Multilingual Text Induced Spelling Correction

Martin REYNAERT
Induction of Linguistic Knowledge, Computational Linguistics and Al, Tilburg University
Warandelaan 2, 5000 LE Tilburg,
The Netherlands,
reynaert@uvt.nl

Abstract

We present TiSC, a multilingual, language-
independent and context-sensitive spelling
checking and correction system designed to
facilitate the automatic removal of non-
word spelling errors in large corpora. Its
lexicon is derived from raw text corpora,
without supervision, and contains word un-
igrams and word bigrams. The system em-
ploys input context and lexicon evidence
to automatically propose a limited number
of ranked correction candidates. We de-
scribe the implemented trilingual (Dutch,
English, French) prototype and evaluate it
on English and Dutch text, monolingual and
mixed, containing real-world errors in con-
text.

1 Introduction

The EAGLES final report on ‘Evaluation of
Natural Language Processing Systems’ lists as
a ‘dream tool’ (EAGLES-I, 1996):

A multilingual spelling checker which
automatically recognizes what lan-
guage is being dealt with and switches
to the appropriate spelling checker for
that language.

Our Text Induced Spelling Correction algorithm
(TISC) represents such a tool in its current three
language version, but we explore the possibil-
ity of not performing explicit language detec-
tion. This was prompted by the observation
that language detection in an isolated-word sys-
tem may easily get confused. Take the re-
cent Dutch newspaper Metro headline ‘Crime
passionel in Gronings zwembad’ [Crime of pas-
sion in Groninger swimming-pool (21-10-2003)],
which is a typical example of mixed language
text, containing a typo *passionel, which in
French should be spelled passionnel. The Mi-
crosoft Proofing Tools (MPT), for instance, can
be set to automatically detect the language.

Given the journalist is Dutch, it would typi-
cally have Dutch as its default language and
so will not switch languages given the head-
line’s first word crime is present in the Dutch
dictionary, too. It will then encounter *pas-
stonel and propose the correct, Dutch, forms:
passionele and its lemma passioneel. Where-
upon the journalist, not being too versant in
French, is likely to let his original pseudo-French
*passionel stand. The Dutch part of the web
provides many more instances of this same er-
ror, as does the English, for that matter. Our
system being context-sensitive, we therefore ex-
plore whether its word bigrams alone aid the
detection and correction of this kind of error,
even when no further explicit language detec-
tion is done and no switching to another lan-
guage dictionary occurs, its dictionary contain-
ing a mix of its various languages. In order to
present our findings, we first describe our novel
correction mechanism (section 2), explain how
we effect detection in light of a noisy lexicon
(section 4), derived from one or more language
corpora (section 3) and present the evaluation
results obtained on Dutch, English and mixed
Dutch-English language texts (section 5).

2 The correction algorithm

We develop the idea of using the corpus itself as
the basis on which to build a spelling correction
system.

2.1 Anagram hashing

We line up all those word forms present in the
corpus that consist of the same set of characters
and use that as the basis for a corpus-derived
lexicon. A means to do this in a completely
unsupervised way was found in the theory of
hashing, be it in the ‘bad’ part of it, in the nor-
mally avoided generation of collisions. Hash-
ing has before been applied to spelling checking
(Kukich, 1992), but we know of no prior work
based on hash collisions. Collisions occur when

[Anagram key

75123219269
95176774701
95666874202
107081254058

anagrams |

gerti, giert, griet, regit, riget, tiger, tigre

ce tigre

de griet, de tigre, dreig te, giert de, tigre de
dreigt u, du tigre, it urged, u dertig, u dreigt,
urged it

de gierst, de tigres, gerst die, get rides, griste de,
its greed, tigres de

de rustig, drug ties, it surged, rustig de, surgit
de, tigres du, urged its

a stringed, and tigers, art design, dangers it, de
ratings, de ratings, drang iets, gradins et, grand
site, granted is, gratin des, is granted, its danger,
its garden, rating des, ratings de, red giants, sign
trade, tigers and, tigre dans

115780446077

127194825933

129962785833

Table 1: Extract from a trilingual (English,
Dutch, French) Tisc lexicon with the anagram
keys and associated, chained anagrams

the mathematical function used to bin the infor-
mation, puts more than one item of information
in a single bin (Knuth, 1981). The mathemat-
ically simple function introduced and exploited
here does precisely that, for all strings contain-
ing the precise same set of characters.

