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Abstract fined on syntactic parse trees. For example, Figure 1
shows the parse tree of the sententBaul gives
a lecture in Rome" along with the annotation of
predicate arguments.

A predicate may be a verb or a noun or an adjective
whereas generally Arg 0 stands fagent Arg 1 for di-
rect objector themeor patientand ArgM may indicate
locations as in our example. A standard for predicate ar-
gument annotation is provided in the PropBank project
(Kingsbury and Palmer, 2002). It has produced one

Automatically deriving semantic structures
from text is a challenging task for machine
learning. The flat feature representations, usu-
ally used in learning models, can only partially
describe structured data. This makes difficult
the processing of the semantic information that
is embedded into parse-trees.

In this paper a new kernel for automatic clas-

sification of predicate arguments has been de-
signed and experimented. It is based on sub-
parse-trees annotated with predicate argument
information from PropBank corpus. This ker-
nel, exploiting the convolution properties of

million word corpus annotated with predicate-argument
structures on top of the Penn Treebank 2 Wall Street Jour-
nal texts. In this way, for a large number of the Penn
TreeBank parse-trees, there are available predicate anno-
tations in a style similar to that shown in Figure 1.

the parse-tree kernel, enables us to learn which
syntactic structures can be associated with the
arguments defined in PropBank. Support Vec-
tor Machines (SVMs) using such a kernel clas- "\‘
sify arguments with a better accuracy than
SVMs based on linear kernel.
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1 Introduction

Several linguistic theories, e.g. (Jackendoff, 1990), claim
that semantic information in natural language texts is
connected to syntactic structures. Hence, to deal with na&
ural language semantics, the learning algorithm should be

able to represent and process structured data. The classiin ProoBank onlv verbs ar nsidered to be predicat
cal solution adopted for such tasks is to convert syntax opbankonly verbs are considered to be predicates

structures in a flat feature representation, which is sui _hAereg'ls ?rgu drgi_nts tarfhlabeled sequentlaily fr((j)_m Atr_g 0
able for a given learning model. The main drawback i O Arg 5. 1h addition fo these core arguments, adjunctive

structures may not be properly represented by flat feg_rguments are marked up. They include functional tags,

tures as: (1) these latter may not be able to capture t .tArgl\?-DII? mdmgtzs ad_llrl\jglopalaA;gM-l;OC n- |
required properties or (2) the feature designer may n cates a focative and Argi- stands for-a temporal.

know what structure properties enable the processing 0 example of PropBank markup is:

semantlg information. . L 10ther arguments are: Arg 2 fimdirect objector benefac-
In particular, these problems arise for semantic infortve or instrumentor attribute or end stateArg 3 for start point
mation represented via predicate argument structures de-benefactiver attribute, Arg4 for end pointand so on.

igure 1:Predicate arguments in a parse-tree representation.



[4rq2 Analysts]have beel),. . ;... expecting],, .  nel for NLP are enabled, e.g. question classification in
90

a GM-Jaguar pact ] that woulg) . ;cqr. 9ive 1], the Question/Answering or automatic template designing in
S mor 92 Information Extraction.

U.S. car maker[|ATg2 an eventual 30% state in the British . : . . .
1 The remaining of this paper is organized as follows:
Company ].' o . Section 2 defines the Predicate Argument Extraction
Automatically recognizing the boundaries and classiproplem and the standard solution to solve it. In Section
fying the type of arguments allows Natural Language e present our approach based on the parse-tree kernel
Processing systems (e.g. Information Extraction, Quegyhereas in Section 4 we show our comparative results
tion Answering or Summarization) to answer questiongetween SVMs using standard features and the proposed

such as "Who”, "When”, "What", "Where”, "Why", and  kernel. Finally, Section 5 summarizes the conclusions.
so on.

