 stands foragent, Arg 1 for di-
rect objector themeor patientand ArgM may indicate
locations, as in our example. A standard for predicate ar-
gument annotation is provided in the PropBank project
(Kingsbury and Palmer, 2002). It has produced one
million word corpus annotated with predicate-argument
structures on top of the Penn Treebank 2 Wall Street Jour-
nal texts. In this way, for a large number of the Penn
TreeBank parse-trees, there are available predicate anno-
tations in a style similar to that shown in Figure 1.

Predicate

Arg. 0

Arg. M

S

N

NP

D N

VP

V Paul

in

gives

a lecture

PP

IN N

Rome

Arg. 1

Figure 1:Predicate arguments in a parse-tree representation.

In PropBank only verbs are considered to be predicates
whereas arguments are labeled sequentially from Arg 0
to Arg 91. In addition to these core arguments, adjunctive
arguments are marked up. They include functional tags,
e.g. ArgM-DIR indicates a directional, ArgM-LOC in-
dicates a locative and ArgM-TMP stands for a temporal.
An example of PropBank markup is:

1Other arguments are: Arg 2 forindirect objector benefac-
tiveor instrumentor attributeor end state, Arg 3 for start point
or benefactiveor attribute, Arg4 for end pointand so on.

[
Arg1

0
Analysts] have been[predicate1 expecting][

Arg1
1

a GM-Jaguar pact] that would[predicate2 give] [
Arg2

2
the

U.S. car maker][
Arg2

1
an eventual 30% state in the British

Company].
Automatically recognizing the boundaries and classi-

fying the type of arguments allows Natural Language
Processing systems (e.g. Information Extraction, Ques-
tion Answering or Summarization) to answer questions
such as ”Who”, ”When”, ”What”, ”Where”, ”Why”, and
so on.

Given the importance of this task for Natural Lan-
guage Processing applications, several machine learning
approaches for argument identification and classification
have been developed (Gildea and Jurasky, 2002; Sur-
deanu et al., 2003; Hacioglu et al., 2003; Chen and Ram-
bow, 2003; Gildea and Hockenmaier, 2003). Their com-
mon characteristic is the adoption of feature spaces that
model predicate-argument structures in a flat representa-
tion. The major problem of this choice is that there is
no linguistic theory that supports the selection of syntac-
tic features to recognize semantic structures. As a con-
sequence, researchers are still trying to extend the basic
features with other ones, e.g. (Surdeanu et al., 2003), to
improve the flat feature space.

Convolution kernels are a viable alternative to flat fea-
ture representation that aims to capture the structural in-
formation in term of sub-structures. The kernel functions
can be used to measuresimilaritiesbetween two objects
without explicitly evaluating the object features. That
is, we do not need to understand which syntactic feature
may be suited for representing semantic data. We need
only to define the similarity function between two seman-
tic structures. An example of convolution kernel on the
parse-tree space is given in (Collins and Duffy, 2002).
The aim was to design a novel syntactic parser by look-
ing at the similarity between the testing parse-trees and
the correct parse-trees available for training.

In this paper, we define a kernel in a semantic struc-
ture space to learn the classification function of predicate
arguments. The main idea is to select portions of syn-
tactic/semantic trees that include the target<predicate,
argument> pair and to define a kernel function between
these objects. If our similarity function is well defined the
learning model will converge and provide an effective ar-
gument classification.

Experiments on PropBank data show not only that
Support Vector Machines (SVMs) trained with the pro-
posed semantic kernel converge but also that they have a
higher accuracy than SVMs trained with a linear kernel
on the standard features proposed in (Gildea and Jurasky,
2002). This provides a piece of evidence that convolution
kernel can be used to learn semantic linguistic structures.
Moreover, interesting research lines on the use of ker-

nel for NLP are enabled, e.g. question classification in
Question/Answering or automatic template designing in
Information Extraction.

The remaining of this paper is organized as follows:
Section 2 defines the Predicate Argument Extraction
problem and the standard solution to solve it. In Section
3 we present our approach based on the parse-tree kernel
whereas in Section 4 we show our comparative results
between SVMs using standard features and the proposed
kernel. Finally, Section 5 summarizes the conclusions.