So, for each word type or word type combi-
nation (compound or word bigram) to be in-
cluded in the TISC lexicon, we obtain a numeri-
cal value, which will serve as the hash key. The
formula represents the mathematical function
we devised to do this, where f is a particular
numerical value assigned to each character in
the alphabet and ¢; to ¢, the actual charac-
ters in the input string w.

w]|

Key(w) = f(c;)"
i=1

In practice, we use the ISO Latin-1 code value
of each character in the string raised to a power
n. We currently use 5 as the value for n. This
was empirically derived, lower values do not
produce collisions between anagrams only. The
rather large natural number produced by this
function in effect inflates the difference between
any two characters to such a degree, that all
strings containing the same set of characters re-
ceive the same natural number. This means
that all anagrams, words consisting of a partic-
ular set of characters and present in the lexicon,
will be identified through their common numer-
ical value. So, in that the collisions produced
by this function identify anagrams, we refer to
this as an anagram hash and to the numerical
values obtained as the anagram keys.

In the implementation the anagram keys and
their associated word forms are stored in a regu-
lar hash. The anagram key will enable us to look
up immediately whether any string consisting of

the same character set as the input string was
encountered in the corpus. When not present in
the lexicon, close (numerical) neighbours might
very well be present, and simple arithmetic will
allow us to identify and retrieve these. This
representation makes the implementation com-
putationally tractable. The net effect of obtain-
ing anagram hash key values is that it provides
a cheap abstraction from the surface sequence of
characters which further allows, through simple
addition, subtraction or both, for moving from
one particular combination of characters to an-
other. The numerical difference between e.g.
any verb possibly ending in -ise or -ize will al-
ways be the same. Subtracting the anagram
key value of the s-variant from the anagram
value of the zvariant will produce the same nu-
merical result for all these pairs as does sub-
tracting the anagram value for the single char-
acter s from the anagram value for z, namely:
z = 1225 = 27,027,081,632 and s = 115° =
20,113,571,875, difference: 27,027,081,632 —
20,113,571,875 = 6,913,509,757. The nu-
merical difference between e.g. random-
ize and randomise equals 136, 483,404,939 —
129,569, 895,182 = 6,913,509, 757. The same
goes for all systematic spelling variations be-
tween e.g. American and British English or in
probably any other alphabetic language.

2.2 Anagram key based correction

Anagram key based spelling correction is an in-
expensive solution to the string correction prob-
lem as it does not entail expensive searching: it
uses the non-search strategy implied in hashing.
Based on a word form’s anagram key it becomes
possible to systematically query the lexicon for
any variants present, be they morphological, ty-
pographical or orthographical. These variants
can all be seen as variations of the usual taxon-
omy in terms of *trasnpositions, *deletons, *in-
serrtions or *substatutions (Damerau, 1964).

transpositions These we get for free: they
have the same anagram key value, so when
queried, the lexicon returns the correct
form and its anagrams (if any).

deletions We iterate over the alphabet and
query the lexicon for the input word ana-
gram value plus each value from the alpha-
bet.

insertions We iterate over the list of anagram
values for the character unigrams and bi-
grams collected from the input type and

ANAGRAM
INPUT WORD VALUE Transposition
INPUT WORD
— Deletion =
Anagram values
Alphabet
For each value:
ADD
b Insertion =
Anagram values
character unigrams
L.{ bigramsinput word
For each value:
SUBTRACT = Substitution =

Figure 1: The correction module

query the lexicon for the input word ana-
gram value minus each of these values.

substitutions We iterate over both lists
adding each value from the one and sub-
tracting each value of the second to the
input word anagram value and repeatedly
query the lexicon.

We thus retrieve all numerical near-
neighbours (NNNs) from the lexicon and
apply standard string matching techniques
to retain those that either in front or back
match the input type for a specific amount
of characters, depending on the input type’s
length. After doing so, we iterate over the
list of NNNs retained and upgrade the actual
retrieval counts for those that have the greater
substring matches and whose Levenshtein
distance (LD)(Levenshtein, 1965) does not
exceed 4 (the algorithm is not in itself limited
to a particular LD). The elements of this list
have thereby been ranked and the top n are
then proposed as correction candidates. This
ranking is an automatic side effect of the algo-
rithm which produces more hits on the actual
nearest NNN’s. A deletion error, e.g. such as
*cateory, will return the correct ‘category’ on
the basis of adding the anagram value for ‘g’
as well as of substituting the value for ‘e’ with
that for ‘eg’ and substituting the value for ‘o’
with that for ‘go’. The redundancy inherent to
our algorithm thereby produces the desirable
side-effect of converging on what is usually the
best correction candidate by returning it more
often than less likely candidates.