Given the importance of this task for Natural Lan-2 Automatic Predicate-Argument
guage Processing applications, several machine learning extraction

approaches for argument identification and classification

have been developed (Gildea and Jurasky, 2002; spiven a sentence in natural language, all the predicates
deanu et al., 2003; Hacioglu et al., 2003; Chen and RarASsociated with its verbs have to be identified along with

bow, 2003; Gildea and Hockenmaier, 2003). Their Comt_heir arguments. This problem can be divided in two sub-

mon characteristic is the adoption of feature spaces th?{SkS: _(a) detection ,Of the target argument PP““_da“eS'
all its compounding words, and (b) classification of

model predicate-argument structures in a flat represenﬂa‘?'
tion. The major problem of this choice is that there idN€ argument type, e.érg0or ArgM. , o
no linguistic theory that supports the selection of syntac- A direct approach to learn both detection and classifi-
tic features to recognize semantic structures. As a coffation of predicate arguments is summarized by the fol-
sequence, researchers are still trying to extend the badfing steps:

features with other ones, e.g. (Surdeanu et al., 2003), tol. Given a sentence from theining-set generate a
improve the flat feature space. full syntactic parse-tree;

Convolution kernels are a viable alternative to flat fea-
ture representation that aims to capture the structural in-
formation in term of sub-structures. The kernel functions
can be used to measusenilarities between two objects
without explicitly evaluating the object features. That 3. for each paikp,a> € P x A:
is, we do not need to understand which syntactic feature
may be suited for representing semantic data. We need
onlyto define the similarity function between two seman-
tic structures. An example of convolution kernel on the
parse-tree space is given in (Collins and Duffy, 2002).
The aim was to design a novel syntactic parser by look-
ing at the similarity between the testing parse-trees and For example, in Figure 1, for each combination of the
the correct parse-trees available for training. predicategive with the nodesN, S, VP, V, NP, PP, D or

In this paper, we define a kernel in a semantic strudN the instances® ;.- , are generated. In case the node
ture space to learn the classification function of predicaté €xactly coversaul, a lectureor in Rome it will be a
arguments. The main idea is to select portions of Syrp_osnwe instance otherwise it will be a negative one, e.g.
tactic/semantic trees that include the targgtredicate, B giver 2 1N ] )
argument- pair and to define a kernel function between The abovel™™ andT"™ sets can be re-organized as posi-
these objects. If our similarity function is well defined thelVe Zur,, and negativ’,. , examples for each argument

learning model will converge and provide an effective arZ- 1N this way, an individual ONE-vs-ALL classifier for
gument classification. each argumentcan be trained. We adopted this solution
S it is simple and effective (Pradhan et al., 2003). In the

Experiments on PropBank data show not only th classification phase, given a sentence oftdst-set all
Support Vector Machines (SVMs) trained with the pro-it I ) pn ; t,o? nd classified b h i(r:,divid |
posed semantic kernel converge but also that they have?i p.a 8r€ generated and classilied by eac ua

assifier. As a final decision, we select the argument as-

higher accuracy than SVMs trained with a linear keme?oc'ated ith the maximum value amona the Scores pro-
on the standard features proposed in (Gildea and Jurasl%g ' Wi ximum vail 9 P

2. let? and A be the set of predicates and the set of
parse-tree nodes (i.e. the potential arguments), re-
spectively;

o extract the feature representation $t,,;

o if the subtree rooted im covers exactly the
words of one argument qf, put £}, , in T+
(positive examples), otherwise put it i~
(negative examples).

2002). This provides a piece of evidence that convolutio iﬁgrbittggt%}/gﬂr%’u'r':én‘ggmmieS Ci, where5'is
kernel can be used to learn semantic linguistic structures. 9 9 '
Moreover, interesting research lines on the use of ker- 2This is a basic method to pass from binary categorization