2 Automatic Predicate-Argument
extraction

Given a sentence in natural language, all the predicates
associated with its verbs have to be identified along with
their arguments. This problem can be divided in two sub-
tasks: (a) detection of the target argument boundaries,
i.e. all its compounding words, and (b) classification of
the argument type, e.g.Arg0or ArgM.

A direct approach to learn both detection and classifi-
cation of predicate arguments is summarized by the fol-
lowing steps:

1. Given a sentence from thetraining-set, generate a
full syntactic parse-tree;

2. letP andA be the set of predicates and the set of
parse-tree nodes (i.e. the potential arguments), re-
spectively;

3. for each pair<p, a> ∈ P ×A:

• extract the feature representation set,Fp,a;
• if the subtree rooted ina covers exactly the

words of one argument ofp, put Fp,a in T+

(positive examples), otherwise put it inT−

(negative examples).

For example, in Figure 1, for each combination of the
predicategive with the nodesN, S, VP, V, NP, PP, D or
IN the instancesF”give”,a are generated. In case the node
a exactly coversPaul, a lectureor in Rome, it will be a
positive instance otherwise it will be a negative one, e.g.
F”give”,”IN”.

The aboveT+ andT− sets can be re-organized as posi-
tiveT+

argi and negativeT−argi examples for each argument
i. In this way, an individual ONE-vs-ALL classifier for
each argumenti can be trained. We adopted this solution
as it is simple and effective (Pradhan et al., 2003). In the
classification phase, given a sentence of thetest-set, all
its Fp,a are generated and classified by each individual
classifier. As a final decision, we select the argument as-
sociated with the maximum value among the scores pro-
vided by the SVMs2, i.e. argmaxi∈S Ci, whereS is
the target set of arguments.

2This is a basic method to pass from binary categorization

2.1 Standard feature space

The discovering of relevant features is, as usual, a com-
plex task, nevertheless there is a common consensus on
the basic features that should be adopted. These stan-
dard features, firstly proposed in (Gildea and Jurasky,
2002), refer to a flat information derived from parse trees,
i.e. Phrase Type, Predicate Word, Head Word, Governing
Category, PositionandVoice. Table 1 presents the stan-
dard features and exemplifies how they are extracted from
a given parse tree.

- Phrase Type: This feature indicates the syntactic type
of the phrase labeled as a predicate argument, e.g. NP
for Arg1 in Figure 1.

- Parse Tree Path: This feature contains the path in
the parse tree between the predicate and the argument
phrase, expressed as a sequence of nonterminal labels
linked by direction (up or down) symbols, e.g.V ↑ VP
↓ NPfor Arg1 in Figure 1.

- Position: Indicates if the constituent, i.e. the potential
argument, appears before or after the predicate in the
sentence, e.g.after for Arg1 andbeforefor Arg0 (see
Figure 1).

- Voice: This feature distinguishes between active or
passive voice for the predicate phrase, e.g.active for
every argument (see Figure 1).

- Head Word: This feature contains the head word of the
evaluated phrase. Case and morphological information
are preserved, e.g.lecturefor Arg1 (see Figure 1).

- Governing Category: This feature applies to noun
phrases only, and it indicates if theNP is dominated by
a sentence phrase (typical for subject arguments with
active voice predicates), or by a verb phrase (typical for
object arguments), e.g. theNPassociated withArg1 is
dominated by a verbal phraseVP (see Figure 1).

- Predicate Word: In our implementation this feature
consists of two components: (1) the word itself with
the case and morphological information preserved, e.g.
givesfor all arguments; and (2) the lemma which rep-
resents the verb normalized to lower case and infinitive
form, e.g.givefor all arguments (see Figure 1).

Table 1:Standard features extracted from parse-trees.