3 TISC corpus-derived components
3.1 The Lexicon

The English corpus we used was the New York
Times (1994-2002) material available in the LDC
Gigaword Corpus (NYT) (Graff, 2003). For

[Corpus | NyT | wk-Twe | ROULARTA |
language English Dutch French
tokens 1,106,376,695 | 681,686,340 | 52,722,253
bigrams 11,246,986 9,927,378 1,270,600
unigrams 672,502 861,604 144,943
keys/anagr. | 10,287,826 9,000,131 794,308

Table 2: Statistics of NYT, ILK-TWENTE and
ROULARTA corpora and lexicons. Bigrams with
frq>2. Unigrams derived from these. French
key-anagram ratio based on frq>4.

Dutch we used both the 1Lk Corpus' and the
Twente Corpus? (TWc). For French we used 8
years ('91-'98) of Roularta Magazines®. Statis-
tics on these corpora are presented in table 2.

A TIsc lexicon is derived from a large cor-
pus of tokenised, but otherwise raw text, from
which all XML or other tags have been discarded.
We normalise the corpus by replacing all word-
external punctuation by a single unique mark,
as well as all digits and numbers by another.
We apply a rule-based tokenizer and use the
cMU Statistical Toolkit for deriving a bigram
frequency list from the corpus (Clarkson and
Rosenfeld, 1997). We discard the tail of the
bigram list below a given threshold frequency,
partly to ensure we do not incorporate the bulk
of erroneous types present in the corpus. The
effect of varying the threshold frequency is dis-
cussed in (Reynaert, 2004).

To make a multilingual version we concate-
nate the different languages’ bigram lists at this
point. Next the frequency information is dis-
carded and a unigram list derived from the re-
tained part of the bigram list. We lowercase
the unigram list and concatenate the three lists
obtained, removing any doubles. We finally
compute the anagram key values for the uni-
gram/bigram list. Together, the anagram keys
and their lined-up unigrams or bigrams consti-
tute the lexicon. Note that the lexicon will con-
tain names and higher frequency errors.

3.2 The alphabet

Transformations on the word type to be evalu-
ated are necessary in order to identify correc-
tion candidates. These transformations occur
on the anagram key of the word type under con-
sideration on the basis of numerical, i.e. ana-
gram, values for the alphabet used, which are

"Mttp://ilk.uvt.nl/ilkcorpus/

*http://wwwhome.cs.utwente.nl/~druid/TwNC/
TwNC-main.html

3http://www.roularta.be/en/products/default.
htm

read in at the start of run time. Our alphabet
consists of the anagram key values for all char-
acter unigrams (e.g. a = 8,587,340,257, Z =
5,904,900,000) and character bigrams (e.g. ab =
ba = 17,626,548,225, ié = éi = 729,465,962,500)
we want to work with. The list currently con-
tains 442 anagram values. These have been de-
rived from character unigram and character bi-
gram counts on the corpus.

3.3 The cooccurrence information

From the word bigram and unigram lists we de-
rive cooccurrence information for all the word
types present. For each word type we count the
number of times it forms the:

left part of a compound (LPC)
right part of a compound (RPC)
left part of a bigram (LPB)
right part of a bigram (RPB)

Note that these cooccurrence counts (COOC)
are counts on word types and not on word to-
kens. The cooc table contains only the counts
per word-type, not the actual cooccurring word

types.

4 TIsC: the implementation
4.1 Zipf filters

Recall that Zipf stated that the frequency of
a word is inversely proportional to its length
(Zipf, 1935). This implies that we should ex-
pect to see more combinations of any given short
word than of longer words. A long compound,
e.g. one composed of three or more shorter
words, cannot reasonably be expected to com-
bine with very many more words. Short words
can be expected to combine in a myriad of ways,
be it as part of compounds or of numerous bi-
grams. It is this idea we exploit in what we
would like to call the Zipf Filters implemented
in our prototype. We make the number of ex-
pected cooccurrences of a word dependent on
the length of the word form. This then allows
to detect anomalies in the COOCs for particular
word types. We posit a particular amount of
times a string or substring is seen as sufficient
to conclude the string is likely well-formed as
it is highly productive. To this end we take a
constant, which is higher for the shorter strings
and lower beyond a particular amount of charac-
ters, divided by the number of characters in the
string, or the string’s length. We compare the
Co0cCs of a string to be evaluated with the out-
come of this calculation and accept the string as

being well-formed when the coocs are higher,
reject and thus send on to the correction mod-
ule, when lower.