2.1 Standard feature space this problem, next section describes a novel kernel space

The discovering of relevant features is, as usual, a corf?" Predicate argument classification.
plex task, nevertheless there is a common consensus %n .
the basic features that should be adopted. These stan- A ser_n_antl_c kerne| for argument
dard features, firstly proposed in (Gildea and Jurasky, classification
2002), refer to a flat information derived from parse treesye consider the predicate argument structures annotated
I.e. Phrase TypePredicate WordHead WordGoverning iy propBank as our semantic space. Many semantic struc-
Category PositionandVoice Table 1 presents the stan-yres may constitute the objects of our space. Some possi-
dard features and exemplifies how they are extracted frogjjities are: (a) the selection of the whole sentence parse-
a given parse tree. tree, in which the target predicate is contained or (b) the
Phiase TypeThis feature ndicates the syntactic ype selection of the sub-tree that encloses the whole predi-
- Yl I ure indi 3\ ic tyf . . .
of the phrase labeled as a predicate argument, e.g) NP catg annotation (i.e. all its arguments). prever, both
for Argy in Figure 1. cho[ces would cause an exponential explosmn on the po-
Parse Tree Path This feature contains the path in tential sub-parse-trees that have to be classified during
the parse tree between the predicate and the argument the testln_g phase. In fact, during th's_ phase_we do nqt
phrase, expressed as a sequence of nonterminal labels KNOW which are the arguments associated with a predi-
linked by direction (up or down) symbols, e.§.T VP cate. Thus, we need to build all the possible structures,
| NPfor Argy in Figure 1. which contain groups of potential arguments for the tar-
- Position Indicates if the constituent, i.e. the potential g€t predicate. More in detail, assuming thas the set of
argument, appears before or after the predicate in|the PropBank argument types, andis the maximum num-

sentence, e.gafter for Arg, andbeforefor Argo (see ber of entries that the target predicate can have, we have
Figure 1). to evaluate('?)) argument combinations for each target

- Voice This feature distinguishes between active|or  predicate.

passive voice for the predicate phrase, eagtive for In order to define an efficient semantic space we se-

every argument (see Figure 1).

lect as objects only the minimal sub-structures that in-
- Head Word This feature contains the head word of the  clude one predicate with only one of its arguments. For
evaluated phrase. Case and morphological information example, Figure 2 illustrates the parse-tree of the sen-
are preserved, e.tpcturefor Arg; (see Figure 1). tence"Paul delivers a lecture in formal

- Governing Category This feature applies to noun style" . The circled substructures in (a), (b) and (c) are
phrases only, and it indicates if thePis dominated by]  our semantic objects associated with the three arguments
a sentence phrase (typical for subject arguments With ¢ 1o yerhto deliver i.e. <deliver, ArgQ>, <deliver,
active voice predicates), or by a verb phrase (typical(for Aral d <deli ,A | h" f I’ ) I,
object arguments), e.g. tiP associated wittdrg, is rgl> and-<aelver, rgl\/|>.. n this .Ormu aF'On' only
dominated by a verbal phras® (see Figure 1). one of the above structures is associated with each pred-
icate/argument pair, i.et}, , contain only one of the cir-

- Predicate Word In our implementation this feature led sub
consists of two components: (1) the word itself with ~ Cl€d Sub-trees. _ _
the case and morphological information preserved, e.g. ~ We note that our approach has the following properties:

givesfor all arguments; and (2) the lemma which rep- . .
resents the verb normalized to lower case and infinitive e The overall semantic feature spatecontain sub-

form, e.g.givefor all arguments (see Figure 1). structures composed of syntactic information em-
bodied by parse-tree dependencies and semantic in-

Table 1:Standard features extracted from parse-trees. formation under the form of predicate/argument an-
notation.

For example, th®arse Tree Patlfeature represents the ] o o i
path in the parse-tree between a predicate node and one of This solution is efficient as we have to classify at
its argument nodes. It is expressed as a sequence of non- Maximum|.A| nodes for each predicate, i.e. the set
terminal labels linked by direction symbols (up or down), ~ ©f the parse-tree nodes of a testing sentence.

e.g. in Figure 1VTVP|NPis the path between the pred-

icateto giveand the argument 1 lecture If two pairs ments of the target predicate, i.e. there is no over-
<p1,a1> and<ps, az> have aPaththat differs even for lapping between the words of two arguments. Thus,
one character .(e.g. a node in the parse—t.ree) the .match two semantic structures),, ,, and F,, ,,3, asso-
will not be carried out, preventing the learning algorithm_____

to generalize well on unseen data. In order to address also *Fy,.« was defined as the set of features of our objects

