Design of a Lexical Database for Sanskrit

Gérard Huet
INRIA-Rocquencourt
BP 105, 78153 Le Chesnay CEDEX
France
Gerard.Huet@inria.fr

Abstract

We present the architectural design rationale
of a Sanskrit computational linguistics plat-
form, where the lexical database has a cen-
tral role. We explain the structuring require-
ments issued from the interlinking of grammat-
ical tools through its hypertext rendition.

1 Introduction

Electronic dictionaries come into two distinct
flavours: digital sources of dictionaries and en-
cyclopedia, meant for human usage, and lexical
databases, developed for computational linguis-
tics needs. There is little interaction between
the two forms, mostly for sociological reasons.

We shall argue, in this communication, that a
lexical database may be used for both purposes,
to mutual advantage. We base our thesis on a
concrete experiment on the design of linguistics
resources for the Sanskrit language.

2 From book form to web site
2.1 A Sanskrit-French paper dictionary

The author started from scratch a Sanskrit to
French dictionary in 1994, first as a personal
project in indology, then as a more structured
attempt at covering Sanskrit elementary vocab-
ulary. A systematic policy was inforced along a
number of successive invariants. For instance,
etymology, when known, was followed recur-
sively through relevant entries. Any word could
then be broken into morphological constituents,
down to verbal roots when known. This “et-
ymological” completeness requirement was at
first rather tedious, since entering a new word
may require the acquisition of many ancestors,
due to complex compounding. But it appeared
that the acquisition of new roots slowed down
considerably after an initial “bootstrap” phase.
When the number of entries approached 10000,
with 520 roots, new roots acquisition became
quite exceptional. This phenemenon is simi-

lar to the classical “lexical saturation” effect
witnessed when one builds a lexicon covering
a given corpus (Polguere, 2003). Progressively,
a number of other consistency constraints were
identified and systematically enforced, which
proved invaluable in the long run.

At this point the source of the lexicon was
a plain ASCII file in the LaTeX format. How-
ever, a strict policy of systematic use of macros,
not only for the structure of the grammatical
information, and for the polysemy representa-
tion, but also for internal quotations, ensured
that the document had a strict logical struc-
ture, mechanically retrievable (and thus consid-
erably easier to process without loss of informa-
tion than an optically scanned paper dictionary
(Ma et al., 2003)).

Indeed, around 2000, when the author got
interested into adapting the data as a lexical
database for linguistic processing, he was able
without too much trouble to reverse engineer
the dictionary into a structured lexical database
(Huet, 2000; Huet, 2001). He then set to work
to design a set of tools for further computer
processing as an experiment in the use of func-
tional programming for a computational linguis-
tics platform.

The first design decision was to avoid stan-
dard databases, for several reasons. The first
one is portability. Many database formats are
proprietary or specific to a particular product.
The second reason is that the functionalities of
data base systems, such as query languages, are
not well adapted to the management of lexi-
cal information, which is highly structured in a
deep manner - in a nutshell, functional rather
than predicative. Thirdly, it seemed best to
keep the information in the concrete format in
which it had been developed so far, with spe-
cific text editing tools, and various levels of an-
notation which could remain with the status
of unanalysed comments, pending their possible
later structuring. After all, ASCII is the most

portable format, large text files is not an issue
anymore, parsing technology is fast enough to
make compilation times negligible, and the hu-
man ease of editing is the really crucial factor —
any tool which the lexicographer has to fight to
organise his data is counter-productive.

A detailed description of this abstract syntax
is available as a research report (Huet, 2000),
and will not be repeated here. We shall just
point to salient points of this abstract structure
when needed.