4.2 Compound splitting

Given that a language such as Dutch to a large
degree allows for compounding, any text may
contain quite a number of previously unseen
compounds. While iterating over the input
word string to compute its anagram value, TISC
repeatedly queries the lexicon to check for the
presence of the substring handled so far. If this
is successful for the string as a whole, the sub-
strings, if any, which show the best balance be-
tween length and coocs are stored with their
anagram values. If no full parse was possible,
the process is repeated from right to left and a
decision made over both the left-right and right-
left parses and the split deemed most usable
stored. TISC proposes a single particular split
to be further provided to the checking and cor-
rection modules. The implementation currently
allows for only a split in a left and right part.

4.3 Checking

The input text is first fully analysed: anagram
values are added to the type list, frequencies
of types and their compounding parts tallied,
track kept of how many times the type was
capitalised, recurrent LPC’s not in the lexicon
stored. Then, all the types are sent to the
spelling checking module. Since we cannot con-
tent ourselves with simply checking whether a
type is present in the dictionary or not, we
query the cooccurrence information table to see
whether the particular type’s coocs conform
to our expectation of how many times a type
of the given length should have been incorpo-
rated in the lexicon, i.e. the expectancy level or
threshold set by the Zipf filter. If this is the
case, the type is not further evaluated, which
we will refer to as ‘let go’ . If not, the coocs
for its LPC and the RPC are evaluated against
the threshold. We do not, at this stage, want
to risk to lose too many of the erroneous types,
so the level of expectancy is set rather high.
We simultaneously check whether perhaps the
lexicon contains possible bigrams based on the
type’s anagram key value with the value for a
space added. All the types which did not con-
form to the expected levels or were found to
be present with an additional space, are further
evaluated. Further checks are:
e extra-space cases: If it turns out the lex-
icon contains only the inverted form with

Input

Text Type
List

Anagram
Values

Checking

TISC

Compound

PROCESSING L

Foﬁ\l

Bigram Word

Splitting

Frequencies

Unigram
Frequency List

Frequency List
L ower cased

Frequency List

PREPROCESSING

ARCHITECTURE

TO
BE
CORRECTED?

Type Co—occurrence

Frequencies

Correction
| — unigram level

LEXICON

— bigram level

Paired anagram values &

chained” anagrams

v

Agreement Correction

between — compound level
levels

ALPHABET

= Anagram value list

Post—correction

Evaluation

Figure 2: TISC’s architecture

the added space (e.g. ‘koffiebekertje’ [cof-
fee cup]: not in the lexicon, but ‘bekertje
koffie’ [cup of coffee] is present), we accept
the form as being correct, the rest are fur-
ther evaluated.

e whether perhaps the LPC was seen in vari-
ous other input text compounds or whether
the RPC was perhaps seen as a word in its
own right with a given frequency in the in-
put text, the other part’s coocs conform-
ing. Again those passing this test are let

go.

e whether perhaps the coocs for the LPC
with first or all characters upper-cased con-
form to expectance.

e if the input type contains a dash, we check
whether the coocs for the type without
the dash conform. Or perhaps whether the
type without the dash but with an extra
space is present in the lexicon.

e finally we check those forms for which the
cooccurrence table contains no information
at all. If the coocs for their LPC and RPC
exceed a high expectancy threshold, these
are let go too.

All types not let go by one of these checks are
sent on to the correction module.