For example, theParse Tree Pathfeature represents the
path in the parse-tree between a predicate node and one of
its argument nodes. It is expressed as a sequence of non-
terminal labels linked by direction symbols (up or down),
e.g. in Figure 1,V↑VP↓NP is the path between the pred-
icate to giveand the argument 1,a lecture. If two pairs
<p1, a1> and<p2, a2> have aPaththat differs even for
one character (e.g. a node in the parse-tree) the match
will not be carried out, preventing the learning algorithm
to generalize well on unseen data. In order to address also

into a multi-class categorization problem; several optimization
have been proposed, e.g. (Goh et al., 2001).

this problem, next section describes a novel kernel space
for predicate argument classification.

3 A semantic kernel for argument
classification

We consider the predicate argument structures annotated
in PropBank as our semantic space. Many semantic struc-
tures may constitute the objects of our space. Some possi-
bilities are: (a) the selection of the whole sentence parse-
tree, in which the target predicate is contained or (b) the
selection of the sub-tree that encloses the whole predi-
cate annotation (i.e. all its arguments). However, both
choices would cause an exponential explosion on the po-
tential sub-parse-trees that have to be classified during
the testing phase. In fact, during this phase we do not
know which are the arguments associated with a predi-
cate. Thus, we need to build all the possible structures,
which contain groups of potential arguments for the tar-
get predicate. More in detail, assuming thatS is the set of
PropBank argument types, andm is the maximum num-
ber of entries that the target predicate can have, we have
to evaluate

(|S|
m

)
argument combinations for each target

predicate.
In order to define an efficient semantic space we se-

lect as objects only the minimal sub-structures that in-
clude one predicate with only one of its arguments. For
example, Figure 2 illustrates the parse-tree of the sen-
tence"Paul delivers a lecture in formal
style" . The circled substructures in (a), (b) and (c) are
our semantic objects associated with the three arguments
of the verbto deliver, i.e. <deliver, Arg0>, <deliver,
Arg1> and<deliver, ArgM>. In this formulation, only
one of the above structures is associated with each pred-
icate/argument pair, i.e.Fp,a contain only one of the cir-
cled sub-trees.

We note that our approach has the following properties:

• The overall semantic feature spaceF contain sub-
structures composed of syntactic information em-
bodied by parse-tree dependencies and semantic in-
formation under the form of predicate/argument an-
notation.

• This solution is efficient as we have to classify at
maximum|A| nodes for each predicate, i.e. the set
of the parse-tree nodes of a testing sentence.

• A constituent cannot be part of two different argu-
ments of the target predicate, i.e. there is no over-
lapping between the words of two arguments. Thus,
two semantic structuresFp1,a1 and Fp2,a2

3, asso-

3Fp,a was defined as the set of features of our objects
<p, a>. Since in our kernel we have only one element inFp,a
with an abuse of notation we use it to indicate the objects them-
selves.

S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

Fdeliver, Arg0

 formal

 N

 style

Arg. 0

a) S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style

Fdeliver, Arg1
b) S

N

NP

D N

VP

V Paul

in

delivers

a talk

PP

IN NP

jj

 formal

 N

 style
Arg. 1

Fdeliver, ArgM

c)

Arg. M

Figure 2:Semantic feature space for predicate argument classification.

ciated with two different arguments, cannot be in-
cluded one in the other. This property is important
because, a convolution kernel would not be effective
to distinguish between an object and its sub-parts.

Once defined our semantic space we need to design a
kernel function to measure a similarity between two ob-
jects. These latter may still be seen as described by com-
plex features but such a similarity is carried out avoiding
the explicit feature computation. For this purpose we de-
fine a mappingφ : F → F ′ such as:

~x = (x1, ..., x|F |)→ φ(~x) = (φ1(~x), .., φ|F ′|(~x)),

whereF ′ allows us to design an efficient semantic kernel
K(~x, ~z) =<φ(~x) · φ(~z)>.