2.2 Grinding the abstract structure

The main tool used to extract information from
this data-base is called the grinder (named after
the corresponding core processor in the Word-
Net effort (Miller, 1990; Fellbaum, 1998)). The
grinder is a parsing process, which recognizes
successive items in the data base, represents
them as an abstract syntax value, and for each
such item calls a process given as argument to
the grinder. In other words, grind is a para-
metric module, or functor in ML terminology.
Here is exactly the module type grind.mli in
the syntax of our pidgin ML:

module Grind : functor
(Process : Proc.Process_signature)
-> sig end;

with interface module Proc specifying the ex-
pected signature of a Process:

module type Process_signature = sig
value process_header :

(Sanskrit.skt * Sanskrit.skt) -> unit;
value process_entry :

Dictionary.entry -> unit;
value prelude : unit -> unit;
value postlude : unit -> unit;
end;

That is, there are two sorts of items in
the data base, namely headers and entries.
The grinder will start by calling the process
prelude, will process every header with rou-
tine process_header and every entry with rou-
tine process_entry, and will conclude by call-
ing the process postlude. Module interface
Dictionary describes the dictionary data struc-
tures used for representing entries (i.e. its ab-
stract syntax as a set of ML datatypes), whereas
module Sanskrit holds the private represen-
tation structures of Sanskrit words (seen from
Dictionary as an abstract type, insuring that

only the Sanskrit lexical analyser may construct
values of type skt).

A typical process is the printing process
Print_dict, itself a functor. Here is its inter-
face:

module Print_dict : functor
(Printer:Print.Printer_signature)
-> Proc.Process_signature;

It takes as argument a Printer module, which
specifies low-level printing primitives for a given
medium, and defines the printing of entries as a
generic recursion over its abstract syntax. Thus
we may define the typesetting primitives to gen-
erate a TEX source in module Print_tex, and
obtain a TEX processor by a simple instancia-
tion:

module Process_tex = Print_dict Print_tex;

Similarly, we may define the primitives to gener-
ate the HTML sources of a Web site, and obtain
an HTML processor Process_html as:

module Process_html = Print_dict Print_html;

It is very satisfying indeed to have such shar-
ing in the tools that build two ultimately very
different objects, a book with professional typo-
graphical quality on one hand, and a Web site
fit for hypertext navigation and search, as well
as grammatical query, on the other hand!.

2.3 Structure of entries

Entries are of two kinds: cross-references and
proper lexemes. Cross references are used to list
alternative spellings of words and some irregular
but commonly occurring flexed forms (typically
pronoun declensions). Lexeme entries consist of
three components : syntax, usage, and an op-
tional list of cognate etymologies in other indo-
european languages.

The syntax component consists itself of three
sub-components: a heading, a list of variants,
and an optional etymology. The heading spells
the main stem (in our case, the so-called weak
stem), together with a hierarchical level. At
the top of the hierarchy, we find root verbs,
non-compound nouns, suffixes, and occasional
declined forms which do not reduce to just a
cross reference, but carry some usage informa-
tion. Then we have subwords, and subsub-
words, which may be derived forms obtained

"http://pauillac.inria.fr/ huet/SKT/

by prefixing or suffixing their parent stem, or
compound nouns.

Other subordinate entries are idiomatic locu-
tions and citations. Thus we have a total of
ten sorts of entries, classified into three hierar-
chical levels (to give a comparison, the much
more exhaustive Monier-Williams Sanskrit-to-
English dictionary has 4 hierarchical levels).

Let us now explain the structure of the us-
age component of our entries. We have actu-
ally three kinds of such usage structure, one
corresponding to nouns (substantives and adjec-
tives), another one corresponding to verbs, and
still another one for idiomatic locutions. We
shall now describe the substantives usage com-
ponent, the verbs one being not very different
in spirit, and the idioms one being a mere sim-
plification of it.