<p,a>. Since in our kernel we have only one elemenfij,

into a multi-class categorization problem; several optimizationvith an abuse of notation we use it to indicate the objects them-
have been proposed, e.g. (Goh et al., 2001). selves.

e A constituent cannot be part of two different argu-
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Figure 2:Semantic feature space for predicate argument classification.
ciated with two different arguments, cannot be in- VP VP VP /NP\ /NP\ /NF’\
cluded one in the ot_her. This property is importa_nt | /\ /\ D N D ND N
because, a convolution kernel would not be effective \‘/ /NP\ v /NP\ v /NP\ | | \ \
to distinguish between an object and its sub-parts. yyivec D ND N D N 2 @k 2 talk
. . . o I A
Once defined our semantic space we need to design a a  tak a @k | SN
kernel function to measure a similarity between two ob- yp VE VP VP delives D N 2tk
jects. These latter may still be seen as described by com/ \ / |/ e | /\‘/P V\P VP
plex features but such a similarity is carried out avoidingy NF v NPV NPV VAR v/ NP \
the explicit feature computation. For this purpose we de-5" ' " | i / /\ v /NP\
fine a mapping : F — F’ such as: \ | 'Ver~"3 Ndelivers D l‘\l delivers delivers 3 N
7 7 7 7 ? talk 8 talk
7= (T1,....2p) = &(T) = (¢1(Z), .., || (7)),

Figure 3:All 17 valid fragments of the semantic structure as-
whereF” allows us to design an efficient semantic kernesociated with Arg 1 (see Figure 2).

K(7,2) =<¢(T) - ¢(2)>.

3.1 The Semantic Kernel (SK) I;(n) be the indicator function: 1 if the sub-structure
Given the semantic objects defined in the previous seé-is rooted at node: and 0 otherwise. It follows that
tion, we design a convolution kernel in a way similar(Z) = >, cx Li(n), whereN is the set of tha’s nodes.
to the parse-tree kernel proposed in (Collins and Duffyl herefore, the kernéfunction is:

2002). Our feature sef”’ is the set of all possible sub-

structures (enumerated frointo |F”|) of the semantic K(Z,2) = h(Z) - h(Z) =

objects extracted from PropBank. For example, Figure

3 illustrates all valid fragments of the semantic structure — Z ( () ( Z I;(n.)) =
Fieliver, arg1 (€€ also Figure 2). It is worth noting that T neeN. noeN.

the allowed sub-trees contain the entire (not partial) pro-

duction rules. For instance, the sub-tré&P[[D a]] is _ Z z Zli(nx)li(nz) Q)

excluded from the set of the Figure 3 since only a part
of the productionNP — D Nis used in its generation.
However, this constraint does not apply to the productiowhere N, and N, are the nodes in: and z, respec-
VP — V NP PPalong with the fragmentP[V NA]as tively. In (Collins and Duffy, 2002), it has been shown
the subtree\fP [PP [...]] is not considered part of the that Eq. 1 can be computed @(|N,.| x |N.|) by eval-
semantic structure. uatingA(ng, n.) = >, Ii(ng)I;(n.) with the following
Even if the cardinality of” will be very large the eval- recursive equations:
uation of the kernel function is polynomial in the number

nyENn,EN, 1

of parse-tree nodes. o if the production atn, andn, are different then
More precisely, a semantic structufeis mapped in A(ng,n;) =0

o(Z) = (hi(Z), h2(2),...), where the feature function —

hi(f) simply counts the number of times that the “Additionally, we carried out the normalization in the kernel

K(&,%

th sub-structure of the training data appearséinLet space, thus the final kernel i’ (Z, 2) = W



e if the production at:, andn_ are the same, and, On the contrary, if two structures differ only for a few

andn, are pre-terminals then nodes (especially terminal grear terminal nodes) the
similarity remains quite high. For example, if we change
A(ng,n,) = 1; (2)  the tense of the verto deliver (Figure 2) indelivered

the [VP[V delivers ] NA subtree will be transformed
o if the production at, andn, are the same, and, in [VP [VBD delivered ] NH, where theNP is un-

andn, are not pre-terminals then changed. Thus, the similarity with the previous structure
will be quite high as: (1) th&lPwith all sub-parts will
ne(ng) be matched and (2) the small difference will not highly
A(ng,n.) = ] (14 A(ch(ng, ), ch(n-,j))),  affect the kernel norm and consequently the final score.
j=1 This conservative property does not apply to Pase