3.1 The Semantic Kernel (SK)

Given the semantic objects defined in the previous sec-
tion, we design a convolution kernel in a way similar
to the parse-tree kernel proposed in (Collins and Duffy,
2002). Our feature setF ′ is the set of all possible sub-
structures (enumerated from1 to |F ′|) of the semantic
objects extracted from PropBank. For example, Figure
3 illustrates all valid fragments of the semantic structure
Fdeliver,Arg1 (see also Figure 2). It is worth noting that
the allowed sub-trees contain the entire (not partial) pro-
duction rules. For instance, the sub-tree [NP [D a]] is
excluded from the set of the Figure 3 since only a part
of the productionNP→ D N is used in its generation.
However, this constraint does not apply to the production
VP→ V NP PPalong with the fragment [VP [V NP]] as
the subtree [VP [PP [...]]] is not considered part of the
semantic structure.

Even if the cardinality ofF ′ will be very large the eval-
uation of the kernel function is polynomial in the number
of parse-tree nodes.

More precisely, a semantic structure~x is mapped in
φ(~x) = (h1(~x), h2(~x), ...), where the feature function
hi(~x) simply counts the number of times that thei-
th sub-structure of the training data appears in~x. Let

NP

D N

a talk

NP

D N

NP

D N

a
D N

a talk

NP

D N
NP

D N

VP

V

delivers

a talk

V

delivers

NP

D N

VP

V

a talk

NP

D N

VP

V

NP

D N

VP

V

a

NP

D

VP

V

 talk

N

a

NP

D N

VP

V

delivers

 talk

NP

D N

VP

V

delivers
NP

D N

VP

V

delivers

NP

VP

V
NP

VP

V

delivers

 talk

Figure 3:All 17 valid fragments of the semantic structure as-
sociated with Arg 1 (see Figure 2).

Ii(n) be the indicator function: 1 if the sub-structure
i is rooted at noden and 0 otherwise. It follows that
h(~x) =

∑
n∈N Ii(n), whereN is the set of the~x’s nodes.

Therefore, the kernel4 function is:

K(~x, ~z) = ~h(~x) · ~h(~z) =

=
∑

i

(∑

nx∈Nx
Ii(nx)

)(∑

nz∈Nz
Ii(nz)

)
=

=
∑

nx∈Nx

∑

nz∈Nz

∑

i

Ii(nx)Ii(nz) (1)

whereNx and Nz are the nodes inx and z, respec-
tively. In (Collins and Duffy, 2002), it has been shown
that Eq. 1 can be computed inO(|Nx| × |Nz|) by eval-
uating∆(nx, nz) =

∑
i Ii(nx)Ii(nz) with the following

recursive equations:

• if the production atnx and nz are different then
∆(nx, nz) = 0;

4Additionally, we carried out the normalization in the kernel
space, thus the final kernel isK′(~x, ~z) = K(~x,~z)√

K(~x,~x)×K(~z,~z)
.

• if the production atnx andnz are the same, andnx
andnz are pre-terminals then

∆(nx, nz) = 1; (2)

• if the production atnx andnz are the same, andnx
andnz are not pre-terminals then

∆(nx, nz) =
nc(nx)∏

j=1

(1 + ∆(ch(nx, j), ch(nz, j))),

(3)
wherenc(nx) is the number of children ofnx and
ch(n, i) is thei-th child of the noden. Note that as
the productions are the samech(nx, i) = ch(nz, i).

This kind of kernel has the drawback of assigning more
weight to larger structures while the argument type does
not depend at all on the size of its structure. In fact two
sentences such as:
(1) [Arg0 Paul][predicate delivers][Arg1

a lecture] and
(2) [Arg0 Paul][predicate delivers][Arg1

a plan on the de-
tection of theorist groups active in the North Iraq]
have the same argument type with a very different size.
To overcome this problem we can scale the relative im-
portance of the tree fragments with their size. For this
purpose a parameterλ is introduced in equations 2 and 3
obtaining:

∆(nx, nz) = λ (4)

∆(nx, nz) = λ

nc(nx)∏

j=1

(1+∆(ch(nx, j), ch(nz, j))) (5)

It is worth noting that even if the above equations
define a kernel function similar to the one proposed in
(Collins and Duffy, 2002), the substructures on which SK
operates are different from the parse-tree kernel. For ex-
ample, Figure 3 shows that structures such as [VP [V]
[NP]], [VP [V delivers] [NP]] and [VP [V] [NP [DT
N]]] are valid features, but these fragments (and many
others) are not generated by a complete production, i.e.
VP→ V NP PP. As a consequence they are not included
in the parse-tree kernel representation of the sentence.