4.4 Correction

By default, TISC’s correction works on two lev-
els, a third being invoked when these do not
return satisfactory results. The unigram level
consists of two tiers: unigram correction on the
basis of the lexicon and on the basis of the list
of input context derived types and compound-
ing parts (with frequency threshold). On the
bigram level, TiSC performs context-dependent
error correction, to some extent. It examines
the 4 bigrams contained within a 2-1-2 window
around the type in the input text (e.g. the green
*bottel was empty — the *bottel, green *bottel,
*bottel was, *bottel empty). The only difference
with the unigram correction module lies in the
fact that for the 4 bigrams sent through the cor-
rection loop, all the correction candidates re-
trieved are stored in the same list. This pro-
duces more reliable counts after upgrading. Af-
ter correction on these levels, the output can-
didates are compared and if both levels con-
cur, i.e. the same candidate(s) were returned,
they are accepted if they differ from the input
type, or rejected (and ’let go’) if not. When
no output is returned by the unigram and bi-
gram correction levels, or the results of these
do not concur, the type is further checked on
the third level, that of its substrings, i.e. the
compounding parts returned by the compound

splitter. The compound correction level treats
both LPC and RPC as words in their own right,
queries the system for correction candidates in
the same way as on the unigram level for both
parts and finally concatenates the top candi-
dates returned and proposes these as correction
candidates. Given a sufficiently high frequency
in the input text of the correct form for an in-
correct compounding part, this may enable the
system to correct the error even if the correct
form is not present in the lexicon.

5 Evaluation
5.1 Evaluation method rationale

TISC ought to be compared to other context-
sensitive spelling checking and correction sys-
tems applied to the task of detecting and cor-
recting non-word errors. Alas, we know of none
that have been evaluated on both detection and
correction.

Brill and Moore have developed and evalu-
ated an improved noisy channel-based correc-
tion system equipped with a language model,
therefore context-sensitive, and reported state-
of-the-art correction performance (Brill and
Moore, 2000). They trained the system on 8,000
erroneous word forms. The system was given
another 2000 erroneous word forms to correct
under perfect conditions: all correct forms were
present in the dictionary. They report an ac-
curacy of 98.8% on the 3-best ranked correc-
tion candidates. We think this really consti-
tutes the upper bound their system can reach,
rather than its true accuracy. We get no idea of
how this system would perform, if it were given
both correct and incorrect words not available
in the dictionary. In order to evaluate our sys-
tem in the same way and in order for results
to be comparable, we would have to be able to
use the same 2,000 error list. This list does not
seem to be available.

We therefore tried to next best thing, which
is to try and see how an isolated-word spelling
checking and correction system, which can eas-
ily be equipped with the same bi- and trilingual
dictionaries as TISC, performs. ISPELL fulfils
these requirements. Unfortunately, it does not
perform ranking of the correction candidates.
Either it sorts them alphabetically or not. This
precludes reporting ranking scores here.

5.2 Test settings

We compare our results with those obtained by
ISPELL (version 3.2.06) and MPT (version in Mi-

crosoft Office 2000, 9.0.3821 SR-1), as far as
possible. For TISC and our trilingual version
of ISPELL we varied the threshold at which the
corpora’s bigram lists were truncated (Frequen-
cies: 4-10, 15, 20, 30, 40, 50 and 100). The
TISC implementation used was the same for all
tests as it contains no provisions specific to a
particular language. For the monolingual tests
both ISPELL and MPT were run with their stan-
dard US and standard Dutch dictionaries, the
first in batch mode, the second manually em-
ulating ISPELL’s output for automatic evalua-
tion purposes. For the multilingual test, we de-
clined testing MPT’s automatic language detec-
tion mode on the 145,100 token file. For both
ISPELL and MPT we report the averaged scores
of the three monolingual tests in contrast to the
trilingual ISPELL and bi- and trilingual TISC test
results.

5.3 Composition of the evaluation files

Statistics on the evaluation files are presented
in table 3.

Dutch: For evaluation purposes, we proof-
read the Dutch version of the newspaper Metro
and collected the non-word errors encountered
(typically 0-4 a day). These were extracted
from the online version* with the full article
they appeared in. We used the first batch
(Metrol) for development purposes. The sec-
ond, similar, batch we reserved for testing pur-
poses only (Metro2).

English: We manually collected 1093 er-
roneous types from the alphabetically sorted
unigram frequency list of the Reuters Corpus
(Lewis et al., 2003). We then extracted their
contexts from the tokenized corpus. The con-
text ran to the paragraph containing the error,
as well as the paragraphs preceding and fol-
lowing it. We proofread these manually, which
yielded another 105 errors. A preliminary Is-
pell run finally yielded another 24 overlooked
errors. We ran our evaluations with these 1222
known errors. Statistics on the evaluation file
are presented in table 3.

Dutch-English: For the bilingual tests, we
concatenated both Metro files and the Reuters
file and sorted the lines alphabetically, thereby
obtaining a mixed language file.