, ) () Tree Pathfeature which is very sensible to small changes
wherenc(n,) is the number of children af, and i, the tree-structure, e.g. two predicates, expressed in dif-
ch(n, i) is thei-th child of the node:. Note that as  fgrent tenses, generate two differ@ath features.
the productions are the sam¥(ng, ¢) = ch(n., ). Second, some information contained in the standard

This kind of kernel has the drawback of assigning mor&atures is embedded in SRhrase TypgPredicate Word
weight to larger structures while the argument type doed"dHead Wordexplicitly appear as structure fragments.

not depend at all on the size of its structure. In fact twé© €xample, in Figure 3 are shown fragments lik&[
sentences such as: [DT] [N]] or [NP [DT a] [N talk]] which explicitly en-

(1) [4rgo PAUIT,, .00 delivers ][4, @ lecture] and code thePhrase TypéeatureNPfor Arg 1 in Figure 2.b.

(2) [4rgo PAUIT,ogieare delivers [4,, @ plan on the de- The Predicate Wordis represented by the fragment [
tection of theorist groups active in the North Iraq] delivers ] and theHead Words present as talk].

have the same argument type with a very different size. Finally, Governing CategoryPositionandVoicecan-
To overcome this problem we can scale the relative inf10t be expressed by SK. This suggests that a combination
portance of the tree fragments with their size. For thi€f the flat features (espeually the named entity cl_ass (Sur-
purpose a parameteris introduced in equations 2 and gdeanu et al., 2003)) with SK could furthermore improve

obtaining: the predicate argument representation.
A(ng,n,) = A (4) .
- 4 The Experiments
Ang,n.) =\ H (1+A(ch(ng, j),ch(n,,j))) (6) For the experiments, we used PropBank
j=1 (www.cis.upenn.edu/ ~ace) along with Penn-

It is worth noting that even if the above equations|€€Bank 2 (www.cis.upenn.edu/  ~treebank )
define a kernel function similar to the one proposed iMarcus etal., 1993). This corpus contains about 53,700
(Collins and Duffy, 2002), the substructures on which SKEeNtences and a fixed split between training and testing
operates are different from the parse-tree kemel. For efich has been used in other researches (Gildea and
ample, Figure 3 shows that structures such\& [V] Jurasky, 2002; Surdeanu et al., 2003; Hacioglu et al.,
[NF], [VP [V delivers ] [NF] and [VP [V] [NP[DT 2003; Chen and Rambow, 2003; Gildea and Hocken-
NJ|] are valid features, but these fragments (and man{fi€r, 2003; Gildea and Palmer, 2002; Pradhan et al.,

others) are not generated by a complete production, i. 003). In this split, Sections from 02 to 21 are used for

VP — V NP PP As a consequence they are not includedraining, section 23 for testing and sections 1 and 22 as

in the parse-tree kernel representation of the sentence. d€VelopIng set. We considered all PropBank arguments
from Arg0 to Arg9, ArgA and ArgM even if only Arg0

3.2 Comparison with Standard Features from Arg4 and ArgM contain enough training/testing

We have synthesized the comparison between stagﬁta to affect the global performance. In Table 2 some
aracteristics of the corpus used in our experiments are

dard features and the SK representation in the followf
ing points. First, SK estimates a similarity betweer{eportecj' . ) . .

two semantic structures by counting the number of The classifier evaluations were carried out using
sub-structures that are in common. As an exampldl® SVM-light software (Joachims, 1999) available at

the similarity between the two structures in Figure 2NtP-//svmlight.joachims.org/ with the de-
P aetivers® Arco AN B qetivers® Aro1s IS €qual to 1 since fault linear kernel for the standard feature evaluations.
eltvers’ ,Arg elrvers” ,Argl,

they have in common only th&/[delivers ] substruc- SWe point out that we removed from the Penn TreeBank the

ture. Such low value depends on the fact that differenfpecial tags of noun phrases ligebjand TMP as parsers usu-
argument types tend to appear in different structures. ally are not able to provide this information.