3.2 Comparison with Standard Features

We have synthesized the comparison between stan-
dard features and the SK representation in the follow-
ing points. First, SK estimates a similarity between
two semantic structures by counting the number of
sub-structures that are in common. As an example,
the similarity between the two structures in Figure 2,
F”delivers”,Arg0 andF”delivers”,Arg1, is equal to 1 since
they have in common only the [V delivers] substruc-
ture. Such low value depends on the fact that different
argument types tend to appear in different structures.

On the contrary, if two structures differ only for a few
nodes (especially terminal ornear terminal nodes) the
similarity remains quite high. For example, if we change
the tense of the verbto deliver (Figure 2) indelivered,
the [VP [V delivers] NP] subtree will be transformed
in [VP [VBD delivered] NP], where theNP is un-
changed. Thus, the similarity with the previous structure
will be quite high as: (1) theNP with all sub-parts will
be matched and (2) the small difference will not highly
affect the kernel norm and consequently the final score.
This conservative property does not apply to theParse
Tree Pathfeature which is very sensible to small changes
in the tree-structure, e.g. two predicates, expressed in dif-
ferent tenses, generate two differentPathfeatures.

Second, some information contained in the standard
features is embedded in SK:Phrase Type, Predicate Word
andHead Wordexplicitly appear as structure fragments.
For example, in Figure 3 are shown fragments like [NP
[DT] [N]] or [NP [DT a] [N talk]] which explicitly en-
code thePhrase TypefeatureNPfor Arg 1 in Figure 2.b.
The Predicate Wordis represented by the fragment [V
delivers] and theHead Wordis present as [N talk].

Finally, Governing Category, PositionandVoicecan-
not be expressed by SK. This suggests that a combination
of the flat features (especially the named entity class (Sur-
deanu et al., 2003)) with SK could furthermore improve
the predicate argument representation.

4 The Experiments

For the experiments, we used PropBank
(www.cis.upenn.edu/ ∼ace) along with Penn-
TreeBank5 2 (www.cis.upenn.edu/ ∼treebank)
(Marcus et al., 1993). This corpus contains about 53,700
sentences and a fixed split between training and testing
which has been used in other researches (Gildea and
Jurasky, 2002; Surdeanu et al., 2003; Hacioglu et al.,
2003; Chen and Rambow, 2003; Gildea and Hocken-
maier, 2003; Gildea and Palmer, 2002; Pradhan et al.,
2003). In this split, Sections from 02 to 21 are used for
training, section 23 for testing and sections 1 and 22 as
developing set. We considered all PropBank arguments
from Arg0 to Arg9, ArgA and ArgM even if only Arg0
from Arg4 and ArgM contain enough training/testing
data to affect the global performance. In Table 2 some
characteristics of the corpus used in our experiments are
reported.

The classifier evaluations were carried out using
the SVM-light software (Joachims, 1999) available at
http://svmlight.joachims.org/ with the de-
fault linear kernel for the standard feature evaluations.

5We point out that we removed from the Penn TreeBank the
special tags of noun phrases likeSubjandTMP as parsers usu-
ally are not able to provide this information.

Table 2:Characteristics of the corpus used in the experiments.

Number of Args Number of unique
train. test-set Std. features

Arg0 34,955 2,030 12,520
Arg1 44,369 2,714 14,442
Arg2 10,491 579 6,422
Arg3 2,028 106 1,591
Arg4 1,611 67 918
ArgM 30,464 1,930 7,647
Total 123,918 7,426 21,710

For processing our semantic structures, we implemented
our own kernel and we used it inside SVM-light.

The classification performances were evaluated using
thef1 measure for single arguments as each of them has
a different Precision and Recall and by using the accu-
racy for the final multi-class classifier as the global Pre-
cision = Recall = accuracy. The latter measure allows
us to compare the results with previous literature works,
e.g. (Gildea and Palmer, 2002; Surdeanu et al., 2003; Ha-
cioglu et al., 2003; Chen and Rambow, 2003; Gildea and
Hockenmaier, 2003).