5.4 Scoring and evaluation results

We measure performance in terms of the F-
score. Given that the systems are presented

‘http://www.metropoint.com/cgi-bin/
WebObjects/Metropoint.woa/wa/default

context article | article | 3 par. mix
tokens 21,919 | 25,750 | 97,432 145,100
types 5,747 6,441 15,341 24,795
errors 129 123 1,222 1,474
error/type | 2.25% | 1.9% 8% 5.9%

Table 3: Statistics of the evaluation files

| | Rec. | Prec. | F [frq |
Dutch:
MPT 0.66 0.1 0.17 | -
ISPELL 0.60 0.07 0.12 -
TISC 0.67 | 0.60 0.63 | 5
TISC-BI 0.64 0.61 | 0.62 5
TISC-TRI 0.64 0.61 | 0.62 5
English:
MPT 0.94 | 0.38 0.54 -
ISPELL 0.85 0.27 0.41 -
TISC 0.85 0.80 0.82 | 5
TISC-BI 0.81 0.83 | 0.82 | 4
TISC-TRI 0.84 0.81 0.82 | 5
Dutch-English:
MPT-AVERAGE 0.74 0.19 0.3 -
ISPELL-AVERAGE 0.7 0.14 0.22 -
ISPELL-TRI 0.77 0.59 0.67 6
TISC-BI 0.80 | 0.77 0.78 6
TISC-TRI 0.79 0.78 | 0.79 | 5
D-E Upper bounds
ISPELL-TRI-UPPER 0.84 0.63 0.72 5
TISC-TRI-UPPER 0.84 0.80 0.82 5

Table 4: Statistics of best test scores

with errors in a context, we do not solely mea-
sure their ability to correct incorrect forms (i.e.
their accuracy), but also to discern between cor-
rect and incorrect input forms. Of the word
forms for which correction candidates are re-
turned, we check if the output contains the cor-
rect form. If so, the score for successful correc-
tion (recall) is augmented by one, no account
being taken of the ranking of the correction can-
didates, because ISPELL does not have a ranking
mechanism. For all the forms marked by ISPELL
or MPT as ‘not in the dictionary’ the score for
false positives (precision errors) is incremented
by one. The same goes for those forms for which
the systems return correction candidates, but
where the correct one is missing. The results
presented in table 4 were obtained on the word
types, for all systems.

5.5 Discussion

Monolingual task: For both languages, TISC’s
lower thresholded lexicons consistently produce
the highest precision. Recall rises as the thresh-

Metrol | Metro2 | Reuters [Mixed | old is set higher, to drop again, as does pre-

cision, with more and more information not
being available. More context causes preci-
sion to drop: more words to be checked cre-
ate more opportunity to report false positives.
This is clearly demonstrated by the Dutch re-
sults, where the evaluation files contain a lower
error to type ratio than the English one. The
drop in precision given more context seems to us
to be the main cause of current spelling check-
ing systems not being able to attain automatic
correction levels of performance, i.e. a level of
precision where more errors would be removed
than correct words erroneously replaced. The
drop in recall for Dutch is certainly a result of
its greater morphological diversity.

Bilingual task: Table 4 presents the best re-
sults on the bilingual English-Dutch correction
task obtained by TIsSC and ISPELL with dictio-
naries based on the same bilingual (D-E) (BI)
and trilingual (D-E-F) (TRI) bigram lists. These
results are contrasted to the average of the
monolingual results on the three evaluation sets
obtained by ISPELL and MPT. A rather strik-
ing result is that ISPELL’s performance is dras-
tically improved by providing it with a much
larger dictionary. The presence of names alone
in the dictionary provided by us must account
for the better part of the gain in precision.

We determined the upper bound for both
trilingual systems by removing the errors
present in the evaluation files from the bigram
lists from which the lexicons were derived. Re-
member that the evaluation files were obtained
from disjoint corpora, a number of these er-
rors are therefore recurrent and may obtain rel-
atively high frequencies. It can be seen that
ISPELL with its simple dictionary look-up strat-
egy is more sensitive to these than is Tisc. This
is a clear indication that TISC’s error detection
strategy based on coocs and thresholds set by
the Zipf filters works. TISC’s main gain is due
to its context-awareness and to its greater reach
in terms of LD covered. So it corrects errors
that are beyond ISPELL’s scope, but still misses
highly recurrent ones.