”””””””””””””””””””””””””””””””” —o—Arg0 [~

Table 2:Characteristics of the corpus used in the experiments. 094

Number of Args | Number of unique 001 ]
train. [ test-set Std. features ’
Arg0 | 34,955 | 2,030 12,520 .
Argl | 44,369 | 2,714 14,442 o088 1
Arg2 | 10,491 579 6,422
Arg3 2,028 106 1,591 0.5 |
Argd 1,611 67 918
ArgM | 30,464 | 1,930 7,647
[ Total [ 123,918] 7,426 | 21,710 ] 0-820 o1 02 02 04 o0s o6 07 os oo
A

. . . Figure 4: SVM f; for Arg0, Argl and ArgM with respect to
For processing our semantic structures, we implementeliiferent \ values.

our own kernel and we used it inside SVM-light.
The classification performances were evaluated usin te that th imal value f thalidati i
the f; measure for single arguments as each of them h:é&e note that the maximal value from taalidation-sets

a different Precision and Recall and by using the accft sotth_trahrnaxmal \;altl;]e Zrom _gest—szﬁcgr etvery atr.gu-l
racy for the final multi-class classifier as the global preMent. This suggests that: (a) iBasyto detect an optima

cision = Recall = accuracy. The latter measure allowarameter and (b) there is a common (to all arguments)

us to compare the results with previous literature Workél,alue which defines how much the size of two structures

e.g. (Gildea and Palmer, 2002; Surdeanu et al., 2003; Hg@pacts on their similarity. Moreover, some experiments

cioglu et al., 2003; Chen and Rambow, 2003; Gildea anldsing)\ greater than 1 have shown a remarkable decrease
Hockenmaiér 2063) ' ' in performance, i.e. a corregtseems to be essential to

To evaluate the effectiveness of our new kernel we dlc-Jbtaln agoodgeneralizatioh of thetraining-set

vided the experiments in 3 steps:

Table 3: f1 of SVMs using linear and semantic kernel com-

e The evaluation of SVMs trained with standard fea'pared to literature models for argument classification.

tures in a linear kernel, for comparison purposes.

Args SVM | SVM | Prob. C45
e The estimation of the. parameter (equations 4 and STD | SK [ STD | STD [ EXT
5) for SK from thevalidation-set Argo 87.79 | 88.35| - - -

Argl | 82.43| 86.25| - - -

; Arg2 54.10 | 68.52 - - -
e The performance measurement of SVMs, using SK Arg3 3165 | 4946 i i i

along with A computed in the previous step. Argd 62.81 | 66.66

. . ArgM 91.97 | 94.07 - - -
Additionally, both Linear and SK kernels were evalu- .
multi-class

ated using different percentages of training data to com-| accuracy | 84.07 | 86.78 | 82.8 | 78.76 | 83.74
pare the gradients of their learning curves.

4.1 SVM performance on Linear and Semantic Table 3 reports the performances of SVM trained with
Kernel the standard features (STD column) and with the Seman-

The evaluation of SVMs using a linear kernel on the starfic Kernel (SK column). In columns Prob. and C4.5 are

dard features did not raise particular problems. We uségpor_ted the results for argument classification achieved
the default regularization parameter (i€.= 1 for nor- N (Gildea and Palmer, 2002) and (Surdeanu et al., 2003).
malized kernels) and we tried a few cost-factor valuedhis latter used C4.5 model on standard feature set (STD
(ie.,j € {0.1,1,2,3,4,5}) to adjust the rate between sub-column) and on an extended feature set (EXT sub-

precision and recall. Given the huge amount of trainin§olumn). We note that: (a) SVM performs better than
data, we used only 30% of training-set in these valiggthe probabilistic approach and C4.5 learning model mde_—
tion experiments. Once the parameters were derived, viigndently of the adopted features and (b) the Semantic
learned 6 different classifiers (one for each role) and me&ernel considerably improves the standard feature set.
sured their performances on trest-set In order to investigate if SK generalizes better than the