To evaluate the effectiveness of our new kernel we di-
vided the experiments in 3 steps:

• The evaluation of SVMs trained with standard fea-
tures in a linear kernel, for comparison purposes.

• The estimation of theλ parameter (equations 4 and
5) for SK from thevalidation-set.

• The performance measurement of SVMs, using SK
along withλ computed in the previous step.

Additionally, both Linear and SK kernels were evalu-
ated using different percentages of training data to com-
pare the gradients of their learning curves.

4.1 SVM performance on Linear and Semantic
Kernel

The evaluation of SVMs using a linear kernel on the stan-
dard features did not raise particular problems. We used
the default regularization parameter (i.e.,C = 1 for nor-
malized kernels) and we tried a few cost-factor values
(i.e., j ∈ {0.1, 1, 2, 3, 4, 5}) to adjust the rate between
precision and recall. Given the huge amount of training
data, we used only 30% of training-set in these valida-
tion experiments. Once the parameters were derived, we
learned 6 different classifiers (one for each role) and mea-
sured their performances on thetest-set.

For SVM, using the Semantic Kernel, we derived that
agoodλ parameter for thevalidation-setis 0.4. In Figure
4 we report the curves,f1 function ofλ, for the 3 largest
(in term of training examples) arguments on thetest-set.

0.82

0.85

0.88

0.91

0.94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λλλλ

f1

Arg0
Arg1
ArgM

Figure 4: SVM f1 for Arg0, Arg1 andArgM with respect to
differentλ values.

We note that the maximal value from thevalidation-setis
also the maximal value from thetest-setfor every argu-
ment. This suggests that: (a) it iseasyto detect an optimal
parameter and (b) there is a common (to all arguments)λ-
value which defines how much the size of two structures
impacts on their similarity. Moreover, some experiments
usingλ greater than 1 have shown a remarkable decrease
in performance, i.e. a correctλ seems to be essential to
obtain agoodgeneralization6 of thetraining-set.

Table 3: f1 of SVMs using linear and semantic kernel com-
pared to literature models for argument classification.

Args SVM SVM Prob. C4.5
STD SK STD STD EXT

Arg0 87.79 88.35 - - -
Arg1 82.43 86.25 - - -
Arg2 54.10 68.52 - - -
Arg3 31.65 49.46 - - -
Arg4 62.81 66.66 - - -
ArgM 91.97 94.07 - - -

multi-class
accuracy 84.07 86.78 82.8 78.76 83.74

Table 3 reports the performances of SVM trained with
the standard features (STD column) and with the Seman-
tic Kernel (SK column). In columns Prob. and C4.5 are
reported the results for argument classification achieved
in (Gildea and Palmer, 2002) and (Surdeanu et al., 2003).
This latter used C4.5 model on standard feature set (STD
sub-column) and on an extended feature set (EXT sub-
column). We note that: (a) SVM performs better than
the probabilistic approach and C4.5 learning model inde-
pendently of the adopted features and (b) the Semantic
Kernel considerably improves the standard feature set.

In order to investigate if SK generalizes better than the

6For example,λ = 1 would generate low kernel values be-
tweensmall and largestructures. This is in contrast with the
observation in Section 3.1, i.e. argument type is independent of
its constituent size.

linear kernel, we measured the performances by select-
ing different percentages of training data. Figure 5 shows
the curves for the three rolesArg0, Arg1 andArgM, re-
spectively for linear and semantic kernel whereas Figure
6 shows the multi-class classifierf1 plots.

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0 15 30 45 60 75 90
% Training Data

f1

Arg0-SK Arg1-SK ArgM-SK

Arg0-STD Arg1-STD ArgM-STD

Figure 5: Arg0, Arg1 andArgM evaluations over SK and the
linear kernel of standard features with respect to different per-
centages of training data.