The usage structure of a substantive entry
is a list of meanings, where a meaning con-
sists of a grammatical role and a sense compo-
nent. A role is itself the notation for a part-of-
speech tag and an optional positional indication
(such as ‘enclitic’ for postfix particles, or ‘iic’
[in initio composi| for prefix components). The
part-of-speech tag is typically a gender (mean-
ing substantive or adjective of this gender), or
a pronominal or numeral classifier, or an unde-
clinable adverbial role, sometimes correspond-
ing to a certain declension of the entry. The
thematic role ‘agent’ is also available as tag,
typically for nouns which may be used in the
masculine or the feminine, but not in the neuter.
This results in a fairly flexible concrete syntax
at the disposal of the lexicographer, put into a
rigid but rigorous structure for computational
use by the data base processors.

The sense component is itself a list of elemen-
tary semantic items (representing polysemy),
each possibly decorated by a list of spelling vari-
ants. Elementary semantic items consist in their
turn of an explanation labeled with a classi-
fier. The classifier is either ‘Sem’, in which case
the explanation is to be interpreted as a sub-
stitutive definition, or else it is a field label in
some encyclopedic classification, such as ‘Myth’
for mythological entries, ‘Phil’ for philosophi-
cal entries, etc., in which case the explanation
is merely a gloss in natural language. In ev-
ery case the explanation component has type
sentence, meaning in our case French sentence,
since it applies to a Sanskrit-to-French bilingual
dictionary, but here it is worth giving a few ad-
ditional comments.

We remark that French is solely used as a se-
mantic formalism, deep at the leaves of our en-
tries. Thus there is a clear separation between
a superstructure of the lexical database, which
only depends on a generic dictionary structure
and of the specific structure of the Sanskrit lan-
guage, and terminal semantic values, which in
our case point to French sentences, but could as
well point to some other language within a mul-
tilingual context, or a WordNet-like (Fellbaum,
1998) pivot structure.

The strings denoting Sanskrit references are
traeted in a special way, since they determine
the hypertext links in the HTML version of
the dictionary. There are two kinds of possi-
ble references, proper nouns starting with an
upper case letter, and common nouns or other
Sanskrit words. For both categories, we dis-
tinguish binding occurrences, which construct
HTML anchors, and used occurrences, which
construct the corresponding references. In or-
der to discuss more precisely these notions, we
need to consider the general notion of scoping.
But before discussing this important notion, we
need a little digression about homonymy.

2.4 Homonyms

First of all, there is no distinction in Sanskrit
between homophons and homographs, since the
written form reflects phonetics exactly. As
in any language however, there are homonyms
which are words of different origin and unrelated
meanings, but which happen to have the same
representation as a string of phonemes (voca-
ble). They may or may not have the same gram-
matical role. For such clearly unrelated words,
we use the traditional solution of distinguish-
ing the two entries by numbering them, in our
case with a subscript index. Thus we distin-
guish entry aja; ‘he goat’, derived from root aj
‘to lead’, from entry ajas ‘unborn’, derived by
privative prefix a from root jan ‘to be born’.

Actually, primary derived words, such as sub-
stantival root forms, are distinguished from the
root itself, mostly for convenience reasons (the
usage structure of verbs being superficially dif-
ferent from the one of substantives). Thus the
root dis; ‘to show’ is distinguished from the sub-
stantive disy ‘direction’, and root jna; ‘to know’
is distinct from the feminine substantive jnas
‘knowledge’.

2.5 Scoping

There are two notions of scoping, one global,
and the other one local. First, every refer-

ence ought to point to some binding occurrence,
somewhere in the data base, so that a click on
any used occurrence in the hypertext document
ought to result in a successful context switch-
ing to the appropriate link. Ideally this link
ought to be made to a unique binding occur-
rence. Such binding occurrences may be explicit
in the document; typically, for proper nouns,
this corresponds to a specific semantic item,
which explains their denotation as the name of
some human or mythological figure or geograph-
ical entity. For common nouns, the binding oc-
currence is usually implicit in the structure of
the dictionary, corresponding either to the main
stem of the entry, or to some auxiliary stem or
flexed form listed as an orthographic variant. In
this sense a binding occurrence has as scope the
full dictionary, since it may be referred to from
anywhere. In another sense it is itself within
the scope of a specific entry, the one in which
it appears as a stem or flexed form or proper
name definition, and this entry is itself physi-
cally represented within one HTML document,
to be loaded and indexed when the reference
is activated. In order to determine these, the
grinder builds a lexical tree (trie) of all binding
occurrences in the data base, kept in permanent
storage. A cross-reference analysis checks that
each used occurrence is bound somewhere.