For SVM, using the Semantic Kernel, we derived that—GFOr examplex — 1 would generate low kernel values be-
agood) parameter for thgalidation-sets 0.4. In Figure pien = 9

X tweensmall and largestructures This is in contrast with the
4 we report the curvesf; function of A, for the 3 largest gpservation in Section 3.1, i.e. argument type is independent of
(in term of training examples) arguments on thet-set  its constituent size.



linear kernel, we measured the performances by sele@:2 Discussion and Related Work
ing different percentages of training data. Figure 5 sho
the curves for the three role&sg0, Argl and ArgM, re-
spectively for linear and semantic kernel whereas Figu
6 shows the multi-class classifi¢t plots.

“Phe material of the previous sections requires a discus-
sion of the following points: firstly, in Section 3.2 we
'fave noted that some standard features are explicitly
coded in SK butGoverning CategoryPositionandVoice
features are not expressible as a single fragment of a se-

0.94 | i IV S——— mantic structure. For example, to derive thesition of
-1 1 1 . . . .

0.91 //X § : ; ; an argument relatively to the target predicate is required a

0.88 | 3 I visit of the tree. No parse-tree information, i.e. node tags

or edges, explicitly indicates this feature. A similar ratio-
nale applies t@&overning CategorandVoice even if for

the latter some tree fragments may codetthieefeature.
Since these three features have been proved important for

0.85 - /
Z0.82 + //
o4

0.79 4

076 = 0K b ALK X ArgMeSK | role classification we argue that either (a) SK implicitly

0.73 fufhwmnmmmmmmmammeod | CTAGOSTD & AGLSTD X AGMSTD]. - produces this kind of information or (b) SK is able to pro-

07 : | | | § : vide a different but equally effective information which
° 15 30 45 €0 I %0 allows it to perform better than the standard features. In

% Training Data

) this latter case, it would be interesting to study which
Figure 5:Arg0, Argl andArgM evaluations over SK and the features can be backported from SK to the linear kernel
linear kernel of standard features with respect to different PeLy obtain a fast and improved system (Cumby and Roth,
centages of training data. 2003). As an example, the fragmeMH [V NH] defines
a sort of sub-categorization frame that may be used to
cluster together syntactically similaerbs

Secondly, it is worth noting that we compared SK
against a linear kernel of standard features. A recent
study, (Pradhan et al., 2003), has suggested that a poly-
nomial kernel withdegree = 2 performs better than the
linear one. Using such a kernel, the authors obtained
88% in classification but we should take into account
that they also used a larger set of flat features, sieh-

0.88 -

0.85 4

0.82 4

0.79 4

Accuracy

mf/"‘ ””” X STD categorizatiorinformation (e.gVP — V NP PPfor the
073 ‘ ‘ A tree in Figure 1)Named Entity Classemnd aPartial Path
| | oo feature.
S o % o % o o s s w0 Thirdly, this is one of the first massive use of convo-
% Training Data lution kernels for Natural Language Processing tasks, we

Figure 6:Accuracy of the multi-class classifier using standardrained SK and tested it on 123,918 and 7,426 arguments,

features and SK with respect to different percentages of trainingspectively. For training each large argument (in term

data. of instances) were required more than 1.5 billion of ker-
nel iterations. This was a little time consuming (about

. a couple of days for each argument on a Intel Pentium
We note that not only SK produces higher accurac 1,70 GHz, 512 Mbytes Ram) as the SK computation
but also the gradient of the learning curves is higher: for’ ™’ o 2 !
. : % of traini complexity is quadratic in the number of semantic struc-
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trained with all data on standard features.
B _ T wanathan and Smola, 2002) assesses that the tree-kernel
~ Additionally, we carried out some preliminary exper-complexity can be reduced to linear one; this would make
iments for argument identification (boundary detection)eyr approach largely applicable.
but the learning algorithm was not able to converge. In ging|ly, there is a considerable work in Natural Lan-
fact, for this task the non-inclusion property (dlscusseauage Processing oriented kernel (Collins and Duffy,
in Section 3) does not hold. A constituent which has  5002: | odhi et al.. 2000: &tner. 2003 Cumby and
incorrect boundaries, can include or be included in thgsiy 2003: Zelenko et al. 2003) about string, parse-
correct argument.. Thus, the similarityK (a;, a.) be-
tWeenai al’ldac is quite h|gh pl’eventing the algorithm to 7M0re pr(:_\.cise]yl it is q(Fp,a|2) Wherer’a is the |argest
learn the structures of correct arguments. semantic structure of the training data.