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0 10 20 30 40 50 60 70 80 90 100

% Training Data

A
cc

u
ra

cy

SK

STD

Figure 6:Accuracy of the multi-class classifier using standard
features and SK with respect to different percentages of training
data.

We note that not only SK produces higher accuracy
but also the gradient of the learning curves is higher: for
example, Figure 6 shows that with only 20% of training
data, SVM using SK approaches the accuracy of SVM
trained with all data on standard features.

Additionally, we carried out some preliminary exper-
iments for argument identification (boundary detection),
but the learning algorithm was not able to converge. In
fact, for this task the non-inclusion property (discussed
in Section 3) does not hold. A constituentai, which has
incorrect boundaries, can include or be included in the
correct argumentac. Thus, the similarityK(ai, ac) be-
tweenai andac is quite high preventing the algorithm to
learn the structures of correct arguments.

4.2 Discussion and Related Work

The material of the previous sections requires a discus-
sion of the following points: firstly, in Section 3.2 we
have noted that some standard features are explicitly
coded in SK butGoverning Category, PositionandVoice
features are not expressible as a single fragment of a se-
mantic structure. For example, to derive thePositionof
an argument relatively to the target predicate is required a
visit of the tree. No parse-tree information, i.e. node tags
or edges, explicitly indicates this feature. A similar ratio-
nale applies toGoverning CategoryandVoice, even if for
the latter some tree fragments may code theto befeature.
Since these three features have been proved important for
role classification we argue that either (a) SK implicitly
produces this kind of information or (b) SK is able to pro-
vide a different but equally effective information which
allows it to perform better than the standard features. In
this latter case, it would be interesting to study which
features can be backported from SK to the linear kernel
to obtain a fast and improved system (Cumby and Roth,
2003). As an example, the fragment [VP [V NP]] defines
a sort of sub-categorization frame that may be used to
cluster together syntactically similarverbs.

Secondly, it is worth noting that we compared SK
against a linear kernel of standard features. A recent
study, (Pradhan et al., 2003), has suggested that a poly-
nomial kernel withdegree = 2 performs better than the
linear one. Using such a kernel, the authors obtained
88% in classification but we should take into account
that they also used a larger set of flat features, i.e.sub-
categorizationinformation (e.g.VP→ V NP PPfor the
tree in Figure 1),Named Entity Classesand aPartial Path
feature.

Thirdly, this is one of the first massive use of convo-
lution kernels for Natural Language Processing tasks, we
trained SK and tested it on 123,918 and 7,426 arguments,
respectively. For training each large argument (in term
of instances) were required more than 1.5 billion of ker-
nel iterations. This was a little time consuming (about
a couple of days for each argument on a Intel Pentium
4, 1,70 GHz, 512 Mbytes Ram) as the SK computation
complexity is quadratic in the number of semantic struc-
ture nodes7. This prevented us to carry out cross/fold val-
idation. An important aspect is that a recent paper (Vish-
wanathan and Smola, 2002) assesses that the tree-kernel
complexity can be reduced to linear one; this would make
our approach largely applicable.

Finally, there is a considerable work in Natural Lan-
guage Processing oriented kernel (Collins and Duffy,
2002; Lodhi et al., 2000; G̈artner, 2003; Cumby and
Roth, 2003; Zelenko et al., 2003) about string, parse-

7More precisely, it is O(|Fp,a|2) whereFp,a is the largest
semantic structure of the training data.

tree, graph, and relational kernels but, to our knowledge,
none of them was used to derive semantic information
on the form of predicate argument structures. In particu-
lar, (Cristianini et al., 2001; Kandola et al., 2003) address
the problem of semantic similarity between two terms by
using, respectively, document sets as term context and
the latent semantic indexing. Both techniques attempt
to cluster together terms that express the same meaning.
This is quite different in means and purpose of our ap-
proach that derives more specific semantic information
expressed as argument/predicate relations.

5 Conclusions

In this paper, we have experimented an original kernel
based on semantic structures from PropBank corpus. The
results have shown that:

• the Semantic Kernel (SK) can be adopted to classify
predicate arguments defined in PropBank;

• SVMs using SK performs better than SVMs trained
with the linear kernel of standard features; and

• the higher gradient in theaccuracy/training percent-
ageplots shows that SK generalizes better than the
linear kernel.