Actually, things are still a bit more elabo-
rate, since each stem is not only bound lexico-
graphically in some precise entry of the lexicon,
but it is within the scope of some grammati-
cal role which determines uniquely its declen-
sion paradigm. Let us explain this by way of a
representative example. Consider the following
typical entry:

FHTT kumara m. garcon, jeune homme; fils
| prince; page; cavalier | myth. np. de Kumara
‘Prince’, épith. de Skanda — n. or pur — f.
kumart adolescente, jeune fille, vierge.

There are actually four binding occurrences in
this entry. The stem kumara is bound initially
with masculine gender for the meaning ‘boy’,
and rebound with neuter gender for the mean-
ing ‘gold’. The stem kumart is bound with fem-
inine gender for the meaning ‘girl’. Finally the
proper name Kumara is bound in the mytho-
logical sememe, the text of which contains an
explicit reference to proper name Skanda.

3 The grammatical engine

We are now ready to understand the second
stage in our Sanskrit linguistic tools, namely

the grammatical engine. This engine allows the
computation of inflected forms, that is declen-
sions of nouns and finite conjugated forms of
verbs. For nouns, we observe that in Sanskrit,
declension paradigms are determined by a suffix
of the stem and its grammatical gender. Since
we just indicated that all defined occurrences
of substantive stems occurring in the dictionary
were in the scope of a gender declaration, this
means that we can compute all inflected forms
of the words in the lexicon by iterating a gram-
matical engine which knows how to decline a
stem, given its gender.

Similary, for verbs, conjugation paradigms for
the present system fall into 10 classes (and the
aorist system has 7 classes). Every root entry
mentions explicitly its (possibly many) present
and aorist classes.

3.1 Sandhi

Given a stem and its gender, standard grammar
paradigm tables give for each number and case
a suffix. Glueing the suffix to the stem is com-
puted by a phonetic euphony process known as
sandhi (meaning ‘junction’ in Sanskrit). Actu-
ally there are two sandhi processes. One, called
external sandhi, is a regular homomorphism op-
erating on the two strings representing two con-
tiguous words in the stream of speech. The end
of the first string is modified according to the
beginning of the second one, by a local euphony
process. Since Sanskrit takes phonetics seri-
ously, this euphony occurs not just orally, but in
writing as well. This external sandhi is relevant
to contiguous words, and compound formation.

A more complex transformation, called inter-
nal sandhi, occurs for words derived by affixes
and thus in particular for inflected forms in de-
clension and conjugation. The two composed
strings influence each other in a complex process
which may influence non-local phonemes. Thus
prefixing ni (down) to root sad (to sit) makes
verb nisad (to sit down) by retroflexion of s af-
ter ¢, and further suffixing it with na for forming
its past participle makes nisanna (seated) by as-
similation of d with n and further retroflexion
of both occurrences of n.

While this process remains deterministic (ex-
cept for occasional cases where some pho-
netic rules are optional), and thus is easily
programmable for the synthesis of inflected
forms, the analysis of such derivations is non-
deterministic in a more complex way than the
simple external sandhi, since it involves a com-

plex cascading of rewrites.

3.2 Declensions

Using internal sandhi, systematic declension ta-
bles drive the declension engine. Here too
the task is not trivial, given the large num-
ber of cases and exceptions. At present our
nominal grammatical engine, deemed sufficient
for the corpus of classical Sanskrit (that is,
not attempting the treatment of complex vedic
forms), operates with no less than 86 tables
(each describing 24 combinations of 8 cases and
3 numbers). This engine may generate all de-
clensions of substantives, adjectives, pronouns
and numerals. It is to be remarked that this
grammatical engine, available as a stand-alone
executable, is to a large extent independent of
the lexicon, and thus may be used to give the
declension of words belonging to a larger cor-
pus. However, the only deemed correctness is
that the words actually appearing in the lexicon
get their correct declension patterns, including
exceptions.