Simply mixing three languages seems to have
no adverse effect on both TISC and ISPELL’s ca-
pabilities of performing correction to these lev-
els of performance. Nevertheless, the fact re-
mains that this strategy entails that one partic-
ular type of errors will go undetected, namely
those errors in a specific language that result in
a valid word in one of the other languages in

this type of multilingual system. These would
have to be called bilingual or translingual con-
fusables. Our evaluation files happened to con-
tain a few of them, e.g. polite which should
have read ’politie’ [police| in the Dutch evalua-
tion set. The fact that these are a lot rarer than
errors which do not form a valid word in any of
the languages, obscures their effect. Note that
these would throw a non-context-aware system
which does attempt to do language detection
off balance. We think context-awareness here
too should help remedy this shortcoming of our
non-language-detecting approach. Provided the
error detection module is made to take into ac-
count the word bigram information in much the
same way as the error correction module cur-
rently does, it should also be possible to detect
these anomalies. And this may be a nice pointer
to the way we should direct our future work, in
that this at least hints at ways the harder task
of detecting and remedying monolingual confus-
ables (Kukich, 1992) may be tackled.

As a final note, we want to draw due attention
to the fact, not overly stressed in the above, that
we have developed a competitive spelling check-
ing and correction system using nothing besides
electronically available collections of text. For
Dutch and English, of course, a great deal of
natural language processing resources are avail-
able. We have deliberately ignored these, as
there are a great many languages in this world
for which little or no such resources have as yet
been developed. The inexpensive approach out-
lined here, we hope, may help to remedy that.

6 Conclusion

We have presented TISC, a new algorithm for
spelling checking and correction. We have out-
lined how the system is built up from large cor-
pora of raw text. We have introduced a novel
representation for lexical information which al-
lows for an exact calculation of the difference be-
tween two character strings. Not only does this
make the problem computationally tractable, it
also allows for building a scaled system. We
have shown that incorporating word bigrams,
cooccurrence information about individual word
types and context information derived from the
input text, all combine to make multilingual
spelling correction a competitive possibility. We
have compared TISC with two state-of-the-art
systems and shown that it outperforms both.

Acknowledgements

Heartfelt thanks to my supervisors Prof. Dr. Walter
Daelemans and Dr. Antal van den Bosch for their
trust and support, as well as to Dr. Sabine Buchholz
for providing the tokenizer. This work was funded by
the Netherlands Organisation for Scientific Research
(NWO/FWO VNC 205-41-119).

References

E. Brill and R.C. Moore. 2000. An improved
error model for noisy channel spelling correc-
tion. In Proc. of the 38th Annual Meeting of
the ACL, pages 286—293.

P.R. Clarkson and R. Rosenfeld. 1997. Sta-
tistical language modeling using the CMU-
Cambridge toolkit. In Proceedings ESCA Fu-
rospeech 1997.

Fred J. Damerau. 1964. A technique for com-
puter detection and correction of spelling er-
rors. Communications of the ACM, Volume
7, Issue 3 (March 1964):171 — 176.

EAGLES-I. 1996. Final Report. In FEwvalua-
tion of Natural Language Processing Systems,
volume EAGLES DOCUMENT EAG-EWG-
PR.2.

David Graff. 2003. The New York Times
Newswire Service. English Gigaword LDC-
2003T05.

Donald E. Knuth, 1981. Sorting and Searching,
volume 2 of The Art of Computer Program-
ming, section 6.4, pages 513-558. Addison-
Wesley, Reading, Massachusetts, second edi-
tion.

Karen Kukich. 1992. Techniques for automati-
cally correcting words in text. ACM Comput-
ing Surveys, 24(4):377-439.

V.I. Levenshtein. 1965. Binary codes capable of
correcting deletions, insertions, and reversals.
In Cybernetics and Control Theory, volume
10(8), pages 707-710. Original in: Doklady
Nauk SSSR 163(4): 845-848 (1965).

D. Lewis, Y.Yang, T.G. Rose, and F. Li. 2003.
RCV1: A new benchmark collection for text
categorization research. Journal of Machine
Learning Research.

Martin Reynaert. 2004. Text induced spelling
correction. In Proceedings COLING 2004,
Genewva.

George Kingsley Zipf. 1935. The psycho-biology
of language: an introduction to dynamic
philology. The M.I.T. Press, Cambridge, MA,
1965 - 2nd. edition.