Finally, SK suggests that some features, contained in
the fragments of semantic structures, should be back-
ported in a flat feature space. Conversely, the good per-
formance of the linear kernel suggests that standard fea-
tures, e.g.Head Word, Predicate Wordshould be empha-
sized in the definition of a convolution kernel for argu-
ment classification. Moreover, other selections of predi-
cate/argument substructures (able to capture different lin-
guistic relations) as well as kernel combinations (e.g. flat
features with SK) could furthermore improve semantic
shallow parsing.

6 Acknowledgements

This research has been sponsored by the ARDA
AQUAINT program. In addition, we would like to thank
prof. Sanda Harabagiu to support us with interesting ad-
vices. Many thanks to the anonymous reviewers for their
professional and committed suggestions.

References
John Chen and Owen Rambow. 2003. Use of deep linguistic

features for the recognition and labeling of semantic argu-
ments.In Proceedings EMNLP03.

Michael Collins and Nigel Duffy. 2002. New ranking algo-
rithms for parsing and tagging: Kernels over discrete struc-
tures, and the voted perceptron.In Proceedings ofACL02.

Nello Cristianini, John Shawe-Taylor, and Huma Lodhi. 2001.
Latent semantic kernels.In Proceedings of ICML01, pages
66–73, Williams College, US. Morgan Kaufmann Publish-
ers, San Francisco, US.

Chad Cumby and Dan Roth. 2003. Kernel methods for rela-
tional learning.In Proceedings of ICML03.

Thomas G̈artner. 2003. A survey of kernels for structured data.
SIGKDD Explor. Newsl., 5(1):49–58.

Daniel Gildea and Julia Hockenmaier. 2003. Identifying se-
mantic roles using combinatory categorial grammar.In Pro-
ceedings of EMNLP03.

Daniel Gildea and Daniel Jurasky. 2002. Automatic labeling of
semantic roles.Computational Linguistic, 28(3):496–530.

Daniel Gildea and Martha Palmer. 2002. The necessity of pars-
ing for predicate argument recognition.In Proceedings of
ACL02, Philadelphia, PA.

King-Shy Goh, Edward Chang, and Kwang-Ting Cheng. 2001.
SVM binary classifier ensembles for image classification.
Proceedings of CIKM01, pages 395–402.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, Jim Martin, and
Dan Jurafsky. 2003. Shallow semantic parsing using Sup-
port Vector Machines. Technical report.

R. Jackendoff. 1990.Semantic Structures, Current Studies
in Linguistics series. Cambridge, Massachusetts: The MIT
Press.

T. Joachims. 1999. Making large-scale SVM learning
practical. In B. Schlkopf, C. Burges, and MIT-Press.
A. Smola (ed.), editors,Advances in Kernel Methods - Sup-
port Vector Learning.

J. Kandola, N. Cristianini, and J. Shawe-Taylor. 2003. Learn-
ing semantic similarity.In Advances in Neural Information
Processing Systems, volume 15.

Paul Kingsbury and Martha Palmer. 2002. From TreeBank to
PropBank.In Proceedings of LREC02, Las Palmas, Spain.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cris-
tianini, and Christopher Watkins. 2000. Text classification
using string kernels.In NIPS, pages 563–569.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn Tree-
Bank. Computational Linguistics, 19:313–330.

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H. Mar-
tin, and Daniel Jurafsky. 2003. Semantic role parsing:
Adding semantic structure to unstructured text.In Proceed-
ings of ICDM03.

Mihai Surdeanu, Sanda M. Harabagiu, John Williams, and John
Aarseth. 2003. Using predicate-argument structures for in-
formation extraction. In Proceedings of ACL03, Sapporo,
Japan.

S.V.N. Vishwanathan and A.J. Smola. 2002. Fast kernels on
strings and trees.In Proceedings of Neural Information Pro-
cessing Systems.

D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel meth-
ods for relation extraction.Journal of Machine Learning Re-
search.