tree, graph, and relational kernels but, to our knowledgéello Cristianini, John Shawe-Taylor, and Huma Lodhi. 2001.
none of them was used to derive semantic information Latent semantic kerneldn Proceedings of ICMLQ1pages
on the form of predicate argument structures. In particu- 6-73, Williams College, US. Morgan Kaufmann Publish-
lar, (Cristianini et al., 2001; Kandola et al., 2003) address ers, San Francisco, US.

the problem of semantic similarity between two terms by=had Cumby and Dan Roth. 2003. Kernel methods for rela-
using, respectively, document sets as term context andional learning.in Proceedings of ICMLO3

the latent semantic indexing. Both techniques attemgthomas Grtner. 2003. A survey of kernels for structured data.
to cluster together terms that express the same meaningS/GKDD Explor. News|5(1):49-58.

This is quite different in means and purpose of our apbaniel Gildea and Julia Hockenmaier. 2003. Identifying se-
proach that derives more specific semantic information mantic roles using combinatory categorial gramnarPro-

expressed as argument/predicate relations. ceedings of EMNLPQ3
Daniel Gildea and Daniel Jurasky. 2002. Automatic labeling of
5 Conclusions semantic rolesComputational Linguistic28(3):496-530.

. . - I?aniel Gildea and Martha Palmer. 2002. The necessity of pars-
In this paper, we have experimented an original kernel ing for predicate argument recognitiorin Proceedings of

based on semantic structures from PropBank corpus. TheACL02, Philadelphia, PA

results have shown that: King-Shy Goh, Edward Chang, and Kwang-Ting Cheng. 2001.

. .. SVM binary classifier ensembles for image classification.
¢ the Semantic Kernel (SK) can be adopted to classify Proceedingys of CIKMQpages 395-402. 9

redi rgumen fined in PropBank;
predicate arguments defined opeani Kadri Hacioglu, Sameer Pradhan, Wayne Ward, Jim Martin, and

« SVMs using SK performs better than SVMs trained Dan Jurafsky. 2003. Shallow semantic parsing using Sup-

. . ort Vector Machines. Technical report.
with the linear kernel of standard features; and P ) P _
R. Jackendoff. 1990.Semantic Structures, Current Studies

e the higher gradient in theccuracytraining percent- N Linguistics series Cambridge, Massachusetts: The MIT
ageplots shows that SK generalizes better than the PSS
linear kernel. T. Joachims. 1999.  Making large-scale SVM learning

practical. In B. Schlkopf, C. Burges, and MIT-Press.

Finally, SK suggests that some features, contained in A- Smola (ed.), editorsidvances in Kernel Methods - Sup-
the fragments of semantic structures, should be back- POt Vector Leaming
ported in a flat feature space. Conversely, the good pel-Kandola, N. Cristianini, and J. Shawe-Taylor. 2003. Learn-
formance of the linear kernel suggests that standard fea-iNg semantic similarity.In Advances in Neural Information
tures, e.gHead Word Predicate Wordshould be empha- Processing Systems, volume 15
sized in the definition of a convolution kernel for argu-Paul Kingsbury and Martha Palmer. 2002. From TreeBank to
ment classification. Moreover, other selections of predi- ProPBank.In Proceedings of LREC02, Las Palmas, Spain.
cate/argument substructures (able to capture different lipluma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cris-
guistic relations) as well as kernel combinations (e.qg. flat tianini, and Christopher Watkins. 2000. Text classification
features with SK) could furthermore improve semantic Using string kernelsin NIPS pages 563-569.
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