This grammatical engine is accessible online
from the hypertext version of the lexicon, since
its abstract structure ensures us not only of
the fact that every defined stem occurs within
the range of a gender declaration, but con-
versely that every gender declaration is within
the range of some defined stem. Thus we made
the gender declarations (of non-compound en-
tries) themselves mouse sensitive as linked to
the proper instanciation of the grammatical
CGI program. Thus one may navigate with a
Web browser not only within the dictionary as
an hypertext document (thus jumping in the ex-
ample above from the definition of Kumara to
the entry where the name Skanda is defined, and
conversely), but also from the dictionary to the
grammar, obtaining all relevant inflected forms.

Similarly for roots, the present class indica-
tor is mouse-sensitive, and yields on demand the
corresponding conjugation tables. This under-
lines a general requirement for the grammatical
tools: each such process ought to be callable
from a concrete point in the text, correspond-
ing unambiguously to a node in the abstract
syntax of the corresponding entry, with a scop-
ing structure of the lexicon such that from this
node all the relevant parameters may be com-
puted unambiguously.

In order to compute conjugated forms of non-
root verbs, the list of its relevant preverbs is
available, each preverb being a link to the ap-

propriate entry (from which the etymological
link provides the return pointer). Other de-
rived stems (causative, intensive and desider-
ative forms) act also as morphology generators.

3.3 Inflected forms management

One special pass of the grinder generates the
trie of all declensions of the stems appearing in
the dictionary. This trie may be itself pretty-
printed as a document describing all such in-
flected forms. At present this represents about
2000 pages of double-column fine print, for a
total of around 200 000 forms of 8200 stems
(133655 noun forms and 55568 root finite verbal
forms).

3.4 Index management

Another CGI auxiliary process is the index. It
searches for a given string (in transliterated no-
tation), first in the trie of defined stems, and
if not found in the trie of all declined forms.
It then proposes a dictionary entry, either the
found stem (the closest stem the given string is
an initial prefix of) or the stem (or stems) whose
declension is the given string, or if both searches
fail the closest entry in the lexicon in alphabeti-
cal order. This scheme is very effective, and the
answer is given instantaneously.

An auxiliary search engine searches Sanskrit
words with a naive transcription, without dia-
critics. Thus a request for panini will return the
proper link to panini.

3.5 Lemmatization

The basic data structures and algorithms de-
veloped in this Sanskrit processor have actually
been abstracted as a generic Zen toolkit, avail-
able as free software (Huet, 2002; Huet, 2003b;
Huet, 2003d).

One important data structure is the revmap,
which allows to store inflected forms as an
invertible morphological map from stems, with
minimal storage. The Sanskrit platform uses
this format to store its inflected forms in a
in such a way that it may directly be used
as a lemmatizer. Each form is tagged with a
list of pairs (stem, features), where features
gives all the morphological features used in
the derivation of the form from root stem.
A lemmatization procedure, available as a
CGI executable, searches this structure. For
instance, for form devayos it lists:

{ loc. du. m.
loc. du. n.

| gen. du. m. |
| gen. du. n. }[deval

where the stem deva is a hyperlink to the cor-
responding entry in the lexicon. Similarly for
verbal forms. For pibati it lists:

{ pr. a. sg. 3 }Y[paa_1], indicating that it
is the 3rd person singular present form of root
pay in the active voice.

We end this section by remarking that we did
not attempt to automate derivational morphol-
ogy, although some of it is fairly regular. Actu-
ally, compound formation is treated at the level
of segmentation, since classical Sanskrit does
not impose any bound on its recursion depth.
Verb formation (which sequences of preverbs are
allowed to prefix which root) is explicit in the
dictionary structure, but it is also treated at
the level of the segmentation algorithm, since
this affix glueing obeys external sandhi and
not internal sandhi, a peculiarity which may
follow from the historical development of the
language (preverbs derive from postpositions).
At present, noun derivatives from verbal roots
are explicit in the dictionary rather than be-
ing computed out, but we envision in some fu-
ture edition to make systematic the derivation
of participles, absolutives, infinitives, and pe-
riphrastic future and perfect.

4 Syntactic analysis
4.1 Segmentation and tagging

The segmenter takes a Sanskrit input as a
stream of phonemes and returns a stream of so-
lutions, where a solution is a list of (inflected)
words and sandhi rules such that the input is
obtainable by applying the sandhi rules to the
successive pairs of words. It is presented, and
its completeness is proved, in (Huet, 2004). Fur-
ther details on Sanskrit segmentation are given
in (Huet, 2003a; Huet, 2003c).

Combined with the lemmatizer, we thus ob-
tain a (non-deterministic) tagger which returns
all the (shallow) parses of an input sentence.
Here is an easy example:

process '"maarjaarodugdha.mpibati";

Solution 1 :

[maarjaaras

< { nom. sg. m. }[maarjaara] >
with sandhi as|d -> od]

[dugdham

< { acc. sg. m. | acc. sg. n. |

nom. sg. n. }[dugdhal >

with sandhi m|p -> .mp]

[pibati

< { pr. a. sg. 3 }[paa#l] >
with sandhi identity]

This explains that the sentence
marjarodugdhampibati (a cat drinks milk) has
one possible segmentation, where maarjaras,
nominative singular masculine of maarjara (and
here the stem is a hyperlink to the entry in
the lexicon glosing it as chat i.e. cat) combines
by external sandhi with the following word by
rewriting into maarjaro, followed by dugdham
which is the accusative singular masculine of
dugdha (draught) or the accusative or nomi-
native singular neuter of dugdha (milk - same
vocable), which combines by external sandhi
with the following word by rewriting into its
nasalisation dugdham, followed by pibati ...
(drinks).

4.2 Applications to philology

We are now at the stage which, after proper
training of the tagger to curb down its over-
generation, we shall be able to use it for scan-
ning simple corpus (i. e. corpus built over the
stem forms encompassed in the lexicon). The
first level of interpretation of a Sanskrit text
is its word-to-word segmentation, and our tag-
ger will be able to assist a philology specialist
to achieve complete morphological mark-up sys-
tematically. This will allow the development of
concordance analysis tools recognizing morpho-
logical variants, a task which up to now has to
be performed manually.

At some point in the future, one may hope
to develop for Sanskrit the same kind of in-
formative repository that the Perseus web site
provides for Latin and Classical Greek?. Such
resources are invaluable for the preservation of
the cultural heritage of humanity. The consid-
erable classical Sanskrit corpus, rich in philo-
sophical texts but also in scientific, linguistic
and medical knowledge, is an important chal-
lenge for computational linguistics.

Another kind of envisioned application is
the mechanical preparation of students’ read-
ers analysing a text at various levels of informa-
tion, in the manner of Peter Scharf’s Sanskrit
Reader?.

The next stage of analysis will group together
tagged items, so as to fulfill constraints of sub-
categorization (accessible from the lexicon) and

’http://www.perseus.tufts.edu/
3http://cgi-user.brown.edu/Departments/
Classics/Faculty/Scharf/

agreement. The result ought be a set of consis-
tent dependency structures. We are currently
working, in collaboration with Brendan Gillon,
to the design of an abstract representation for
sanskrit syntax making explicit dislocations and
anaphora antecedents, with the goal of building
a consistent tree bank from his work on the anal-
ysis of the exemples from Apte’s manual (Apte,
1885; Gillon, 1996).

An interesting piece of design is the interface
between lexicon citations and the corpus. An
intermediate structure is a virtual library, act-
ing as a skeleton of the corpus used for indexa-
tion. This way citations in the lexicon are mere
pointers in the virtual library, which acts as a
citations repository, but also possibly as a cita-
tion server proxy to the actual corpus materal
when it is actually available as marked-up text.
For lack of space, we omit this material here.

5 Conclusions

The computational linguistic tools should be
modular, with an open-ended structure, and
their evolution should proceed in a breadth-first
manner, encompassing all aspects from pho-
netics to morphology to syntax to semantics
to pragmatics to corpus acquisition, with the
lexical database as a core switching structure.
Proper tools have to be built, so that the an-
alytic structure is confronted to the linguistic
facts, and evolves through experimentally ver-
ifiable improvements. The interlinking of the
lexicon, the grammatical tools and the marked-
up corpus is essential to distill all linguistic in-
formation, so that it is explicit in the lexicon,
while encoded in the minimal way which makes
it non-redundant.

We have argued in this article that the de-
sign of an hypertext interface is useful to refine
the structure of the lexicon in such a way as
to enforce these requirements. However, such
a linguistic platform must carefully distinguish
between the external exchange formats (XML,
Unicode) and the internal logical structure,
where proper computational structures (induc-
tive data types, parametric modules, powerful
finite-state algorithms) may enforce the consis-
tency invariants.

References

Vaman Shivaram Apte. 1885. The Student’s
Guide to Sanskrit Composition. A Treatise on
Sanskrit Syntax for Use of Schools and Col-
leges. Lokasamgraha Press, Poona, India.

Christiane Fellbaum, editor. 1998. WordNet:
An Electronic Lexical Database. MIT Press.
Brendan S. Gillon. 1996. Word order in classi-
cal Sanskrit. Indian Linguistics, 57,1:1-35.
Gérard Huet. 2000. Structure of a San-
skrit dictionary. Technical report, IN-
RIA. http://pauillac.inria.fr/ huet/

PUBLIC/Dicostruct.ps

Gérard Huet. 2001. From an informal textual
lexicon to a well-structured lexical database:
An experiment in data reverse engineering. In
Working Conference on Reverse Engineering
(WCRE’2001). IEEE.

Gérard Huet. 2002. The Zen computational
linguistics toolkit. Technical report, ESSLLI
Course Notes. http://pauillac.inria.fr/
“huet/ZEN/zen.pdf

Gérard Huet. 2003a. Lexicon-directed segmen-
tation and tagging of Sanskrit. In XIIth
World Sanskrit Conference, Helsinki.

Gérard Huet. 2003b. Linear contexts and the
sharing functor: Techniques for symbolic
computation. In Fairouz Kamareddine, edi-
tor, Thirty Five Years of Automating Mathe-
matics. Kluwer.

Gérard Huet. 2003c. Towards computational
processing of Sanskrit. In International
Conference on Natural Language Processing
(ICON), Mysore, Karnataka.

Gérard Huet. 2003d. Zen and the art of sym-
bolic computing: Light and fast applicative
algorithms for computational linguistics. In
Practical Aspects of Declarative Languages
(PADL) symposium. http://pauillac.
inria.fr/~huet/PUBLIC/padl.pdf

Gérard Huet. 2004. A functional toolkit
for morphological and phonological pro-
cessing, application to a Sanskrit tagger.
Journal of Functional Programming, to ap-
pear. http://pauillac.inria.fr/ huet/
PUBLIC/tagger.pdf.

Huanfeng Ma, Burcu Karagol-Ayan, David Do-
ermann, Doug Oard, and Jiangiang Wang.
2003. Parsing and tagging of bilingual dictio-
naries. Traitement Automatique des Langues,
44,2:125-149.

G. A. Miller. 1990. Wordnet: a lexical database
for English. International Journal of Lexicog-
raphy, 3,4.

Alain Polguere. 2003. Lezicologie et sémantique
lezicale. Presses de I’Université de Montréal.

